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Abstract17

Random walks (RW) provide a useful modelling framework for the movement of animals at an18

individual level. If the RW is uncorrelated and unbiased such that the direction of movement is19

completely random, the dispersal is characterised by the statistical properties of the probability20

distribution of step lengths, or the dispersal kernel. Whether an individual exhibits short- or21

long-distance dispersal can be distinguished by the rate of asymptotic decay in the end-tail of22

the distribution of step-lengths. If the decay is exponential or faster, referred to as a thin-tail,23

then the step length variance is finite – as occurs in Brownian motion. On the other hand, inverse24

power-law step length distributions have a heavy end-tail with slower decay, resulting in an infinite25

step length variance, which is the hallmark of a Lévy walk. Although different approaches to relate26

these different dispersal mechanisms have been used, they are ad hoc and sub-optimal. We provide27

a more robust method by ensuring that the survival probability, that is the probability of occurrence28

of steps longer than a fixed characteristic step length is the same for both distributions. Moreover,29

we derive an optimal value for the survival probability by minimising theL2-distance between30

the dispersal kernels. By computing the optimal probability for movement paths with commonly31

used thin- and heavy-tailed step length distributions, we form equivalence between short- and32

long-distance dispersal of animals in different spatial dimensions. We also demonstrate how our33

findings can be applied to ecological scenarios, to more accurately relate dispersal mechanisms34

within a modelling framework for spatio-temporal population dynamics.35

1 Introduction36

Understanding the dispersal mechanisms that drive animal movement over multi-spatial scales37

from local scale foraging and home range exploration to large scale migration, has been a key38

research focus for ecologists (Bullock et al., 2002; Clobert et al., 2001; Nathan et al., 2008).39

The virtual ecologist approach where simulations can be used to mimic the movement of real40

species provides a framework to study fundamental aspects of animal behaviour and movement in41

a controlled setting (Zurell et al., 2010). By simulating random walks (RW) researchers can gain42

insights into foraging strategies, searching patterns, and movement decisions (Bartumeus et al.,43

2005; Bartumeus and Catalan, 2009; James et al., 2011; Viswanathan et al., 2011), how animals44
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respond to specific cues or stimuli (Reynolds, 2010), and navigate and explore in their environment45

(Codling and Bode, 2016; Bailey et al., 2018). Moreover, by incorporating RW models into larger46

ecological frameworks, in combination with other approaches, such as GPS tracking (Cagnacci47

et al.,2010; Williams et al., 2020) and individual-based modelling (Grimm and Railsback, 2005),48

researchers can analyse the causes and consequences of movement dispersal on spatial dynamics49

(Bowler and Benton, 2005; Hooten et al., 2017).50

While several mathematical models have been developed to describe the movement dispersal51

of animals, on an individual level much of the commonly used methodology is derived from52

discrete-time random walks (Berg, 1983; Turchin, 1998; Codling et al., 2008). For this, an53

animal’s continuous movement path is mapped as a time-series of distinct locations (Turchin,54

1998; Grimm and Railsback, 2005), and the discretised movement path is characterised by the55

probability distributions of step lengthsλ (l) and turning angles. If the RW is uncorrelated and56

unbiased which corresponds to Brownian motion, an individual is equally likely to move in each57

possible direction with no long-term preferred movement direction, and thus movement dispersal58

solely relies on the statistical properties ofλ (l) (Lin and Segel, 1974; Okubo, 1980). If the59

step-length distribution is thin-tailed, that is, the end-tail decays sufficiently fast at long step60

lengths, then the step length variance exists and is finite, and the RW is classed as scale-specific.61

A direct consequence is that the mean-squared displacement (MSD) is defined (i.e., the expected62

value of the squared beeline distance between an individuals’ initial and final positions), which63

is a key metric to analyse movement paths and can be expressed as an exact formula in terms64

of the number of steps in the walk and the mean-squared step length (Kareiva and Shigesada,65

1983). Therefore, any two scale-specific RWs that are parametrised differently can be related by66

assuming equal MSD (Ahmed et al., 2021b). A specific example of a movement process that has67

a thin-tailed dispersal kernel is Brownian motion. Ecologists have routinely applied Brownian68

motion and diffusive dispersal as a null model for animal movement (Skellam, 1973; Kareiva and69

Shigesada,1983), with empirical support found in particular for animals moving in resource-rich70

environments (Bartumeus et al., 2003; De Knegt et al., 2007; Humphries et al., 2010, 2012; Nolet71

and Mooij,2002). Also, a more mechanistic approach to the application of Brownian motion in72

ecological studies has been emphasised, specifically when resources are abundant with Brownian73

motion being shown to arise from ecological interactions rather than being a default or primary74
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movement pattern (De Jager et al., 2014).75

Another conceptual tool used to model animal movement paths is the Lévy walk (LW)76

(Viswanathan et al., 2000; Benhamou, 2007; James et al., 2011; Reynolds, 2018). In this case, the77

end-tail of the step-length distribution decays asymptotically according to an inverse power law,78

λ (l)∼ l−µ , 1< µ ≤ 3 with slower decay for smallerµ, which is referred to as a heavy or fat-tail79

(Petrovskii and Morozov, 2009). The corresponding walk has an infinite step length variance and,80

being scale-free, is self-similar at various spatial scales (Viswanathan et al., 2000; Reynolds, 2018).81

In comparison to movement described by thin-tailed distributions, this movement type constitutes82

long-distance dispersal due to the occurrence of longer steps being more probable as the tails do83

not decay as quickly. Because of the infinite step length variance, the expected MSD does not exist,84

and therefore it is less clear how equivalence can be formed between a LW and a scale-specific RW,85

although a characteristic length scale can always be defined either through the median step length,86

using geometric-averages, or through dimensional analysis (Kawai and Petrovskii, 2012).87

Whether an animal’s movement trajectory can be well described by a LW based on observed88

movement data, can only be accurately detected if the survival distribution of step lengths obeys89

an inverse power law (Benhamou, 2007). This has been a common approach in several animal90

movement studies that seek to relate a LW to a scale-specific RW. For instance, in a study on the91

boundary counts ofTenebrio molitorbeetles resulting from Brownian or Lévy-type movement,92

the dispersal kernels were related withp = 0.1 (Bearup et al., 2016). Elsewhere, on identifying93

which movement pattern arising from RWs is faster or more efficient, several probabilities were94

considered with valuesp = 0.1,0.5 and 0.9 (Choules and Petrovskii, 2017). Also, in a study on the95

effect of density-dependent individual movement on spatial pattern formation,p = 0.9 was used96

(Ellis et al., 2018). It is evident thatp is arbitrarily chosen, possibly for convenience, however,97

a unique optimal value can be determined by introducing an additional constraint, that is by98

minimising theL2-distance which is the sum of the squares of the differences between the dispersal99

kernels. In this work, we present the methodology and compute optimal survival probabilities100

p for individuals exhibiting different modes of dispersal and moving randomly in space. Here101

we link the concept of a scale-free RW to the existence of the step length variance, forming an102

equivalence between the LW and scale-specific RW by ensuring that the survival probabilityp of103

occurrence of steps,l , longer than some characteristic step lengthL is the same for both walks, that104

4



is P(l > L) = p.105

Studying animal dispersion has been a central focus in movement ecology (Nathan et al., 2008;106

Hawkes, 2009), and gaining a deeper understanding of how the underlying dispersal mechanisms107

can be connected contributes to addressing challenges in spatial ecology. This understanding108

finds application in various ecological contexts, including biodiversity (Jeltsch et al., 2013), nature109

management and conservation (Allen and Singh, 2016; Fraser et al., 2018), biological invasions110

(Shigesada and Kawasaki, 1997), ecological monitoring (Petrovskii et al., 2014; Miller et al., 2015)111

and disease spread (Fofana and Hurford, 2017; Chu et al., 2021).112

2 Equivalence between short- and long-distance dispersal in different spatial dimensions113

2.1 Movement in 1D space114

We begin by considering an individual performing a RW in an isotropic environment in115

one-dimensional (1D) space. Such a modelling framework provides a conceptual basis and thus116

useful for developing more realistic ecological models that depict movement phenomena in higher117

dimensions (Viswanathan et al., 2011; Ellis et al., 2018). If the individual is located atxi−1, then118

the locationxi at the next step is determined by119

xi = xi−1 + ∆xi , i = 1,2,3, .... (2.1)

where∆xi is a random variable for theith step along the walk with centrally symmetric probability120

distributionφ(∆x) with zero meanE[∆x] = 0. In this case, moving either to the left or right is121

equiprobable with value 1/2. The probability of executing a step that exceeds a finite distanceL122

from the individuals current locationxi is given by123

P(|∆x|> L) = p, (2.2)

where p is the survival probability that lies between 0 and 1. Here, we consider two distinct124

movement types that characterise short- and long-distance dispersal. First, a thin-tailed step125

distribution with scale parameterσ and finite varianceφA(∆x|σ), and second, a heavy-tailed126

distribution with scale parameterγ with infinite varianceφB(∆x|γ). The subscriptsA andB are127
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included to distinguish between these probability distributions.128

For the purposes of equivalence, we fix the survival probabilityp to be the same for both129

distributions130
∫

|∆x|>L
φA(∆x|σ)d∆x =

∫

|∆x|>L
φB(∆x|γ)d∆x = p, (2.3)

and due to symmetry, this can be written as131

∫ ∞

L
φA(∆x|σ)d∆x =

∫ ∞

L
φB(∆x|γ)d∆x =

p
2
. (2.4)

For commonly used step distributions in simulating animal movements in 1D these integrals can132

be evaluated analytically, and in some cases, by eliminatingL it is possible to express the ratio of133

distribution parameters as a function ofp, so that134

γ
σ

= s(p). (2.5)

We compute the sum of the squares of the differences between the probability distributions across135

their domain, equivalent to finding theL2-distance. Hence we consider the distance metric136

D(φB,φA) given as137

D(φB,φA) =
∫ ∞

−∞
[φB(∆x|γ)−φA(∆x|σ)]2d∆x, (2.6)

and since these step distributions are centrally symmetric, this can be written as138

D(φB,φA) = 2
∫ ∞

0
[φB(∆x|σs(p))−φA(∆x|σ)]2d∆x, (2.7)

which is expressed solely in terms ofσ and p. To determine the optimal probabilityp∗ we139

minimise theL2-distance between these probability distributions, by solving140

dD
dp

= 0 (2.8)

evaluated atp = p∗. Thus distribution parameters can be related from equation (2.5) asγ = s(p∗)σ141

with corresponding optimal characteristic scale lengthL∗ from equation (2.4).142
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2.2 Movement in 2D space143

For the more realistic case of individual movement in two-dimensional (2D) space, e.g., terrestrial144

animals (Bartumeus et al., 2005; Gurarie and Ovaskainen, 2013; Ahmed et al., 2023), the145

movement path can be considered as a continuous curvilinear trajectoryx(t) = (x(t),y(t)) over146

time t. This movement path can be discretised over time as a series of steps linking an animal’s147

locationxi−1 = (xi−1,yi−1) at timeti−1 to the next locationxi = (xi ,yi) at timeti as148

xi = xi−1 +(∆x)i , i = 1,2,3, ... (2.9)

where(∆x)i = (∆xi ,∆yi) is a step vector whose components are random variables, for theith step149

along the walk, the distances between any two locations are step lengthsli = |xi−xi−1|, andti = i∆t150

where∆t is a constant time increment.151

In 2D it is more convenient to describe the RW in polar co-ordinates by expressing the step152

vector in terms of step lengthsl and step orientationsθ (or headings), using the transformation153

∆x = l cosθ , ∆y = l sinθ , l ≥ 0, −π < θ ≤ π (2.10)

with inverse transformation154

l2 = (∆x)2 +(∆y)2, θ = atan2(∆y,∆x) , (2.11)

where atan2(∆y,∆x) = arctan
(

∆y
∆x

)
for ∆x> 0 and arctan

(
∆y
∆x

)
±π for ∆x< 0. Here,E[l ] is the155

mean step length andE[v] = E[l ]/∆t is the mean speed. The turning angleαi can then be measured156

as the difference between the orientations of two successive steps157

αi = θi−θi−1. (2.12)

On assuming that step lengthsli and step orientationsθi are neither autocorrelated nor158

cross-correlated (Benhamou, 2006), the individual movement can be simulated once the159

distributions of step lengthsλ (l) and turning anglesω(α) are prescribed. Since our focus is160

on movement dispersal arising from the properties ofλ (l), we assume there is no preferred local161
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or global movement direction, resulting in completely random movement and thusα is uniformly162

distributed from−π to π, as has been observed in various species (Kareiva, 1983; Hapca et al.,163

2009; De Jager et al., 2012).164

Figure 1: Mapping the continuous movement trajectory of an animal as a series of discrete steps with step
lengthsli and turning anglesαi resulting in the random walk, reproduced fromAhmed et al.(2023).

Now consider two random walkers, the first characterised by a thin-tailed step length165

distributionλA(l |σ) with scale parameterσ and finite variance, and second, with a heavy-tailed166

step length distributionλB(l |γ) with scale parameterγ and infinite variance. Since step lengths are167

non-negatively defined, the survival probability is defined as168

P(l > L) = p, (2.13)

and on fixingp to be the same for both distributions, one gets169

∫ ∞

L
λA(l |σ)dl =

∫ ∞

L
λB(l |γ)dl = p. (2.14)

The rest of the methodological details are the same as in the 1D case in§2.1, where the optimal170

survival probabilityp∗ is sought, by minimizing the followingL2-distance between the step length171

probability distributions172

D(λB,λA) =
∫ ∞

0
[λB(l |σs(p))−λA(l |σ)]2dl (2.15)
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with relation between distribution parametersγ = s(p∗)σ and corresponding optimal characteristic173

scale lengthL∗ from equation (2.14).174

2.3 Movement in 3D space175

Many animals make use of space in three-dimensions (3D), such as flying and aquatic animals176

(Cooper et al., 2014; Cleasby et al., 2015; Aspillaga et al., 2019), as well as some ground-dwelling177

animals that can move through different altitudes on steep terrains (Tracey et al., 2014). In this case,178

the discrete-time RW model described by equation (2.9) applies but extended to 3D by including179

a vertical directionzi , where an animal executes a step by moving from its current locationxi−1 =180

(xi−1,yi−1,zi−1) to the nextxi = (xi ,yi ,zi), with step lengths between two successive locations181

li = |xi − xi−1| and random step vector(∆x)i = (∆xi ,∆yi ,∆zi). Using spherical co-ordinates, the182

step vector can be expressed in terms of step lengthsl , azimuthal angleθ which is equivalent to183

longitude and the polar angleξ which is equivalent to co-latitude, using the transformation184

∆x = l cos(θ)sin(ξ ), ∆y = l sin(θ)sin(ξ ), ∆z= l cos(ξ ), l ≥ 0, −π < θ ≤ π, 0≤ ξ ≤ π

(2.16)

with inverse transformation185

l =
√

(∆x)2 +(∆y)2 +(∆z)2, θ = atan2(∆y,∆x) , ξ = arccos

(
∆z
l

)

. (2.17)

In an isotropic environment,θ is uniformly distributed from−π to π, andξ is half-sine distributed186

1
2 sin(ξ ) with values drawn between 0 andπ (e.g., seeAhmed et al.(2020)). Thus in this case, the187

movement pattern is characterised by the distribution of step lengthsλ (l). Equivalence between188

short- or long-distance dispersal in 3D can be obtained using the methodology described in 2D,189

see§2.2, with the survival probability given by equation (2.13), which is optimised by minimising190

theL2-distance in equation (2.15).191
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3 Equivalence between short- and long-distance dispersal forµ = 2192

3.1 1D case with normal and Cauchy step distributions193

To demonstrate equivalence between two distinct RWs in 1D, we consider steps to be194

independently Gaussian (normally) distributedφG which is given as195

φG(∆x|σ) =
1

σ
√

2π
exp

(

−
(∆x)2

2σ2

)

, (3.1)

with zero meanE[∆x] = 0 and finite varianceσ2. This distribution is thin-tailed due to the faster196

than exponential decay in the end tails. Alongside this, consider the Cauchy step distributionφC,197

which reads198

φC(∆x|γ) =
γ

π(γ2 +(∆x)2)
, (3.2)

which is heavy-tailed due to the slower decay in the end tails according toφC∼ 1
(∆x)2 as|∆x| → ∞,199

with infinite variance. For these distributions, we can express the characteristic scale lengthL in200

terms of the survival probabilityp by applying equation (2.13), which gives201

L = σ
√

2erfc−1(p) = γ tan

[
π(1− p)

2

]

(3.3)

where erfc−1(τ) is the inverse of the complimentary error function defined by erfc(τ) =202

2√
π
∫ ∞

τ exp(−τ ′2)dτ ′. On rearranging the above equation, we can express the ratio of distribution203

parameters as a function ofp only:204

s(p) =
γ
σ

=
√

2erfc−1(p)cot

[
π(1− p)

2

]

. (3.4)

TheL2-distance is given as205

D(φC,φG) =
1

σ
√

π
·

[
1

s
√

π
−2
√

2exp

(
s2

2

)

erfc

(
s
√

2

)

+ 1

]

. (3.5)
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The optimal survival probabilityp∗ which minimizes this occurs when206

dD
dp

=−
s′

2πσD

[
1−4s2

s2 + 2
√

2πsexp

(
s2

2

)

erfc

(
s
√

2

)]

= 0, (3.6)

which givesp∗ = 0.721, and is invariant with respect toσ . The distribution parameter ratio is207

s∗ = 0.762 andL∗ = 0.357σ from equation (3.3).208

Figure 2: (a) The Gaussian (solid) and the Cauchy (dashed) step distributions. We setγ = 0.1 and setσ2 =
πγ2

2 to ensure agreement between the two probability distributions atx = 0. (b) Equivalent step distributions
with optimal survival probabilityp∗ = 0.721. Illustration in (a) adapted from Figure 5.2 inLutscher(2019),
but used therein in the context of dispersal kernels.

For movement in 1D space, when examining the Gaussian step distribution depicted in Figure209

2 (a) and (b), an initial observation suggests a subtle distinction. Yet, this seemingly minor210

difference can result in a considerable effect on the ensuing movement process. In scenario (b),211

characterised by an optimal relationship between the step distributions, the Gaussian distribution212

exhibits a higher frequency of longer steps, rendering it more akin to the Cauchy distribution. This213

is counterbalanced by a reduced peak. Therefore, a more precise comparison can be made among214

animals that may disperse following Brownian motion or engage in long-distance dispersal.215
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3.2 2D case with Rayleigh and folded-Cauchy step length distributions216

Consider a 2D RW with random step vector(∆x) = (∆x,∆y) whose components are independently217

distributed according to a zero-centered normal distributionφG(∆x) and φG(∆y) with the same218

finite varianceσ2, see equation (3.1). It can be derived that the corresponding step length219

distribution is the Rayleigh distributionλR, which reads220

λR(l) =
l

σ2 exp

(

−
l2

2σ2

)

, (3.7)

with mean step lengthE(l) = σ
√

2π
2 and finite variance 2σ2

(
1− π

4

)
, seePetrovskii et al.(2014).221

The resulting movement type is a discrete-time model of Brownian motion (Turchin, 1998;222

Petrovskii et al., 2012). Alternatively, consider a folded-Cauchy step-length distributionλ fC,223

which reads224

λ fC(l |γ) =
2γ

π(γ2 + l2)
, (3.8)

with quadratic decay in the end tail according toλ fC ∼ 1
l2

as l → ∞, with infinite variance. The225

characteristic scale lengthL can be expressed in terms of the survival probabilityp to get226

L = σ
√
−2lnp = γ tan

[π
2

(1− p)
]
, (3.9)

and on rearranging this, the ratio of distribution parameters is227

s(p) =
γ
σ

=
√
−2lnpcot

[π
2

(1− p)
]
. (3.10)

TheL2-distance between these step length distributions is228

D(λ fC,λR) =
1

πσ
·

(
1
s
−2sexp

(
s2

2

)

E1

(
s2

2

)

+
π
√

π
4

)

, (3.11)

where E1(τ) =
∫ ∞

τ
1
τ ′ exp(τ ′)dτ ′ is a form of the exponential integral. The optimal survival229

probability is a solution of230

dD
dp

=−
s′

2πσD

[
1−4s2

s2 + 2
(
1+ s2)exp

(
s2

2

)

E1

(
s2

2

)]

= 0, (3.12)
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which gives p∗ = 0.658, with distribution parameter ratios∗ = 1.536 andL∗ = 0.915σ from231

equation (3.9).232

3.3 Equivalent boundary counts in 2D space233

Figure3 illustrates two equivalent RWs based on the formulation in§3.2, (a) for short-distance234

dispersal with Rayleigh step length distribution andσ = 0.5, and (b) for long-distance dispersal235

with folded-Cauchy step length distributionµ = 2 andγ = s∗σ = 0.768. For this choice ofσ , the236

probability p∗ = 0.658 of executing a step of length greater thanL∗ = 0.458 is the same for both237

walks.238

Figure 3: Equivalence between short- and long-distance dispersal in 2D space. (a) RW with Rayleigh
distributed step lengths withσ = 0.5, and (b) RW with folded-Cauchy distributed step lengths withγ =
0.768. The ratio of distribution parameters iss∗ = 1.536 with optimal survival probabilityp∗ = 0.658. Both
RWs satisfy the conditionP(l > L∗) = p∗, with the characteristic scale lengthL∗ = 0.458 (radius of dashed
circles at each location). Each individual starts at the origin (green marker) and the walk terminates after
executing 50 steps (red marker).

Consider a population ofN individuals with initial location uniformly distributed over a small239

circular vicinity of radiusL∗. The movement of each individual in the population is modelled by240

a RW, with either a thin-tailed distribution of step lengths representing short-distance dispersal241

(black dots), and in another scenario with heavy-tailed for long-distance dispersal (red dots), Fig.242

4a-c. The proportion of individuals which exit the region are recorded after each step in the walk.243
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This proportion is the same irrespective of the distribution of step lengths, as both movement types244

are deemed equivalent, Fig.4d.245

Figure 4: Equivalent exit counts. (a)-(c) Spatial distribution of a population ofN = 100 individuals
performing a RW with Rayleigh step length distribution (thin-tail) with scale parameterσ = 0.5 (black
dots), and on the same circular region of radiusL∗ = 0.458, a population ofN = 100 individuals performing
a RW with folded-Cauchy step length distribution (heavy end-tail) with scale parameterγ = 0.768 (red dots).
These RWs are equivalent in the sense thatP(l > L∗) = p∗ is the same for both walks with optimal survival
probabilityp∗ = 0.658 computed by minimising the theL2-distance between these step-length distributions.
(d) Proportion (%) of individuals that exit the domain for each type of walk, with short-distance dispersal
(thin end-tail, black circles), and long-distance dispersal (heavy end-tail, red markers).

3.4 3D case with chi and folded-Cauchy step length distributions246

For Brownian motion in 3D space the step increments(∆x) = (∆x,∆y,∆z) are independently247

distributed according to a zero-centered normal distribution with the same finite variance, see248

equation (3.1). In this case the variablel/σ follows a chi distribution with three degrees of249

freedom, corresponding to step length distributionλχ , given as250

λχ(l |σ) =
2l2

σ3
√

2π
exp

(

−
l2

2σ2

)

, (3.13)

with mean step lengthE(l) = 4σ/
√

2π and finite variance 3σ2
(
1− 8

3π
)
, seeAhmed et al.(2020).251

If we also consider the folded-Cauchy step length distributionλ fC in equation (3.8), the252

characteristic scale lengthL can be related to the survival probabilityp as253

L = σ

√

2I−1

(

p,
3
2

)

= γ tan
[π

2
(1− p)

]
(3.14)

where I−1(τ ,a) is the inverse of the upper incomplete gamma function, defined asI(τ ,a) =254
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1
Γ(a)

∫ ∞
τ (τ ′)a−1e−τ ′dτ ′. On re-arranging equation (3.14) we have255

s(p) =
γ
σ

=

√

2I−1

(

p,
3
2

)

cot
[π

2
(1− p)

]
. (3.15)

We can compute an analytic expression for theL2-distance as256

D(λ fC,λχ) =
1

σ
√

π
·

[
1−4s2

s
√

π
+ 2
√

2s2exp

(
s2

2

)

erfc

(
s
√

2

)

+
3
4

]

, (3.16)

with optimal survival probabilityp∗ as a solution of257

dD
dp

=−
s′

2πσD

[(
1
s

+ 2s

)2

−2
√

2πs(2+ s2)exp

(
s2

2

)

erfc

(
s
√

2

)]

= 0, (3.17)

which givesp∗ = 0.650, with distribution parameter ratios∗ = 2.089, with L∗ = 1.282σ from258

equation (3.14).259

4 Equivalence between short- and long-distance dispersal for general exponentµ260

4.1 1D case with normal and power law step distributions261

We consider two distinct RWs in 1D space where the probability distributions of the step262

increments are normally distributedφG(∆x), and alternatively distributed according to a power263

law264

φP(∆x|γ ,µ) =
A

(γ + |∆x|)µ , A =
1
2

(µ−1)γµ−1, 1< µ ≤ 3, (4.1)

where γ is the distribution scale parameter andA is a normalisation constant. This is a is265

heavy-tailed distribution with infinite variance, and the rate of decay in the end tails isφP∼ 1
|∆x|µ as266

|∆x| → ∞, with faster decay for larger exponentµ. Applying the conditionP(l > L) = p for both267

of these distributions, the characteristic scale lengthL can be expressed in terms of the survival268

probability p as269

L = σ
√

2erfc−1(p) = γ
(

p
1

1−µ −1
)

(4.2)
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and on eliminatingL the ratio of distribution parameters is270

s(p|µ) =
γ
σ

=

√
2erfc−1(p)

p
1

1−µ −1
. (4.3)

TheL2-distance between these probability distributionsφP andφG is271

D(φP,φG) =
2

σ2

∫ ∞

0

[
µ−1

2s
(
1+ ∆x

σs

)µ −
1
√

2π
exp

(

−
(∆x)2

2σ2

)]2

d∆x. (4.4)

Let ζ = ∆x
σ , the integral becomes272

D(φP,φG) =
2
σ

∫ ∞

0






µ−1

2s
(

1+ ζ
s

)µ −
1
√

2π
exp

(

−
ζ 2

2

)





2

dζ . (4.5)

The L2-distance is scaled by a factor of 1/σ , and therefore decreases with largerσ , but is273

minimised at some optimal probabilityp∗ which is independent ofσ . This integral is not274

analytically tractable, but can be evaluated using numerical integration techniques such as the275

trapezoidal rule.276
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Figure 5: Plot of theL2-distance between the step distributionsφP andφG with σ = 0.5 as a function of the
survival probabilityp, for different heavy-tail exponentsµ = 1.5,2,2.5. The markers depict the minimum
point in each case, that is the optimal probabilityp∗ at which theL2-distance is minimisedD∗. Forµ = 1.5,
D∗ = 0.482 atp∗ = 0.782, forµ = 2,D∗ = 0.376 atp∗ = 0.715 and forµ = 2.5,D∗ = 0.327 atp∗ = 0.680.

Fig. 5 illustrates that theL2-distance is minimised with optimal probabilityp∗ = 0.782 for277

µ = 1.5, p∗ = 0.715 for µ = 2, and p∗ = 0.680 for µ = 2.5. Thereforep∗ decreases with278

faster decay in the end tails. Equivalence can be sought between two 1D RWs with normal and279

power law step distributions by relating distribution parameters through the ratioss∗ = γ/σ =280

0.435,0.916,1.407, respectively, with corresponding length scalesL∗ = 0.277σ ,0.365σ ,0.412σ281

determined by equation (4.2). In the case of (b), we obtain the same value ofp∗ on relating the282

normal and Cauchy (µ = 2) step distributions in§3.1, which implies that in this case, the shape of283

the distribution is not important.284

4.2 2D case with Rayleigh and Pareto step length distributions285

Consider the movement of two individuals performing a RW in 2D space, with step length286

distributions given by the Rayleigh distributionλR(l) in equation (3.7) and a Pareto distribution287

with general exponentµ given by288

λP(l |γ ,µ) =
A

(γ + l)µ , A = (µ−1)γµ−1, 1< µ ≤ 3, (4.6)
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where γ is the distribution parameter andA is a normalizing constant. The distribution is289

heavy-tailed with rate of decayλP∼ 1
l µ asl →∞, and has an infinite variance. Using the definition290

of the survival probabilityP(l > L) = p for both distributions, we obtain291

L = σ
√
−2lnp = γ

(
p

1
1−µ −1

)
(4.7)

with ratio of distribution parameters292

s(p|µ) =
γ
σ

=

√
−2lnp

p
1

1−µ −1
. (4.8)

TheL2-distance between these probability distributionsλP andλR is293

D(λP,λR) =
∫ ∞

0

[
µ−1

σs
(
1+ l

σs

)µ −
l

σ2 exp

(

−
l2

2σ2

)]2

dl, (4.9)

and by introducing a change of variables by re-scaling step lengthsζ = l
σ , this can be written as294

D(λP,λR) =
1
σ

∫ ∞

0






µ−1

s
(

1+ ζ
s

)µ −ζ exp

(

−
ζ 2

2

)





2

dζ , (4.10)

which decreases with an increase inσ . The optimal probabilityp∗ which minimises the295

L2-distance can be computed numerically, see later Table1.296

4.3 3D case with chi and Pareto step length distributions297

For movement in 3D space, consider the following step length distributions, chiλχ in equation298

(3.13) and ParetoλP in equation (4.6). In this case the characteristic scale length is299

L = σ

√

2I−1

(

p,
3
2

)

= γ
(

p
1

1−µ −1
)

(4.11)

18



with ratio of distribution parameters300

s(p|µ) =
γ
σ

=

√
2I−1

(
p, 3

2

)

p
1

1−µ −1
. (4.12)

TheL2-distance betweenλχ andλP is301

D(λχ ,λP) =
∫ ∞

0

[
µ−1

σs
(
1+ l

σs

)µ −
2l2

σ3
√

2π
exp

(

−
l2

2σ2

)]2

dl, (4.13)

and with re-scaled step lengthsζ = l
σ , this reads302

D(λχ ,λP) =
1
σ

∫ ∞

0






µ−1

s
(

1+ ζ
s

)µ −
2ζ 2
√

2π
exp

(

−
ζ 2

2

)





2

dζ , (4.14)

with optimal probabilityp∗ that minimises thisL2-distance computed numerically, see Table1.303

4.4 Ansatz function for the optimal survival probability304

We compute the optimal probabilitiesp∗ whilst considering varying heavy-tail exponentsµ , for305

movement in 1D, 2D and 3D space for step length distributions considered in§4.1 normal and306

power law,§4.2Rayleigh and Pareto, and§4.3chi and Pareto, Table1.307

µ 1D 2D 3D µ 1D 2D 3D

1.1 0.919 0.908 0.902 2.1 0.707 0.709 0.705
1.2 0.867 0.858 0.852 2.2 0.699 0.702 0.698
1.3 0.831 0.824 0.817 2.3 0.692 0.696 0.692
1.4 0.804 0.798 0.792 2.4 0.686 0.690 0.687
1.5 0.782 0.777 0.772 2.5 0.680 0.686 0.682
1.6 0.764 0.761 0.755 2.6 0.675 0.681 0.677
1.7 0.749 0.747 0.742 2.7 0.670 0.677 0.673
1.8 0.736 0.735 0.730 2.8 0.666 0.673 0.670
1.9 0.725 0.725 0.721 2.9 0.662 0.670 0.666
2.0 0.715 0.717 0.712 3.0 0.658 0.666 0.663

Table 1: Optimal survival probabilitiesp∗ for varying exponentsµ, for movement in different spatial
dimensions.

The values ofp∗ are approximately the same irrespective of the spatial dimension, because in308
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either case, the LW movement type is compared to Brownian motion i.e., Gaussian increments are309

considered in each dimension. We propose the following Ansatz function310

p∗(µ) =
c0(µ−1)+ 1
c1(µ−1)+ 1

, c1 =
2c0 + 1
p∗(3)

−
1
2
, 1< µ ≤ 3 (4.15)

to expressp∗ as a function ofµ, which depends on a single parameterc0, andc1 is expressed311

in terms ofc0 and p∗(3), which is the optimal probability forµ = 3, see Table1. We find that312

there is a non-linear relationship, wherep∗ decreases with an increase inµ , i.e., for heavy-tailed313

distributions with end tail(s) that decays at a much faster rate.314

Figure 6: The ansatz function given by equation (4.15) (solid curve) is fitted for optimal probabilitiesp∗

as a function of the exponentµ , computed for movement in 2D space with Power law and Rayleigh step
length distributions (circle markers). The non-linear regression curve fitting tool ‘lsqcurvefit’ from Matlab
was used to estimate the best fit parameterc0 = 1.561, with p∗(3) = 0.666 from Table1 andc1 = 2.594
computed from (4.15). The shaded area enveloped by the dashed curves is a 99% confidence region for
the range ofc0, which lies between 1.438 and 1.684. The goodness of fit is quantified by the coefficient of
determinationR2 = 0.995 and the root mean square errorRMSE= 0.004.

5 Equivalence between dispersal kernels315

Integro-difference equations (IDEs) provide a useful modelling framework to describe the316

spatio-temporal dynamics of a population (Kot and Schaffer, 1986; Andersen, 1991; Neubert et al.,317

1995), and has advantages over other approaches (e.g., diffusion-reaction models,Holmes et al.318

(1994); Okubo and Levin(2001)) due to the ability to capture more complex spatial dynamics,319
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non-local interactions, and various dispersal processes.320

The governing equation reads321

Nt+1(r) =
∫

Ω
λ (r , r ′)F(Nt(r ′))dr ′ (5.1)

whereNt is the population density in yeart, F(.) is a growth function that describes the ecological322

mechanisms and processes that underlie the growth dynamics (Sandefur, 2018), andλ (r , r ′) is323

the dispersal kernel which gives the probability distribution of the event that an individual located324

before dispersal at positionr ′ = (x′,y′) moves after dispersal to the positionr = (x,y) over a325

dispersal domainΩ (Lewis et al., 2006; Lutscher, 2019). Here, our focus is on the rate of spread326

in the population which depends on the properties of the dispersal kernel. Assuming that dispersal327

is homogeneous and isotropic so that the probability of moving fromr to r ′ depends only on the328

distancer between the two positions, it follows thatλ (r , r ′) = λ (|r − r ′|), wherer = |r − r ′| =329

√
(x−x′)2 +(y−y′)2.330

Here we consider several dispersal kernels with different properties, and aim to form331

equivalence between the thin-tailed 2D Gaussian kernel described by332

λG(r,θ) =
1

2πσ2 exp

(

−
r2

2σ2

)

(5.2)

and heavy-tailed kernels, when the probability distribution of moving over distancer has a power333

law tail, that isrλ (r,θ) ∼ r−µ for large r, with exponentµ = 2. Specifically, consider the 2D334

Cauchy type I kernel, given by335

λC1(r,θ) =
γ1

π(γ1 + r)3 (5.3)

and the 2D Cauchy type II kernel336

λC2(r,θ) =
γ2

2π(γ2
2 + r2)

3
2

. (5.4)

To form a condition of equivalence between the thin- and different heavy-tailed dispersal kernels,337

consider the probabilityp of finding an individual after the dispersal exceeding a distance of radius338

a.339
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For the Gaussian kernel, we have that340

P(r > a) =
∫ 2π

0

∫ ∞

a
λG(r,θ)rdrdθ = p, (5.5)

and on computing this, we obtain the radiusa as a function ofp,341

a = σ
√
−2lnp (5.6)

as previously seen in equation (3.9) for the Rayleigh probability distribution.342

Similarly, for the Cauchy type dispersal kernels, we have that343

P(r > ai) =
∫ 2π

0

∫ ∞

ai

λCi (r,θ)rdrdθ = p, i = 1,2, (5.7)

On evaluating this, we obtain for the Cauchy type I kernel344

a1 = γ1 ·

( √
1− p

1−
√

1− p

)

(5.8)

and for the Cauchy type II kernel345

a2 = γ2 ·

√
1− p2

p
. (5.9)

Given the same fixed radius in either casea1 = a anda2 = a, on equating(5.6) with (5.8) and346

(5.9) separately, we obtain a relationship between the dispersal kernel parameters as a function of347

p, given as348

s1(p) =
γ1

σ
=
√
−2lnp

(
1

√
1− p

−1

)

, s2(p) =
γ2

σ
= p

√
−2lnp
1− p2 . (5.10)

It is precisely theL2-distance between the dispersal kernels349

D(λCi ,λG) = 4π2
∫ ∞

0
[rλCi (r,θ)− rλG(r,θ)]2dr, i = 1,2. (5.11)

that is350

D(λC1,λG) =
1
σ

∫ ∞

0

[
2s1(p)r

(s1(p)+ r)3 − r exp

(

−
r2

2

)]2

dr, (5.12)

22



and351

D(λC2,λG) =
1
σ

∫ ∞

0

[
s2(p)r

(s2
2(p)+ r2)

3
2

− r exp

(

−
r2

2

)]2

dr, (5.13)

with γi = σsi(p), that we seek to minimise to obtain an optimal probabilityp∗. The radius at where352

this occurs can be determined from equation(5.8) for a fixed value ofσ . Although theL2-distance353

can be written in exact form by evaluating the integrals in equations (5.12)-(5.13), the expression is354

quite bulky and complicated (i.e., involves the Meijer G-function) and thus we resort to numerical355

integration. We find that the dispersal kernels are equivalent for the Gaussian vs. Cauchy type I356

case with optimal probabilityp∗ = 0.718 withs1 = 0.719,a1 = 0.814σ , and for the Gaussian vs.357

Cauchy type II case withp∗ = 0.727 withs2 = 0.845,a2 = 0.799σ .358

6 Discussion359

Much has been discussed in the literature regarding the existence of power laws in the step lengths360

of animal movements as well as the statistical approaches used to identify such distributions361

(Edwards et al., 2007; Plank and Codling, 2009; Auger-Méth́e et al., 2011; Breed et al., 2015).362

Whilst debate for the reality of power law behaviour continues, it is clear that observed data has363

been shown to demonstrate traits of such heavy-tailed distributions (Reynolds, 2014). Our work364

here demonstrates that a property of these heavy-tailed distributions, namely their potential for365

long-distance dispersal, can be replicated by a simple adjustment to the parameter of the thin-tailed366

exponential distribution. This is of significance in various movement ecological settings, as367

the diffusion capability of individual movement has been identified as being an important and368

appropriate measure in determining dispersal capability (Bearup et al., 2016), with applications in369

population dispersal (Gurarie et al., 2009; Hapca et al., 2009), individual interactions and contact370

rates (Bailey, 2023), the spread of diseases (Fofana and Hurford, 2017; Ahmed et al., 2021a), pest371

monitoring (Petrovskii et al., 2014; Banks et al., 2020), and foraging behaviour (Humphries et al.,372

2010; James et al., 2011). Below we detail two ecological settings in which the work presented373

here has an immediate application.374
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6.1 Boundary counts375

Building on the work ofBearup et al.(2016), who demonstrated that in terms of boundary counts of376

a population of individuals, the heavy-tailed power law distribution is expected to become clearly377

indistinguishable from Brownian motion with thin-tailed step length distribution, for values of the378

exponentµ in the power law being less than 2.5. Here, it has been shown that these two methods379

can become almost indistinguishable for higher values ofµ over small arenas, demonstrated by380

considering the case ofµ = 2 with optimal survival probabilityp∗ = 0.658 in Figure4, when the381

precise step-length distribution of the Brownian motion is altered. Thus, despite variations in decay382

rates at the tail of the step-length distribution, various movement patterns are essentially similar, if383

our focus is on the probability of departing from an arena or habitat of a specific size. The close384

relationship between these distinct movement modes, highlights that accurately inferring between385

the thin- and heavy-tailed distributions requires careful and considered approaches, which may386

also be dependent upon the experimental setting.387

In other ecological scenarios, distinguishing between step length distributions with different388

tails is seldom achievable for two primary reasons: (1) the data is typically characterised by high389

levels of noise (Breed et al., 2015), and (2) long-distance relocations are inherently rare, making390

it challenging to reveal the tail. Furthermore, the question arises as to whether animals really391

adhere to any of these refined distributions such as exponential or power law (Benhamou, 2007).392

In this context, the concept of establishing equivalence between different step length distributions393

offers a solution. Essentially, if our interest lies solely in the probability of leaving or staying in394

a domain of a certain size, there is no imperative need to make such distinctions. The conditions395

for equivalence operate optimally, in fact precisely, within specific spatial scales and for certain396

survival probabilities. This insight could lay the groundwork for a more effective design, such as397

in the case of nature protection areas. Additionally, it hints at a potential evolutionary strategy,398

suggesting the existence of mechanisms that have led to these characteristic spatial scales and399

survival probabilities.400
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6.2 Biological invasions401

The introduction of non-native species is recognised as a significant threat to global ecosystems.402

They detrimentally impact economies (Diagne et al., 2021), the environment, and native403

species thereby deteriorating ecosystem functioning, which often leads to substantial biodiversity404

loss and human well-being (Courchamp et al., 2017). Biological invasions are the directed,405

human-mediated transportations and subsequent releases of species (either intentionally or406

unintentionally) beyond their native biogeographical boundaries from which they can potentially407

spread (Simberloff, 2013; Pyek et al., 2020). This process can be conceptualised in four phases:408

(1) a species is intentionally or unintentionally transported to a new area through human activities,409

or naturally dispersing after a barrier is removed or made permeable through human action. (2) In410

the new region, it escapes or is willingly introduced into (evolutionary) novel locations (3) where411

it establishes a viable (i.e., self-sustaining) population and (4) spreads (Shigesada and Kawasaki,412

1997; Blackburn et al., 2011). While the latter two stages occur with or without direct human413

assistance, the quality, quantity, and frequency of introductions (i.e., generally termed ‘propagule414

pressure’) are relevant at all stages (e.g.,Lockwood et al.(2013); Briski et al.(2014)). The concept415

of ‘spread’ in invasion ecology is therefore important because it describes to the movement and416

dispersal of a non-native species beyond its original point of introduction (Hui and Richardson,417

2017; Wilson et al., 2008), forming the basis for the classifications of non-native populations as418

‘invasive’ (Soto et al., 2023). Also, a better understanding of invasive spread is crucial to validating419

and improving theoretical models that predict spatial patterns resulting from biological invasions420

(Hastings, 1996; Lewis et al., 2016).421

A mathematical description of the invasion process is traditionally with the application of422

reaction-diffusion equations (Bouin et al., 2012, 2018; Morris et al., 2019; Keenan and Cornell,423

2021). Nevertheless, some have adopted an alternative framework, namely integro-difference424

equation (IDE) formulations, because they explicitly account for the species distinct dispersal and425

growth phases, and accommodate for various movement behaviours, including those exhibiting426

non-Gaussian characteristics (e.g., seeLutscher(2019)). In practical terms, the dispersal kernel427

can be determined directly through field observations, including mark-recapture, trap count, or428

movement data, or it can be formulated based on the fundamental physical or behavioural processes429
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that govern movement (Skarpaas and Shea, 2007; Butikofer et al., 2018). Typical choices of430

the dispersal kernel that are frequently used in calculations are thin-tailed distributions such as431

the Gaussian or Laplace kernels (e.g., insect dispersal,Neubert et al.(1995)), or where dispersal432

distances follow a power law decay such as the Cauchy kernel (Shaw, 1995).433

Moreover, several authors have applied these IDE models to problems in invasion biology434

and related the dispersal kernels. For example, on investigating the patchy invasion spread of435

non-native species by short- and long-distance dispersal,Rodrigues et al.(2015) formulated an436

IDE model based on the movement of two interacting predator-prey species in 2D space. They437

formed a condition of equivalence between the thin- and heavy-tailed dispersal kernels by setting a438

radius a within which the probability of finding an individual after the dispersal is set at an arbitrary439

value of p = 0.5 (which is the same as the probability of exceeding this distance). However,440

our approach improves upon this, by providing methods to compute an optimal probabilityp∗ as441

demonstrated in§5. We found that for the dispersal kernels considered inRodrigues et al.(2015), in442

the (a) Gaussian vs. Cauchy type I case,p∗ = 0.718, with ratio of dispersal kernel parameterss1 =443

γ1/σ = 0.719 and characteristic radial lengtha1 = 0.814σ , and in the (b) Gaussian vs. Cauchy type444

II case,p∗ = 0.727,s2 = γ2/σ = 0.845,a2 = 0.799σ . Contrast this to the sub-optimal condition445

of equivalence formed in Rodrigues et al. (2015) withp = 0.5, s1 = (2−
√

2)
√

ln2≈ 0.488, and446

s2 =
√

(2ln2)/3≈ 0.680, with same radiusa1 = a2 = σ
√

2ln2≈ 1.177σ . How the pattern of447

invasive species spread depicted by the prey spatial distributions inRodrigues et al.(2015) may448

change with these different parameter values, and what are the implications on the results requires449

further analysis.450

6.3 Implications of diffusive and super-diffusive animal movement is context dependent451

Animal movement in general and animal dispersal in particular are fundamental phenomena452

that have significant effect on many aspects of population dynamics and ecosystem functioning453

(Turchin, 1998; Bullock et al., 2002). Peculiarities of animal movement – in particular, whether454

they can be regarded as diffusive or super-diffusive – has been a focus of intense debate for almost455

three decades (Viswanathan et al., 2011). In spite of many questions remaining, there is sufficient456

evidence that at least some of the individuals of some species can, under certain conditions,457

perform the movement that is better classified as super-diffusive, e.g., Lévy flights or Ĺevy walks,458
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rather than diffusive, usually referred to as Brownian motion (Sims et al., 2019).459

What is often forgotten in that debate is the ecological context: whatever is the movement460

type, what are the implications for the corresponding ecosystem and/or how does it affect the461

function that the given species has inside the ecological community? Super-diffusively moving462

animals would normally have a fat-tailed dispersal kernel (Kot et al., 1996), which apparently463

means a higher proportion of long-distance dispersers. In turn, larger dispersal distances may have464

a significant effect on the properties of both the given species and the ecosystem as a whole, e.g.465

enhancing spread of infectious diseases (Mundt et al., 2009), facilitating synchronisation between466

population fluctuations in different habitats (Blomfield et al., 2023), etc. There can, however, be467

other contexts or implications where not the forerunners but the main bulk of the population is468

more important. One example is given by invertebrate animals trapping for monitoring purposes,469

with the goal to estimate the corresponding population density (Petrovskii et al., 2012, 2014). In470

this case, the effect of forerunners is limited to the special case of monitoring at the edge of the471

advancing invasion front, i.e., where the population density is very low; however, fast dispersers472

hardly have any significant effect on trap counts after the population settles down.473

As another important example, there is growing evidence that animals, especially large animals,474

act as a vector transporting (with dung and bodies) nutrients across space, in particular phosphorus475

that is a limiting factor in many ecosystems (Doughty et al., 2013, 2016). Arguably, in such a case476

it is not the number and speed of the forerunners that matters but the typical distance that describes477

the movement of the bulk of the population. In turn, shifting the focus away from the forerunners478

has immediate implications for the choice of modelling framework. For instance, instead of more479

complicated modelling approaches based on integral-difference or integral-differential equations480

that can be sensitive to details of the dispersal kernel (which is usually difficult to restore from the481

data with sufficient accuracy, cf.De Jager et al.(2012); Jansen et al.(2012), a simpler and more482

robust approach based on the diffusion equation can be used (Doughty et al., 2013; Bearup et al.,483

2016).484
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