1	Patterns in tern trophic diversity in a region experiencing rapid climate change
2	
3	
4	Gownaris, Natasha ^{1*}
5	Welch, Linda ²
6	Tengeres, Jill ³
7	
8	
9	¹ Department of Environmental Studies, Gettysburg College, Gettysburg, PA 17325
10	² Maine Coastal Islands National Wildlife Refuge, United States Fish and Wildlife Service, Milbridge, ME
11	04658
12	³ United States Fish and Wildlife Service, East Orland, ME 04431
13	*Corresponding author, <u>ngownaris@gmail.com</u>
14	
15	
16	
-	
17	
18	
19	
20	
21	
21	
22	

23 Open Research Statement

All data used in this study are currently available as private-for-peer review in a Zenodo repository under

25 <u>a CC-BY license via this link</u>. This repository will be moved from "Restricted" to "Public" once the

- 26 manuscript is accepted for publication.
- 27

28 Chick provisioning data were provided by the United States Fish and Wildlife Maine Coastal Island

29 National Wildlife Refuge and the National Audubon Society Seabird Institute. Chick growth and survival

30 data for Petit Manan Island were provided by the United States Fish and Wildlife Maine Coastal Island

31 National Wildlife Refuge. Upon publication, stable isotope data will also be uploaded to the discipline-

32 specific repository *IsoBank*. Sea surface temperature data from the JPL MUR MEaSUREs Project (DOI:

33 10.5067/GHGMR-4FJ04) were downloaded from NOAA's ERRDAP server and are publicly available;

34 data subset for this study have been included in the Zenodo repository for convenience.

35

36 <u>Keywords</u>

behavioral plasticity, chick provisioning, climate change, intraspecific variation, stable isotopes, terns,
trophic diversity

39 Abstract

40 Foraging plasticity provides a mechanism for long-lived species to adapt to rapidly changing environments and, when individuals vary in their plasticity, can drive changes in trophic diversity. We use 41 42 chick provisioning data and stable isotope values of blood cells and plasma to test for drivers of trophic 43 diversity in the diet of common terns (Sterna hirundo) and Arctic terns (Sterna paradisaea) breeding in 44 the rapidly changing Gulf of Maine. We hypothesized that individual adult terns would differ in their response to reduced food availability, driving higher diversity in tern chick diet in lower-resource 45 46 contexts, and that individual-level responses would influence fitness. We used the Shannon-Wiener 47 Diversity Index as our measure of trophic diversity for provisioning data and the size of the twodimensional isotope ellipse as our measure of trophic diversity for stable isotope data. We compared these 48 49 measures of trophic diversity to proxies for food availability, including the occurrence of preferred prey in 50 tern chick diets and the average sea surface temperature in terns' foraging range. Additionally, we 51 compared shifts in isotope values across time for individually paired blood cell and plasma samples and, 52 on one island and year, for individually paired plasma samples taken approximately 10 days apart.

53

54 Trophic diversity measured using provisioning and stable isotope data were correlated across contexts. 55 Although both measures of trophic diversity were highly variable, neither was correlated with measures of food availability. Arctic tern chicks had less-enriched δ^{13} C values, lower δ^{15} N values, and were fed 56 smaller prey than common tern chicks, but did not differ in their trophic diversity. Isotope measures of 57 trophic diversity were greater for plasma samples, which tended to show higher δ^{15} N values and more-58 enriched δ^{13} C values, than for blood cell samples. For the paired plasma samples collected on one island, 59 60 chicks shifted to higher δ^{15} N values and less-enriched δ^{13} C values later in the season. Chicks that shifted to relatively high δ^{15} N values also showed greater magnitude shifts to less-enriched δ^{13} C values and, in 61 62 Arctic terns, fledged at a smaller mass. Our study suggests trade-offs in individual-level foraging and diet 63 plasticity in terns, with possible implications for fitness.

65 Introduction

66 Behavioral plasticity produces intraspecific variation that can act as a precursor to evolution (Caspi et al. 2022). In novel environments, such as those occurring under rapid climate change, behavioral plasticity 67 may also allow species to adapt and persist over short timescales (Snell-Rood 2013). Foraging represents 68 69 one of the most essential suites of behaviors across animal populations. These behaviors must be highly 70 tuned to environmental context to be effective, and should exhibit high plasticity, but this plasticity may 71 be limited by the time and energy needed to learn new foraging behaviors (Mery and Burns 2010; Snell-72 Rood 2013). Foraging plasticity can occur through changes in how an animal forages (e.g., the rate of 73 food caching in American pika Ochotona princeps: Hall and Chalfoun 2019) or through changes in what 74 they are foraging for (e.g., a higher reliance on capelin in humpback whales Megaptera novaeangliae: 75 Gulka et al. 2017). In addition to individual variation in average behavior, individuals may also vary in 76 their degree of behavioral plasticity (Dingemanse and Dochtermann 2013), leading to increases or 77 decreases in population-level trophic diversity when environmental conditions change.

78

79 Seabirds are ideal systems for studying foraging plasticity because their demographic rates and behavior respond rapidly, and often drastically, to changes in food availability (Cairns 1988; Piatt et al. 2007; 80 81 Weimerskirch 2018; Bourgeois et al. 2022). Seabirds forage on highly mobile prey in heterogenous marine environments and, to survive and raise chicks, must learn to use static and ephemeral cues to 82 83 identify profitable foraging habitat (Gilmour et al. 2018). As a result of their sensitivity to ocean change 84 and of the relative ease of studying them during the breeding season, seabirds have often been called 85 "marine sentinels" or "ecosystem indicators" (Boyd and Murray 2001; Boersma 2008; Sydeman et al. 2015; Scopel et al. 2018). Behavioral plasticity is particularly consequential for these and other long-lived 86 species, whose evolutionary rates are unlikely to keep pace with the current rate of environmental change 87 88 (Hoffmann and Sgrò 2011; Quintero and Wiens 2013).

90 Previous studies have found plasticity in seabird foraging behavior and diet at multiple biological, spatial, 91 and temporal scales. Foraging behavior can vary across populations of the same species due to differences in local environmental context (e.g., in crested terns, Sterna bergii: McLeay et al. 2009; in Cory's 92 93 shearwater Calonectris borealis: Paiva et al. 2010; in Macaronesian shearwater Puffinus baroli: Paiva et 94 al. 2016; in western gulls *Larus occidentalis*: Shaffer et al. 2017). For example, the depth and duration of 95 dives and length of foraging trips taken by Cory's shearwater vary across productivity gradients (Paiva et 96 al. 2010). Within a population, intraspecific variation in diet and foraging specialization may occur and 97 persist across years as a means of reducing intraspecific competition (e.g., in thick-billed murre Uria 98 lomvia: Woo et al. 2008). Changes in food availability across (e.g., in alcids: Jenkins and Davoren 2021) or within (e.g., in thick-billed murres Uria lomvia: Kokubun et al. 2018; in Cape Verde Shearwater 99 100 Calonectris edwardsii: Ramos et al. 2018) breeding seasons can cause all individuals to shift their diet 101 and/or foraging behavior, resulting in population-level changes in these parameters. In some systems, 102 however, intraspecific variation in seabird diet (e.g., in two species of shearwater and two species of gull: 103 Gulka et al. 2017; in Magellanic penguins Spheniscus magellanicus: Ciancio et al. 2021) or foraging 104 behavior (e.g., in great black-backed gulls *Larus marinus*; Maynard et al. 2021) increases when the availability of preferred prey is low, indicating divergent individual strategies for coping with resource 105 106 decline.

107

108 If individual-level plasticity in diet and foraging behavior influences fitness (e.g., in Cory's shearwater: 109 Zango et al. 2019), rapidly changing environmental conditions may drive individual variation in 110 contributions to population growth. In some populations, for example, plasticity may be high across 111 individuals but low within individuals across contexts (Woo et al. 2008; Zango et al. 2019). This low 112 individual-level plasticity may result from the high cost of learning new foraging behaviors or may 113 indicate that the fitness benefits of different foraging strategies vary over time (Woo et al. 2008). In other 114 populations, all individuals may show high plasticity in behavior, but this plasticity may be insufficient to 115 keep pace with environmental change (e.g., in thick-billed murres Uria lomvia: Whelan et al. 2022).

117	Here, we rely on stable isotope data and chick provisioning data collected across three years (2017, 2018,
118	2021) and five tern colonies (Table 1) to examine how the trophic diversity of terns (common tern Sterna
119	hirundo and Arctic tern Sterna paradisaea) varies across time, space, and species in the Gulf of Maine. In
120	this region, common and Arctic terns feed on a variety of fish, particularly hake (Urophycis spp.),
121	sandlance (Ammodytes americanus or A. dubius), and herring (Clupea spp. or Alosa spp.), and on marine
122	and terrestrial invertebrates (Yakola et al. 2021). Terns may be particularly sensitive to rapid
123	environmental change because, in addition to being central-place foragers, they are constrained to feeding
124	in the top 60 cm of the water column (Cabot and Nisbet 2013), limiting their foraging flexibility to
125	horizontal space (e.g., as in kittiwakes Rissa tridactyla: Barrett and Krasnov 1996).
126	
127	In the Gulf of Maine, the foraging habitat of breeding terns is changing rapidly at multiple temporal and
128	spatial scales, due both to global increases in sea surface temperature (SST) and to local, climate-driven
129	changes in ocean circulation patterns (Scopel et al. 2019; Staudinger et al. 2019). Long-term warming in
130	this region surpasses nearly anywhere else in the ocean and is punctuated by short periods of extreme
131	events, called "marine heatwaves" (Pershing et al. 2021). As a result, SSTs in the Gulf of Maine are
132	quickly exceeding the thermal tolerance limits of terns' optimal diet items, including herring and hake
133	(Collette and Klein-MacPhee 2002; Shackell et al. 2014), driving these fishes deeper and farther offshore.
134	Terns have two options to continue feeding chicks when preferred prey decline: they can change their
135	foraging behavior (e.g., change foraging location) to maintain a diet of preferred prey or they can switch
136	to less optimal prey (e.g., fish to invertebrates) (Figure 1). Chick provisioning studies in this region
137	suggest that warmer waters lead to declines in the abundance of preferred prey in tern diets (Yakola
138	2019). Dietary shifts have only been studied at the aggregate level of colony and species, however, and it
139	is possible that individuals differ in their response to decreased food availability, leading to changes in
140	trophic diversity.

We examined trophic diversity metrics based on stable isotope data and chick provisioning watch data in relation to each other and to environmental context, specifically sea surface temperature derived from satellite data. We hypothesized that individual terns would differ in their response to reduced food availability, driving higher trophic diversity among diet items fed to tern chicks in lower-resource contexts (Predictions 1-4). Additionally, we hypothesized that adult terns' individual-level responses to reduced food availability would influence the fitness of their chicks (Predictions 5-6).

148

149 For stable isotope data, trophic diversity is generally quantified using measures of the two-dimensional 150 isotope niche, where δ^{13} C provides a proxy for foraging habitat and δ^{15} N provides a proxy for the trophic 151 level of diet (Hobson et al. 1994; Bourgeois et al. 2022; Bratton et al. 2022; Cherel and Carrouee 2022; Muller et al. 2022). Blood samples, when separated into plasma and blood cell components, can provide 152 153 information on diet integrated over two timescales: 2-3 days (plasma) and 2-3 weeks (blood cells) 154 (Hobson and Clark 1993; Hobson et al. 1994; Vander Zanden et al. 2015). Chick provisioning studies, 155 during which researchers record the prey brought back to nests and fed to chicks by bill-carrying seabirds, 156 provide complementary information and allow for calculation of traditional diversity metrics. 157 158 Though they provide different information on diet and foraging behavior, we predicted that measures of 159 trophic diversity calculated using stable isotope and provisioning data would covary (P1). Additionally, 160 we used chick provisioning and sea surface temperature data to develop proxies for food availability, and 161 to test whether food availability related to trophic diversity in terns. We predicted greater trophic diversity 162 among tern chicks to be associated with lower food availability (P2) and an increase in trophic diversity 163 throughout the breeding season due to increasing sea surface temperatures and chick demands (P3). 164 Previous research suggests that Arctic terns have more variable diets and forage over larger areas than 165 common terns (Rock et al. 2007; Hall et al. 2000; Yakola et al. 2021), so we expected Arctic tern chick 166 diet to reflect greater trophic diversity than that observed in common tern chick diet within and across

167 contexts (P4).

169	To test for associations between plasticity and fitness, we focused on one island in one year. On Petit
170	Manan Island in 2021, we collected paired isotope samples for a subset of chicks, allowing us to track
171	within-season shifts in diet. We predicted individual variation in the magnitude of dietary shifts over this
172	two-week period and trade-offs between shifts in foraging habitat and the trophic level of prey (P5).
173	Lastly, we expected that the degree and direction of individual plasticity would influence the fledging size
174	and survival of tern chicks (P6).
175	
176	Materials and Methods
177	Study System
178	Maine hosts approximately 4,500 offshore islands. Ten seabird breeding islands are monitored each
179	breeding season by biologists associated with the Maine Coastal Islands National Wildlife Refuge
180	(MCINWR) of the United States Fish and Wildlife Service and the National Audubon Society Seabird
181	Institute. The current study focuses on data collected during 2017, 2018, and 2021 across five islands with
182	common and/or Arctic tern breeding colonies: Petit Manan Island, Ship Island, Seal Island, Metinic
183	Island, and Matinicus Rock (Table 1). These islands vary in the diversity and density of breeding seabirds
184	and in environmental characteristics, including latitude, distance offshore, and surrounding bathymetry.
185	Additionally, the three years and five islands studied showed marked differences in SST and reproductive
186	success (Table 1; Figure 2; Appendix S1: Table S1). While 2017 was a relatively successful year for terns
187	breeding in the Gulf of Maine, terns experienced poor food availability and record-low reproductive
188	success in 2021. In 2018, SSTs and tern diet shifted mid-breeding season, resulting in moderately low
189	reproductive success (Table 1; Figure 2).
190	
191	Data Collection

192 Stable Isotopes

193 We did not collect stable isotope data from tern chicks on all islands in all years and the timing of 194 sampling and sample size varied by year and island. During all sampling events, we collected 140-210ul 195 of blood from the brachial vein of tern chicks (minimum mass of 40g to minimize impact) using a 27-196 gauge needle and heparinized capillary tubes (Owen et al. 2011). On Petit Manan Island in 2021, we 197 collected a second blood sample for all chicks that were still alive 7-16 days after the initial sample was 198 collected. Sample collection was approved by Gettysburg IACUC Permit # 2021S2 and US Geological 199 Service permit #22055. Within 12 hours of collection, we separated samples into blood cells and plasma 200 using a microhematocrit centrifuge. All samples were then frozen at -20C until processing.

201

202 We homogenized dried blood cell and blood plasma samples using a mortar and pestle then weighed 1µg 203 aliquots to the nearest thousandth of a milligram and packaged them in tin capsules for analysis. We 204 analyzed samples using a GV Instruments IsoPrime isotope ratio mass spectrometer coupled with an Eurovector elemental analyzer. Values are reported as isotope ratios $({}^{13}C/{}^{12}C$ for carbon, ${}^{15}N/{}^{14}N$ for 205 nitrogen) in parts-per-thousand, calibrated to the international standards Vienna Pee Dee belemnite for 206 carbon (δ^{13} C) and atmospheric air for nitrogen (δ^{15} N). We ran duplicate samples to ensure sample 207 208 homogenization and ran internal laboratory standards (glycine and peptone) to test machine accuracy. 209 These laboratory standards have been carefully calibrated using traditional methods (Dumas combustion, 210 dual inlet IRMS) to IAEA standards N1 and N2 for nitrogen, and NBS 20, 21, and 22 for carbon. 211

The expected values for glycine fell within one standard deviation of those measured for $\delta^{15}N$ (expected: 10.73‰, observed 10.70±0.08‰) and $\delta^{13}C$ (expected: -34.00‰, observed -33.97±0.06‰). Similarly, the expected values for peptone fell within one standard deviation of those measured for $\delta^{15}N$ (expected: 7.40‰, observed 7.37±0.10‰) and $\delta^{13}C$ (expected: -14.73‰, observed -14.81±0.05‰). To ensure we had properly homogenized samples, we ran 43 duplicates for blood cell samples and 15 duplicates for plasma samples. Intra-sample variation, measured as absolute percent difference, was 2.89±2.62% for 218 δ^{15} N and 0.86±1.01% for δ^{13} C in plasma and 1.65±1.70% for δ^{15} N and 0.73±1.00% for δ^{13} C in blood 219 cells. For all analyses that follow, we used mean isotope values for samples with duplicates. 220

221 While blood cell samples had C:N ratios of ≤3.5 (mean of 3.19±0.37), indicating low lipid content, 222 plasma samples often had high C:N ratios (mean of 4.81±0.56). For tissue samples with high lipid 223 content, variation in lipids may bias δ^{13} C values (Post et al. 2007). We therefore calculated normalized 224 δ^{13} C values and used the resulting values in all analyses that follow. To calculate these values, we used 225 the equation developed by Post et al. (2007) for aquatic species, where δ^{13} C_{untreated} is the original δ^{13} C 226 value of the sample, C:N is the carbon to nitrogen ratio of the sample, and δ^{13} C_{normalized} is the final δ^{13} C of 227 the sample used in data analysis (Equation 1).

$$\delta^{13}$$
C_{normalized} = δ^{13} C_{untreated} - 3.32 + 0.99 · C:N Equation 1

229

230 Chick Provisioning and Growth Rates

231 To collect information on common and Arctic tern chick diet directly, we monitored a subset of nests 232 throughout each breeding season during regular provisioning stints. Using a standardized protocol, 233 National Audubon Society staff collected these data on Matinicus Rock and Seal Island and US Fish and 234 Wildlife Service staff collected these data on Metinic Island, Ship Island, and Petit Manan Island. During 235 each stint, staff sat in a bird blind and recorded information on prey size and prey species, the time of the 236 feeding, and the provider and recipient of the prey item. These stints generally lasted three hours and 237 occurred four times a week, most often in the early morning when feeding rates are highest. We used 238 provisioning data metrics, including average feeding rate, average prey size, and average percent herring and hake among provisioned items as indicators of food availability. Additionally, we calculated diversity 239 240 metrics using provisioning data to compare with those calculated using stable isotope values. These 241 metrics are described in more detail below (Data Analysis).

243 At each colony, we also monitored a subset of nests (approximately 10% of the breeding population of 244 each species on each island) to track chick growth rates and survival. Nests were enclosed in 1 m high fencing to prevent chicks from moving far from their nests. Nests were visited each day until all chicks 245 246 hatched, allowing for estimation of hatch date. After all chicks hatched, nests were visited every other day 247 to record chick status (e.g., alive, dead, unknown), mass (g), and wing chord (mm). Chicks were banded 248 with a nine-digit USGS Bird Banding Laboratory band within two days of hatching, which allowed us to 249 track individuals throughout the season. A chick was considered to have fledged if it was last observed 250 alive when it was at least 15 days old. The majority of the stable isotope samples used in this study were 251 collected from nests monitored for productivity and chick growth rates. We used data from these nest checks to examine the fitness consequences of diet plasticity using data on chick linear growth rates 252 253 (LGR: average daily change in mass between age 3-13 days) and survival.

254

255 Sea Surface Temperature

256 Higher SSTs in the Gulf of Maine are associated with a lower availability of terns' preferred prey (Yakola 257 2019). Therefore, we used SST as a proxy for food availability in this system. Although there are current 258 efforts to track the movement of Arctic and common terns in the region, we are still in the process of 259 collecting sufficient data to define the core foraging ranges of these species. Tern foraging distance is 260 likely to vary across space and time due to environmental conditions. Though is often reported to be 261 approximately 10-30 km for the species in this study and for related species (Becker et al. 1993; Pratte et 262 al. 2021), recent research suggests that Arctic terns may forage much farther from the colony, making 263 trips of averaging 36 km and up to 219 km at one colony in Iceland (Morten et al. 2022).

264

265 We collated SST data and conducted all statistical analyses in R Version 4.3.0. Due to a lack of site-

specific estimates, we used a conservative estimate of 20 km and created a foraging range buffer for each

island using the gbuffer function of the rgeos package (Version 0.6-4). We used these boundaries and the

268 dates of isotope sample collection (see below) to access SST data relevant to each island using the

rxtractogon function of the rerddapXtracto package (Version 1.1.4). SST are from the Multi-scale Ultrahigh Resolution (MUR) Satellite, provided by the Jet Propulsion Lab under support by the NASA

271 MEaSUREs program, which provides information on SST at a 1-km spatial scale and 1-day temporal

scale.

273

274 Data Analysis

275 Data Preparation

276 For our stable isotope analysis, we calculated the size of standard isotope ellipses (Jackson et al. 2011) 277 using the package SIBER (Version 2.1.7) with the default settings to include 40% of the data in each group. We separated groups based on island, year, species, and isotope type. A larger SEA_c suggests 278 279 greater trophic diversity due to variation in δ^{15} N values and/or δ^{13} C values among samples. We report the 280 corrected version of the standard ellipse area (SEA_c), which is suitable for comparison across groups with 281 variable sample sizes, provided that each sample has an $n \ge 3$ (Jackson et al. 2011). We excluded any groups that had an n<3 from this analysis. In cases where chicks were sampled twice (i.e., on Petit Manan 282 283 in 2021), we used data from the first sampling date for that chick in all cross-context comparisons.

284

285 To account for uncertainty and estimate credible intervals, we used the SIBER package to fit Bayesian 286 multivariate normal distributions to each group in the dataset (SEA_B). For these Bayesian estimates, which use the Gibbs Sampling technique in rjags (Version 4-14), we ran 20,000 iterations with a burn-in 287 288 of 1,000 and uninformative priors. We used posterior draws from this analysis to estimate the probability 289 that the isotopic niche of one group was greater than that of another group. Additionally, we estimated 290 isotopic niche overlap using the posterior draws for SEA_B. We ran 10 draws for each groupwise 291 comparison and, for each draw, defined niche overlap as the ratio of the overlapping area to the maximum 292 area of overlap. The maximum area of overlap was calculated as the summed area of the two ellipses 293 divided by two (i.e., 100% overlap would occur if the isotopic niches were identical). For all additional 294 analyses, we used the median value resulting from these 10 draws.

296 We subset chick provisioning data and SST data for the time period relevant to blood cell samples (2-3 297 weeks) and SST data for the period relevant to plasma samples (2-3 days). For each group (a combination 298 of species, colony, and year), we first calculated the median sampling date. In some cases, all sampling 299 occurred within a day, while in others it occurred over a one-week period; in most cases the sampling 300 periods for Arctic terns and common terns were the same. For each group, we subset SST data and 301 calculated SST_{mean} for the two-week period preceding the median sampling date for comparison with 302 blood cell isotopes and for the two-day period preceding the median sampling data for comparison with 303 plasma isotopes (Appendix S1: Table S1). For example, in 2017 on Matinicus Rock, all isotope samples 304 for both species were collected on July 7th, so we subset SST data from 23-06-2017 to 07-07-2017 for 305 blood cell samples and from 07-05-2017 to 07-07-2017 for plasma samples. On Petit Manan in 2021, 306 samples were collected over a one-week period, with a median sampling date of July 6th, so we subset 307 SST data from 22-06-2021 to 06-07-2021 for blood cell samples and from 04-07-2021 to 06-07-2021 for 308 plasma samples (Appendix S1: Table S1).

309

310 Because blood cells represent a longer-term integration of diet than plasma, shifts in isotope signatures 311 between blood cells and plasma can provide insight into changes in trophic diversity throughout the breeding season and from long (2-3 weeks) to short (2-3 days) timescales. Blood samples were often 312 313 collected from chicks in July (Julian Dates 170 to 200), as chicks often hatch in late June and are not large enough for blood sampling until early July. In this region, July is also the month during which SSTs 314 increase rapidly and food availability begins to decline (Figure 2). For example, on Matinicus Rock in 315 316 2018, stable isotope samples were collected on July 5th (Julian Date 186). In the two weeks preceding sample collection, the SST_{mean} surrounding this island was 13.38 ± 1.53 °C, while in the two days preceding 317 318 sample collection the SST_{mean} was 15.70±0.53°C (Appendix S1: Table S1).

We only subset provisioning data for comparison with blood cell isotope values, as provisioning watches often did not occur within the two-day period relevant to plasma samples. We used provisioning data as a proxy for food availability by calculating average feeding rate (prey·hr⁻¹·nest⁻¹; FR_{mean}), average prey size (culmen lengths; PS_{mean}), and average percent herring and hake among provisioned items (%; HR_{mean}) for each species throughout the two-week period prior to isotope data collection. Additionally, to provide a provisioning data measure of trophic diversity, we calculated the Shannon-Wiener Diversity Index (H') (Equation 2).

$$H' = -\sum_{i}^{S} p_{i} \ln p_{i}$$
 Equation 2

Where p_j is the proportion of prey species or prey group *j* in the diet of a tern species at each colony for a given two-week period. The Shannon-Wiener diversity index is commonly used in diet composition studies and ranges from 0 to H'_{max} , where $H'_{max} = \ln(S)$. An H' value of 0 indicates no diet diversity and greater values of H' indicate greater diet diversity. We excluded prey items that were not identified to the species (e.g., butterfish) or group (e.g., amphipod) level for this analysis.

333

334 *Hypothesis Testing*

335 For each prediction, we tested a suite of relevant generalized linear models, and selected the best-336 supported models based on Akaike's Information Criterion (AIC). Where models were within 2 AIC, we 337 report results of the simpler model. Due to low sample sizes (e.g., only one sampling occasion for Ship 338 Island), we could not include "island" or "year" as random effects in our models, but exploratory analyses 339 suggested that including these variables did not improve model performance. We assessed model fit using 340 residual diagnostic plots; models with gaussian errors and an identity link performed similarly to other 341 generalized linear model alternatives. We report effect sizes as estimate[CI₉₅]. Where models including predictors are supported, we include a p-value and a pseudo- R^2 value, calculated as 1 – (residual 342 343 deviance/null deviance). When comparing group means, we used a Wilcoxon signed-rank test due to low

344 sample sizes and non-normality. We report mean values as mean±SD. To compare the variance between paired isotope samples, we use a Pitman-Morgan test in the package PairedData (Version 1.1.1). 345

346

347 P1: Cross-method Comparison. We tested whether stable isotope and provisioning data provided 348 consistent information on trophic diversity by comparing a null model for SEA_c to models including H', 349 species, and their additive and multiplicative interactions. Additionally, we tested whether variation in 350 δ^{13} C or δ^{15} N significantly predicted variation in SEA_c across contexts. Lastly, we tested for correlations among provisioning parameters (FR_{mean}, HR_{mean}, PS_{mean}) across contexts and for correlations between 351 these parameters, $\delta^{13}C_{mean}$, and $\delta^{15}N_{mean}$. 352

353

P2: Trophic Diversity and Food Availability. We used SST_{mean} and HR_{mean} as indicators of food 354 355 availability across islands and years. We tested whether these indicators of food availability were related 356 to measures of trophic diversity in tern chicks (H' and SEA_c) using generalized linear models for the two-357 week period relevant to each blood cell sampling occasion. For plasma samples, we tested for relationships between SEA_c and SST_{mean} for the two days leading up to isotope sample collection but 358 359 could not test for relationships with H' due to the restricted time range represented by these samples.

360

P3: Trophic Diversity Throughout the Breeding Season. To better understand shifts in diet throughout the 361 362 breeding season, we calculated the change in isotope values from blood cell to plasma samples for each 363 individual. We compared trophic diversity between the period represented by blood cell and plasma data using two approaches: 1) changes in the variance of δ^{13} C and δ^{15} N between blood cell and plasma 364 samples, 2) changes in isotope niche size between blood cell and plasma samples. Additionally, we 365 366 calculated isotope niche overlap among blood cell and plasma samples for each island and year using the 367 methods described above. These analyses were restricted to chicks for which we had data on both blood 368 cell and plasma isotope values, so sample sizes were identical for all comparisons. This restriction

resulted in samples for 146 of the 196 chicks included in the study; in some cases, either the blood cell or
plasma samples for a given individual did not provide sufficient material for stable isotope analysis.

P4: Interspecific Comparison. For each island by year combination with samples for both species (n = 6372 373 for plasma, n = 7 for blood cells), we compared the mean blood cell and plasma isotope values for 374 common tern and Arctic tern chicks using Wilcoxon-signed rank tests and quantified overlap in their 375 Bayesian isotope ellipses. We used posterior draws of SEA_B to calculate the probability that the isotope 376 ellipse of common tern chicks was greater than that of Arctic tern chicks. We compared variance in δ^{13} C 377 and δ^{15} N of these two species across all samples but not for each sampling occasion, due to large 378 differences in sample sizes for some island by year combinations. 379 380 P5: Within-Season Isotope Shifts. We examined population and individual-level plasticity using paired 381 plasma samples collected from chicks approximately ten days apart on Petit Manan Island in 2021. The 382 first sampling period occurred in early July and the second sampling period occurred in mid-July. We 383 were able to collect paired samples for five common tern chicks and 14 Arctic tern chicks. Chicks ranged from 12 to 18 days old during the first sampling occasion (Julian Dates 182 to 186; $SST_{mean} =$ 384 385 12.22±0.40°C) and from 22 to 27 days old during the second sampling occasion (Julian Dates 193 to 204,

all but two between 193 and 198; $SST_{mean} = 12.97 \pm 0.49^{\circ}C$).

387

Because residual error and individual slope estimates are confounded in the case of linear effects models with only two measurements per individual, we could not use this approach to statistically test for variation in individual slopes. Instead, we describe individual-level plasticity through descriptive comparison of the slope of change in δ^{15} N and δ^{13} C values for each individual chick, calculated as the change in isotope value divided by the number of days between sampling occasions. We tested for species-driven differences in slopes. Additionally, we calculated SEA_c and compared SEA_B for samples collected during the first sampling occasion to those collected during the second sampling occasion.

395

396	P6: Isotope Shifts and Fitness. For each individual with paired plasma samples, we tested whether diet
397	$(\delta^{15}N)$ and foraging $(\delta^{13}C)$ plasticity correlated with two measures of fitness: chick survival and
398	asymptotic chick size. Asymptotic chick size was calculated as the average chick mass (g) and average
399	chick wind chord length (mm) for measurements taken between age 16 and 27 days. We did not compare
400	plasticity to chick growth rate because plasma samples were collected after the linear growth period (2 to
401	13 days). Several of the chicks sampled in this study were not part of our regular productivity plots, and
402	we did not record their final status, which is instead marked as "unknown". Importantly, the need to
403	sample chicks twice biased our samples towards chicks that survived until the second sampling occasion,
404	which was a relatively low number of chicks given poor reproductive success on Petit Manan in 2021. We
405	tested whether the slope of change in $\delta^{15}N$ and in $\delta^{13}C$ were correlated with each other and with these two
406	measures of chick fitness.

408 <u>Results</u>

We collected 100 blood cell samples and 90 plasma samples from Arctic tern chicks (n = 86 chicks, 14 sampled twice) and 115 blood cell samples and 102 plasma samples from common tern chicks (n = 110 chicks, 5 sampled twice) across the five study islands and three study years. When broken down into year and island combinations, there were nine sampling occasions for each species with sample sizes ranging from five chicks to 29 chicks for blood samples and from one chick to 29 chicks for plasma samples.

414

Across all islands, years, and species, δ^{15} N ranged from 10.40 to 14.59‰ in blood cell samples (mean of 12.61±0.76‰) and from 10.91 to 15.64‰ in plasma samples (mean of 13.73±0.95‰). For δ^{13} C, values ranged from -22.26 to -16.52‰ in blood cell samples (mean of -19.40±0.77‰) and -22.38 to -14.75‰ in plasma samples (mean of -18.43±1.20‰) (Figure 3). The relationship between δ^{15} N and δ^{13} C varied by isotope type and species; models containing the interaction between δ^{13} C and species explained 42% of the variance in δ^{15} N for plasma samples and 35% of the variance in δ^{15} N for blood cell samples (Figure 3). For common tern chicks, $\delta^{15}N$ was positively correlated with $\delta^{13}C$ in both blood cell (p = 0.04, b = 0.26[0.01,0.50]) and plasma (p < 0.0001, b = 0.53[0.34,0.73]) samples. In Arctic tern chicks, $\delta^{15}N$ was positively correlated with $\delta^{13}C$ in blood cell samples (p = 0.03, b = 0.19[0.02,0.36]) but negatively correlated in plasma samples (p < 0.0001, b = -0.25[-0.37, -0.13]) (Figure 3).

425

426 During the two weeks prior to isotope data collection, the total time spent in provisioning watches ranged 427 from 878 minutes (Arctic terns on Petit Manan Island in 2017) to 3,320 minutes (common terns on Petit Manan Island in 2017) (Appendix S1: Table S2). FR_{mean} ranged from 0.95 prey-hr⁻¹ nest⁻¹ (common terns 428 429 on Petit Manan Island in 2021) to 3.57 prey-hr⁻¹-nest⁻¹ (Arctic terns on Matinicus Rock in 2017) with a mean of 1.68 prev-hr⁻¹ nest⁻¹ across islands, species, and years (Appendix S1: Table S2). PS_{mean} ranged 430 431 from 0.56 culmen lengths (Arctic terns on Matinicus Rock in 2018) to 1.89 culmen lengths (common 432 terns on Metinic Island in 2017), with a mean of 1.25 culmen lengths. HR_{mean} ranged from 20.89% (Arctic 433 terns on Matinicus Rock in 2018) to 84.11% (Arctic terns on Petit Manan Island in 2018), with a mean of 57.79% (Appendix S1: Table S2). 434

435

436 Trophic diversity varied greatly across islands, years, and species. SEA_c ranged from 0.05‰² (blood cells for common tern chicks on Seal Island in 2017) to 2.61² (plasma cells for Arctic tern chicks on Petit 437 Manan Island in 2021) with a mean of 0.60² (Figure 4; Appendix S1: Table S3). H' ranged from 0.79 438 439 (common terns on Ship Island in 2021) to 2.08 (common terns on Seal Island in 2018), with a mean of 1.44. When calculated at the year and colony level, SST_{mean} for the period relevant to blood cell isotope 440 441 samples ranged from 10.44±0.61°C (Petit Manan Island in 2017) to 15.06±0.92°C (Metinic Island in 2017) and for plasma isotope samples ranged from 11.45±0.50°C (Petit Manan Island in 2017) to 442 16.37±0.78°C (Metinic Island in 2017) (Appendix S1: Table S1). 443

444

445 P1: Cross-Method Comparison. Provisioning metrics were strongly intercorrelated, and the best-

446 supported models for relationships among these parameters did not include species-specific intercepts or

447 slopes (Table 2; Figure 5). An increase of one prey item per hour per nest was associated with a 18.6% 448 decrease in HR_{mean} ($r^2 = 0.47$, p = 0.002, b = -18.6[-29.19, -8.06)]. Furthermore, a one culmen length increase in PS_{mean} was associated with a 38.14% increase in HR_{mean} ($r^2 = 0.32$, p = 0.01, b = 38.14[8.88, 449 450 (67.41)). Because of the strong collinearity among provisioning metrics, we focused on comparing HR_{mean} across contexts and species to $\delta^{15}N_{mean}$, $\delta^{13}C_{mean}$, and measures of trophic diversity. Both $\delta^{15}N_{mean}$ ($r^2 = 1$) 451 0.28, p = 0.02, b = 19.81[2.97,36.65]) and $\delta^{13}C_{mean}$ (r² = 0.32, p = 0.01, b = 17.72[4.11, 31.32]) were 452 453 positively correlated with HR_{mean} and showed stronger support than a null model for this provisioning 454 metric (Table 2).

455

456 H' and blood cell SEA_c were significantly correlated, and this relationship did not vary by species (Table

457 3); H' increased by approximately 0.63 for every $1\%^2$ increase in SEA_c ($r^2 = 0.24$, p = 0.04, b =

458 0.63[0.04,1.22]). Variation in δ^{13} C was not significantly correlated with variation in δ^{15} N across contexts

459 (b = 0.14[-0.08,0.45]). While greater variation in $\delta^{15}N$ (AIC = 9.48) was correlated with larger SEA_c [r² =

460 0.40, p = 0.005, b = 1.89[0.65,3.13]], variation in δ^{13} C was a stronger driver (AIC = -10.13) and explained

461 approximately 75% of the variation in SEA_c $[r^2 = 0.75, p < 0.001, b = 1.31[0.84, 1.57]).$

462

463 P2: Trophic Diversity and Food Availability. There was no evidence for an impact of SST_{mean} on trophic diversity as measured using the SEA_c of blood cell samples; models including SST_{mean} and additive and 464 multiplicative interactions with species were less supported than the null model (Table 4). Similarly, there 465 was no support for a relationship between SST_{mean} and the SEA_c of plasma samples. As with blood cell 466 467 samples, models that included SST_{mean} and additive and multiplicative interactions with species were less supported than the null model (Table 4). We found no relationship between our other measure of food 468 availability, HR_{mean}, and SEA_c (Table 4). Additionally, we found no evidence for a relationship between 469 470 provisioning study trophic diversity, H', and food availability as measured using SST_{mean} or HR_{mean} (Table 471 3).

473 P3: Trophic Diversity Throughout the Breeding Season. When comparing paired samples for each chick, 474 plasma samples had δ^{15} N values that were on average 1.10±0.70‰ greater (range: -3.30‰ to 4.48‰) and δ^{13} C values that were on average 1.04±1.11‰ greater (range: -0.92‰ to 3.41‰) than blood cell samples 475 476 (Figure 6). When averaged at the level of island, year, and species, the difference in δ^{15} N between plasma 477 and blood cell samples was always positive (range of 0.51‰ for Arctic terns on Petit Manan Island in 2021 to 2.16% for Arctic terns on Seal Island in 2018). The average difference in δ^{13} C was positive for 478 479 all combinations except for Arctic terns on Matinicus Rock in $2018 (-0.53 \pm 1.06\%)$, where approximately 480 half of chicks shifted to less-enriched δ^{13} C values and half shifted to more-enriched δ^{13} C values. The best-481 supported model for shifts in δ^{15} N included shifts in δ^{13} C, a multiplicative interaction with species, and an additive interaction with island ($r^2 = 0.27$, p < 0.0001; Table 5; Figure 6). Across Arctic tern chicks, the 482 magnitude of the shift in δ^{15} N value between blood cells and plasma was negatively correlated with the 483 484 magnitude of the shift in δ^{13} C value (p = 0.03, b = -0.24[-0.36, -0.11]). In common terns, shifts in δ^{15} N values were positively correlated with shifts in δ^{13} C values (p = 0.01, b = 0.26[0.08, 0.44]). 485

486

The overlap in SEA_B representing blood cell and plasma samples for the same individuals ranged from 4.1% (Arctic tern chicks on Matinicus Rock in 2018) to 38.5% (Arctic tern chicks on Petit Manan Island in 2018) with an average overlap of 29.6% for Arctic terns and 17.04% for common terns (Appendix S1: Table S4). The probability that the SEA_B for plasma samples was greater than that of blood cell samples ranged from 0.27 (common tern chicks on Ship Island in 2021) to 1.00 (Arctic tern and common tern chicks on Petit Manan Island in 2021), with an average probability of 0.81 across contexts for Arctic terns and 0.70 across contexts for common terns (Appendix S1: Table S4).

494

495 Across all paired samples, plasma samples had a larger δ^{15} N range (4.7‰) and standard deviation

496 (0.97%) than did blood cell samples (range = 3.3%; sd = 0.82%). Similarly, plasma samples had a larger

- 497 δ^{13} C range (7.63‰) and standard deviation (1.22‰) than did blood cell samples (range = 5.74‰; sd =
- 498 0.79‰). Plasma sample variability was significantly greater for both $\delta^{15}N$ (F = 1.40, p = 0.02) and $\delta^{13}C$ (F

499 = 2.39, p < 0.0001) across all samples. When broken down by sampling occasion (n = 12 occasions with 500 individuals with paired samples), the δ^{15} N and δ^{13} C values of plasma samples were more variable than 501 blood cell samples in most cases, but this difference was rarely significant (Appendix 1: Table S5). 502

P4: Interspecific Comparison. Arctic tern chicks had significantly lower plasma $\delta^{15}N$ values ($n_1 = 76$, $n_2 =$ 97, W = 1297.5, p < 0.001) and significantly lower blood cell $\delta^{15}N$ values ($n_1 = 86$, $n_2 = 110$, W = 2196.5, p < 0.001) than common tern chicks. Additionally, Arctic tern chicks had significantly less-enriched plasma $\delta^{13}C$ values ($n_1 = 86$, $n_2 = 110$, W = 2700, p = 0.003) and significantly less-enriched blood cell $\delta^{13}C$ values ($n_1 = 76$, $n_2 = 97$, W = 2312, p < 0.001) than common tern chicks (Figure 4). When compared at the island and year level, however, Arctic and common tern chicks were rarely significantly different in both $\delta^{15}N$ and $\delta^{13}C$ space, with the exception of Seal Island in 2017 and 2018 (Appendix 1: Table S6).

510

511 Arctic tern chicks had a lower and more variable average HR_{mean} (56.03±22.80%) than common tern

512 chicks (59.55 \pm 18.96%) across contexts and a higher and more variable FR_{mean} (1.85 \pm 0.88 prey·hr⁻¹·nest⁻¹)

than common tern chicks $(1.51\pm0.60 \text{ prey}\cdot\text{hr}^{-1}\cdot\text{nest}^{-1})$. Neither of these differences were significant across

514 contexts (HR_{mean}: W = 39, p = 0.93; FR_{mean}: W = 52, p = 0.34). Prey size was, however, significantly

blower for Arctic tern chicks $(1.09\pm0.29 \text{ culmen lengths})$ than for common tern chicks $(1.41\pm0.23 \text{ culmen})$

- 516 lengths) (W = 11, p = 0.008).
- 517

Given the same island, year, and isotope type, the mean SEA_B overlap between Arctic tern and common tern chicks was 16.67% (range of 0-52.93%). The overlap between these two species was slightly higher in plasma samples (mean = 20.03%, range of 0-52.93%) than in blood cell samples (mean = 14.15%, range of 0-45.84%). The overlap was greatest for plasma samples on Metinic in 2018 (52.93%), the only

case with interspecific overlap of greater than 50%.

524 There was little consistency in the difference in SEA_B size for common tern and Arctic tern chicks across 525 contexts. The average probability that Arctic tern chicks had a larger isotopic niche was 0.53 for blood 526 cell samples (range of 0.00 to 0.98% for Petit Manan in 2017 and 2021 respectively) and 0.46 for plasma 527 samples (range of 0.001 to 0.96% for Metinic in 2018 and Seal in 2018 respectively) (Table S7). 528 Provisioning data resulted in similar average H' values for Arctic tern (1.44±0.42) and common tern chick diets (1.43 ± 0.42) (W = 40, p = 1.00), though there was a greater occurrence of unknown previtems 529 530 that needed to be excluded for Arctic terns (19% of prey items) than for common terns (14% of prey items). Additionally, across all samples, the variance in Arctic tern chick δ^{15} N values was not 531 significantly greater than that of common terns in blood cell samples (F = 0.33, p = 1.00) or plasma 532 samples (F = 0.64, p = 0.98). Arctic tern chicks did show greater variance in δ^{13} C values in plasma 533 samples than common tern chicks (F = 2.21, p < 0.005), but not in blood cell samples (F = 1.34, p = 0.14). 534

535

P5: Within-Season Isotope Shifts. Individual terns showed substantial variation in δ^{15} N and δ^{13} C slopes 536 between the first and second sampling occasion, but the overall shift was to higher $\delta^{15}N$ values and less-537 enriched δ^{13} C values (Figure 7). Across both species, 14 individuals showed negative δ^{13} C slopes and five 538 539 showed positive slopes. For δ^{15} N, two individuals showed a negative slope, one showed a slope within 540 0.01 of zero, and 16 showed positive slopes (Figure 7). SEA_c was nearly three times greater during the first sampling period $(1.40\%^2)$ than during the second sampling period $(0.44\%^2)$ for Arctic terns and 541 542 nearly four times greater during the first sampling period $(2.11\%^2)$ than during the second sampling period $(0.54\%^2)$ for common terns (Figure 8). 543

544

Slopes for δ^{15} N and δ^{13} C were strongly correlated across individuals and the slope of this relationship did not vary by species (Figure 8). A shift to less-enriched δ^{13} C diets was associated with a shift to higher δ^{15} N diets (r² = 0.66, p<0.001, b = -0.57[-0.78, -0.36]). The average δ^{13} C slope of Arctic tern chicks (-0.12±0.12‰ day⁻¹) was more negative than that of common tern chicks (-0.05±0.12‰ day⁻¹), but this difference was not significant (W = 24, p = 0.34). Similarly, though the average δ^{15} N slope of Arctic tern chicks $(0.12\pm0.07 \text{ w} \text{ day}^{-1})$ was double that of common tern chicks $(0.06\pm0.11 \text{ w} \text{ day}^{-1})$, this difference was not significant (W = 52, p = 0.13).

552

P6: Isotope Shifts and Fitness. All common tern chicks with paired plasma samples were alive and of 553 554 fledging size and age during their final nest check. Among Arctic tern chicks, seven were alive, four had 555 died, and three had a final status of unknown. Chicks that died in the days after sampling had more 556 negative δ^{13} C slopes (-0.138±0.159 ‰ day⁻¹) and more positive δ^{15} N slopes (mean of 0.16±0.07‰ day⁻¹) than did chicks that fledged (mean of -0.08 ± 0.12 % day⁻¹ for δ^{13} C and mean of -0.09 ± 0.07 % day⁻¹ for 557 δ^{15} N), but these differences were not significant (δ^{13} C: W = 17, p=0.648; δ^{15} N: W = 7, p = 0.23). There 558 559 was no significant relationship between asymptotic wing chord length, which ranged from 100.5 to 144.3 mm for common terns and 106.2 to 141.1 mm for Arctic terns, and isotope slopes (Table 6). Asymptotic 560 561 mass was positively correlated with δ^{13} C slope and negatively correlated with δ^{15} N slope in Arctic tern 562 chicks (range: 62.2 to 92.0 g), but not in common tern chicks (range: 102.17 to 117.5 g) (Figure 8; Table 563 6).

564

565 <u>Discussion</u>

566 Arctic and common terns foraging in the Gulf of Maine face rapidly changing prey landscapes. Both 567 species have demonstrated an ability to alter their foraging behavior and diet in response to local prev availability across time and space (Hall et al. 2000; Scopel et al. 2018; Yakola 2019). For example, 568 569 warmer waters in the Gulf of Maine are associated with lower proportions of hake (a preferred prey item) 570 in the diet of common terns and Arctic terns, and with an increase in the occurrence of less-common prey 571 (Yakola 2019). Here, using multiple approaches, we show marked variation in the trophic diversity of 572 Arctic and common terns breeding across five islands and three years in the Gulf of Maine. Trophic 573 diversity metrics, calculated using isotope data, varied by an order of 50 for isotope data (SEA_c) and by 574 an order of three for provisioning data (H'), and both species exhibited a wide range of isotope values and feeding parameters. Additionally, using paired isotope samples, we show that individuals within these 575

populations differ in their within-season responses to changing environmental conditions, with potentialimplications for individual-level fitness.

578

579 Trophic Diversity Across Methods

580 Using multiple approaches simultaneously to study trophic ecology provides a more nuanced 581 understanding of diet and foraging behavior and helps to mitigate the shortcomings of any one approach 582 (Sydeman et al. 1997; Woo et al. 2008; Nielsen et al. 2018; Muller et al. 2022; Hoenig et al. 2022). 583 For terns, a burst in the delivery of small prey items (invertebrates, small larval fish) may increase 584 provisioning trophic diversity, as these metrics are based on counts of different prey items. However, the 585 same burst of small prey may have little influence on trophic diversity measured using stable isotope data, 586 as isotope values are based on the amount of material assimilated from prev. Isotope data will 587 underestimate trophic diversity when prey items have similar isotope values, such as reported for fish 588 species in the Gulf of Maine (Legett et al. 2023). Provisioning data may underestimate trophic diversity when there is a large portion of unidentified prey that cannot be included in diversity calculations, and 589 590 this may be more common when preferred prey availability is low and terns forage on less common 591 and/or smaller prey items (i.e., invertebrates or larval fish).

592

593 Though isotope and provisioning data provide inherently different information on trophic ecology 594 (Nielsen et al. 2018), we found that mean isotope values were correlated with key diet parameters across 595 contexts for common and Arctic terns breeding in the Gulf of Maine. Specifically, a higher percent of herring and hake in tern chick diet was associated with higher δ^{15} N values, likely due to fewer 596 597 invertebrates in the diet of these chicks, and to more enriched δ^{13} C values. Additionally, we found support for our prediction of a correlation between isotope (SEA_c) and dietary (H') measures of trophic diversity 598 599 (P1), though isotope measures of trophic diversity showed a much larger range across contexts. In some 600 cases, such as for seabird species that regurgitate to feed their chicks, collecting provisioning data

alongside stable isotope data may not be possible; our findings suggest that stable isotopes can provideinsight into key diet parameters when other methods cannot be used.

603

604 The correlation between tern chick δ^{13} C values and diet composition may be driven by relationships 605 between island location and prey availability. Ship Island and Petit Manan Island are both relatively 606 inshore, and tern chicks on these islands had a high percent of herring and hake in their diet (>67% for all 607 sampling occasions), while terns breeding on islands more than 20 miles offshore, such as Matinicus 608 Rock and Seal Island, generally fed chicks a lower percent of herring and hake (<40% for most sampling 609 occasions). Previous work has noted a higher proportion of invertebrates in the diet of terns on Matinicus 610 Rock and Seal Island as compared to other Gulf of Maine Islands, though not all of the islands in our 611 study were included in this work (Yakola et al. 2021).

612

613 Patterns in δ^{13} C were, however, less related to island location, with values from one offshore island (Seal Island) spanning the full range of average values across contexts (-20.9% for Arctic terns in 2018 to -614 18.53% for common terns in 2017). Importantly, while variation in δ^{13} C values in seabirds is strongly 615 616 tied to spatial variation in δ^{13} C baselines (in European shag *Phalacrocorax aristotelis*: Moreno et al. 2011), these values are not always correlated with foraging distance (e.g., in yellow-eyed penguins 617 Megadyptes antipodes: Muller et al. 2022). Arctic terns and common terns may also forage on terrestrial 618 619 invertebrates (e.g., ants, dragonflies; Yakola et al. 2021), further complicating interpretation of δ^{13} C 620 values.

621

622 Trophic Diversity Across Contexts

We did not find support for our prediction (P2) that terns would show greater trophic diversity under conditions of lower food availability. Within a given context (i.e., on a particular island, in a particular year), we have observed drastic changes in feeding rate and prey composition associated with increases in SST (Sund 2023; Welch pers. comm.). However, the current study aggregated data at the colony and

island level, and there are likely to be many other variables that influence trophic diversity across these
contexts. For example, the within-season phenology of Arctic and common tern diet in the Gulf of Maine
varies by island (e.g., herring decreases in the diet of terns throughout the season on some islands and
increases in others) and with pre-breeding season environmental conditions (e.g., the date of the spring
thermal transition) (Yakola et al. 2021). Additionally, the islands studied vary in their breeding seabird
density and community composition, so interspecific competition and the ability to alter foraging
behavior and diet may vary across contexts (e.g., Patterson et al. 2022).

634

635 Our findings contrast with previous research suggesting that the trophic diversity of seabirds (e.g., Cape 636 Verde Shearwater Calonectris edwardsii adults: Ramos et al. 2018; three alcid species: Jenkins and 637 Davoren 2021) and other marine predators (e.g., in humpback whales: Gulka et al. 2017; Atlantic cod 638 Gadus morhua: Berard and Davoren 2020) increases with decreasing food availability. In Magellanic 639 penguins, for example, isotope niche decreased with forage fish biomass and the occurrence of forage fish 640 in the diet across 12 breeding colonies and seven years (Cianco et al. 2021). In some seabird systems, however, a reduction in trophic diversity has been linked to low food availability (e.g., in the little 641 penguin Eudyptula minor: Kowalczyk et al. 2013), stressing the importance of local context in driving 642 643 these relationships.

644

Much of the previous work showing increases in trophic diversity of seabirds during periods of reduced 645 646 food availability has focused on adult seabirds. In some seabird species, adults feed their chicks higher 647 quality prey than they consume themselves (e.g., in common guillemot Uria aalge: Wilson et al. 2005; in crested terns Sterna bergii: McLeay et al. 2009; in southern rockhopper penguins Eudyptes chrysocome: 648 649 Rosciano et al. 2019). Because poor-quality food items can reduce chick growth rate and survival in 650 common terns (e.g., Szostek and Becker 2012; Reichert et al 2014) and Arctic terns (e.g., Suddaby and 651 Ratcliffe 1997; Morten et al. 2022), adults may attempt to buffer chicks from changes in food availability, 652 leading to less pronounced shifts in trophic diversity in chicks than in adults.

654 Trophic Diversity Across Tissue Types

655 The change in isotope values between blood cells and plasma varied across individuals, but were nearly 656 always positive for both δ^{13} C and δ^{15} N. There are no published values for trophic discrimination factors in 657 the blood cell components of terns, but controlled feeding studies on alcids suggest a lower trophic discrimination factor in plasma than in blood cells, which would suggest a shift to less-enriched δ^{13} C and 658 659 lower δ^{15} N values, all else being equal (Jenkins et al. 2020). Rather, the shifts we found are in line with 660 previous findings that terns alter their behavior, foraging for higher-trophic items closer to the colony, as 661 their chicks grow. In Royal (Thalasseus maximus maximus) and Cayenne (T. sandvicensis eurygnathus) 662 terns (Marinao et al. 2019) and in Sandwich terns Sterna sandvicensis (Stienen et al. 2000) adults meet growing chicks' needs by feeding them larger prey. In common terns, chick energy requirements are 663 664 thought to peak at around 15 days (Klaassen 1994). The size of provisioned prey increases as chicks age 665 (Wiggins and Morris 1987), and provisioning rates increase and then decrease as chicks age (Rossell et al. 2000). Similarly, Arctic and common terns breeding in northeast England alter feeding rate, prey size, and 666 667 foraging areas with chick age (Robertson et al. 2014). Specifically, to maintain higher feeding rates, Arctic terns and common terns shifted their core foraging areas closer to the colony and reduced the size 668 669 of their foraging area as the breeding season progressed (Robertson et al. 2014).

670

We found some support for our prediction (P3) that trophic diversity would be greater among plasma samples than blood cell samples, as they represent diet integrated over a shorter time period representing a later part of the chick rearing period. Intraspecific diversity in diet and foraging behavior is often higher at shorter timescales (Woo et al. 2008). Across all paired samples, plasma had more-enriched and more variable δ^{13} C values, higher and more variable δ^{15} N values, and larger isotope ellipses. However, the variability of plasma isotope values was not significantly higher than that of blood cell isotope values at the level of sampling occasion, which may have been due to a low number of paired samples at the island, 678 year, and species level.

679

In previous seabird studies, measures of trophic diversity calculating using plasma samples are greater 680 681 than those calculated using blood cell samples (in two species of shearwater: Carvalho and Davoren 2020; 682 in three species of alcid: Jenkins and Davoren 2021). These differences may not be completely driven by 683 true changes in trophic diversity across time, however. Controlled feeding studies of adult Atlantic puffins 684 (Fratercula arctica) and common murres (Uria aalge) found that plasma samples had a larger isotopic 685 niche than did blood cell samples, even though individuals were fed similar diets for 80 days before 686 sample collection (Jenkins et al. 2020). Though collecting samples of different tissue types provide a promising means of examining within-individual shifts in diet over time (e.g., Klaasen et al. 2010), this 687 688 type of work must be interpreted with caution and would benefit from more controlled feeding studies 689 that compare variation in isotope values across tissue types.

690

691 Trophic Diversity Across Species

Across all samples, we found lower δ^{15} N values and less-enriched δ^{13} C values in Arctic tern chicks than 692 693 in common tern chicks. For any given island and year, the two species were rarely different along both 694 isotope axes, but overlap in two-dimensional isotope space was low (average of 17%). Lower δ^{15} N values 695 in Arctic tern chicks are consistent with findings of previous research (Yakola et al. 2021) and with 696 observations that we have made on the islands in this study (Welch pers. comm), both of which suggest 697 that Arctic terns in the Gulf of Maine have a diet with a higher abundance of invertebrates than that of 698 common terns. Though we did not find a large difference in the average percent herring and hake in the 699 diet of common tern and Arctic tern chicks across contexts in this study, we did find that Arctic terns fed 700 smaller prey than common terns on average.

701

The less-enriched δ^{13} C values of Arctic terns as compared to common terns are likely due to differences in the foraging habitat of these two species. Arctic terns breeding in Nova Scotia forage on the ocean side

of their colonies, in deeper water than common terns, which forage in shallow waters between the colony and the mainland (Rock et al. 2007). Though the foraging areas of these two species were shown to overlap in other systems (e.g., in Northeast England: Robertson et al. 2014), preliminary tagging data for the Gulf of Maine suggests patterns similar to those seen in Nova Scotia (Gownaris, unpublished data). Additionally, these results are consistent with findings on the adult pre-breeding diet of common terns and Arctic terns in the Gulf of Maine, as egg membrane samples for Arctic terns showed consistently lower δ^{15} N values and less-enriched δ^{13} C values than did common terns (Bratton et al. 2022).

711

Contrary to our prediction (P4), however, we did not find a significant difference in the SEA_c size or H' 712 713 values of these two species. Additionally, though the isotope values of Arctic tern chicks differed from 714 that of common tern chicks, the variability in these values did not differ among the two species. Earlier 715 studies on tern breeding colonies in the Gulf of Maine, including one island in this study (Matinicus Rock) showed that the diet of common terns was more diverse than that of Arctic terns (Hall et al. 2000). 716 More recent studies (Yakola et al. 2021) did not find a difference between the H' values of provisioned 717 prey of these two species. Our H' values were lower than those found by Yakola et al. (2021), which 718 719 considered diet over longer time periods and a larger number of islands, only some of which overlapped 720 with this study, for Arctic terns (our study: 1.45, their study: 1.74) and common terns (our study: 1.27, 721 their study: 1.57). Other recent studies have shown a larger isotope niche for Arctic terns than for 722 common terns in the Gulf of Maine, but these studies focused on pre-breeding adults (Bratton et al. 2022), 723 which are likely to exhibit different foraging behaviors than they do while provisioning chicks.

724

725 Individual-Level Shifts in Diet

As predicted (P5), we found that individuals varied in their diet plasticity over a two-week period on Petit

Manan in 2021. The data from the majority of tern chicks showed a shift to higher δ^{15} N values and less-

enriched δ^{13} C values during this period, in contrast to a shift to more-enriched δ^{13} C values from blood

cells to plasma. The magnitude of these shifts was surprisingly large given that seabirds often show

relatively consistent diet over short time scales (Woo et al. 2008). One common tern chick, for example, showed a $\Delta\delta^{15}N$ of 2.2‰ over a nine-day period, suggesting a change of nearly one trophic level in diet using the often-assumed trophic discrimination factor of 3.4‰ (but see Stephens et al. 2023 for a discussion of variation in trophic discrimination factors).

734

735 Though the isotope values of most tern chicks shifted in the same direction, the slopes of these shifts were highly variable across individuals. Shifts in $\delta^{15}N$ and $\delta^{13}C$ between paired plasma samples showed a 736 strong negative correlation on Petit Manan Island, with individuals that shifted to higher δ^{15} N values 737 showing δ^{13} C values indicative of farther-offshore foraging. In comparison, shifts between paired blood 738 739 cell and plasma isotope values were negatively correlated for Arctic terns, but were positively correlated 740 for common terns. Shifts between paired blood cell and plasma samples are, however, more complex to 741 interpret than those between paired plasma samples. The paired plasma samples represent isotope values 742 for chicks of similar age, on just one island, and of the same tissue type. Interestingly, variation in isotope 743 slopes among individuals resulted in lower trophic diversity, as measured using the isotope ellipse, during 744 the second sampling period as compared to the first sampling period. Individuals became particularly 745 constrained in δ^{13} C-space during the second sampling period, potentially suggesting a movement of prev 746 to more-offshore habitats (Figure 8).

747

The correlation between shifts in δ^{15} N and δ^{13} C values for terns on Petit Manan in 2021 suggests the 748 749 presence of alternative mechanisms for coping with changing food availability (Figure 1). We found 750 similar trade-offs in foraging behavior and diet among provisioning metrics, which showed that a 751 decrease of herring and hake in the diet of terns corresponded with an increase in feeding rate. These 752 trade-offs may have implications for chick fitness. In partial support of our prediction (P6), the magnitude 753 of shifts in isotope values did not impact chick survival but did impact the asymptotic mass of Arctic tern 754 chicks. This relationship was not significant for common tern chicks, for which the sample size for paired 755 plasma samples was low.

757 Surprisingly, steeper slopes to more positive $\delta^{15}N$ values were associated with a lower fledging mass in Arctic tern chicks. Because δ^{15} N slopes were strongly correlated with δ^{13} C slopes, this may indicate that 758 759 traveling farther to capture high trophic-level prey is a less beneficial strategy for Arctic tern parents on 760 Petit Manan Island than is maintaining a high feeding rate of less-preferred prey. For black terns 761 (*Chlidonias niger*), feeding rates show a negative correlation with the occurrence of large fish in the diet 762 of chicks, and insect deliveries to chicks increased as chicks aged and helped to buffer chick growth and 763 survival against variability in prey (Gilbert et al. 2005). Though contrary to what might be expected, 764 incorporating near-colony, low-trophic level prey may be a beneficial strategy that helps terns to maintain 765 chick fledging mass. Chicks that fledge at a larger size are more likely to survive and recruit to the colony 766 in common terns (Ludwigs and Becker 2006) and other seabird species (Forester's terns Sterna forsteri: 767 Ackerman et al. 2008; tufted puffin Fratercula cirrhata: Morrison et al. 2009). Importantly, all of the 768 chicks that we sampled for this part of the study were past their linear growth phase; our findings may 769 have differed if we had sampled young chicks with higher energetic needs.

770

771 Changes in δ^{15} N and δ^{13} C signatures, and relationships to asymptotic chick mass, could be confounded by 772 starvation. This possibility is particularly acute for δ^{13} C, as starvation could lead chicks to break down and incorporate δ^{13} C-depleted lipid stores (e.g., in tufted puffins *Fratercula cirrhata*: Williams et al. 773 774 2007). Starvation was the major cause of mortality in chicks in 2021, and many of the chicks sampled 775 were of low mass for their age (range: 62 g to 118 g with a mean of 86 g across all chicks). Chick mass 776 increased (between 5 and 17 grams) between the two sampling occasions for chicks sampled twice, with 777 the exception of two chicks that each lost two grams; all of these measurements took place during the 778 asymptotic phase of mass growth. Importantly, we did not find higher or more variable C:N ratios for 779 plasma samples collected during the second sampling period (mean of 4.90±0.42) than for those collected during the first sampling period (mean of 5.16±0.39), suggesting that reductions in δ^{13} C were not due to 780 781 incorporation of lipids in underfed chicks.

783 Conclusions

784 We found high variation in the trophic diversity of Arctic tern and common tern chicks across five islands 785 and three years characterized by different environmental conditions. Though trophic diversity was not 786 correlated with indicators of food availability, we did find evidence that individuals differed in the 787 magnitude of the shift between paired blood cell and plasma samples and between paired plasma samples, 788 indicating intraspecific variation in trophic plasticity. Additionally, correlations among provisioning 789 parameters and among shifts in isotope values indicated trade-offs, where smaller, lower-trophic level diet 790 items were associated with foraging habitats closer to the breeding colony and with higher feeding rates. 791 Contrary to what would often be expected, a greater-magnitude shift to higher trophic levels was 792 associated with a smaller fledging size in Arctic terns on Petit Manan Island in 2021. 793 794 Studies have historically examined shifts in diet using isotopes in different tissue types, which may be

more difficult to interpret due to differences in trophic discrimination factors (Quillfeldt et al. 2008) and
lipid content (Jenkins et al. 2020). Our study is the first to collect paired samples of the same type and
indicative of diet over short time periods for the same individuals, allowing us to examine shifts in diet
without these potentially confounding variables. Though the conclusions we could reach using paired
plasma samples was limited due to a low sample size, we found evidence that individual-level foraging
plasticity may be influencing tern fitness through impacts on chick fledging size.

801

802 <u>Acknowledgements</u>

803 We would like to thank the staff and island volunteers of the United States Fish and Wildlife Maine

804 Coastal Island National Wildlife Refuge and the National Audubon Society Seabird Institute for the time

and energy that they devoted to collecting the data used in this study. Gettysburg College provided start-

up funding to N. Gownaris for sample collection and analysis in 2021.

807 <u>Author Contributions</u>

- 808 N.Gownaris led Conceptualization, Methodology, Formal Analysis, and Writing and contributed to
- 809 Investigation. L. Welch contributed to Conceptualization, Methodology, Investigation, and Writing. J.
- 810 **Tengeres** contributed to Investigation, Formal Analysis, and Writing.
- 811
- 812 <u>Conflict of Interest Statement</u>
- 813 The authors have no conflict of interest to declare.
- 814
- 815

816 <u>References</u>

- Ackerman, Joshua T., Collin A. Eagles-Smith, John Y. Takekawa, and S. A. Iverson. 2008. "Survival of
- 818 Post-fledging Forster's Terns in Relation to Mercury Exposure in San Francisco Bay."
- 819 *Ecotoxicology* 17 (8): 789–801. <u>https://doi.org/10.1007/s10646-008-0237-6</u>.
- 820 Barrett, Robert T., and Yuri V. Krasnov. 1996. "Recent Responses to Changes in Stocks of Prey Species
- by Seabirds Breeding in the Southern Barents Sea." *ICES Journal of Marine Science* 53 (4): 713–22.
 https://doi.org/10.1006/jmsc.1996.0090.
- 823 Becker, Peter H., Dietrich Frank, and Stefan R. Sudmann. 1993. "Temporal and Spatial Pattern of
- 824 Common Tern (*Sterna hirundo*) Foraging in the Wadden Sea." *Oecologia* 93 (3): 389–93.
- 825 <u>https://doi.org/10.1007/BF00317883</u>.
- 826 Berard, Marissa T., and Gail K. Davoren. 2020. "Capelin (Mallotus villosus) Availability Influences the
- 827 Inshore Summer Diet of Atlantic Cod (Gadus morhua) in Coastal Newfoundland." Environmental

Biology of Fishes 103 (6): 771–82. <u>https://doi.org/10.1007/s10641-020-00982-9</u>.

- Boersma, P. Dee. 2008. "Penguins as Marine Sentinels." *BioScience* 58 (7): 597–607.
- 830 https://doi.org/10.1641/B580707.
- 831 Bourgeois, Karen, Jemma R. Welch, Sylvain Dromzée, Graeme A. Taylor, and James C. Russell. 2022.
- 832 "Flexible Foraging Strategies in a Highly Pelagic Seabird Revealed by Seasonal Isotopic Niche
- 833 Variation." *Marine Biology* 169 (2): 28. <u>https://doi.org/10.1007/s00227-021-04011-w</u>.
- 834 Boyd, I. L., and A. W. A. Murray. 2001. "Monitoring a Marine Ecosystem Using Responses of Upper
- 835 Trophic Level Predators." *Journal of Animal Ecology* 70 (5): 747–60. <u>https://doi.org/10.1046/j.0021-</u>
 836 <u>8790.2001.00534.x</u>.
- 837 Bratton, Rachel M., Henry D. Legett, Paula Shannon, Keenan C. Yakola, Alexander R. Gerson, and
- 838 Michelle D. Staudinger. 2022. "Pre-breeding Foraging Ecology of Three Tern Species Nesting in the

- 839 Gulf of Maine." *Avian Conservation and Ecology* 17 (1): art19. <u>https://doi.org/10.5751/ACE-02112-</u>
 840 <u>170119</u>.
- 841 Cabot, David, and Ian Nisbet. 2013. *Terns*. 1st ed. Collins New Naturalist Library, United Kingdom. 461
 842 pp.
- Cairns, D.K. 1988. "Seabirds as Indicators of Marine Food Supplies." *Biological Oceanography* 5 (4):
 261–71. https://doi.org/10.1080/01965581.1987.10749517.
- 845 Carvalho, Paloma C., and Gail K. Davoren. 2020. "Niche Dynamics of Sympatric Non-breeding
- Shearwaters under Varying Prey Availability." *Ibis* 162 (3): 701–12.
- 847 <u>https://doi.org/10.1111/ibi.12783</u>.
- 848 Caspi, Tal, Jacob R. Johnson, Max R. Lambert, Christopher J. Schell, and Andrew Sih. 2022. "Behavioral
- 849 Plasticity Can Facilitate Evolution in Urban Environments." *Trends in Ecology & Evolution* 37 (12):

850 1092–1103. <u>https://doi.org/10.1016/j.tree.2022.08.002</u>.

- 851 Cherel, Y, and A Carrouée. 2022. "Assessing Marine Ecosystem Complexity: Isotopic Integration of the
- 852 Trophic Structure of Seabird Communities from the Southern Ocean." *Marine Ecology Progress*
- 853 *Series* 694 (August): 193–208. <u>https://doi.org/10.3354/meps14087</u>.
- Ciancio, Javier E., Pablo Yorio, Claudio Buratti, Gustavo Álvarez Colombo, and Esteban Frere. 2021.
- 855 "Isotopic Niche Plasticity in a Marine Top Predator as Indicator of a Large Marine Ecosystem Food
- 856 Web Status." *Ecological Indicators* 126 (July): 107687.
- 857 <u>https://doi.org/10.1016/j.ecolind.2021.107687</u>.
- 858 Collette, B.B., Klein-MacPhee, G. 2002. *Bigelow and Schroeder's Fishes of the Gulf of Maine*. 3rd ed.
- 859 Smithsonian Institution Press, Washington, DC. 748 pp.

- 860 Dingemanse, Niels J., and Ned A. Dochtermann. 2013. "Quantifying Individual Variation in Behaviour:
- 861 Mixed-Effect Modelling Approaches." *Journal of Animal Ecology* 82 (1): 39–54.

862 <u>https://doi.org/10.1111/1365-2656.12013</u>.

- 863 Gilbert, Andrew T., and Frederick A. Servello. 2005. "Insectivory versus Piscivory in Black Terns:
- 864 Implications for Food Provisioning and Growth of Chicks." *Waterbirds* 28 (4): 436–44.

865 <u>https://doi.org/10.1675/1524-4695(2005)28[436:IVPIBT]2.0.CO;2</u>.

- 866 Gilmour, Morgan E., José A. Castillo-Guerrero, Abram B. Fleishman, Salvador Hernández-Vázquez,
- 867 Hillary S. Young, and Scott A. Shaffer. 2018. "Plasticity of Foraging Behaviors in Response to
- B68 Diverse Environmental Conditions." *Ecosphere* 9 (7): e02301. <u>https://doi.org/10.1002/ecs2.2301</u>.
- 869 Gulka, Julia, Paloma C. Carvalho, Edward Jenkins, Kelsey Johnson, Laurie Maynard, and Gail K.
- Bro Davoren. 2017. "Dietary Niche Shifts of Multiple Marine Predators under Varying Prey Availability
- on the Northeast Newfoundland Coast." *Frontiers in Marine Science* 4 (October): 324.
- 872 <u>https://doi.org/10.3389/fmars.2017.00324</u>.
- 873 Hall, C., Stephen Kress, and Curtice Griffin. 2000. "Composition, Spatial and Temporal Variation of
- 874 Common and Arctic Tern Chick Diets in the Gulf of Maine." *Waterbirds: The International Journal*

875 *of Waterbird Biology* 23 (January): 430. <u>https://doi.org/10.2307/1522180</u>.

- 876 Hall, L. Embere, and Anna D. Chalfoun. 2019. "Behavioural Plasticity Modulates Temperature-Related
- 877 Constraints on Foraging Time for a Montane Mammal." *Journal of Animal Ecology* 88 (3): 363–75.
 878 https://doi.org/10.1111/1365-2656.12925.
- 879 Hobson, Keith A., and R. G. Clark. 1993. "Turnover of ¹³C in Cellular and Plasma Fractions of Blood:
- 880 Implications for Nondestructive Sampling in Avian Dietary Studies." *The Auk* 110 (3): 638–41.
- 881 <u>https://doi.org/10.2307/4088430</u>.

- Hobson, Keith A., John F. Piatt, and Jay Pitocchelli. 1994. "Using Stable Isotopes to Determine Seabird
 Trophic Relationships." *Journal of Animal Ecology* 63 (4): 786–98. <u>https://doi.org/10.2307/5256</u>.
- 884 Hoenig, Brandon D, Allison M Snider, Anna M Forsman, Keith A Hobson, Steven C Latta, Eliot T Miller,
- 885 Michael J Polito, et al. 2022. "Current Methods and Future Directions in Avian Diet Analysis."
- 886 *Ornithology* 139 (1): ukab077. <u>https://doi.org/10.1093/ornithology/ukab077</u>.
- Hoffmann, Ary A., and Carla M. Sgrò. 2011. "Climate Change and Evolutionary Adaptation." *Nature* 470
 (7335): 479–85. https://doi.org/10.1038/nature09670.
- Jackson, Andrew L., Richard Inger, Andrew C. Parnell, and Stuart Bearhop. 2011. "Comparing Isotopic
- 890 Niche Widths among and within Communities: SIBER Stable Isotope Bayesian Ellipses in R."
- 891 *Journal of Animal Ecology* 80 (3): 595–602. <u>https://doi.org/10.1111/j.1365-2656.2011.01806.x</u>.
- 892 Jenkins, Edward, Julia Gulka, David J. Yurkowski, Nathalie R. Le François, Emiko Wong, and Gail K.
- B93 Davoren. 2020. "Isotopic Discrimination ($\delta^{15}N$, $\delta^{13}C$) in Captive and Wild Common Murres (*Uria*
- aalge) and Atlantic Puffins (*Fratercula arctica*)." *Physiological and Biochemical Zoology* 93 (4):
- 895 296–309. <u>https://doi.org/10.1086/709460</u>.
- 896 Jenkins, Edward J., and Gail K. Davoren. 2021. "Seabird Species- and Assemblage-level Isotopic Niche
- 897 Shifts Associated with Changing Prey Availability during Breeding in Coastal Newfoundland." *Ibis*
- 898 163 (1): 183–96. <u>https://doi.org/10.1111/ibi.12873</u>.
- 899 Klaassen, Marcel. 1994. "Growth and Energetics of Tern Chicks from Temperate and Polar
- 900 Environments." *The Auk* 111 (3): 525–44.
- 901 Klaassen, Marcel, Theunis Piersma, Harry Korthals, Anne Dekinga, and Maurine W. Dietz. 2010.
- 902 "Single-Point Isotope Measurements in Blood Cells and Plasma to Estimate the Time since Diet
- 903 Switches." *Functional Ecology* 24 (4): 796–804. <u>https://doi.org/10.1111/j.1365-2435.2010.01689.x</u>.

904	Kokubun, N, A Takahashi, R Paredes, Rc Young, Nn Sato, T Yamamoto, Dm Kikuchi, et al. 2018. "Inter-
905	Annual Climate Variability Affects Foraging Behavior and Nutritional State of Thick-Billed Murres
906	Breeding in the Southeastern Bering Sea." Marine Ecology Progress Series 593 (April): 195-208.
907	https://doi.org/10.3354/meps12365.
908	Kowalczyk, Nicole D., Andre Chiaradia, Tiana J. Preston, and Richard D. Reina. 2014. "Linking Dietary
909	Shifts and Reproductive Failure in Seabirds: A Stable Isotope Approach." Functional Ecology 28

910 (3): 755–65. <u>https://doi.org/10.1111/1365-2435.12216</u>.

- 911 Legett, Hd, Jr Lucas, Ec Craig, and Md Staudinger. 2023. "Variation in Isotopic Niche Partitioning
- 912 between Adult Roseate and Common Terns in the Northwest Atlantic." *Endangered Species*
- 913 *Research* 50 (April): 235–47. <u>https://doi.org/10.3354/esr01233</u>.
- Ludwigs, Jan-Dieter, and Peter Becker. 2006. "Individual Quality and Recruitment in the Common Tern, *Sterna hirundo.*" *Acta Zoologica Sinica* 52 (January): 96–100.
- 916 Marinao, Cristian, Nicolás Suárez, Alejandro Gatto, and Pablo Yorio. 2019. "Forage Fish to Growing
- 917 Chicks: Shared Food Resources between Two Closely Related Tern Species." *Marine Biology* 166
- 918 (9): 121. <u>https://doi.org/10.1007/s00227-019-3570-9</u>.
- 919 Maynard, Laurie D., Julia Gulka, Edward Jenkins, and Gail K. Davoren. 2021. "Different Individual-
- 920 Level Responses of Great Black-Backed Gulls (*Larus marinus*) to Shifting Local Prey Availability."
- 921 *PLOS ONE* 16 (10): e0252561. <u>https://doi.org/10.1371/journal.pone.0252561</u>.
- 922 McLeay, Lachlan James, B. Page, S. D. Goldsworthy, T. M. Ward, and D. C. Paton. 2009. "Size Matters:
- 923 Variation in the Diet of Chick and Adult Crested Terns." *Marine Biology* 156 (9): 1765–80.
- 924 <u>https://doi.org/10.1007/s00227-009-1211-4</u>.
- 925 Mery, Frederic, and James G. Burns. 2010. "Behavioural Plasticity: An Interaction between Evolution and
- 926 Experience." *Evolutionary Ecology* 24 (3): 571–83. <u>https://doi.org/10.1007/s10682-009-9336-y</u>.

- Moreno, Rocío, Lluis Jover, Alberto Velando, Ignacio Munilla, and Carola Sanpera. 2011. "Influence of
 Trophic Ecology and Spatial Variation on the Isotopic Fingerprints of Seabirds." *Marine Ecology*
- 929 *Progress Series* 442 (December): 229–39. <u>https://doi.org/10.3354/meps09420</u>.
- 930 Morrison, Kyle W., J. Mark Hipfner, Carina Gjerdrum, and David J. Green. 2009. "Wing Length and
- 931 Mass at Fledging Predict Local Juvenile Survival and Age at First Return in Tufted Puffins." *The*
- 932 *Condor* 111 (3): 433–41. <u>https://doi.org/10.1525/cond.2009.080099</u>.
- 933 Morten, Joanne M., Julian M. Burgos, Lee Collins, Sara M. Maxwell, Eliza-Jane Morin, Nicole Parr,
- 934 William Thurston, Freydís Vigfúsdóttir, Matthew J. Witt, and Lucy A. Hawkes. 2022. "Foraging
- 935 Behaviours of Breeding Arctic Terns *Sterna paradisaea* and the Impact of Local Weather and
- 936 Fisheries." *Frontiers in Marine Science* 8.
- 937 <u>https://www.frontiersin.org/articles/10.3389/fmars.2021.760670</u>.
- 938 Muller, Chris G., B. Louise Chilvers, Rebecca K. French, and Phil F. Battley. 2022. "Diet Plasticity and
- 939 Links to Changing Foraging Behaviour in the Conservation of Subantarctic Yellow-eyed Penguins
- 940 Megadyptes antipodes)." Aquatic Conservation: Marine and Freshwater Ecosystems 32 (5): 753–
- 941 65. <u>https://doi.org/10.1002/aqc.3797</u>.
- 942 Nielsen, Jens M., Elizabeth L. Clare, Brian Hayden, Michael T. Brett, and Pavel Kratina. 2018. "Diet
- 943 Tracing in Ecology: Method Comparison and Selection." *Methods in Ecology and Evolution* 9 (2):
- 944 278–91. <u>https://doi.org/10.1111/2041-210X.12869</u>.
- 945 Owen, Jennifer C. 2011. "Collecting, Processing, and Storing Avian Blood: A Review." Journal of Field
- 946 Ornithology 82 (4): 339–54. <u>https://doi.org/10.1111/j.1557-9263.2011.00338.x</u>.
- 947 Paiva, Vh, P Geraldes, I Ramírez, A Meirinho, S Garthe, and Ja Ramos. 2010. "Foraging Plasticity in a
- 948 Pelagic Seabird Species along a Marine Productivity Gradient." *Marine Ecology Progress Series*
- 949 398 (January): 259–74. <u>https://doi.org/10.3354/meps08319</u>.

- 950 Paiva, Vitor H., Ana I. Fagundes, Vera Romão, Cátia Gouveia, and Jaime A. Ramos. 2016. "Population-
- 951 Scale Foraging Segregation in an Apex Predator of the North Atlantic." *PLOS ONE* 11 (3):

952 e0151340. <u>https://doi.org/10.1371/journal.pone.0151340</u>.

- 953 Patterson, Allison, H. Grant Gilchrist, Sigurd Benjaminsen, Mark Bolton, Anne Sophie Bonnet-Lebrun,
- 954 Gail K. Davoren, Sébastien Descamps, et al. 2022. "Foraging Range Scales with Colony Size in
- 955 High-Latitude Seabirds." *Current Biology* 32 (17): 3800-3807.e3.
- 956 https://doi.org/10.1016/j.cub.2022.06.084.
- 957 Pershing, Andrew J., Michael A. Alexander, Damian C. Brady, David Brickman, Enrique N. Curchitser,
- 958 Antony W. Diamond, Loren McClenachan, et al. 2021. "Climate Impacts on the Gulf of Maine
- 959 Ecosystem: A Review of Observed and Expected Changes in 2050 from Rising Temperatures."
- 960 *Elementa: Science of the Anthropocene* 9 (1): 00076. <u>https://doi.org/10.1525/elementa.2020.00076</u>.
- 961 Piatt, John F., Ann M. A. Harding, Michael Shultz, Suzann G. Speckman, Thomas I. Van Pelt, Gary S.

962 Drew, and Arthur B. Kettle. 2007. "Seabirds as Indicators of Marine Food Supplies: Cairns

- 963 Revisited." *Marine Ecology Progress Series* 352: 221–34.
- 964 Post, David M., Craig A. Layman, D. Albrey Arrington, Gaku Takimoto, John Quattrochi, and Carman G.
- 965 Montaña. 2007. "Getting to the Fat of the Matter: Models, Methods and Assumptions for Dealing
 966 with Lipids in Stable Isotope Analyses." *Oecologia* 152 (1): 179–89.
- 967 Pratte, I, Ra Ronconi, Sr Craik, and J McKnight. 2021. "Spatial Ecology of Endangered Roseate Terns
- and Foraging Habitat Suitability around a Colony in the Western North Atlantic." *Endangered*
- 969 Species Research 44 (March): 339–50. <u>https://doi.org/10.3354/esr01108</u>.
- 970 Quillfeldt, Petra, Leandro Bugoni, Rona A. R. McGill, Juan F. Masello, and Robert W. Furness. 2008.
- 971 "Differences in Stable Isotopes in Blood and Feathers of Seabirds Are Consistent across Species,
- Age and Latitude: Implications for Food Web Studies." *Marine Biology* 155 (6): 593–98.
- 973 <u>https://doi.org/10.1007/s00227-008-1048-2</u>.

974	Quintero, Ignacio, and John J. Wiens. 2013. "Rates of Projected Climate Change Dramatically Exceed
975	Past Rates of Climatic Niche Evolution among Vertebrate Species." Ecology Letters 16 (8): 1095-
976	1103. <u>https://doi.org/10.1111/ele.12144</u> .
977	Ramos, Jaime A., Isabel Rodrigues, Tommy Melo, Pedro Geraldes, and Vitor H. Paiva. 2018. "Variation
978	in Ocean Conditions Affects Chick Growth, Trophic Ecology, and Foraging Range in Cape Verde
979	Shearwater." The Condor 120 (2): 283–90. https://doi.org/10.1650/CONDOR-17-220.1.
980	Riechert, Juliane, Peter H. Becker, and Olivier Chastel. 2014. "Predicting Reproductive Success from
981	Hormone Concentrations in the Common Tern (Sterna hirundo) While Considering Food
982	Abundance." Oecologia 176 (3): 715–27. https://doi.org/10.1007/s00442-014-3040-5.
983	Robertson, G. S., M. Bolton, W. J. Grecian, L. J. Wilson, W. Davies, and P. Monaghan. 2014. "Resource
984	Partitioning in Three Congeneric Sympatrically Breeding Seabirds: Foraging Areas and Prey
985	Utilization." The Auk 131 (3): 434–46. https://doi.org/10.1642/AUK-13-243.1.
986	Rock, Jennifer C., Marty L. Leonard, and Andrew W. Boyne. 2007. "Do Co-nesting Arctic and Common
987	Terns Partition Foraging Habitat and Chick Diets?" Waterbirds: The International Journal of
988	<i>Waterbird Biology</i> 30 (4): 579–87.
989	Rosciano, Natalia G., Michael J. Polito, and Andrea Raya Rey. 2019. "What's for Dinner Mom? Selective
990	Provisioning in Southern Rockhopper Penguins (Eudyptes chrysocome)." Polar Biology 42 (8):
991	1529–35. <u>https://doi.org/10.1007/s00300-019-02538-9</u> .
992	Rossell, Jr., C Reed, Christine D Hamilton, Louise M Weber, and Stephen W Kress. 2000. "Chick
993	Provisioning by Common Terns in the Southern Gulf of Maine, U.S.A." Canadian Journal of
994	Zoology 78 (1): 158–60. https://doi.org/10.1139/z99-184.

- 995 Scopel, L, A Diamond, S Kress, and P Shannon. 2019. "Varied Breeding Responses of Seabirds to a
- 996Regime Shift in Prey Base in the Gulf of Maine." Marine Ecology Progress Series 626 (September):
- 997 177–96. <u>https://doi.org/10.3354/meps13048</u>.
- 998 Scopel, Lauren C., Antony W. Diamond, Stephen W. Kress, Adrian R. Hards, and Paula Shannon. 2018.
- 999 "Seabird Diets as Bioindicators of Atlantic Herring Recruitment and Stock Size: A New Tool for
- 1000 Ecosystem-Based Fisheries Management." Canadian Journal of Fisheries and Aquatic Sciences 75
- 1001 (8): 1215–29. <u>https://doi.org/10.1139/cjfas-2017-0140</u>.
- 1002 Shackell, Nancy L., Daniel Ricard, and Christine Stortini. 2014. "Thermal Habitat Index of Many
- 1003 Northwest Atlantic Temperate Species Stays Neutral under Warming Projected for 2030 but
- 1004 Changes Radically by 2060." *PLOS ONE* 9 (3): e90662.
- 1005 <u>https://doi.org/10.1371/journal.pone.0090662</u>.
- 1006 Shaffer, Scott A., Sue Cockerham, Pete Warzybok, Russell W. Bradley, Jaime Jahncke, Corey A.
- 1007 Clatterbuck, Magali Lucia, et al. 2017. "Population-Level Plasticity in Foraging Behavior of
- 1008 Western Gulls (*Larus occidentalis*)." *Movement Ecology* 5 (1): 27. <u>https://doi.org/10.1186/s40462-</u>
- 1009 <u>017-0118-9</u>.
- 1010 Snell-Rood, Emilie C. 2013. "An Overview of the Evolutionary Causes and Consequences of Behavioural
- 1011 Plasticity." *Animal Behaviour* 85 (5): 1004–11. <u>https://doi.org/10.1016/j.anbehav.2012.12.031</u>.
- 1012 Staudinger, Michelle D., Katherine E. Mills, Karen Stamieszkin, Nicholas R. Record, Christine A. Hudak,
- 1013 Andrew Allyn, Antony Diamond, et al. 2019. "It's about Time: A Synthesis of Changing Phenology
- in the Gulf of Maine Ecosystem." *Fisheries Oceanography* 28 (5): 532–66.
- 1015 <u>https://doi.org/10.1111/fog.12429</u>.
- 1016 Stephens, Ryan B., Oliver N. Shipley, and Remington J. Moll. 2023. "Meta-Analysis and Critical Review
- 1017 of Trophic Discrimination Factors (Δ^{13} C and Δ^{15} N): Importance of Tissue, Trophic Level and Diet
- 1018 Source." *Functional Ecology* 37 (9): 2535–48. <u>https://doi.org/10.1111/1365-2435.14403</u>.

- 1019 Stienen, Eric, Beers, Allix Brenninkmeijer, J.M.P.M. Habraken, M.H.J.E. Raaijmakers, and Tienen. 2000.
- 1020 "Reflections of a Specialist: Patterns in Food Provisioning and Foraging Conditions in Sandwich
- 1021 Terns *Sterna sandvicensis.*" *Ardea Wageningen-* 88 (January): 33–49.
- 1022 Suddaby, D., and N. Ratcliffe. 1997. "The Effects of Fluctuating Food Availability on Breeding Arctic
- 1023 Terns (*Sterna paradisaea*)." *The Auk* 114 (3): 524–30. <u>https://doi.org/10.2307/4089260</u>.
- 1024 Sund, Kaiulani. 2023. "Individual-Level Responses to Rapid Climate Change in Common Terns (Sterna
- 1025 *hirundo*) and Arctic Terns (*Sterna paradisaea*)". Undergraduate Honor's Thesis. The Cupola at
- 1026 Gettysburg College: 1091. <u>https://cupola.gettysburg.edu/student_scholarship/1091</u>
- 1027 Sydeman, William J., Keith A. Hobson, Peter Pyle, and Elizabeth B. McLaren. 1997. "Trophic
- 1028 Relationships among Seabirds in Central California: Combined Stable Isotope and Conventional
- 1029 Dietary Approach." *The Condor* 99 (2): 327–36. <u>https://doi.org/10.2307/1369938</u>.
- 1030 Sydeman, William J., Elvira Poloczanska, Thomas E. Reed, and Sarah Ann Thompson. 2015. "Climate
- 1031 Change and Marine Vertebrates." *Science* 350 (6262): 772–77.
- 1032 <u>https://doi.org/10.1126/science.aac9874</u>.
- 1033 Szostek, K. Lesley, and Peter H. Becker. 2012. "Terns in Trouble: Demographic Consequences of Low
- 1034 Breeding Success and Recruitment on a Common Tern Population in the German Wadden Sea."
- 1035 *Journal of Ornithology* 153 (2): 313–26. <u>https://doi.org/10.1007/s10336-011-0745-7</u>.
- 1036 Vander Zanden, M. Jake, Murray K. Clayton, Eric K. Moody, Christopher T. Solomon, and Brian C.
- 1037 Weidel. 2015. "Stable Isotope Turnover and Half-Life in Animal Tissues: A Literature Synthesis."
- 1038 *PLoS ONE* 10 (1): e0116182. <u>https://doi.org/10.1371/journal.pone.0116182</u>.
- 1039 Weimerskirch, Henri. 2018. "Linking Demographic Processes and Foraging Ecology in Wandering
- 1040 Albatross—Conservation Implications." *Journal of Animal Ecology* 87 (4): 945–55.
- 1041 <u>https://doi.org/10.1111/1365-2656.12817</u>.

1042	Whelan, Shannon,	Scott A. Ha	atch, Anthony.	J. Gaston, H.	Grant Gilchrist,	and Kyle H.	Elliott. 2022.
	, , ,			,		2	

- 1043 "Opposite, but Insufficient, Phenological Responses to Climate in Two Circumpolar Seabirds:
- 1044 Relative Roles of Phenotypic Plasticity and Selection." *Functional Ecology* 36 (7): 1782–95.
- 1045 <u>https://doi.org/10.1111/1365-2435.14064</u>.
- 1046 Wiggins, David A., and Ralph D. Morris. 1987. "Parental Care of the Common Tern Sterna hirundo." Ibis
- 1047 129 (s2): 533–40. <u>https://doi.org/10.1111/j.1474-919X.1987.tb08241.x</u>.
- 1048 Williams, Cory T., C. Loren Buck, Justine Sears, and Alexander S. Kitaysky. 2007. "Effects of Nutritional
- 1049 Restriction on Nitrogen and Carbon Stable Isotopes in Growing Seabirds." Oecologia 153 (1): 11–
- 1050 18. <u>https://doi.org/10.1007/s00442-007-0717-z</u>.
- Wilson, L.J., Francis Daunt, and S. Wanless. 2005. "Self-Feeding and Chick Provisioning Diet Differ in
 the Common Guillemot *Uria aalge*." *Ardea* 92 (January): 197–207.
- 1053 Woo, Kerry J., Kyle Hamish Elliott, Melissa Davidson, Anthony J. Gaston, and Gail K. Davoren. 2008.
- 1054 "Individual Specialization in Diet by a Generalist Marine Predator Reflects Specialization in
- 1055 Foraging Behaviour." Journal of Animal Ecology 77 (6): 1082–91. <u>https://doi.org/10.1111/j.1365-</u>
- 1056 <u>2656.2008.01429.x</u>.
- 1057 Yakola, Keenan. 2019. An Examination of Tern Diet in a Changing Gulf of Maine. MsC Thesis,

1058 University of Massachusetts, Amherst. <u>https://doi.org/10.7275/15222158</u>

- 1059 Yakola, Keenan, Adrian Jordaan, Stephen Kress, Paula Shannon, and Michelle D. Staudinger. 2021.
- 1060 "Interspecific and Local Variation in Tern Chick Diets Across Nesting Colonies in the Gulf of
- 1061 Maine." *Waterbirds* 44 (4). <u>https://doi.org/10.1675/063.044.0402</u>.
- 1062 Zango, Laura, José Manuel Reyes-González, Teresa Militão, Zuzana Zajková, Eduardo Álvarez-Alonso,
- 1063 Raül Ramos, and Jacob González-Solís. 2019. "Year-Round Individual Specialization in the Feeding

- 1064 Ecology of a Long-Lived Seabird." *Scientific Reports* 9 (August): 11812.
- 1065 <u>https://doi.org/10.1038/s41598-019-48214-0</u>.

1068 <u>Tables</u>

Table 1: Locations of the five islands studied showing annual productivity data (chicks fledged per nest)

1070 and linear growth rates of chicks (in parentheses; g·day⁻¹) for common terns (COTE) and Arctic terns

1071 (ARTE). Combinations in grey were not included in this study; only productivity data are shown for these

1072 combinations.

			2017	2018	2021	2017	2018	2021
	Lat	Long	(COTE)	(COTE)	(COTE)	(ARTE)	(ARTE)	(ARTE)
Petit Manan	44.367	-67.865	1.48 (6.94)	0.83 (7.51)	0.43 (5.09)	0.78 (6.69)	0.69 (6.49)	0.16 (4.06)
Ship	44.235	-68.440	0.39	0*	0.94 (7.51)	NA	NA	NA
Seal	43.888	-68.740	1.15 (5.90)	0.48 (3.65)	0.32	1.13 (5.40)	0.76 (3.65)	0.22
Metinic	43.883	-69.125	1.48 (6.07)	0.83 (5.61)	0.43	1.58 (6.38)	0.96 (4.30)	0.64
Matinicus Rock	43.783	-68.855	1.57 (6.40)	0.54	0.28	0.89 (5.79)	0.55 (3.82)	0.25

1073 *In 2018 the entire common tern colony on Ship Island abandoned and no chicks survived

- **Table 2:** Comparison of generalized linear models linking the percent herring and hake in the diet of terns
- (HR_{mean}) to prey size (PS_{mean}) , feeding rate (FR_{mean}) , and average isotope values for each sampling
- 1077 occasion.

Model	logLik	AIC	AIC - AIC _{null}					
~1	-79.33	162.66	0.00					
Relationships between HR _{mean} and PS _{mean}								
~PS _{mean}	-75.82	157.63	-5.02					
~PS _{mean} + Species	-74.86	157.73	-4.93					
~PS _{mean} * Species	-74.71	159.43	-3.23					
	Relationships betwe	een HR_{mean} and FR_{mean}						
~FR _{mean}	-73.68	153.37	-9.29					
$\sim FR_{mean} + Species$	-73.60	155.20	-7.46					
~FR _{mean} * Species	-73.60	157.19	-5.46					
	Relationships betwe	een HR _{mean} and $\delta^{13}C_{mean}$						
$\sim \delta^{13}C_{mean}$	-75.82	157.64	-5.01					
$\sim \delta^{13}C_{mean} + Species$	-75.27	158.53	-4.12					
$\sim \delta^{13}C_{mean}$ * Species	-74.74	159.48	-3.18					
Relationships between HR_{mean} and $\delta^{15}N_{mean}$								
${\sim}\delta^{15}N_{mean}$	-76.37	158.75	-3.91					
$\sim \delta^{15} N_{mean} * Species$	-76.18	160.37	-2.29					
$\sim \delta^{15} N_{mean} + Species$	-75.35	160.70	-1.96					

- **Table 3:** Comparison of Akaike information criterion (AIC) for generalized linear models linking the
- 1082 Shannon-Wiener Diversity Index of prey provisioned by terns (H') to their stable isotope ellipse (SEA_c)
- and to two measured of food availability, mean sea surface temperature (SST_{mean}) and mean percent
- 1084 herring and hake (HR_{mean}).

Model	logLik	AIC	AIC - AIC _{null}				
Relationships H' and Blood Cell SEA _c							
~SEA _c	-6.56	19.12	-3.01				
~SEA _c + Species	-6.47	20.94	-1.20				
~1	-9.07	22.13	0.00				
~SEA _c * Species	-6.34	22.69	0.56				
	Relationships Betwe	een H' and SST _{mean}					
~1	-9.07	22.13	0.00				
~SST _{mean}	-9.04	24.08	1.95				
\sim SST _{mean} + Species	-9.04	26.08	3.95				
~SST _{mean} * Species	-9.03	28.06	5.93				
	Relationships Betwo	een H' and HR _{mean}					
~1	-9.07	22.13	0.00				
~HR _{mean}	-8.44	22.88	0.75				
\sim HR _{mean} + Species	-8.44	24.87	2.74				
~HR _{mean} * Species	-8.36	26.72	4.59				

Table 4: Comparison of Akaike information criterion (AIC) for generalized linear models linking the size

1088 of the stable isotope ellipse (SEA_c) for terns to measures of food availability, including mean sea surface

1089 temperature (SST_{mean}) and mean percent herring and hake (HR_{mean}).

Model	logLik	AIC	AIC - AIC _{null}					
Relationships Between Blood Cell SEA _c and SST _{mean}								
~1	-4.57	13.14	0.00					
~SST _{mean}	-4.54	15.08	1.94					
~SST _{mean} + Species	-4.29	16.58	3.45					
~SST _{mean} * Species	-3.96	17.93	4.79					
Rela	tionships Between Pl	asma SEA_c and SST_{mear}	1					
~1	-16.48	36.96	0.00					
~SST _{mean}	-16.48	38.96	2.00					
~SST _{mean} + Species	-16.46	40.93	3.97					
~SST _{mean} * Species	-16.44	42.89	5.93					
Relati	onships Between Blo	od Cell SEA _c and HR_{me}	an					
~1	-4.57	13.14	0.00					
~HR _{mean}	-4.24	14.48	1.34					
~HR _{mean} + Species	-3.91	15.82	2.69					
~HR _{mean} * Species	-3.56	17.12	3.99					

1090

- **Table 5:** Comparison of Akaike information criterion (AIC) for generalized linear models linking the
- 1093 magnitude of the shift in δ^{13} C values from blood cell isotope samples to plasma isotope samples for terns
- 1094 to the magnitude of the shift in $\Delta \delta^{15} N$ values across islands and species.

Model	logLik	AIC	AIC - AIC _{null}
$\sim \Delta \delta^{15}$ N + Island * Species	-139.38	296.75	-33.55
$\sim \Delta \delta^{15} N * Island + Species$	-136.94	297.88	-32.42
$\sim \Delta \delta^{15} N * Island * Species$	-130.19	298.39	-31.91
$\sim \Delta \delta^{15} N * Island$	-141.39	304.78	-25.53
$\sim \Delta \delta^{15} N + Island$	-147.60	309.20	-21.10
$\sim \Delta \delta^{15} N * Species$	-154.69	319.38	-10.92
$\sim \Delta \delta^{15} N + Species$	-158.64	325.28	-5.03
$\sim \Delta \delta^{15} N$	-160.24	326.47	-3.83
~1	-163.15	330.30	0.00

1096

- **Table 6:** Estimates from generalized linear models comparing the slope of the change in isotope values
- 1099 between paired plasma samples of Arctic tern (ARTE) and common tern (COTE) chicks to their

mm).

Species	Isotope	Feature	Estimate [CI95]	p value
ARTE	δ ¹³ C	Mass ASM	50.84 [17.82, 83.86]	0.01
ARTE	δ ¹³ C	Wing ASM	-3.98 [-61.95, 53.98]	0.89
ARTE	$\delta^{15}N$	Mass ASM	-89.56 [-147.78, -31.33]	0.01
ARTE	$\delta^{15}N$	Wing ASM	-5.68 [-107.88, 96.51]	0.91
COTE	δ ¹³ C	Mass ASM	15.49 [-41.26, 72.24]	0.62
COTE	$\delta^{13}C$	Wing ASM	-44.79 [-202.48, 112.91]	0.61
COTE	$\delta^{15}N$	Mass ASM	-7.97 [-73.72, 57.79]	0.82
COTE	$\delta^{15}N$	Wing ASM	0.38 [-184.8, 185.57]	1.00

1103 Figure Captions

1104 Figure 1: When increasing sea surface temperatures (SST) drive declines in food availability, terns 1105 breeding in the Gulf of Maine can prev switch (Panel A) or alter their foraging behavior, including trip 1106 distance (Panel B), to continue feeding chicks optimal diet items. Individuals may vary in their response. 1107 In this illustrative example, the tern symbolized by green data points feeds chicks a higher proportion of 1108 invertebrates (Panel A) at higher SSTs but does not need to travel as far to capture these lower-value prey 1109 (Panel B). In contrast, the tern symbolized by yellow data points increases foraging distance (Panel B) to 1110 continue provisioning their chicks with fish (Panel A) at higher SSTs. Because the trophic level of diet 1111 and foraging habitat of an individual influence their isotope signatures, an increase in the space between the green and yellow lines in Panels A and B should drive an increase in the size of the isotope niche in 1112 this population through changes in variation in δ^{15} N and/or δ^{13} C (Panel c). Photographs taken by N. 1113 1114 Gownaris.

1115

1116 Figure 2: Spatially averaged sea surface temperatures (top panel) across three breeding seasons for a 20 1117 km buffer surrounding the five study islands studied (bottom panel). Sea surface temperature values are also shown spatially for July 15th, 2021 (bottom panel) to provide a visual of these buffers. Sea surface 1118 1119 temperature data are taken from the Multi-scale Ultra-high Resolution (MUR) Satellite, provided by JPL 1120 under support by the NASA MEaSUREs program, which provide information on SST at a 1-km spatial 1121 scale and 1-day temporal scale. Island and year combinations in grey were not included in this study. 1122 Blood samples were separated into blood cells and plasma for combinations with a solid border or dashed 1123 border. At Petit Manan Island in 2021 (dashed border), paired plasma samples were also collected for 1124 fourteen Arctic tern and five common tern chicks.

1125

Figure 3: Relationships between the δ^{13} C values and δ^{15} N values of paired blood cell and plasma isotope samples for Arctic tern (ARTE) and common tern (COTE) chicks sampled across five islands and three 1128 years in the Gulf of Maine. The relationship between $\delta^{15}N$ and $\delta^{13}C$ values varied by isotope type and 1129 species. For common tern chicks, $\delta^{15}N$ values were positively correlated with $\delta^{13}C$ values in both blood 1130 cell (b = 0.26[0.01,0.50]) and plasma (b = 0.53[0.34,0.73]) samples. In Arctic tern chicks, $\delta^{15}N$ values 1131 were positively correlated with $\delta^{13}C$ values in blood cell samples (b = 0.19[0.02,0.36]) but negatively 1132 correlated in plasma samples (b = -0.25[-0.37,-0.13).

1133

1134 Figure 4: Stable isotope ellipses for common tern (COTE) and Arctic tern (ARTE) chicks across the 10 1135 island-by-year combinations in this study. Samples were collected during the month of July and sample 1136 sizes varied from one to 29 depending on isotope type, island, and year, with a total of 100 blood cell samples and 90 plasma samples from Arctic tern chicks (n = 86 chicks, 14 sampled twice) and 115 blood 1137 cell samples and 102 plasma samples from common tern chicks (n = 110 chicks, 5 sampled twice). 1138 1139 Ellipses were only calculated for sampling occasions that resulted in at least three samples, which was 1140 true for all but Metinic Island plasma samples in 2017. The corrected stable isotope ellipse, which accounts for sample size, varied in size from $0.05\%^2$ to $2.61\%^2$ with a mean of $0.60\%^2$. 1141 1142 Figure 5: Relationships between the percent herring and hake in the diet (HR_{mean}) of common and Arctic 1143 1144 tern chicks in the Gulf of Maine and A) mean prey size (PS_{mean}), B) mean feeding rate (FR_{mean}), C) mean δ^{13} C value, and D) mean δ^{15} N value. Each point represents an island, year, and species combination. We 1145 1146 subset provisioning data for the two weeks preceding stable isotope sample collection, as blood cell 1147 samples represent diet over a two-to-three-week period. Percent herring and hake in the diet is a key 1148 indicator of food availability in this system, and was positively correlated with mean prey size 1149 (38.14[8.88, 67.41]), δ^{13} C (17.72[4.11, 31.32]), and δ^{15} N (19.81[2.97, 36.65]), but negatively correlated with mean feeding rate -18.6[-29.19, -8.06)]). 1150 1151

Figure 6: Shifts in δ^{13} C and δ^{15} N values of Arctic tern (ARTE) and common tern (COTE) chicks

1153 breeding in across five island and three years in the Gulf of Maine. These data represent paired samples

for individuals for which we were able to analyze both blood cell and plasma components. This restriction resulted in samples for 146 of the 196 chicks included in the study. The magnitude and direction of the shift varied across individuals but plasma samples had δ^{15} N values that were on average $1.10\pm0.70\%$ greater (range: -3.30% to 4.48%) and δ^{13} C values that were on average $1.04\pm1.11\%$ greater (range: -0.92‰ to 3.41‰) than blood cell samples. The best-supported model for shifts in δ^{15} N included shifts in δ^{13} C, a multiplicative interaction with species, and an additive interaction with island ($r^2 = 0.27$, p < 0.0001).

1161

1162 Figure 7: Shifts in the isotope signtures of paired plasma samples for Arctic tern chicks (ARTE; n = 14) and common tern chicks (COTE; n = 5), where each line represents one chick. The first sampling period 1163 occurred in early July when chicks were between 12 and 18 days old and the second sampling period 1164 1165 occurred in mid-July, approximately 10 days later. Chicks greater than 15 days with a final status of 1166 "alive" were considered fledged if they were not seen on subsequent nest checks. Several of the chicks 1167 sampled in this study were not part of our regular productivity plots, and we did not record their final 1168 status, which is instead marked as "unknown". Slopes, calculated as the change in isotope value divided by the number of days between samples, varied across individuals. The mean δ^{13} C slope of Arctic tern 1169 1170 chicks was -0.11 \pm 0.12 ‰ day⁻¹ and of common tern chicks was -0.05 \pm 0.11 ‰ day⁻¹. For δ^{15} N, the mean slope of Arctic tern chicks was 0.12 ± 0.07 % day⁻¹ and of common tern chicks was 0.06 ± 0.10 % day⁻¹. 1171 1172

Figure 8: Shifts in the isotope values (A) and in the stable isotope ellipses (B) of paired plasma samples for Arctic tern (ARTE; n = 14) and common tern (COTE; n = 5) chicks on Petit Manan Island in 2021 and relationship between fledging mass and these shifts for δ^{13} C (C) and δ^{15} N (D). The first sampling period (Sample 1) occurred in early July when chicks were between 12 and 18 days old and the second sampling period (Sample 2) occurred in mid-July, approximately 10 days later. Slopes for δ^{15} N and δ^{13} C were strongly correlated across individuals (b = -0.57[-0.78, -0.36]) and the slope of this relationship did not vary by species (A). Trophic diversity, as measured using the size of the stable isotope ellipse, was lower

- 1180for samples taken during the second sampling occasion than for those taken during the first sampling1181occasion (B). Asymptotic mass was positively correlated with C) δ^{13} C slope and negatively correlated1182with D) δ^{15} N slope in Arctic terns (range: 62.2 to 92.0 g), but not in common terns (range: 102.17 to1183117.5 g).1184

Figure 1

1189 Appendix 1: Table Supplements

1190

			Sampling	SST _{mean}	Start Date	SST _{mean}	Start Date
Island	Species	Year	Date	Plasma	Plasma	Blood Cells	Blood Cells
Matinicus	ARTE	2017	7/7/2017	13.98 ± 0.62	7/5/2017	13.28 ± 0.88	6/23/2017
Matinicus	ARTE	2018	7/5/2018	15.70 ± 0.53	7/3/2018	13.38 ± 1.53	6/21/2018
Matinicus	COTE	2017	7/7/2017	13.98 ± 0.62	7/5/2017	13.28 ± 0.88	6/23/2017
Metinic	ARTE	2017	7/17/2017	16.37 ± 0.78	7/15/2017	15.06 ± 0.92	7/3/2017
Metinic	ARTE	2018	7/2/2018	14.51 ± 0.96	6/30/2018	12.90 ± 0.99	6/18/2018
Metinic	COTE	2017	7/17/2017	16.37 ± 0.78	7/15/2017	15.06 ± 0.92	7/3/2017
Metinic	COTE	2018	7/2/2018	15.07 ± 0.65	6/30/2018	12.90 ± 0.99	6/18/2018
Petit Manan	ARTE	2017	7/5/2017	11.46 ± 0.50	7/3/2017	10.44 ± 0.61	6/21/2017
Petit Manan	ARTE	2018	7/16/2018	12.88 ± 0.33	7/14/2018	12.44 ± 0.55	7/2/2018
Petit Manan	ARTE	2021	7/5/2021	12.07 ± 0.46	7/3/2021	12.41 ± 0.59	6/21/2021
Petit Manan	COTE	2017	7/5/2017	11.46 ± 0.50	7/3/2017	10.44 ± 0.61	6/21/2017
Petit Manan	COTE	2018	7/16/2018	12.88 ± 0.33	7/14/2018	12.44 ± 0.55	7/2/2018
Petit Manan	COTE	2021	7/6/2021	12.28 ± 0.42	7/4/2021	12.46 ± 0.56	6/23/2021
Seal	ARTE	2017	7/20/2017	15.74 ± 0.61	7/18/2017	14.65 ± 1.01	7/6/2017
Seal	ARTE	2018	7/13/2018	14.35 ± 0.44	7/11/2018	14.09 ± 0.85	6/29/2018
Seal	COTE	2017	7/20/2017	15.74 ± 0.61	7/18/2017	14.65 ± 1.01	7/6/2017
Seal	COTE	2018	7/13/2018	14.35 ± 0.44	7/11/2018	14.09 ± 0.85	6/29/2018
Ship	COTE	2021	7/28/2021	14.62 ± 0.30	7/26/2021	14.99 ± 0.49	7/14/2021

- **Table S1:** Mean sea surface temperature (SST_{mean}) during the period represented by stable isotope data
- (blood cells or plasma) for each sampling occasion across five islands in the Gulf of Maine.

1193

- **Table S2:** Average provisioning metrics, including Shannon-Weiner Diversity Index (H'), prey size
- 1196 (culmen length; PS_{mean}), feeding rate (prey-hr⁻¹ · nest⁻¹; FR_{mean}), and percent herring and hake (%; HR_{mean}),
- 1197 of prey fed to tern chicks in the two weeks prior to isotope sampling. Total time (minutes) is the time
- spent in provisioning watches over this two-week period.

Island	Year	Species	Н'	PS _{mean}	FR _{mean}	HR _{mean}	Total Time
Matinicus	2017	ARTE	1.22	1.09	3.57	40.00	2880
Matinicus	2017	COTE	0.90	1.22	2.94	32.12	2880
Matinicus	2018	ARTE	0.90	0.56	2.95	20.89	2700
Metinic	2017	ARTE	0.88	1.54	1.07	82.76	1440
Metinic	2017	COTE	1.53	1.89	1.46	61.25	1440
Metinic	2018	ARTE	1.99	0.71	2.08	40.15	1491
Metinic	2018	COTE	1.91	1.21	1.79	36.36	1271
Petit Manan	2017	ARTE	1.39	1.21	1.25	75.31	878
Petit Manan	2017	COTE	1.32	1.57	1.66	79.67	3320
Petit Manan	2018	ARTE	1.18	1.12	1.11	84.11	1632
Petit Manan	2018	COTE	1.23	1.53	1.33	77.72	2095
Petit Manan	2021	ARTE	1.74	1.15	1.76	67.26	2801
Petit Manan	2021	COTE	1.62	1.21	0.95	71.78	3000
Seal	2017	ARTE	1.68	1.18	1.36	58.03	2521
Seal	2017	COTE	1.51	1.48	1.21	67.67	2520
Seal	2018	ARTE	1.95	1.23	1.50	35.75	2584
Seal	2018	COTE	2.08	1.23	1.19	37.59	2730
Ship	2021	COTE	0.80	1.32	1.06	71.83	2010

Island	Year	Species	Isotope	n	δ ¹³ C _{mean}	$\delta^{15}N_{mean}$	$\delta^{13}C_{sd}$	$\delta^{15}N_{sd}$	ТА	SEA	SEA _C
Matinicus	2017	ARTE	Blood	9	-20.17	12.21	0.25	0.23	0.36	0.18	0.20
Matinicus	2017	ARTE	Plasma	10	-19.67	12.90	0.33	0.27	0.53	0.26	0.30
Matinicus	2017	COTE	Blood	9	-20.27	12.10	0.22	0.16	0.19	0.11	0.13
Matinicus	2017	COTE	Plasma	10	-19.87	13.10	0.18	0.25	0.26	0.14	0.16
Matinicus	2018	ARTE	Blood	7	-20.29	12.01	0.16	0.43	0.25	0.19	0.23
Matinicus	2018	ARTE	Plasma	7	-20.82	13.85	1.09	0.44	2.30	1.41	1.69
Metinic	2017	ARTE	Blood	9	-20.04	12.48	0.52	0.23	0.67	0.38	0.43
Metinic	2017	COTE	Blood	8	-19.19	12.58	0.38	0.25	0.39	0.22	0.26
Metinic	2017	COTE	Plasma	1	-20.47	13.44	NA	NA	NA	NA	NA
Metinic	2018	ARTE	Blood	5	-19.79	12.11	0.12	0.39	0.15	0.15	0.20
Metinic	2018	ARTE	Plasma	7	-19.00	13.44	0.24	0.32	0.33	0.24	0.29
Metinic	2018	COTE	Blood	5	-20.11	12.24	0.70	0.33	0.85	0.71	0.95
Metinic	2018	COTE	Plasma	7	-18.85	13.45	1.11	0.54	2.00	1.51	1.81
Petit Manan	2017	ARTE	Blood	8	-19.57	12.04	0.16	0.16	0.13	0.07	0.09
Petit Manan	2017	ARTE	Plasma	10	-18.55	12.80	0.19	0.35	0.23	0.10	0.12
Petit Manan	2017	COTE	Blood	9	-19.20	12.23	0.35	0.35	0.55	0.34	0.38
Petit Manan	2017	COTE	Plasma	10	-18.31	13.14	0.37	0.44	0.98	0.43	0.48
Petit Manan	2018	ARTE	Blood	7	-20.19	12.84	0.64	0.20	0.47	0.30	0.37
Petit Manan	2018	ARTE	Plasma	9	-18.13	13.70	0.25	0.45	0.49	0.28	0.32
Petit Manan	2018	COTE	Blood	9	-18.76	12.51	0.43	0.42	0.99	0.54	0.61
Petit Manan	2018	COTE	Plasma	9	-18.00	14.40	0.53	0.46	1.21	0.69	0.79
Petit Manan	2021	ARTE	Blood	25	-19.11	12.24	0.63	0.35	2.25	0.66	0.69
Petit Manan	2021	ARTE	Plasma	25	-17.38	12.74	1.35	0.72	9.17	2.50	2.61
Petit Manan	2021	COTE	Blood	25	-19.05	12.94	0.32	0.37	1.24	0.37	0.38
Petit Manan	2021	COTE	Plasma	25	-17.60	14.22	0.90	0.66	6.81	1.82	1.90
Seal	2017	ARTE	Blood	9	-18.97	12.45	0.29	0.17	0.21	0.11	0.12
Seal	2017	COTE	Blood	10	-18.54	12.63	0.12	0.12	0.09	0.05	0.05
Seal	2018	ARTE	Blood	9	-20.85	11.39	0.68	0.41	1.58	0.87	1.00
Seal	2018	ARTE	Plasma	8	-19.63	13.55	0.31	0.74	1.16	0.68	0.79
Seal	2018	COTE	Blood	6	-19.61	12.12	0.85	0.42	1.14	0.87	1.08
Seal	2018	COTE	Plasma	6	-18.56	13.93	0.52	0.26	0.14	0.10	0.13
Ship	2021	COTE	Blood	29	-18.89	14.07	0.66	0.20	2.06	0.41	0.43
Ship	2021	COTE	Plasma	29	-18.18	15.10	0.57	0.21	1.41	0.35	0.36

Table S3: Sample sizes (n), average isotope values ($\delta^{13}C_{mean}$ and $\delta^{13}C_{mean}$), and the total area	ı (TA),
---	---------

1201 standard ellipse area (SEA), and corrected standard ellipse area (SEA_C) for each isotope group.

- **Table S4:** The percent overlap in the stable isotope Bayesian ellipse (SEA_B) of plasma and blood cell
- 1204 samples from each sampling occasion and the probability that plasma samples had a larger SEA_B than

1205 blood cell samples for that sampling occasion.

Island	Year	Species	% SEA _B Overlap	Probability of Larger SEA _B
Matinicus	2017	ARTE	33.70	0.76
Matinicus	2017	COTE	14.67	0.70
Matinicus	2018	ARTE	4.09	1.00
Metinic	2018	COTE	4.86	0.94
Petit Manan	2017	ARTE	29.19	0.76
Petit Manan	2017	COTE	5.54	0.71
Petit Manan	2018	ARTE	38.50	0.43
Petit Manan	2018	COTE	26.96	0.58
Petit Manan	2021	ARTE	37.20	1.00
Petit Manan	2021	COTE	25.04	1.00
Seal	2018	ARTE	35.18	0.91
Ship	2021	COTE	25.19	0.27

- **Table S5:** Output of Pitman-Morgan Test comparing variance between blood cell and plasma samples for
- each sampling occasion.

			F Value	p-value	F Value	p-value
Island	Species	Year	Variance δ ¹⁵ N	Variance δ ¹⁵ N	Variance δ ¹³ C	Variance δ ¹³ C
Matinicus	ARTE	2017	1.13	0.43	1.79	0.21
Matinicus	COTE	2017	2.22	0.14	0.73	0.67
Matinicus	ARTE	2018	1.06	0.47	44.52	< 0.01
Metinic	COTE	2018	2.87	0.17	3.42	0.13
Petit Manan	ARTE	2017	2.51	0.14	1.13	0.44
Petit Manan	COTE	2017	1.72	0.23	1.25	0.38
Petit Manan	ARTE	2018	4.16	0.05	0.15	0.98
Petit Manan	COTE	2018	1.20	0.41	1.13	0.44
Petit Manan	ARTE	2021	4.28	< 0.01	4.60	< 0.01
Petit Manan	COTE	2021	3.18	< 0.01	8.18	< 0.01
Seal	ARTE	2018	29.52	< 0.01	0.16	0.98
Ship	COTE	2021	1.06	0.44	0.74	0.78

Table S6: Outputs of Wilcoxon signed-rank tests comparing isotope signatures of common terns and

Year	Island	Isotope	n ARTE	n COTE	W (δ ¹³ C)	p (δ ¹³ C)	W (δ ¹⁵ N)	p (δ ¹⁵ N)
2017	Matinicus	Blood	9	9	44	0.80	50	0.44
2017	Matinicus	Plasma	10	10	69	0.17	31	0.17
2017	Metinic	Blood	9	8	3	< 0.01	27	0.39
2018	Metinic	Blood	5	5	11	0.84	10	0.69
2018	Metinic	Plasma	7	7	9	0.05	24	1.00
2017	PMI	Blood	8	9	14	0.04	24	0.28
2017	PMI	Plasma	10	10	29	0.12	23	0.04
2018	PMI	Blood	7	9	0	< 0.01	50	0.05
2018	PMI	Plasma	9	9	33	0.55	10	0.01
2021	PMI	Blood	25	25	229	0.11	48	< 0.01
2021	PMI	Plasma	25	25	329	0.76	36	< 0.01
2017	Seal	Blood	9	10	5	< 0.01	17	0.02
2018	Seal	Blood	9	6	6	0.01	2	< 0.01
2018	Seal	Plasma	8	6	2	< 0.01	9	0.06

1213 Arctic terns across five islands in the Gulf of Maine.

Isotope	Island	Year	% SEA _B Overlap	Probability of Larger SEA _B
Blood	Matinicus	2017	17.99	0.848
Plasma	Matinicus	2017	14.01	0.912
Blood	Metinic	2017	17.37	0.824
Blood	Metinic	2018	0.00	0.011
Plasma	Metinic	2018	52.93	0.001
Blood	PMI	2017	0.00	0.001
Plasma	PMI	2017	0.00	0.005
Blood	PMI	2018	0.00	0.181
Plasma	PMI	2018	5.56	0.036
Blood	PMI	2021	45.84	0.981
Plasma	PMI	2021	29.90	0.876
Blood	Seal	2017	26.94	0.978
Blood	Seal	2018	5.02	0.428
Plasma	Seal	2018	17.79	0.955

1217 tern samples and the probability that Arctic terns had a larger SEA_B than did common terns.