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Abstract 

Human activities might have accelerated declines of population abundances, but this acceleration 
remains underexplored. Using the North American Breeding Bird Survey, we analyze abundance 
changes, acceleration, and demographic processes of recruitment and loss across 234 bird species 
from 1987 to 2021. We show a continent-wide decline of bird abundance, with hotspots of 15 
acceleration in the Mid-Atlantic, Midwest, and California, matching patterns of agricultural 
activities. In California and the Midwest, increasing loss rates drive acceleration, while in the Mid-
Atlantic, declining recruitment is the main process behind the acceleration. Notably, 67% of 
increasing species and 95% of increasing families show declining recruitment rates, underscoring 
the need for conservation policies that enhance recruitment, not just prevent loss, even for 20 
seemingly thriving species.  

Main text 

Human activities such as changes in land-use, agricultural intensification, overexploitation, and pollution 
have significantly impacted ecosystems over the past centuries [IPBES (1)]. Temporal changes in local 
population abundances are a closely monitored indicator of this impact (2), and have shown an overall 25 
decline of abundances across taxa (1, 3). The past century, however, has seen not only the increase but 
also an acceleration of the increase of human activities, sometimes termed the Great Acceleration (4–6), 
and a likely acceleration of global vertebrate extinction rates (7–9). We should thus expect a 
corresponding acceleration in population declines. In essence, while the first order derivative of population 
abundance change for many species appears to be a decline, the second order derivative (i.e. acceleration 30 
or deceleration of this change) has so far only been used to detect year-specific shifts in population 
trajectories (10–12). 

While examining the temporal changes in population abundance is valuable, understanding the underlying 
demographic processes (such as recruitment and loss) can offer deeper ecological insights into the 
mechanisms of population dynamics. Change in abundance over time, Δ𝑁, arises from the difference 35 
between recruitment 𝑅 (i.e. number of new individuals entering the population through birth or 
immigration, Fig. 1A) and loss 𝐿 (i.e. number of individuals removed from the population by death or 
emigration). The yearly growth rate 𝑔 (i.e. the per-capita abundance change over time) results from the 
difference between recruitment rate 𝑟 and loss rate 𝑙, representing the per-capita probability of a new 
individual entering a population or disappearing, respectively (Fig. 1A). Importantly, the change in growth 40 
rate (Δ𝑔) is the acceleration or deceleration of abundance change (Δ𝑁) and can be decomposed into the 
difference between the change in recruitment rate (Δ𝑟) and loss rate (Δ𝑙, Fig. 1A). The interplay between 𝑟 
and 𝑙, and how they change with time (Δ𝑟 and Δ𝑙), remains unknown in real-world populations for most 



species, particularly at large spatiotemporal scales. Bridging this knowledge gap would provide deeper 
insights into the mechanisms of the ongoing biodiversity crisis and help shape effective conservation 45 
strategies.  

Here, we provide a comprehensive assessment of temporal changes in local population abundances of 234 
bird species across North America from 1987 to 2021, focusing on acceleration, deceleration, recruitment, 
and loss. Using 1,033 routes of the North American Breeding Bird Survey (BBS, (15)), a long-term, 
annual, and standardized monitoring program, and advances in N-mixture population models (14, 15), 50 
together with full Bayesian inference, we demonstrate widespread bird population declines across North 
America, pinpoint regions and taxa where population declines accelerate or decelerate, unveil their 
underlying demographic components, and we show coincidence of the acceleration hotspots with 
environmental and anthropogenic variables. 

Nation-wide decline in abundance. The average change of total bird abundance per route (Δ𝑁, eq. 12) is 55 
a significant decline of Δ𝑁 = −8.62 individuals per year (95% Credible Interval (𝐶𝐼) = [−9.88; −7.38], 
histogram in Fig. 2A, Fig. S1A), representing an average loss of 293 birds (out of an average abundance of 
2,159 in 1987, i.e. 14%) per route from 1987 to 2021. This is in line with the reported decline of bird 
abundance across North America (16) and aligns with trends in some European bird species (17–22). Of 
the 1,033 routes analyzed here, only 26% (265) experienced a significant increase in total bird abundance, 60 
and 72% (741) a significant decrease (Fig. S1A). Using a spatial smoother to show average regional trends 
not obscured by local variation (Fig. 2A), we show that there were only 13 routes located in regions where 
the smoother shows increasing abundance (dotted black circles Fig. 2A-B) and that bird abundances in 
Florida, Delaware, New Jersey, and Texas underwent the most pronounced average declines per route. 

Regional hotspots of accelerating abundance decline. There was no significant negative or positive Δ𝑔 65 
at the scale of the US (histogram Fig. 2B, Δ𝑔 = −3.16 × 10ି଺, 𝐶𝐼 = [−4.94 × 10ିହ; 4.35 × 10ିହ]). Of 
the 756 routes with declining abundance there were approximately as many routes with negative as 
positive Δ𝑔 (raw, not smoothed estimates), indicative of no trend toward either acceleration or 
deceleration of the decline (Fig. 2B, Fig. S2B, Fig. S3). The fact that the great majority of the spatially 
smoothed Δ𝑁 is negative (Fig. 2A-B, outside of the black dotted circles) means that the smoothed map of 70 
Δ𝑔 can be interpreted as average regional acceleration (Δ𝑔 <  0) and deceleration (Δ𝑔 >  0) of the 
abundance decline (Fig. 2B, outside of the black dotted circles, Fig. S2D). Parts of the Mid-Atlantic region 
of the US (Delaware, Maryland, and New Jersey), the Midwest (especially Indiana, Ohio, Kentucky, 
Illinois, Wisconsin, and Michigan), and California had negative smoothed Δ𝑔, indicative of an 
acceleration of the decline in abundance. In these regions, the gap between the number of lost and 75 
recruited individuals widens each year, raising concerns about the future of these bird populations. 
Conversely, the Yukon, most of New England (Connecticut, Massachusetts, Maine, New Hampshire, 
Rhode Island), Atlantic Canada (New Brunswick, Prince Edward Island, and Nova Scotia), New Mexico, 
South Carolina, and parts of Georgia and Northern Florida showed a positive Δ𝑔, indicating a deceleration 
of population decline.  80 

Studies have linked declines of bird abundance to agricultural intensification (17, 19, 22–24) and changes 
in land-use (17, 18). Our findings support this, as we found that the hotspots of accelerating decline (Fig. 
2B) coincide with agricultural areas (namely areas with high fertilizer use and large areas of croplands, 
Fig. S4, Fig. S5, Fig. S6). This coincidence was stronger for the acceleration (Δ𝑔) than for the decline 
(Δ𝑁) (Fig. 2A-B, Fig. S6). Nonetheless, we suggest that focusing only on the magnitude of the decline 85 
may be insufficient to show the impact of agriculture on bird populations, as agriculture can also 
accelerate the decline (Fig. 2B, Fig. S6). This is concerning, especially, given increases in North American 
agricultural production, farm size, and mild increases in cropland area during the past 40 years (25). Here, 
we caution that this is a correlative post-hoc analysis, and more robust causal analyses, and perhaps field 
experiments, are needed to confirm these relationships and better understand their implications.  90 



Changes in recruitment and loss rates. We further demonstrate how changes in loss and recruitment 
rates contribute to the acceleration of bird abundance decline. At the continental scale, the temporal 
change of recruitment rate per route was not different from zero (histogram Fig. 2C, Δ𝑟 = 1.50 × 10ି଺ , 
CI = [−2.25 × 10ିହ; 2.63 × 10ିହ], Fig. S1E), suggesting that local net per capita recruitment has not 
changed at the North American extent since 1987. About 25% of the 1,033 routes showed a significant 95 
positive Δ𝑟 and 25% showed a significant negative Δ𝑟. Conversely, change in loss rate was significantly 
different from zero but the effect was extremely small (histogram Fig. 2D, Δ𝑙 = 2.53 × 10ିହ, CI =
[1.72 × 10ି଻; 5.06 × 10ିହ], Fig. S1G), corresponding to an additional loss of 86 individuals per 100,000 
birds over the entire time period. The smoothed spatial patterns of Δ𝑟 (Fig. 2C) and Δ𝑙 (Fig. 2D) match the 
spatial patterns of Δ𝑔 (Fig. 2B), with the Mid-Atlantic region (especially Delaware, Maryland, and New 100 
Jersey), the Midwest, and California having a combination of negative Δ𝑟 and positive Δ𝑙. In other words, 
regions that underwent an increase in loss rate also saw a decrease in recruitment rate, although the 
correlation is not perfect (Fig. 3A, Fig. S7).  

For the 528 routes with a negative Δ𝑔, 25% showed a significant positive Δ𝑙 as the main component of Δ𝑔 
(Fig. S7A, red), while a significant negative Δ𝑟 was the main component for 15% of these routes (Fig. 105 
S7A, orange). Applying the spatial smoother (Fig. 3A) revealed the demographic rates behind the 
smoothed negative Δ𝑔 (i.e. behind the accelerating decline in the Midwest, Mid-Atlantic, and California, 
Fig. 2B): Δ𝑙 was the main component of the decrease in 𝑔 across the Midwest and California (Fig. 3B, 
red), whereas Δ𝑟 dominated across the Mid-Atlantic (Fig. 3B, orange).  

Per-species, per-family, and per-habitat analyses. We assessed Δ𝑔, Δ𝑟 and Δ𝑙 at different levels of 110 
taxonomic aggregation: species, family, and preferred habitat. Across 234 species, 66 showed positive Δ𝑁 
(64 significantly different from zero) of which 77% (51 species) had negative Δ𝑔 (Fig. 4A-D, red and 
orange), with significantly dominating negative Δ𝑟 (67%, 44 species, Fig. 4A-D, orange). Additionally, 21 
out of 51 families had positive Δ𝑁 (14 significant), of which 95% (20 families) had negative Δ𝑔 due to 
significantly negative Δ𝑟 (Fig. 4D, orange). This indicates that the majority of species and families with 115 
increasing abundance are at the same time experiencing a decrease in growth rate, mainly attributed to a 
decline in recruitment rate. This might be partially a natural process due to density dependent regulation of 
healthy populations reaching their carrying capacity (36, Fig. S8). However, we found that some 
increasing species experience decline in recruitment that cannot be explained by a negative relationship 
between N and g (e.g. American Robin, Blue-winged Teal, Fig. 4, Fig. S8); these may still face declines in 120 
the future, even though their populations have been increasing.  

Importantly, decrease in bird abundance is often directly attributed to the loss of individuals, and 
conservation policies often aim at reducing this loss. We show, however, that decreases in recruitment rate 
may be primarily responsible for significant population dynamics, stressing the need to prioritize 
increasing bird recruitment alongside preventing the loss. The key challenge now is to quantify the relative 125 
influence of conservation measures on recruitment and loss to optimize conservation actions and prevent 
the ongoing recruitment decline. For instance, a decrease in the use of neonicotinoids (19, 27), installation 
of nest boxes (28), or habitat restoration/preservation are policies that may influence both recruitment and 
loss rates, though we expect them to particularly benefit the former. 

Of the 168 species with negative Δ𝑁 (163 significant, with the strongest decline often observed for 130 
common species such as the House Sparrow, the Chimney Swift, or the Eastern Meadowlark), 52% (88 
species) had a significant negative Δ𝑔 (as many due to Δ𝑟 as Δ𝑙, Fig. 4D), while only 4% (8 species) 
showed a significant positive Δ𝑔. This indicates that more than half of the species with declining 
abundance are undergoing an acceleration of this decline. Out of the 10 habitats considered here, only 2 
had a positive Δ𝑁 significantly different from zero (lakes/ponds and forests, Fig. 4C). Conversely, there 135 
were 6 habitats with significant declines, with the strongest trends for towns, grasslands, and marshes (Fig. 
S9). These habitats are significantly impacted by human activities (29–31), suggesting a link between the 



acceleration of the decline and pressures such as urbanization, agricultural intensification, and habitat 
degradation. 

Conclusion. Using one of the most comprehensive and standardized bird time series data in the world, 140 
coupled with a model disentangling demographic processes of recruitment and loss, we examined the 
abundance dynamics and underlying processes for 234 species over 35 years across a continental scale. 
We reveal geographic hotspots of acceleration of bird abundance decline and attribute these declines to 
shifts of recruitment and loss since 1987. These hotspots coincide with areas of intense agriculture. We 
also highlight a worrisome trend: most of the species with increasing populations are experiencing a 145 
decrease in recruitment rate. These results are concerning, especially considering growth in human 
activities across various sectors such as economy, agriculture, or transportation (5, 6, 32–35). 
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Figures275 

 

Fig. 1 | Components of temporal change of abundance. (A) Relations between individual abundance 
(𝑁), number of lost individuals (𝐿, death or emigration), recruited individuals (𝑅, birth or immigration), 
survivors (𝑆), and change in abundance (Δ𝑁). They can be expressed as per-capita rates: yearly growth 
rate (𝑔), recruitment rate (𝑟), loss rate (𝑙), and their respective change (Δ𝑔, Δ𝑟, Δ𝑙). Importantly, Δ𝑔 is 280 
indicative of acceleration or deceleration of Δ𝑁. (B) Each sampling location, species, family, or habitat 
type can be mapped onto a Δ𝑙 vs Δ𝑟 space. Above the black dashed diagonal, growth rate increases (i.e. 
positive Δ𝑔); below, growth rate declines (i.e. negative Δ𝑔). Arrows (↑ and ↓) indicate abundance 
increases (positive Δ𝑁) and declines (negative Δ𝑁). (C) In the same Δ𝑙 vs Δ𝑟 space, colors indicate the 
dominant process: blue is dominant negative Δ𝑙, green is dominant positive Δ𝑟, orange is dominant 285 
negative Δ𝑟 and, red is dominant positive Δ𝑙. Inset plots show Δ𝑙 (black line) and Δ𝑟 (grey line). 



 

Fig. 2 | Temporal change of abundance and vital rates. (A) Temporal change in total bird abundance 
from 1987 to 2021, and (B) temporal change of yearly growth rate decomposed into (C) temporal change 
of recruitment rate, and (D) temporal change of loss rate. Maps in all panels are estimates from the N-290 
mixture model, smoothed using a spatial GAM; for raw (not spatially smoothed) values see Fig. S1. Since 
abundances are decreasing across most of North America (A) the red regions in panel (B) are regional 
hotspots of acceleration of bird abundance decline. Dashed circles mark the few routes with positive 
values of the smoothened Δ𝑁. Inset plots in bottom left show the raw (i.e. not spatially smoothed) trends 
in abundance, growth, recruitment, and loss rates; y-axes have been square root transformed, with the 295 
average trend in blue dashed line. The histograms show the posterior distributions of the grand slope; red 
vertical lines are means and dashed blue lines are 95% credible intervals. 



 

Fig. 3 | Eight classes of temporal change of vital rates across North America. Colors correspond to 
classes in Fig. 1C. (A) Loss rate change (Δ𝑙) versus recruitment rate change (Δ𝑟) from the smoothened 300 
maps in Fig. 2C-D. Each arrow is a route, ↑ is an increase of total abundance change (positive Δ𝑁), ↓ is a 
decrease (negative Δ𝑁). Plots with raw (not smoothened) values are in supplementary material (Fig. S7). 
(B) Spatial representation of those values. 
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Fig. 4 | Temporal change of vital rates aggregated to species, family, and habitat levels. (A) Loss rate 
change (Δ𝑙) vs recruitment rate change (Δ𝑟) where each arrow is one of the 234 analyzed bird species; (B) 
each arrow is one of the 51 avian families; (C) each arrow is one of the 10 habitats. Arrows indicate 
abundance change (↑ positive and ↓ negative Δ𝑁). Error bars around each arrow are 95% credible intervals 
of Δ𝑙 and Δ𝑟. (D) Numbers of increasing (above 0) and decreasing (below 0) abundance (Δ𝑁) on a log10 310 
scale, colored by each Δ𝑙 vs. Δ𝑟 class for bird species (top panel) and families (bottom panel). Colors 
indicate the dominant process: blue is dominant negative Δ𝑙, green is dominant positive Δ𝑟, orange is 
dominant negative Δ𝑟 and, red is dominant positive Δ𝑙 (see Fig. 1 for details). 
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Materials and Methods 

Data. To investigate patterns of population dynamics of birds in North America, we used the 
North American Breeding Bird Survey (16, hereafter BBS), an ongoing bird monitoring initiative 
launched in 1966. Spanning more than 50 years, the BBS comprises 39.2 km-long routes 
scattered across the contiguous United States and Canada, each divided into 50 census points at 5 
approximately 800 m intervals. From its inception with about 500 routes in 1966, the BBS has 
grown to encompass 5,581 routes by 2021. At the time of our data download on September 5, 
2022, the data contained 6,946,871 records of species abundances compiled by 10,316 volunteers 
for 746 species and spanning over 50 years. The BBS data also contain meteorological data, date, 
hour, and spatial coordinates. 10 

Routes with long time-series (e.g. from 1969 to 2021) were spatially sparse. To balance long 
temporal extent with robust spatial coverage, we focused our analysis on the 1987-2021 period 
and selected routes with no more than 15 years of missing data.  

For each species, we extracted the preferred habitat from the eBird/Cornell online database (36). 
These were: Towns, Grasslands, Shorelines, Scrubs, Deserts, Rivers and Streams, Marshes, Open 15 
Woodlands, Forests, Lakes and Ponds, Oceans, and Tundra. Species with missing habitat data (23 
in total) were excluded. In the end, we performed our analysis using 1,033 routes from 1987 to 
2021 (i.e. 35 years), with 1,623,394 occurrences of 564 species. 

Dynamic N-mixture model. We modelled the abundance of each of the 564 bird species across 
each route and year from 1987 to 2021 using a dynamic N-mixture model (13), hereafter the DM 20 
model (Dail & Madsen). It is a generalization of the N-mixture model by Royle (37) that assumes 
open populations (i.e. metapopulations can experience births, immigrations, deaths, or 
emigrations) and that has been successfully applied to data similar to the BBS (13, 14). While the 
DM model can accommodate repeated counts, we did not use them primarily for computational 
feasibility (14).  25 

For a species 𝑗 and a route i, the abundance at time 𝑡 + 1 (i.e. 𝑁௝,௜,௧ାଵ) is the sum of surviving 
individuals (𝑆௝,௜,௧ାଵ) from the previous year and newly recruited individuals (𝑅௝,௜,௧ାଵ): 

𝑁௝,௜,௧ାଵ = 𝑆௝,௜,௧ାଵ + 𝑅௝,௜,௧ାଵ eq. 1 

Survival and recruitment are modeled separately. The number of surviving individuals 𝑆௝,௜,௧ାଵ, is 
assumed to follow a Binomial distribution:  30 

𝑆௝,௜,௧ାଵ ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁௝,௜,௧, 𝜙௝,௜,௧) eq. 2 

Where 𝑁௝,௜,௧ is the abundance of species 𝑗 at route 𝑖 and time 𝑡, and ϕ௝,௜,௧ is the probability that an 
individual survives from 𝑡 to 𝑡 + 1.  

Similarly, recruitment 𝑅௝,௜,௧ାଵ, follows a Poisson distribution: 

𝑅௝,௜,௧ାଵ ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝛾௝,௜,௧) eq. 3 35 

where γ୨,୧,୲ is the expected number of recruited individuals. The abundance at time 1 (𝑁௝,௜,ଵ) is: 

𝑁௝,௜,ଵ ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆௝,௜,ଵ), eq. 4 



where λ௝,௜,ଵ is the mean abundance of the species 𝑗 at route 𝑖 at time 1.  

To correct for imperfect detection, the observed count (C௝,௜,௧) is modelled as a Binomial random 
variable, conditional on the true abundance (𝑁௝,௜,௧):  40 

C௝,௜,௧ ∼ 𝐵inomial൫𝑁௝,௜,௧, 𝑝௝,௜,௧൯ eq. 5 

Here, 𝑝୨,୧,୲ is the species-specific probability of detecting an individual. The detection probability 
is modelled on the logit scale:  

𝑙𝑜𝑔𝑖𝑡൫𝑝௝,௜,௧൯ = 𝛼 + 𝒙௝,௜,௧
⊺ 𝒃, eq. 6 

where α is the intercept, 𝒙⊺ is the transpose of a vector of covariates, and 𝒃 is a vector of 45 
regression coefficients. The covariates 𝒙 include: the exact time of the day of the census (in 
decimal hours), and weather data, i.e. wind condition (ordinal variable with 9 levels ranging from 
< 2 km.h-1 to 74 km.h-1), sky condition (factor with 7 levels: clear sky, partly cloudy, cloudy, fog, 
drizzle, snow, and shower), and average temperature during the census (in ℃). Missing values for 
the time of the day and temperature were imputed following Kéry and Royle (2015), by sampling 50 
from a normal distribution: 

𝑥௜,௧ ∼ 𝑁(𝜇, 𝜎) eq. 7 

where  𝜇 and σ are means and standard deviation of observed data for the respective covariate. 
An implementation of the model in JAGS programming language (39) is in the Zenodo repository 
(40). 55 

For each j-th species, we fitted the DM model in a Bayesian framework using MCMC sampler 
JAGS (Plummer, 2003; https://mcmc-jags.sourceforge.io/), interfaced through the package jagsUI 
(41) in R ver. 4.2.1 (42). For all the parameters, we used normal distributions with 0 mean and 
variance of 100 (Appendix B). The settings for the MCMC algorithm were: 3 chains, 100,000 
iterations per chain, 75,000 burn-in, a thinning rate of 10, and 1,000 iterations in the adaptative 60 
phase. The entire fitting procedure for all 564 species (1 core per MCMC chain, 3 chains per 
species) required approximately 2 days on 1,692 cores of the Ohio Supercomputer Center 
(https://www.osc.edu/), each core operating at 2.5 GHz.  

We assessed the convergence of the DM models for each species by computing the 𝑅෠ (Rhat, 
Gelman & Rubin, 1992) for all of the 106,419 monitored values. Following standard practice 65 
(Gelman & Rubin, 1992), we only retained the most reliable models with median 𝑅෠ ≤ 1.1 of all 
the 106,419 monitored values, which led to a final set of 234 species for further analysis. Among 
these, the average median 𝑅෠ was 1.03, with a standard deviation of 0.03. The reduction from the 
initial 564 species reflects the complexity of the DM model, which can lead to the 
unidentifiability of certain parameters in some models, especially for rare species with limited 70 
presence and low abundance. 

To some, it may seem counterintuitive that recruitment and loss is estimated merely from 
abundance counts. We refer those readers to (13) and (14) for details on how this works. In 
addition, we provide a didactical simplified version of the model in the Zenodo repository of this 
article (40); in it, we first show how artificial abundance time series can be simulated from the 75 



model, given a set of parameters representing recruitment and loss. Second, we demonstrate how 
these parameters can be correctly estimated, given the model and the abundance time series data. 

Demographic rates. From the output of the DM model and for each j-th species at i-th site and t-
th year (starting from 1988), we derived the yearly number of lost individuals 𝐿, as well as the 
per-capita growth rate 𝑔, per-capita recruitment rate 𝑟, and per-capita loss rate 𝑙:  80 

𝐿௝,௜,௧ାଵ =  𝑁௝,௜,௧ − 𝑆௝,௜,௧ାଵ eq. 8 

𝑔௝,௜,௧ାଵ =
ேೕ,೔,೟శభିேೕ,೔,೟

ேೕ,೔,೟
=

୼ே

ே೟
 eq. 9 

𝑟௝,௜,௧ାଵ =
ோೕ,೔,೟శభ

ேೕ,೔,೟
           eq. 10 

𝑙௝,௜,௧ାଵ =
௅ೕ,೔,೟శభ

ேೕ,೔,೟
        eq. 11 

Per route, per species, per family and per habitat analyses. We assessed all metrics at 85 
different levels of taxonomic aggregation. First, for each route, we aggregated the number of 
individuals, recruitments, or losses of all the species together and assessed these aggregated rates. 
Conversely, for each species, family or preferred habitat, we aggregated those metrics over all the 
routes. In other words, these were not mapped geographically as in the spatial analysis, but the 
numbers were aggregated for each grouping (species, family, habitat) over all 1,033 routes 90 
included in our analysis. 

In the DM model, each value of 𝑁௝,௜,௧, 𝑆௝,௜,௧, 𝑅௝,௜,௧ (and thus 𝐿௝,௜,௧) for each species 𝑗, site 𝑖, and 
time 𝑡 is estimated with a posterior distribution. To propagate the uncertainty of these estimates to 
the higher levels of aggregations (namely route, family and preferred habitat), we sampled each 
of those posterior distributions 500 times. For each sample, we aggregated those values per route, 95 
species, family or preferred habitat. This gave us a new posterior distribution of 𝑁, 𝑅 and 𝐿 with 
a mean (𝑦௝,௧) and standard deviation (𝑠𝑑௝,௧) at the desired level of aggregation. We performed the 
same propagation of uncertainty for the rates 𝑔, 𝑟, and 𝑙 across all the levels of aggregation.  

Temporal change with Bayesian mixed models. We assessed the temporal change of the 
estimated 𝑁, 𝑔, 𝑟, and 𝑙 for the different levels of aggregation while propagating the uncertainty 100 
of these estimates from the posteriors of the DM model, using mixed models. We used a random 
varying slope and intercept for each route, species, family or preferred habitat: 

𝑦௝,௧ = Δ𝑦௝ × 𝑡 + β଴ೕ
+ ϵ௝,௧, eq. 12 

where 𝑦௝,௧ is the mean of the posterior distribution (see previous paragraph) estimated by the DM 
model, Δ𝑦௝ and β଴ೕ

 are the random slopes and intercepts, 𝑗 is the index of the level of aggregation 105 

(e.g. 𝑗-th route) and 𝑡 the year in the time series. The error term ϵ௝,௧ comes from a normal 
distribution  

ϵ௝,௧ ∼ 𝑁൫0, s𝑑௝,௧൯, eq. 13 

where 𝑠𝑑௝,௧ is the standard deviation of the posterior distribution of 𝑦௝,௧ estimated in the DM 
model (see previous paragraph). This way, the per-species uncertainty of all the 𝑦 metrics 110 
(estimated in the DM model) is propagated to the mixed effect model of temporal trends, an 



approach used in meta analyses (44). Finally, the random slopes Δ𝑦௝ and intercepts β଴ೕ
 come from 

normal distributions: 

𝛥𝑦௝ ∼ 𝑁൫𝑀௱௬, 𝑆𝐷௱௬൯ eq. 14 

𝛽଴ೕ
∼ 𝑁൫𝑀ఉబ

, 𝑆𝐷ఉబ
൯ eq. 15 115 

The posterior distributions of 𝑀௱௬ and 𝑀ஒబ
represent the grand means of the trends and describe 

the overall temporal trend across all js. 

Spatial smoothing. For the spatial analysis, mapping the above-mentioned temporal changes 
(Δ𝑁, Δ𝑔, Δ𝑙, Δ𝑟) may reveal a substantial local variation among individual routes, which could 
obscure average trends across larger regions. To detect these regional anomalies, we smoothed 120 
the variation of the rates using spatial generalized additive models (GAM) using the R package 
mgcv (45): 

Δ𝑦௝ = s൫𝐿𝑜𝑛௝ , 𝐿𝑎𝑡௝൯, eq. 16 

with Δ𝑦௝ the temporal change of the metric considered at route j, 𝐿𝑜𝑛 and 𝐿𝑎𝑡 the longitude and 
latitude of the route 𝑗, and 𝑠() indicating that longitude and latitude are treated as interacting 125 
covariates in the spline function of the smoother. For the spline function, we used a gaussian 
process as a smooth class (argument “bs” of the 𝑠() function in mgcv) with 100 basis functions 

(approximately 
ଵ

ଵ଴

௧௛
 of the number of routes). 

Classification of acceleration and deceleration. The same Δ𝑔 value can emerge from different 
combinations of Δ𝑙 and Δ𝑟; that is, acceleration or deceleration of Δ𝑁 can result from increases or 130 
decreases in per-capita loss, recruitment, or both. To capture this complexity, we devised a 
classification system for temporal population dynamics based on Δ𝑙 and Δ𝑟 (Fig. 1B, 1C), which 
allowed us to show the relative importance of Δ𝑙 and Δ𝑟 in a single map. We created a color 
scheme where each route (or species, family, or preferred habitat) lays in a 2-dimensional space 
with Δ𝑙 on the x-axis and Δ𝑟 on the y-axis (henceforth Δ𝑙 - Δ𝑟 space). For instance, our analysis 135 
reveals that at the route level, the average Δ𝑁 is negative (indicated by ↓). In this case, blue and 
green hues indicate deceleration of population decline (Fig. 1C), which can be mainly attributed 
to either a negative Δ𝑙 (blue) or to a positive Δ𝑟 (green). Conversely, still in the case of a negative 
Δ𝑁 (↓), red and orange hues indicate an acceleration of the decline, and that either a positive Δ𝑙 
(red) or a negative Δ𝑟 (orange) is the main component of the acceleration. This classification was 140 
applied to individual routes, as well as to smoothed averages. We note that for positive Δ𝑁 
(indicate by ↑), implications of the color scheme are slightly different (i.e. either acceleration or 
deceleration of increasing population), but the interpretation about positive or negative Δ𝑟 and Δ𝑙 
remains consistent.  

Interpreting patterns of change. To interpret the patterns of acceleration, we performed a post-145 
hoc analysis of coincidence between hotspots of Δ𝑁, Δ𝑔, Δ𝑟, and Δ𝑙 (Fig. 2) with several 
environmental and human-related variables. We obtained raster data on land cover, cropland area 
and its temporal change, fertilizer usage, vegetation greenness and its change, net primary 
productivity, climate, temperature change, human footprint and its temporal change, human 
population density, and elevation (Table S1). We aggregated some of these rasters to a coarser 150 



resolution (mostly those which originally came at a 30 sec resolution) to better represent regional 
means, since the smoothened demographic rates also represent regional means. The original and 
coarsened resolutions are listed in Table S1. The aggregation function was either sum (for areas 
of land cover classes and cropland area) or arithmetic mean (for the rest of variables). We then 
overlaid the BBS routes over each coarsened raster, and calculated the mean value of all pixels 155 
overlapping each route. We plotted all bivariate relationships between the covariates and Δ𝑁, Δ𝑔, 
Δ𝑟, and Δ𝑙 (both raw and smoothened) across the 1,033 BBS routes, together with their Spearman 
correlations (Figure S4). 

We conducted four random forest (46) analyses using the randomForest R package (47) with the 
default settings of hyperparameters (as of ver. 4.7.1.2), where the response variable was the 160 
smoothed Δ𝑁, Δ𝑔, Δ𝑟, or Δ𝑙 per route. As predictors we used the variables from Table S1. If there 
were two or more predictors with Spearman correlation exceeding 0.5 (Fig. S4), we only chose 
one of them for the random forest analyses, ending up with 11 predictors (Fig. S6). If a variable 
was found to be important in the random forest, we interpreted its effect as also potentially 
attributable to the other discarded variables. We evaluated variable importance by computing the 165 
mean decrease in accuracy while permuting the out-of-bag (OOB) data for each tree in the forest. 
The resulting variable importance rankings are in Fig. S6. 
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Fig S1 | (A - B) Total abundance change in bird population from 1987 to 2021 (Δ𝑁), and (C-D) 
temporal change of yearly growth rate decomposed into (E-F) temporal change of recruitment 
rate, and (G-H) temporal change of loss rate, after correcting for imperfect detection. Each dot 
represents random slope of a linear regression between the metric and time for one of the 1,033 
routes of the North American Breeding Bird Survey. The left column (A-C-E-G) shows the 
values of the model output, and the right column (B-D-F-H) the spatially smoothed values using 
a spatial GAM with a gaussian process smoother. The color palettes of the smoothed maps (right 
column) have been used for the model outputs maps (left column). Inset plots in bottom left show 
the raw (i.e. not smoothed) trends in abundance, growth, recruitment, and loss rates in a semi 
square root space for each BBS route in grey, with the average trend in blue dashed line. The 
histograms show the posterior distributions of the grand slope with the red vertical line indicating 
the mean and the dashed blue lines the 95% credible interval.   

 

 

  



 

Fig. S2 | Values of growth rate change (Δ𝑔) filtered by positive abundance change Δ𝑁 (A-C) or 
negative Δ𝑁 (B-D) for the raw output of the models (A-B), and the spatially smoothed values (C-
D). In essence, the left column (A-C) shows maps of the accelerated and decelerated abundance 
increase, while the right column shows the acceleration and deceleration of the decline. Inset 
plots show the shape of Δ𝑁 according to the values of Δ𝑔. The information of these maps has 
been summarized in Fig. 2A-B by adding the black dotted circles to indicate regions with positive 
Δ𝑁.     

 

 

  



 

Fig. S3 | Per route values of change in abundance (Δ𝑁) vs. change in growth rate (Δ𝑔) for (A) the 
outputs of the model and (B) the spatially smoothed data. Error bars in (A) show the 95% 
Credible Interval of the MCMC propagated uncertainty. This representation helps to show the 
routes with accelerating/decelerating decline/increase of abundance. Note that the scale for panels 
(A) and (B) are different.  

  



 

 

Fig. S4 | Correlations between the environmental and human-related variables, and Δ𝑁, Δ𝑔, Δ𝑙, 
Δ𝑟 (raw outputs and spatially smoothed with a GAM). Numbers in the upper right triangle are 
Spearman correlation coefficients, with larger values in larger letters. For explanation of variable 
names and details see Table S1. 

 

 

  



 

Fig. S5 | Maps of environmental and human-related variables used in the post-hoc analysis. 
Details on each are in Table S1. Variables in the top row represent temporal change, while the rest 
of the variables are static averages. 

 

  



 

Fig. S6 | Relative variable importances from random forest algorithm explaining changes in 
growth rate Δ𝑔 (total var. explained = 72.5%), recruitment rate Δ𝑟 (total var. explained = 70.8%), 
loss rate Δ𝑙 (total var. explained = 71.7%), and abundance Δ𝑁(total var. explained = 74.1%). 
Details of the covariates are in Table S1. To avoid collinearity, we only used a subset of the 
variables from Table S1 (see details in Methods). Variable importances are the mean decreases in 
accuracy over every tree in the forest while permuting the Out Of Bag data. These were then 
scaled to relative importances, so that they add up to the total percentage of explained variance by 
a given random forest. 

 

  



 

Fig. S7 | (A-D) Predicted growth rate change (Δ𝑔) projected in a loss rate change (Δ𝑙) – 
recruitment rate change (Δ𝑟) space for (A) raw outputs of the models and (D) spatially smoothed 
values. Arrows (↑ and ↓) indicate abundance increases and declines (respectively), for each 



Breeding Bird Survey route. Colors represent whether the dominant process of Δ𝑔 is due to 
negative Δ𝑙 (blue), positive Δ𝑟 (green), negative Δ𝑟 (orange) or positive Δ𝑙 (red) (see Fig. 1 for 
details). Error bars in (A) show the 95% credible interval of the propagated uncertainty. (B-E) 
Maps of Δ𝑔 values that fall within each category of the Δ𝑟 – Δ𝑙 space for (B) the raw outputs of 
the models and (E) the spatially smoothed values. (C-F) Distributions of increasing and 
decreasing populations Δ𝑁 falling within each Δ𝑙Δ𝑟 class for the 1033 BBS routes in our analysis 
for (C) the raw outputs, and (F) the spatially smoothed values. 

 

  



 

Fig. S8 | Density distribution of the slopes between growth rate and abundance (i.e. density 
dependence relationship) for all 234 species in our analysis. The median slope is the red vertical 
line; it falls close to 0, indicating that there are approximately as many positive as negative 
density dependent relationships.  

 

 

  



 

Fig. S9 | Temporal changes in (A) abundance Δ𝑁, and (B) growth rate Δ𝑔 for different bird 
preferred habitat types. The grey areas show the propagated 95% credible interval of the MCMC 
chains.     



Table S1 | Details of variables used in the post-hoc correlative analysis of patterns of change and 
acceleration. We downloaded each variable as a spatial raster in its original resolution and 
aggregated it to the coarsened resolution. The aggregation function was either sum (for areas of 
land cover classes and cropland area) or mean (for the rest of variables). When the original and 
analyzed resolution are identical in the table, no aggregation was done. We then overlaid each 
BBS route over the coarsened raster, and we calculated the mean value of all pixels overlapping 
the route. 

Abbreviation Variable  Coarsened 
resolution 
(original 
resolution)  

Citation Available from 

grass, shrubs, 
trees, built, 
wetland, water  

Area of land cover classes (in 2020), 
square root transformed 

5 min (30 sec)  (48) “geodata” package in R 

NPP Mean MODIS-derived Net Primary 
Productivity (MOD17A3 product, 
2000-2015) 

5 min (500 m) (49) https://lpdaac.usgs.gov/products/mod17a
3hgfv061/ 
(downloaded by Petr Keil in 2019) 

temp Mean annual temperature (1970-
2000) 

5 min (30 sec) (50) 
 

www.worldclim.org 

precip Mean annual precipitation (1970-
2000) 

5 min (30 sec) (50) 
 

www.worldclim.org 

elevat Elevation above sea level 5 min (30 sec) (51) “geodata” package in R or 
https://srtm.csi.cgiar.org 

temp87to21 Trend of mean annual temperature 
between 1987 and 2021 (GHCNv4 
dataset, smoothing radius 250 km) 

2° (2°) (52, 53) 
 

https://data.giss.nasa.gov/gistemp/maps/ 
 

Nfertilizer Nitrogen fertilizer use (1994-2001) 0.5° (0.5°) (54)  https://search.earthdata.nasa.gov/ 

crops03 Cropland area in 2003, square root 
transformed  

5 min (30 sec) (25) “geodata” package in R or 
https://glad.umd.edu/dataset/croplands  

crops03to19 Difference of square root of cropland 
area between 2003 and 2019 

5 min (30 sec) (25) “geodata” package in R or 
https://glad.umd.edu/dataset/croplands  

NDVI82to12 Trend in normalized difference 
vegetation index (NDVI) between 
1982 and 2012 

0.08° (0.08°) (55) https://webmap.ornl.gov/ogc/dataset.jsp?
ds_id=1275 
 

footprint93 Human footprint index in 1993 5 min (30 sec) (56) “geodata” package in R or 
https://datadryad.org/stash/dataset/doi:10
.5061/dryad.052q5 

footprint93to0
9 

Difference of human footprint index 
between 1993 and 2009 

5 min (30 sec) (56) “geodata” package in R or 
https://datadryad.org/stash/dataset/doi:10
.5061/dryad.052q5 

pop2000 Human population density in 2000, 
log10(x+1) transformed 

5 min (30 sec) (57) https://cmr.earthdata.nasa.gov/search/con
cepts/C1597158029-SEDAC.html 

 


