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Abstract 10 

Acceleration of human activities over the past century might have caused a corresponding 

acceleration in the decline of species’ abundances, but this has not been empirically assessed. 

Further, the temporal dynamics of abundance arises from a complex interaction between 

recruitment and loss of individuals, which remains unexplored across large spatial scales. We 

address these gaps by examining temporal changes, acceleration, deceleration, and vital processes 15 

(i.e. recruitment and loss) of abundance across much of the North American avifauna from 1987 to 

2021. We confirm the continent-wide decline of bird abundance, and pinpoint the regional hotspots 

of acceleration of this decline in the Mid-Atlantic region, Midwest, and California, matching broad 

spatial patterns of human activities. We further reveal that the increasing loss rate of individuals is 

the primary process responsible for the acceleration of abundance decline in California and the 20 

Midwest, whereas a decrease in recruitment rate is also observed in the Mid-Atlantic. Finally, our 

models show that 67% of bird species and 95% of families with increasing abundances are 

concurrently experiencing a decline in recruitment rate. This underscores the need for conservation 

policies even for species that appear to be thriving. Moreover, simply preventing loss may not 

suffice, as we also need policies that enhance recruitment.  25 

 
Main text 
Over the Anthropocene, human activities have profoundly impacted ecosystems 1, and a closely monitored 

indicator of this impact is temporal change in local population abundances 2. Global reports show an 

overall decline of abundances, with an average per-species abundance decline estimated to be between 30 

20% 1 and 69% (Living Planet Index, LPI; < www.livingplanetindex.org/>, but see 3,4 for criticisms of the 

LPI). Analyses of local time series show a more complex picture, with some reporting both abundance 

declines and increases 5–11. A particularly large number of local times series of abundances are available 

for birds across North America and Europe, revealing an overall decline 12,13. 

 35 

The declines of population abundances have been mainly attributed to human activities 14 such as 

agricultural intensification 12, changes in land-use, overexploitation, and pollution (Convention on 

Biological Diversity, 2010; < https://www.cbd.int/convention >). The past century, however, has seen not 

only the increase but also an acceleration of the increase of human activities 15,16, often termed the Great 

Acceleration 17,18, and an acceleration of species loss 19–21. We should thus expect a corresponding 40 

acceleration in population declines, but a comprehensive analysis of rates of local population changes 

across large spatial extents and multiple species is lacking. In essence, while the first order derivative of 

population abundance change for the majority of species appears to be a decline, the second order 

derivative (i.e. acceleration or deceleration of this change) remains unexplored. 

 45 
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While examining the temporal changes in population abundance is valuable, there are ecologically 

informative demographic processes that govern the dynamics. Abundance change in time, Δ𝑁, arises from 

the difference between recruitment 𝑅 (i.e. number of new individuals entering the population through 

birth, maturation, or immigration) and loss 𝐿 (i.e. number of individuals removed from the population by 

death or emigration, Fig. 1A). To facilitate comparisons among populations of varying sizes, the temporal 50 

dynamics can be expressed using vital rates, which are per-capita (a.k.a. per-individual) changes. The 

growth rate 𝑔 (i.e. the per-capita average change over time) results from the difference between 

recruitment rate 𝑟 and loss rate 𝑙, representing the per-capita probability of a new individual entering a 

population or disappearing, respectively (Fig. 1A). The interplay between 𝑟, 𝑙 and how they change with 

time in real-world population dynamics remains unknown for most species, particularly at large 55 

spatiotemporal scales. Bridging this knowledge gap would provide deeper insights into the mechanisms of 

the ongoing biodiversity crisis and help shape effective conservation strategies. 

Here, we provide a comprehensive assessment of temporal changes in local population abundances of 234 

bird species across North America from 1987 to 2021, focusing on acceleration, deceleration, recruitment, 

and loss. Using 1,033 routes of the North American Breeding Bird Survey24 (BBS) and advances in N-60 

mixture population models 22,23, together with full Bayesian inference, we demonstrate widespread bird 

population declines across North America, pinpoint regions where population declines accelerate or 

decelerate, and unveil their underlying demographic components. We identify regional acceleration 

hotspots in the Midwest and California, primarily driven by the increasing loss of individuals, and in the 

Mid-Atlantic, where decreasing recruitment also emerges as the main process. Finally, we unveil that 69% 65 

of species and 95% of avian families with increasing abundances are simultaneously undergoing a decline 

in recruitment rate, underscoring a hidden vulnerability of seemingly thriving species. 

 



Fig. 1 | Components of temporal change of abundance. (A) Relations between individual abundance (𝑁), number of lost 

individuals (𝐿), recruited individuals (𝑅), survivors (𝑆), and change in abundance (Δ𝑁). They can be expressed as per-capita rates: 70 
growth rate (𝑔), recruitment rate (𝑟), loss rate (𝑙), and their respective change (Δ𝑔, Δ𝑟, Δ𝑙). Importantly, Δ𝑔 is indicative of 

acceleration or deceleration of Δ𝑁. (B) Each route, species, family, or habitat type can be mapped onto a Δ𝑙Δ𝑟 space, indicating a 

Δ𝑔 value. Above the black dotted diagonal, growth rate increases (i.e. positive Δ𝑔); below, growth rate declines (i.e. negative Δ𝑔). 

Arrows (↑ and ↓) indicate abundance increases (positive Δ𝑁) and declines (negative Δ𝑁);  Δ𝑔 indicate its acceleration or 

deceleration. (C) In the same Δ𝑙Δ𝑟 space, colors indicate the dominant process: blue is dominant negative Δ𝑙, green is dominant 75 
positive Δ𝑟, orange is dominant negative Δ𝑟 and, red is dominant positive Δ𝑙. Inset plots show Δ𝑙 (black line) and Δ𝑟 (grey line). 

Continental decline in bird populations. When looking at the total abundance of individual birds of all 

species together, the average yearly abundance change per route (Δ𝑁, eq. 13) is a significant decline of 

Δ𝑁 = −8.62 individuals (95% Credible Interval (𝐶𝐼) = [−9.88; −7.38], Fig. 2A), representing an 

average loss of 293 birds (out of 2,159 in 1987, i.e. 14%) per route from 1987 to 2021. Of the 1,033 routes 80 

surveyed, only 26% (265) experienced a significant increase in total bird abundance, and 72% (741) a 

significant decrease. Using a spatial smoother to show average regional trends not obscured by local 

variation, we reveal that bird abundances in Florida, Delaware, New Jersey, and Texas underwent the most 

pronounced average declines (-14.9, -14.5, -13.7 and -13.5 individuals per route, respectively; Fig. 2B). 

The change of the per-capita growth rate relative to the size of the initial population in 1987 (Δ𝑔𝑡1, eq. 12, 85 

13) was a significant decline (Fig. 2C, Δgt1 = −3.3 × 10−3, CI = [−3.7 × 10−3; −2.8 × 10−3]), which is 

equivalent to a decline of ca. 112 birds per 1,000 individuals over 35 years. Arizona, Florida, Texas, and 

Louisiana experienced the most pronounced negative Δ𝑔𝑡1 (−6.7 × 10−3, −6.1 × 10−3,−5.6 × 10−3, and 

−5.3 × 10−3 respectively).  
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Fig 2 | Temporal change of abundance. (A) Abundance change (Δ𝑁) in bird populations from 1987 to 2021. Each dot represents 

the random slope of a linear regression between abundance and time for one of the 1,033 routes of the North American Breeding 

Bird Survey. Inset plots in bottom left show abundance trends for each BBS route in grey, with the average trend in blue dashed 

line. The inset histograms show the posterior distribution of the grand slope (i.e. overall mean slope across routes), with the red 

vertical line indicating the mean and the dashed blue lines the 95% credible interval. (C) Temporal change of the relative growth 95 
rate (Δ𝑔𝑡1) is the per-capita Δ𝑁 relative to the size of the initial population in 1987. (B) Δ𝑁, and (D) Δ𝑔𝑡1, smoothed using a 

spatial GAM with a gaussian process smoother. The color palettes of the GAMs have been used on the unsmoothed maps.   

Acceleration of the decline. First, there was no significant negative or positive Δ𝑔 at the scale of the US 

(Fig. 3A, Δ𝑔 = −3.16 × 10−6, 𝐶𝐼 = [−4.94 × 10−5; 4.35 × 10−5]). Concerning the 756 routes with 

negative Δ𝑁 there was ca. as many routes with negative and positive Δ𝑔 (Fig. 3A), indicative of no trend 100 

toward either acceleration or deceleration of the decline (Appendix A Fig. 1). The spatial smoothing helps 

with the interpretation of Δ𝑔 (Fig. 3B): the fact that the great majority of Δ𝑁 is negative (Fig. 2B) suggests 

that Δ𝑔 is indicative of either acceleration (Δ𝑔 <  0) or deceleration (Δ𝑔 >  0) of the decline. Here again, 

there were ca. as many routes with positive and negative Δ𝑔 (Appendix A Fig. 2), however the spatial 

smoothing uncovers variation of regionally averaged Δ𝑔. The Mid-Atlantic region of the US (Delaware, 105 

Maryland, and New Jersey), the Midwest (especially Indiana, Ohio, Kentucky, Illinois, Wisconsin, and 

Michigan), and California had negative Δ𝑔, indicative of an acceleration of the abundance decline. 

Conversely, Yukon, New England (Connecticut, Massachusetts, Maine, New Hampshire), Atlantic 

Canada (New Brunswick, Prince Edward Island, and Nova Scotia), New Mexico, and South Carolina 

showed a positive Δ𝑔, indicating a deceleration of population decline.  110 



 

Fig. 3 | Temporal change of per-capita vital rates. (A)(B) Temporal change of yearly growth rate (Δ𝑔) decomposed into (C)(D) 

temporal change of recruitment rate (Δ𝑟), and (E)(F) temporal change of loss rate (Δ𝑙). Panels on the left (A)(C)(E) show values in 

each specific Breeding Bird Survey (BBS) route. Panels on the right (B)(D)(F) show regional means obtained from spatial 

smoothing (using GAM) of the values in the left panels. As abundances are decreasing for most of the routes, the smoothed map 115 
(B) shows regional hotspots of acceleration of bird population decline (in red). Inset plots in bottom left show trends in growth, 

recruitment, and loss rates for each BBS route in grey, with the average trend in blue dashed line. The histograms show the 



posterior distributions of the grand slope with the red vertical line indicating the mean and the dashed blue lines the 95% credible 

interval. The color palettes of the GAMs have been used on the unsmoothed maps. 

Changes in recruitment and loss rates. At the continental scale, the temporal change of recruitment rate 120 

per route was not different from zero (Fig. 3C, Δ𝑟 = 1.50 × 10−6 , CI = [−2.25 × 10−5; 2.63 × 10−5]), 
suggesting that the net per capita recruitment has not changed at the continental scale since 1987. There 

was ca. 25% of the 1,033 routes with a significant positive Δ𝑟, and 25% with a significant negative Δ𝑟. 

Conversely, change in loss rate was significantly different from zero but extremely low (Fig. 3E, Δ𝑙 =
2.53 × 10−5, CI = [1.72 × 10−7; 5.06 × 10−5]), corresponding to an additional loss of 86 individuals per 125 

100,000 birds over the entire time series period. The smoothed spatial patterns of Δ𝑟 (Fig. 3D) and Δ𝑙 (Fig. 

3F) match the spatial patterns of Δ𝑔 (Fig. 3B), with the Mid-Atlantic region (especially Delaware, 

Maryland, and New Jersey), the Midwest, and California having a combination of negative Δ𝑟 and 

positive Δ𝑙. In other words, regions that underwent an increase in loss rate also saw a decrease in 

recruitment rate.  130 

The main process of the acceleration of population declines: recruitment or loss rate change? 

Among the 505 routes with positive Δ𝑔, ca. 13% of them had significantly (i.e. considering the 95% 

credible interval of both Δ𝑟 and Δ𝑙) a positive Δ𝑟 as the primary component (Fig. 4A, green), while 

negative Δ𝑙 accounted for 14% of them (Fig. 4A, blue). For the 528 routes with a negative Δ𝑔, 25% 

significantly showed a positive Δ𝑙 as the main component (Fig. 4A, red), while it was a negative Δ𝑟 for 135 

15% of them (Fig. 4A, orange). Applying the spatial smoother revealed the demographic rates behind the 

negative Δ𝑔 (i.e. behind the decrease of 𝑔 in the Midwest, Mid-Atlantic, and California, Fig. 3B): Δ𝑙 was 

the main component of the decrease in 𝑔 across the Midwest and California (Fig. 4D, red), whereas Δ𝑟 

dominated across the Mid-Atlantic (Fig. 4D, orange). 
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Fig. 4 | Eight classes of temporal change of vital rates. (A) Predicted and (B) spatially smoothed growth rate change (Δ𝑔) 

projected in a loss rate change (Δ𝑙) – recruitment rate change (Δ𝑟) space. Arrows (↑ and ↓) indicate abundance increases and 

declines, respectively, for each Breeding Bird Survey route. Colors represent whether the dominant process of Δ𝑔 is due to 

negative Δ𝑙 (blue), positive Δ𝑟 (green), negative Δ𝑟 (orange) or positive Δ𝑙 (red) (see Fig. 1 for details). Error bars in (A) around 

each arrow represent the 95% credible interval for the grand Δ𝑙 and grand Δ𝑟. Note that the scale in (B) is one order of magnitude 145 
smaller than in (A). (C) and (D) show spatial distribution of predicted and spatially smoothed values, respectively, with the 

smoothed map showing the main component of the acceleration in bird population decline. Colors indicate the dominant process: 

blue is dominant negative Δ𝑙, green is dominant positive Δ𝑟, orange is dominant negative Δ𝑟 and, red is dominant positive Δ𝑙. 

Per-species, per-family, and per-habitat analyses. We assessed Δ𝑔, Δ𝑟 and Δ𝑙 at different levels of 

taxonomic aggregation: species, family, and preferred habitat. Across 234 species, 66 showed positive Δ𝑁 150 

(64 significant) of which 77% (51) had negative Δ𝑔 (Fig. 5A, Fig. 5D, red and orange), with significantly 

dominating negative Δ𝑟 (67%, 44, Fig. 5A, orange). Additionally, 21 out of 51 families had positive Δ𝑁 

(14 significant), of which 95% (20) had negative Δ𝑔 due to significantly negative Δ𝑟 (Fig. 5D, orange). 

This indicates that the majority of species and families with increasing abundance are at the same time 

experiencing a decrease in growth rate, mainly attributed to a decline in recruitment rate, and are tending 155 

toward an eventual decline. Concerning the 168 species with negative Δ𝑁, 52% (88) had a significant 

negative Δ𝑔, while only 4% (8) showed a significant positive Δ𝑔. This indicates that more than half of the 

species with declining abundance are undergoing an acceleration of this decline. Out of the 10 habitats, 4 

habitats had a positive Δ𝑁 but only 2 significant (lakes/ponds and forests, Fig. 5C).  
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Fig. 5 | Temporal change of vital rates at different levels of taxonomic aggregation. Growth rate change (Δ𝑔) projected in a 

loss rate change (Δ𝑙) – recruitment rate change (Δ𝑟) space for (A) all 234 bird species, (B) 51 avian families, and (C) 10 preferred 

habitats. Arrows indicate abundance change (↑ positive and ↓ negative Δ𝑁) for each species, family, and habitat. Error bars around 

each arrow represent the 95% credible interval for Δ𝑙 and grand Δ𝑟. (D) Distributions of increasing and decreasing populations 

Δ𝑁 (above and below black dashed line, respectively) falling within each Δ𝑙Δ𝑟 class for bird species (top panel) and families 165 
(bottom panel). Colors indicate the dominant process: blue is dominant negative Δ𝑙, green is dominant positive Δ𝑟, orange is 

dominant negative Δ𝑟 and, red is dominant positive Δ𝑙. 

Discussion  

Our findings corroborate the decline of bird abundance across North America 13 (Fig. 2) and align with 

trends seen for some European bird species 7,12,25–28
. Here, we extend this understanding by identifying 170 

specific regions where these declines are accelerating and by dissecting population dynamics into loss and 

recruitment rates.  

Regional hotspots of accelerating bird population decline. We identify the Mid-Atlantic, the Midwest, 

and California as hotspots of accelerating decline of bird abundance (Fig. 3B). In these regions, the 

difference between the number of lost and recruited individuals continues to expand every year, raising 175 

concerns for the future of these bird populations. The decline of bird abundance has been associated with 

agricultural intensification 12,25,27,29,30 and changes in land-use 25,26. Our findings align with this, as spatial 

patterns of accelerating decline (Fig. 3B) coincide with those of agriculture 31 and pesticide use (Pesticide 

National Synthesis Project, https://water.usgs.gov/nawqa/pnsp/usage/maps/), which have intensified in 

https://water.usgs.gov/nawqa/pnsp/usage/maps/


North America 30. The spatial hotspots of accelerating decline also align with patterns of human 180 

population density, particularly in the eastern USA and along the West Coast (U. S. Census Bureau, 

http://www.census.gov), and with CO2 emissions 32. This suggests that regions experiencing strong human 

activities are also witnessing an acceleration in bird population decline, and that the decline of abundance 

per se does not necessarily directly correlate with human activities (Fig. 2) but patterns of accelerating 

decline do (Fig. 3B), although the direct causality remains to be tested in future studies. Acceleration of 185 

human impacts on ecosystems can lead to population collapse, as already observed for both terrestrial 33,34 

and marine ecosystems 35–37. This is concerning, especially in the context of the ongoing Great 

Acceleration 17,18, where global human activities are accelerating due to economic growth aspirations 15. 

Our results serve as a warning that a similar collapse could unfold among the bird populations of North 

America. 190 

Is recruitment or loss the main component of the acceleration of bird population decline? We further 

demonstrate how changes in loss and recruitment rates contribute to the acceleration of bird population 

decline (Fig. 3E-F, Fig. 4). Loss of individuals is frequently linked to pollution 38,39, extreme events 

induced by climate change 40, disease outbreaks 41,42 or human disturbances 43,44. In contrast, recruitment 

rate is directly linked to breeding success determined by the clutch size and successful fledges, and is 195 

driven by precipitation, habitat fragmentation, availability of nesting sites or food 45,46. Admittedly, 

extreme events, climatic fluctuations, disease outbreaks, and changes in land-use can impact both 

recruitment and loss of individuals, albeit with different relative magnitude. While we have not 

disentangled the relative importance of those drivers for the reported population declines and demographic 

rates, our results offer a foundation for both future experimental studies and conservation policies.  200 

Decline in recruitment rates. Importantly, we have revealed that 67% of species and 95% of families 

with increasing abundance are undergoing a decline in recruitment rates (Fig. 5D). This suggests that most 

of the taxa with increasing abundance are, in fact, heading towards an eventual decline, should such a 

trend continue. However, we warn that our models didn’t account for density-dependence and that this 

pattern of decreasing recruitment rate for increasing population might be due to some species reaching 205 

their carrying capacity; an opportunity for future analysis, e.g. as in ref. 48. Decrease in recruitment rate 

has been linked to habitat fragmentation 49 or decrease in food abundance 50,51, both of which have 

intensified since 1987 52. Importantly, decrease in bird abundance is often seen as a direct result of the loss 

of individuals, and conservation policies often aim at directly reducing this loss. We show, however, that 

decreases in recruitment rate may themselves be responsible for significant population dynamics, stressing 210 

the importance of prioritizing increasing bird recruitment on par with preventing the loss. For instance, a 

decrease in the use of neonicotinoids 27,53 or installation of nest boxes 54 are policies supporting 

recruitment, with a potential to bend the curve of a future recruitment collapse.  

Using one of the most comprehensive local bird time series datasets in the world, coupled with a model 

disentangling processes of recruitment and loss, we provide insights into the abundance dynamics and 215 

their underlying processes of 234 species over 35 years across a continental scale. This marks a significant 

advancement, as we offer detailed insights into demographic dynamics that were previously unexplored 

for such a broad spectrum of species and at such an expansive spatial scale. Importantly, we reveal 

geographic hotspots of acceleration of bird abundance decline and attribute these declines to shifts of 

recruitment and loss since 1987. We propose that regions with accelerated decline correspond to areas 220 

with high human populations and activities, which are themselves increasing at an accelerated pace. We 

also highlight a concerning trend: most of the species with an increasing population is trending toward an 

eventual decline due to a ubiquitous decrease in recruitment rate. This is alarming, especially considering 

projections of exponential acceleration in human activities across various sectors such as economy, 

agriculture, or transportation, with no foreseeable reversal of this trend. 225 

 

http://www.census.gov/


Methods 

Data. To investigate the acceleration of bird decline in North America, we used the North American 

Breeding Bird Survey 24, an ongoing bird monitoring initiative launched in 1966. Spanning more than 50 

years, the BBS comprises 39.2 km-long routes scattered across the contiguous United States and Canada, 230 

each divided into 50 census points at approximately 800 m intervals. From its inception with about 500 

routes in 1966, the BBS has grown to encompass 5,581 routes by 2021. At the time of our data download 

on September 5, 2022, the data contained 6,946,871 records of species abundances compiled by 10,316 

volunteers for 746 species and spanning over 50 years. The BBS data also contain meteorological data, 

date, hour, and spatial coordinates. 235 

Routes with long time-series (e.g. from 1969 to 2021) were spatially sparse. To balance long temporal 

extent with robust spatial coverage, we focused our analysis on the 1987-2021 period and selected routes 

with no more than 15 years of missing data.  

For each species, we extracted the preferred habitat from the eBird/Cornell online database 24. These were: 

Towns, Grasslands, Shorelines, Scrubs, Deserts, Rivers and Streams, Marshes, Open Woodlands, Forests, 240 

Lakes and Ponds, Oceans, and Tundra. Species with missing habitat data (23 in total) were excluded. In 

the end, we performed our analysis using 1,033 routes from 1987 to 2021 (i.e. 35 years), with 1,623,394 

occurrences of 564 species. 

Dynamic N-mixture model. We modelled the abundance of each of the 564 bird species across each 

route and year from 1987 to 2021 using a dynamic N-mixture model (Dail & Madsen, 2011), hereafter the 245 

DM model. It is a generalization of the N-mixture model by Royle (2004) that assumes open populations 

(i.e. metapopulations can experience births, recruitments, deaths, or emigrations) and that has been 

successfully applied to the BBS 22,23. This model can also be used without repeated counts 23.  

For a species 𝑗 and a route i, the abundance at time 𝑡 + 1 (i.e. 𝑁𝑗,𝑖,𝑡+1) is the sum of surviving (𝑆𝑗,𝑖,𝑡+1) and 

recruited (𝑅𝑗,𝑖,𝑡+1) individuals from time 𝑡: 250 

𝑁𝑗,𝑖,𝑡+1 = 𝑆𝑗,𝑖,𝑡+1 + 𝑅𝑗,𝑖,𝑡+1 eq. 1 

with survival 𝑆𝑗,𝑖,𝑡+1 and recruitment 𝑅𝑗,𝑖,𝑡+1 modelled as: 

𝑆𝑗,𝑖,𝑡+1 ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁𝑗,𝑖,𝑡 , 𝜙𝑗,𝑖,𝑡) eq. 2 

𝑅𝑗,𝑖,𝑡+1 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝛾𝑗,𝑖,𝑡) eq. 3 

𝑁𝑗,𝑖,𝑡 is the abundance of species 𝑗 at route 𝑖 and time 𝑡, 𝜙 is the average probability of individual survival, 255 

and γ is the number of recruited individuals. The abundance at time 1 (𝑁𝑗,𝑖,1) is: 

𝑁𝑗,𝑖,1 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑗,𝑖,1), eq. 4 

where 𝜆 is the mean abundance of the species at time 1.  

The DM model corrects for imperfect detection, where the observed abundance (𝑛𝑗,𝑖,𝑡) is corrected to 

estimate the true abundance (𝑁𝑗,𝑖,𝑡):  260 

𝑛(𝑗,𝑖,𝑡) ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁𝑗,𝑖,𝑡 , 𝑝𝑗,𝑖,𝑡) eq. 5 

logit(𝑝𝑗,𝑖,𝑡) = 𝛼 + 𝒙𝑗,𝑖,𝑡
⊺ 𝒃, eq. 6 



where 𝑝 is the probability of detection of an individual, 𝒙⊺ is the transpose of a vector of covariates, 𝒃 is a 

vector of regression coefficients, and α is the intercept. 𝒙 includes the exact time of the day of the census 

(in decimal hours), and weather data, i.e. wind condition (ordinal variable with 9 levels ranging from < 2 265 

km.h-1 to 74 km.h-1), sky condition (factor with 7 levels: clear sky, partly cloudy, cloudy, fog, drizzle, 

snow, and shower), and average temperature during the census (in ℃). Missing values for the time of the 

day and temperature were imputed following Kéry and Royle (2015): 

𝑥𝑖,𝑡 ∼ 𝑁ormal(μ, σ) eq. 7 

where 𝑥𝑖,𝑡 is the imputed value of the covariate 𝑥 at route 𝑖 and time 𝑡, and 𝜇 and σ are means and standard 270 

deviation of the available data.  

For each j-th species, we fitted the DM model in a Bayesian framework using MCMC sampler JAGS 

(Plummer, 2003; https://mcmc-jags.sourceforge.io/), interfaced through the package jagsUI 58 in R ver. 

4.2.1 59. For all the parameters, we used normal distributions with 0 mean and variance of 100 (Appendix 

B). The settings for the MCMC algorithm were: 3 chains, 100,000 iterations per chain, 75,000 burn-in, a 275 

thinning rate of 10, and 1,000 iterations in the adaptative phase. The entire fitting procedure for all 564 

species (1 core per MCMC chain, 3 chains per species) required ca. 2 days on 1,692 cores of the Ohio 

Supercomputer (https://www.osc.edu/), each core operating at 2.5 GHz.  

For each species, the DM models’ convergence was assessed by computing the �̂� (Rhat, Gelman & Rubin, 

1992) for all of the 106,419 monitored values. To select the most trustful models, we selected those with 280 

median �̂� ≤ 1.1. This led to a final set of 234 species for further analysis. 

Rates of change. From the output of the DM model and for each j-th species at i-th site and t-th year 

(starting from 1988), we derived the yearly number of lost individuals 𝐿, as well as the per-capita growth 

rate 𝑔, per-capita recruitment rate 𝑟, and per-capita loss rate 𝑙:  

𝐿𝑗,𝑖,𝑡+1 =  𝑁𝑗,𝑖,𝑡 − 𝑆𝑗,𝑖,𝑡+1 eq. 8 285 

𝑔𝑗,𝑖,𝑡+1 =
𝑁𝑗,𝑖,𝑡+1−𝑁𝑗,𝑖,𝑡

𝑁𝑗,𝑖,𝑡
=

Δ𝑁

𝑁𝑡
 eq. 9 

𝑟𝑗,𝑖,𝑡+1 =
𝑅𝑗,𝑖,𝑡+1

𝑁𝑗,𝑖,𝑡
           eq. 10 

𝑙𝑗,𝑖,𝑡+1 =
𝐿𝑗,𝑖,𝑡+1

𝑁𝑗,𝑖,𝑡
        eq. 11 

Additionally, we calculated the per-capita growth rate relative to the size of the initial population in 1987, 

hereafter relative growth rate 𝑔𝑡1, as: 290 

𝑔𝑡1 ∣ 𝑗,𝑖,𝑡 =
𝑁𝑗,𝑖,𝑡−𝑁𝑗,𝑖,1

𝑁𝑗,𝑖,1
  eq. 12 

Per route, per species, per family and per habitat analyses. We assessed all metrics for different levels 

of aggregation. First, for each route, we aggregated the number of individuals, recruitments, or losses of 

all the species together and assessed these aggregated rates. Conversely, for each species, family or 

preferred habitat, we aggregated those metrics over all the routes. In other words, these were not mapped 295 

geographically as in the spatial analysis, but the numbers were aggregated for each grouping (species, 

family, habitat) over all 1,033 routes included in our analysis. 

In the DM model, each value of N𝑗,𝑖,𝑡, Sj,i,t, Rj,i,t (and thus Lj,i,t) for each species 𝑗, site 𝑖, and time 𝑡 is 

estimated with a posterior distribution. To propagate the uncertainty of these estimates to the higher levels 

https://www.osc.edu/


of aggregations (namely route, family and preferred habitat), we sampled each of those posterior 300 

distributions 500 times. For each sample, we aggregated those values per route, family or preferred 

habitat. This gave us a new posterior distribution of 𝑁, 𝑅 and 𝐿 with a mean (𝑦𝑗,𝑡) and standard deviation 

(𝑠𝑑𝑗,𝑡) at the desired level of aggregation. We performed the same propagation of uncertainty for the rates 

𝑔𝑡1, 𝑔, 𝑟, and 𝑙 across all the levels of aggregation.  

Temporal change with Bayesian mixed models. We assessed the temporal change of the estimated 𝑁, 𝑔, 305 

𝑟, and 𝑙 for the different levels of aggregation while propagating the uncertainty of these estimates from 

the posteriors of the DM model, using mixed models. We used a random varying slope and intercept for 

each route, species, family or preferred habitat: 

𝑦𝑗,𝑡 = Δ𝑦𝑗 × 𝑡 + β0𝑗
+ ϵ𝑗,𝑡, eq. 13 

where 𝑦𝑗,𝑡 is the mean of the posterior distribution (see previous paragraph) estimated by the DM model, 310 

Δ𝑦𝑗 and β0𝑗
 are the random slopes and intercepts, 𝑗 is the index of the level of aggregation (e.g. 𝑗-th route) 

and 𝑡 the year in the time series. The error term ϵ𝑗,𝑡 comes from a normal distribution  

ϵ𝑗,𝑡 ∼ 𝑁(0, s𝑑𝑗,𝑡), eq. 14 

where 𝑠𝑑j,t is the standard deviation of the posterior distribution of 𝑦𝑗,𝑡 estimated in the DM model (see 

previous paragraph). This way, the uncertainty of all the 𝑦 metrics (estimated in the DM model) is 315 

propagated to the mixed effect model of temporal trends, an approach used in meta analyses 61. Finally, the 

random slopes Δ𝑦𝑗 and intercepts β0𝑗
 come from normal distributions: 

Δ𝑦𝑗 ∼ 𝑁(MΔy, SDΔy) eq. 15 

β0𝑗
∼ 𝑁(𝑀β0

, 𝑆𝐷β0
) eq. 16 

The posterior distributions of MΔy and 𝑀β0
represent the grand means of the trends and describe the 320 

overall temporal trend across all js. 

Spatial smoothing. For the spatial analysis, mapping the above-mentioned temporal changes (Δ𝑁, Δ𝑔𝑡1, 

Δ𝑔, Δ𝑙, Δ𝑟) may reveal a substantial local variation among individual routes, which could obscure average 

trends across larger regions. To detect these regional anomalies, we smoothed the variation of the rates 

using spatial generalized additive models (GAM) using the R package mgcv 62: 325 

Δ𝑦𝑗 = s(𝐿𝑜𝑛𝑗, 𝐿𝑎𝑡𝑗), eq. 17 

with Δ𝑦𝑗 the temporal change of the metric considered at route j, 𝐿𝑜𝑛 and 𝐿𝑎𝑡 the longitude and latitude of 

the route 𝑗, and 𝑠() indicating that longitude and latitude are treated as interacting covariates in the spline 

function of the smoother. For the spline function, we used a gaussian process as a smooth class (argument 

“bs” of the 𝑠() function in mgcv) with 100 basis functions (ca. 
1

10

𝑡ℎ
 of the number of routes). 330 

Classification of acceleration and deceleration. The same Δ𝑔 value can emerge from different 

combinations of Δ𝑙 and Δ𝑟; that is, acceleration or deceleration of Δ𝑁 can result from increases or 

decreases in per-capita loss, recruitment, or both. To capture this complexity, we devised a classification 

system for temporal population dynamics based on Δ𝑙 and Δ𝑟 (Fig. 1b, c), which allowed us to show the 

relative importance of Δ𝑙 and Δ𝑟 in a single map. We created a color scheme where each route (or species, 335 

family, or preferred habitat) lays in a 2-dimensional space with Δ𝑙 on the x-axis and Δ𝑟 on the y-axis 

(henceforth Δ𝑙Δ𝑟 space). For instance, our analysis reveals that at the route level, the average Δ𝑁 is 



negative (indicated by ↓). In this case, blue and green hues indicate deceleration of population decline 

(Fig. 1C), which can be mainly attributed to either a negative Δ𝑙 (blue) or to a positive Δ𝑟 (green). 

Conversely, still in the case of a negative Δ𝑁 (↓), red and orange hues indicate an acceleration of the 340 

decline, and that either a positive Δ𝑙 (red) or a negative Δ𝑟 (orange) is the main component of the 

acceleration. This classification was applied to individual routes, as well as to smoothed averages. We 

note that for positive Δ𝑁 (indicate by ↑), implications of the color scheme are slightly different (i.e. either 

acceleration or deceleration of increasing population), but the interpretation about positive or negative Δ𝑟 

and Δ𝑙 remains consistent.   345 
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Appendix A 

 

Appendix A Fig. 1: Distributions of increasing and decreasing populations Δ𝑁 (above and below 

black dashed line, respectively) falling within each Δ𝑙Δ𝑟 class for the 1033 BBS routes in our 

analysis. Colors indicate the dominant process: blue is dominant negative Δ𝑙, green is dominant 

positive Δ𝑟, orange is dominant negative Δ𝑟 and, red is dominant positive Δ𝑙. The arrows on the 

right indicate the number of routes with positive and negative Δ𝑁.  

 

 

Appendix A Fig. 2: Distributions of increasing and decreasing populations Δ𝑁 (above and below 

black dashed line, respectively) smoothed with GAM, falling within each Δ𝑙Δ𝑟 class for the 1033 

BBS routes in our analysis. Colors indicate the dominant process: blue is dominant negative Δ𝑙, 

green is dominant positive Δ𝑟, orange is dominant negative Δ𝑟 and, red is dominant positive Δ𝑙. 
The arrows on the right indicate the number of routes with positive and negative Δ𝑁. 

 



This file contains the JAGS code implementing the Dail-Madsen model, modified from Kéry & Royle (2020). The output of the model gives 
the abundance (N), as well as the number of surviving (S) and recruited (R) individuals. The code is commented to provide information 
about the parameters estimated. 

model {
  # Priors
  alpha.lambda ~ dnorm(0,0.01) ## lambda is the abundance at time 1
  alpha.gamma ~ dnorm(0,0.01) ## gamma is the number of recruited individuals
  alpha.phi ~ dnorm(0,0.01)   ## phi is the probability of survival
  alpha.p ~ dnorm(0,0.01)     ## p is the probability of detecting an individual (observation process)

  ### Priors Covariates #########     ## The following covariates were used in the detection probability of the observation 
process
  beta.time ~ dnorm(0,0.01)         ## time is the time of the day of the census
  beta.temp ~ dnorm(0,0.01)         ## temp is the average temperature of the census
  ### Sky ###                   ## sky indicates the discrete states of the sky conditions
  beta.sky[1] <- 0               ## 1 = Clear or few clouds
  beta.sky[2] ~ dnorm(0,0.01)       ## 2 = Partly cloudy (scattered) or variable sky
  beta.sky[3] ~ dnorm(0,0.01)       ## 3 = Cloudy (broken) or overcast
  beta.sky[4] ~ dnorm(0,0.01)       ## 4 = Fog or smoke
  beta.sky[5] ~ dnorm(0,0.01)       ## 5 = Drizzle
  beta.sky[6] ~ dnorm(0,0.01)         ## 6 = Snow
  beta.sky[7] ~ dnorm(0,0.01)         ## 7 = Showers
  ### Wind ###                        ## wind indicates the strength of the wind during the census
  beta.wind[1] <- 0                   ## 1 = Smoke rises vertically [<1 mph, <2 kph]
  beta.wind[2] ~ dnorm(0,0.01)        ## 2 = Wind direction shown by smoke drift [1-3 mph, 2-5 kph]
  beta.wind[3] ~ dnorm(0,0.01)        ## 3 = Wind felt on face; leaves rustle [4-7 mph, 6-12 kph]
  beta.wind[4] ~ dnorm(0,0.01)        ## 4 = Leaves, small twigs in constant motion [8-12 mph, 13-19 kph]
  beta.wind[5] ~ dnorm(0,0.01)        ## 5 = Dust rises; small branches move [13-18 mph, 20-29 Kph]
  beta.wind[6] ~ dnorm(0,0.01)        ## 6 = Small trees in leaf begin to sway [19-24 mph, 30-39 Kph]
  beta.wind[7] ~ dnorm(0,0.01)        ## 7 = Strong Breeze; Larger tree branches moving [25-31 mph, 40-50 kph]

  # Likelihood

  for(i in 1:nsites){

    # State process: initial condition
    N[i,1] ~ dpois(lambda[i,1])         ## Estimation of abundance at time 1
    for(t in 1:nyears){
    log(lambda[i,t]) <- alpha.lambda 
    log(gamma[i,t])  <- alpha.gamma  
    logit(phi[i,t])  <- alpha.phi    
    }

    # State process: transition model   ## Estimation of Survival and Recruitment
    for(t in 1:(nyears-1)){
      S[i,t+1] ~ dbin(phi[i,t], N[i,t])
      R[i, t+1] ~ dpois(gamma[i,t])    
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      N[i,t+1] <- S[i,t+1] + R[i,t+1]
    }

    # Observation process               ## Correcting the observed abundance with a probability detection depending on covariates
    for(t in 1:nyears){
    logit(p[i,t]) <- alpha.p + beta.wind[wind[i,t]] + beta.sky[sky[i,t]] + beta.temp*temperature[i,t] + beta.time*time[i,t]
    
    C[i,t] ~ dbin(p[i,t], N[i,t])       ## C is the input data, or observed abundance
    }
  }

  # Covariate mean as a model for missing covariates
  for(i in 1:nsites){
    for(t in 1:nyears){
      time[i,t] ~ dnorm(mu.time, tau.time)
      temperature[i,t] ~ dnorm(mu.temp, tau.temp)
    }
  }

  # Priors for covariate mean as a model for missing covariates
  mu.time ~ dnorm(0, 0.0001)
  tau.time <- pow(sd.time, -2)
  sd.time ~ dunif(0, 100)
  mu.temp ~ dnorm(0, 0.0001)
  tau.temp <- pow(sd.temp, -2)
  sd.temp ~ dunif(0, 100)

}
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