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Abstract 16 

Freshwater ecosystems provide essential services for human well-being but are impacted 17 

by multiple anthropogenic stressors. Biomonitoring with bioindicators such as river 18 

macroinvertebrates is fundamental for assessing the status of freshwater systems. In Japan, 19 

water quality and biomonitoring surveys are conducted separately, leading to a lack of 20 

nationwide information on the biological status of water quality monitoring (WQM) sites. 21 

In this study, we examined the co-occurrence of 983 biomonitoring sites with WQM sites 22 

to obtain a set of 237 “aligned” sites. Then, we developed a multiple linear regression 23 

model to estimate the average score per taxon (ASPT) from river macroinvertebrate data 24 

surveyed at these sites. The best model (i.e., with the smallest corrected Akaike 25 
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information criterion) included eight predictors: elevation, catchment area, biological 26 

oxygen demand, suspended solids, minimum pH, the proportions of paddy fields and 27 

urban areas in the catchment, and the proportion of urban areas within a 3-km radius. The 28 

best multiple linear regression model could predict ASPT with reasonable accuracy, i.e., 29 

with an error of ±1 for 96% of the aligned data (R2 = 0.69; root mean squared error = 30 

0.47) and 84% of the external validation dataset (R2 = 0.55; root mean squared error = 31 

0.75). Using the best multiple linear regression model, we estimated ASPT values at 2925 32 

WQM sites in rivers nationwide. Although caution should be exercised because of 33 

uncertainties in the estimation, the WQM sites were categorized into four levels of river 34 

environment quality by estimated ASPT values: “very good” (29% of WQM sites), “good” 35 

(50%), “fairly good” (14%), and “not good” (8%). Furthermore, we observed statistically 36 

significant correlations (p < 0.05; 0.4 ≤ r ≤ 0.7) between ASPT and all eight 37 

macroinvertebrate metrics examined, such as mayfly (Ephemeroptera) and stonefly 38 

(Plecoptera) richness, providing valuable information on the ecological implications of 39 

changes in ASPT. Our study provides a valuable statistical model for estimating ASPT 40 

and contributes to further understanding of the biological status of rivers across Japan. 41 

 42 

Keywords 43 
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 45 

 46 

Introduction 47 

Freshwater ecosystems are essential for human well-being and provide vital material, 48 

non-material, and regulating services such as food, recreation, and water purification 49 
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(Lynch et al. 2023). However, these ecosystems are facing various anthropogenic 50 

stressors such as climate change, land-use change, and water pollution (Birk et al. 2020, 51 

IPBES 2019, Persson et al. 2022, Reid et al. 2019, Waite et al. 2021). In this context, 52 

biomonitoring with bioindicators such as algae, macroinvertebrates, and fish has a 53 

fundamental role in capturing the biological status of streams, rivers, and other 54 

freshwater systems (Aroviita et al. 2010, Barbour et al. 1999, Birk et al. 2012, Buss et 55 

al. 2014, Namba et al. 2020, Niemi &McDonald 2004, Wright 2000). Biomonitoring 56 

results can be used to assess and identify any adverse ecosystem impacts, contributing 57 

to conservation and sustainable management. This is particularly important for rivers 58 

because they are more often affected by multiple stressors than lakes (Birk et al. 2020). 59 

Consequently, bespoke management solutions are generally required to address the 60 

specific challenges faced by river ecosystems (Birk et al. 2020, Iwasaki et al. 2018). 61 

 Water pollution is a critical stressor affecting aquatic ecosystems, and streams 62 

and rivers are particularly susceptible to high pollution levels because of their limited 63 

capacity for dilution (Büttner et al. 2022, Johnson et al. 2020). In Japan, water quality 64 

monitoring has been conducted at approximately 6000 river sites nationwide to assess 65 

water quality variables including suspended solids (SS) and biochemical oxygen 66 

demand (BOD) (Iwasaki et al. 2022). In addition, the Ministry of Land, Infrastructure, 67 

Transport and Tourism (MLIT) has initiated a nationwide biomonitoring program called 68 

the National Census on the River Environment (NCRE) to assess the biological and 69 

ecological status of rivers. The biomonitoring program involves the sampling of various 70 

taxa, including fish, benthic invertebrates, plants, birds, terrestrial insects, amphibians, 71 

reptiles, and mammals, from over 240 rivers across Japan at 5- or 10-year intervals 72 

(Feio et al. 2021). However, because water-quality and biomonitoring surveys are not 73 

https://doi.org/10.1007/s11356-024-33053-y


This preprint has not undergone peer review or any post-submission improvements or corrections. The Version of 

Record of this article is published in Environmental Science and Pollution Research, and is available online at 

https://doi.org/10.1007/s11356-024-33053-y.  

 

4 

 

necessarily conducted at the same locations, the biological status of water quality 74 

monitoring sites (hereafter, WQM sites) is largely unknown across Japan. This kind of 75 

large-scale comprehensive data on biological status is crucial for informing effective 76 

bespoke management strategies aimed at mitigating water pollution and safeguarding 77 

aquatic ecosystems (Abell et al. 2008). 78 

 Numerous biological metrics have been developed for biomonitoring and 79 

bioassessment (Birk et al. 2012, Eriksen et al. 2021). For Japanese rivers, the average 80 

score per taxon (ASPT) based on the occurrence of 71 macroinvertebrate taxa (mainly, 81 

families) is the only biological metric developed at the national level for assessing river 82 

health (MoE 2017, Nozaki 2012). The ASPT is calculated as follows:  83 

ASPT =  
∑ Score𝑖

Total number of scoring taxa present
,    Equation (1) 84 

where Scorei is the score assigned to macroinvertebrate taxon i, which is expected to 85 

represent the value inversely proportional to the taxon’s perceived tolerance to water  86 

pollution (Yamasaki et al. 1996). ASPT was originally designed as a biological indicator 87 

of water quality (specifically, organic pollution) but is also correlated with the impacts 88 

of other anthropogenic pressures such as land-use change (Eriksen et al. 2021, Yamasaki 89 

et al. 1996). However, the relationships between ASPT and commonly used 90 

macroinvertebrate metrics, such as EPT richness (the total number of taxa in 91 

Ephemeroptera, Plecoptera, and Trichoptera), remain unexplored in Japanese rivers 92 

nationwide. Investigating these relationships could yield valuable insights into the 93 

implications of changes in ASPT and their ecological significance. 94 

 Thus, we first aimed to predict ASPT at 2925 WQM sites, which serve as 95 

environmental reference points that are officially used to assess the 96 

compliance/exceedance of environmental water quality standards in Japan. To achieve 97 
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this, we examined the co-occurrence of NCRE biomonitoring sites with WQM sites to 98 

obtain a total of 237 “aligned” sites (i.e., those at which both macroinvertebrate and 99 

water quality monitoring data were available; Fig. 1; see Fig. 2 for our data analysis 100 

flowchart). We then developed a multiple regression model with physicochemical 101 

variables representing water quality, land use, and other factors to predict ASPT. The 102 

application of this model to all 2925 WQM sites would offer a more comprehensive 103 

understanding of biological status at streams and rivers across Japan. Furthermore, we 104 

investigated the relationships between variations in ASPT and variations in 105 

macroinvertebrate metrics such as EPT richness and mayfly richness at the aligned 106 

study sites. 107 

 108 

Fig. 1. Map of the 237 aligned study sites (filled circles). 109 
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 110 

Fig. 2. Schematic diagram of the methodology used. 111 

NCRE, National Census on the River Environment; ASPT, average score per taxon. 112 

 113 

Materials and Methods 114 

Alignment of study sites  115 

We first extracted “aligned” study sites at which both macroinvertebrate and water 116 

quality monitoring data were available. The geographic coordinates (latitude and 117 

longitude) for a total of 983 river sites where quantitative macroinvertebrate sampling 118 

was conducted between April 2011 and March 2016 (fiscal years 2011–2015) were 119 

compiled by obtaining the original information, including results of macroinvertebrate 120 

monitoring from MLIT. Similarly, the geographic coordinates of a total of 5855 WQM 121 

sites where sampling was performed during fiscal years 2011–2015 were obtained from 122 

the Comprehensive Information Website for Water Environment (https://water-123 

pub.env.go.jp/water-pub/mizu-site/, accessed November 21, 2023).  124 

Macroinvertebrate data Water quality data

NCRE surveys (FY2011–2015) Nationwide monitoring (FY2011–2015)

Alignment of study sites n = 237

Model development

Calculating

the ASPT index

Model validation

Using available and original 

macroinvertebrate survey data

Implications of ASPT index

Multiple regression model 

for the ASPT index
Correlation analysis between the 

ASPT index and macroinvertebrate 

richness and abundance metrics
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 We then identified suitable pairs of biomonitoring and WQM sites to be 125 

matched for later analysis. Initially, we linked each biomonitoring site to the closest 126 

WQM site within a Euclidean distance of 2 km. We then examined the suitability of 127 

each linked site pair by using Google Earth Pro version 7.3 128 

(https://www.google.com/earth/about/, accessed November 21, 2023). If the two sites 129 

were not identical, their suitability was assessed by considering whether the two sites 130 

were located within the same river, the absence of inflow of major tributaries and 131 

changes in land use between the sites, and the availability of other more suitable WQM 132 

sites. While we carefully matched the biomonitoring and WQM sites, it is impossible to 133 

guarantee the absence of any significant changes in physicochemical characteristics, 134 

such as pollution from an unknown point source, between the two sites. However, the 135 

inclusion of these few cases should not have been materially affected our findings. 136 

During this assessment process, we identified multiple sites with inaccurate geographic 137 

coordinates and made necessary corrections based on the available information such as 138 

river and site names. From this process, 409 pairs of biomonitoring and WQM sites 139 

were selected. 140 

 The 409 pairs of biomonitoring and WQM sites were further winnowed based 141 

on the following criteria: (1) quantitative sampling of macroinvertebrates was conducted 142 

using a Surber sampler with a 25 × 25 cm quadrat at each biomonitoring site during 143 

cold seasons (October to March), (2) macroinvertebrates were collected from 144 

cobble/gravel-dominated lotic environments (i.e., runs or riffles), (3) no 145 

macroinvertebrate species typical of estuarine environments were collected (to exclude 146 

sites influenced by salinity), and (4) all water quality variables used in the multiple 147 
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regression model (see below) were available. In total, 237 pairs of biomonitoring and 148 

WQM sites were selected for model development (Fig. 1). 149 

 150 

Macroinvertebrates and ASPT 151 

All field sampling and laboratory analysis (including sorting and identification) of river 152 

benthic macroinvertebrates were conducted by following the NCRE’s Basic Survey 153 

Manual (MLIT 2016). Each of the three macroinvertebrate samples collected from 154 

riffles or runs at individual biomonitoring sites was washed through a 0.5-mm mesh 155 

sieve, and macroinvertebrates remaining on the sieve were sorted and identified 156 

generally to species or genus level. We calculated site averages of ASPT based on the 157 

presence of individual macroinvertebrate taxa and corresponding scores (Equation 1; 158 

see Table S1 for the scores). The scores used in the present study were initially 159 

developed by Yamasaki et al. (1996) and revised by the committee launched by the 160 

Ministry of the Environment, Japan (MoE 2017). 161 

Sites are categorized into four groups of relative river environmental quality 162 

based on ASPT values (MoE 2017): “very good” (7.5 and above), “good” (6.0–7.5), 163 

“fairly good” (5.0–6.0), and “not good” (below 5.0). It should be noted that the 164 

calculation of ASPT (MoE 2017) involves 3 min of kick sampling (1 min of kick 165 

sampling at three locations per site) using a D-frame net in riffles or/and runs as well as 166 

the suggested use of a sieve with a mesh size of about 1 mm to filter macroinvertebrate 167 

samples. These methods differ from those employed in NCRE biomonitoring (MLIT 168 

(2016); see also above). However, we adopted the four categories described above 169 

despite these differences because, in general, the coarse taxonomic level (i.e., the family 170 

level) used to calculate ASPT likely mitigates any influence of methodological 171 
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differences in the diagnostic evaluation (Armitage et al. 1983, Eriksen et al. 2021, 172 

Hawkes 1998; see also the section “Model for predicting ASPT”). 173 

Furthermore, to investigate relationships between APST and macroinvertebrate 174 

metrics, we calculated total taxon richness and total abundance as well as the taxon 175 

richness and abundance of three major insect groups (Ephemeroptera, Plecoptera, and 176 

Trichoptera). Correlations were examined by calculating Pearson product-moment 177 

correlation coefficients (r). 178 

 179 

Physicochemical characteristics of sites 180 

 For the 237 aligned study sites, we complied a total of 11 physicochemical 181 

characteristics, which were used as predictors in the multiple regression model. These 182 

characteristics had been previously estimated for most of the aligned study sites by 183 

Iwasaki et al. (2022). However, 67 WQM sites corresponding to biomonitoring sites 184 

were not included in the 2925 WQM sites analyzed by Iwasaki et al. (2022). Thus, we 185 

obtained the physicochemical characteristics of these sites by using the methods 186 

described in Iwasaki et al. (2022). For the water quality variables included in the 187 

multiple regression model, we calculated 5-year averages of minimum pH, 5-day 188 

biochemical oxygen demand (BOD; mg/L), and suspended solids (SS; mg/L) at each 189 

WQM site. These averages were derived from measurements taken during fiscal years 190 

2011–2015, using the available data in the Comprehensive Information Website for 191 

Water Environment. For pH, only minimum and maximum values for each fiscal year 192 

were available in the database, so we used the minimum pH as an indicator of river 193 

acidity. The 5-year averages of the water quality variables were used as representative 194 

values reflecting the general water quality conditions at individual WQM sites during 195 
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the period that included the timing of macroinvertebrate sampling, although they may 196 

not accurately reflect the water quality at the specific time of the macroinvertebrate 197 

sampling (see the section “Model development and validation” for more discussion 198 

about temporal changes). 199 

The catchment area (km2) of each WQM site was estimated by delineating each 200 

catchment based on 30 × 30 m raster data of hydrologically adjusted elevations (Japan 201 

Flow Direction Map version 1.0; Yamazaki et al. 2018) using ArcGIS Pro (ESRI, 202 

version 2.6.0). In addition, the land uses both in the catchment areas and within a 3-km 203 

radius were estimated. Specifically, the proportions of urban areas, paddy fields, and dry 204 

fields (cropland) were derived as indicators of anthropogenic disturbance based on the 205 

High-Resolution Land Use and Land Cover Map (2014–2016; version 18.03) provided 206 

by the Japan Aerospace Exploration Agency 207 

(https://www.eorc.jaxa.jp/ALOS/en/dataset/lulc_e.htm, accessed November 21, 2023). 208 

The land uses within a 3-km radius were included as an indicator of land use patterns in 209 

the immediate vicinity of WQM sites, although downstream land uses are unlikely to 210 

directly affect water quality or the biological status at WQM sites given natural flow 211 

patterns. Additionally, the average elevation (m) within a 100-m radius was calculated 212 

for each WQM site. Because of the high correlation between the proportions of forest 213 

and urban areas (r = −0.85), we chose not to include the proportion of forest as a 214 

predictor in the multiple regression model (see below). 215 

 216 

Model development and validation 217 

To predict ASPT, we employed multiple linear regression models with a normal error 218 

distribution and a total of 11 predictors, including the three water quality variables 219 
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(minimum pH, BOD, and SS), catchment area, elevation, and six land use variables. 220 

Catchment area, elevation, BOD, and SS were log10-transformed to reduce skewness 221 

before analysis. Model selection was performed by using the Akaike information 222 

criterion corrected for small sample size (AICc; Burnham andAnderson 2004, Burnham 223 

et al. 2011), and the model with the lowest AICc was selected as the best among all 224 

possible models (i.e., 2048 models) considered. The coefficient of determination (R2) 225 

and root mean square error (RMSE) were calculated to evaluate goodness of fit for the 226 

best model selected. All data processing and statistical analyses were performed in R 227 

version 4.2.0 (R Core Team 2022), and the model selection was carried out by using the 228 

function “dredge” in the “MuMIn” library (Bartoń 2022). We also employed a random 229 

forest, which is a machine learning algorithm (Ryo &Rillig 2017), as a preliminary 230 

analysis to model ASPT. However, during external validation, the best multiple linear 231 

regression model outperformed the random forest model, likely because of the limited 232 

coverage of the model development data. 233 

 To perform external validation for the best model using an entirely new dataset, 234 

we examined macroinvertebrate survey data collected at 75 river sites that were at or 235 

near WQM sites (environmental reference points) across Japan (Table S2; Fig. S1). 236 

Most of these surveys were conducted using a D-frame net following the sampling 237 

method described in MoE (2017) (see Table S2 for more details). Similarly, we 238 

conducted our own macroinvertebrate surveys at 28 WQM sites in different regions. 239 

Specifically, we surveyed 10 WQM sites in the Tohoku area (Iwate, Miyagi, and 240 

Fukushima prefectures) in January 2021, 9 WQM sites in Aichi prefecture in January 241 

2022, and 9 WQM sites in Hokkaido (the city of Sapporo) in December 2022 (see Fig. 242 

S1 for map). These surveys were performed by following the NCRE’s Basic Survey 243 
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Manual (MLIT 2016). We then compared ASPT values predicted from the best model to 244 

those calculated from the macroinvertebrate survey data by assessing two diagnostic 245 

metrics, R2 and RMSE. The timing of the surveys used for model validation (especially 246 

those conducted for this study) did not coincide with the data period (2011–2015) used 247 

for the multiple regression model. However, we assumed that marked changes in land 248 

use and water quality variables during these periods were relatively unlikely for the 249 

majority of WQM sites as compared to past changes observed between the 1980s and 250 

2010s (see, e.g., Ye and Kameyama 2020) for temporal changes in SS and BOD). Given 251 

these variations in sampling methods and timing, validating the best model with the 252 

external datasets would be valuable to test the robustness of the best model as well as 253 

use of ASPT for the prediction. All data and R code used are available from a GitHub 254 

repository at https://github.com/yuichiwsk/predict_ASPT_Japan. 255 

 256 

Results and Discussion 257 

Model for predicting ASPT 258 

The best multiple linear regression model included 8 predictors: elevation, catchment 259 

area, BOD, SS, minimum pH, the proportions of paddy fields (%Paddy) and urban areas 260 

(%Urban) in the catchment, and the proportion of urban areas within a 3-km radius 261 

(%Urban-3km) (Table 1). All predictors except catchment area and minimum pH were 262 

included in all of the top 10 models (see Table S3). The negative regression coefficients 263 

of BOD, %Urban, SS, %Paddy, and %Urban-3km in the best model, along with the 264 

positive coefficient of minimum pH, are all consistent with the expected adverse 265 

impacts of these factors on macroinvertebrates as reported in previous studies (Iwasaki 266 

et al. 2018, Larsen et al. 2009, Ormerod &Durance 2009, Roy et al. 2003, Schmidt et al. 267 
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2019, Waite et al. 2019), although inferring causal relationships is beyond the scope of 268 

the present study (Takeshita et al. 2022). The positive regression coefficient of elevation 269 

aligns with the general expectation that upland river sites at higher elevation would have 270 

lower water temperature (resulting in higher dissolved oxygen essential for aquatic 271 

organisms) and be less impacted by anthropogenic factors and disturbances. However, 272 

correlations between elevation and other predictor variables included in the present 273 

study were not evident (|r| ≤ 0.29). Additionally, the positive yet nonsignificant 274 

coefficient of catchment area (an indicator of the magnitude of river discharge) might be 275 

associated with dilution capacity (Büttner et al. 2022, Johnson et al. 2020) for water 276 

pollution other than BOD and SS, although other factors, such as natural longitudinal 277 

changes in benthic macroinvertebrate communities in response to environmental 278 

conditions (Vannote et al., 1980), cannot be excluded.  279 
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Table 1. Estimated intercepts and coefficients of the best multiple linear regression 280 

model 281 

Predictors Estimates (SE) 
Standardized  

Coefficients 
p value 

Intercept 5.65 (0.77) NA <0.001 

Elevation 0.21 (0.06) 0.15 <0.001 

Catchment area 0.09 (0.06) 0.07 0.110 

BOD –1.73 (0.21) –0.41 <0.001 

SS –0.36 (0.11) –0.14 0.002 

Minimum pH 0.19 (0.11) 0.07 0.073 

%Paddy –0.021 (0.006) –0.14 0.001 

%Urban –0.016 (0.003) –0.27 <0.001 

%Urban-3km –0.004 (0.002) –0.12 0.011 

SE, standard error; NA, not available; BOD, biochemical oxygen demand; SS, 282 

suspended solids; %Paddy, proportion of paddy fields in the catchment; %Urban, 283 

proportion of urban areas in the catchment; %Urban-3km, proportion of urban areas 284 

within a 3-km radius. See the text for more details about predictors. 285 

 286 

The best multiple linear regression model estimated ASPT values with an error 287 

of ±0.5 for 76% of the aligned data and an error of ±1 for 96% of the aligned data (R2 = 288 

0.69, RMSE = 0.47; Fig. 3a). There were two WQM sites where the observed ASPT 289 

value was lower than the predicted value by 1.5 or more. These two sites had 290 

catchments larger than 1500 km2 that were predominantly covered by forest (>70%), 291 

and the proportions of urban areas, paddy fields, and dry fields were limited (<10%). 292 

These land use characteristics suggest that the two sites were only weakly affected by 293 

anthropogenic disturbances. However, the specific reasons for the deviation between 294 

observed and predicted ASPT values at these sites remain uncertain. 295 
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 296 

 297 

 298 

Fig. 3. Relationships between model-predicted average score per taxon (ASPT) and 299 

ASPT values calculated from macroinvertebrate survey data during model development 300 

(a) and validation (b). Solid lines indicate 1:1 lines, and dashed lines show ±1 of the 1:1 301 

lines. Some ASPT values were calculated from macroinvertebrate surveys conducted as 302 

part of the present study (i.e., “original” surveys); these values are indicated by filled 303 

circles in panel (b). 304 

R2, coefficient of determination; RMSE, root mean square error 305 

 306 

 In the external validation, the best multiple linear regression model predicted 307 

ASPT values with an error of ±0.5 for 57% of the data and an error of ±1 for 84% of the 308 

data (R2 = 0.55, RMSE = 0.75; Fig. 3b). These performance evaluation metrics for the 309 

validation data were somewhat worse than those obtained with the model development 310 

data. Although this is to be expected, this drop-off in performance can be attributed, at 311 

least partly, to the presence of several sites where the predicted ASPT value markedly 312 
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deviated from the ASPT value calculated from macroinvertebrate survey data. For 313 

instance, there were six sites where the predicted ASPT value was >1.5 greater than that 314 

calculated from the macroinvertebrate data. Based on an examination of aerial 315 

photographs, we suspect that suitable habitats for macroinvertebrate surveys (i.e., riffles 316 

and runs) might have been absent at these sites, possibly due to factors such as 317 

straightened and channelized watercourses. Considering the deviations observed with 318 

the model development data as well, it is likely that other unmodeled factors, including 319 

the morphological alternation and episodic changes in water quality, contributed to these 320 

deviations. Importantly, despite the inconsistency in macroinvertebrate sampling 321 

methods (kick and quadrat sampling; see Table S2), no systematic deviations (i.e., 322 

under/overestimation) were observed for the validation dataset (Fig. 3b). This is 323 

consistent with our initial assumption that differences in macroinvertebrate sampling 324 

technique do not materially affect the calculation of ASPT. 325 

 326 

ASPT values at water quality monitoring sites across Japan 327 

Based on the predictor values obtained from our published database (Iwasaki et al. 328 

2022), the ASPT values for all 2925 WQM sites (i.e., environmental reference points) 329 

were estimated by using the best multiple linear regression model (Fig. 4). These ASPT 330 

values indicated that 29% of the WQM sites should be classified as “very good,” 50% 331 

as “good,” 14% as “fairly good,” and 8% as “not good.” Iwasaki et al. (2022) classified 332 

all 2925 WQM sites into four groups based on physicochemical characteristics such as 333 

those used in our modeling. As expected, the majority (84%) of the WQM sites 334 

categorized as “fairly good” and “not good” were characterized by a high prevalence of 335 

paddy and dry fields or urban land uses associated with poor water quality (Iwasaki et 336 
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al. 2022). Although our categorizations based on ASPT could provide valuable 337 

information for screening-level assessments of WQM sites, caution is required when 338 

interpreting these results given the relatively large 95% prediction intervals of ASPT 339 

values (approximately 2), as well as the reliance on some extrapolation in the estimation 340 

process (see Fig. S2 for the distributions of predictor variables in different datasets). 341 

 342 

 343 

Fig. 4. Categorization of 2925 water quality monitoring sites (environmental reference 344 

points) into four river environmental quality categories based on average score per 345 

taxon (ASPT) as estimated by using the best multiple linear regression model. 346 

 347 

 348 

Site categories

based on ASPT

● Very good (≥7.5)

● Good (6–7.5)
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● Not good (<5)
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Relationships between ASPT and macroinvertebrate metrics 349 

Statistically significant correlations were observed between ASPT and all eight 350 

macroinvertebrate metrics examined for taxon richness and abundance, although the 351 

correlation coefficients varied between 0.17 and 0.70 (Fig. 5). Richness metrics such as 352 

stonefly (Plecoptera) and mayfly (Ephemeroptera) richness had especially high 353 

correlation coefficients with ASPT (r > 0.6). Compared to mayflies and caddisflies 354 

(Trichoptera), stoneflies were rarely found even at the “good” status WQM sites with 355 

ASPT values of 6–7 (Fig. 5). Regarding responses of mayflies, the richness and 356 

abundance of Baetidae, which is relatively tolerant to water pollution (assigned score = 357 

6; Table S1), had remarkably weak correlations with ASPT (r = 0.22 and 0.17, 358 

respectively), and stronger correlations were observed between ASPT and the richness 359 

abundance of mayflies except Baetidae (r > 0.7; Fig. S2). Despite some variations in 360 

different richness and abundance metrics, these results indicate strong associations 361 

between variations in ASPT and variations in macroinvertebrate richness metrics that 362 

are commonly used for biological assessments in rivers (Carlisle &Clements 1999, 363 

Namba et al. 2020). Together with the observed considerable correlations between 364 

ASPT and other stressor-specific indices designed to detect the impacts of e.g., fine 365 

sediment, pesticides, and low flow (Jones et al. 2023), our results support the idea that 366 

ASPT should not be used as the sole indicator of water pollution. 367 

 368 

Conclusions 369 

In the present study, we developed a multiple linear regression model based on model 370 

selection with AICc to estimate ASPT at 2925 WQM sites. The best model included 371 

elevation, catchment area, three land use variables (%Paddy, %Urban, and %Urban-372 
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3km), BOD, SS, and minimum pH. The model performed well and was able to estimate 373 

ASPT values with a reasonable level of accuracy (i.e., an error of ±1 for most sites). Use 374 

of the multiple linear regression model to estimate ASPT values for all 2925 WQM sites 375 

enabled the categorization of these sites into four groups (“very good,” “good,” “fairly 376 

good,” and “not good”), providing the first nationwide categorization of WQM sites in 377 

terms of relative river environmental quality. However, these site categorizations should 378 

be interpreted with caution because of the uncertainties in the estimation process as well 379 

as observed overestimation at certain sites. In addition, there may be some river sites 380 

that have naturally poor benthic communities, resulting in lower ASPT values, thereby 381 

leading to, for example, a “not good” status. Our approach does not take account such 382 

reference/historical conditions, as is done in systems like the River InVertebrate 383 

Prediction and Classification System (RIVPACS; Wright (2000) and see Aroviita et al. 384 

2009 for the example application in Finland). To address this issue, it is fundamental to 385 

develop a RIVPACS-type predictive model that can predict the presence/absence of 386 

macroinvertebrate taxa, preferably using data from least impacted reference sites (see 387 

Torii et al. 2023 for a similar modeling attempt in Japan). 388 

The ASPT showed significant correlations with macroinvertebrate metrics 389 

frequently used for assessing the biological status of river sites. Therefore, despite the 390 

caveats mentioned above, the categorization based on ASPT provides initial but 391 

valuable information to capture the biological status of rivers across Japan and can 392 

inform effective river management strategies. Particularly in Japan, the compliance of 393 

environmental water quality standards in freshwater is assessed at environmental 394 

reference points, which correspond to the WQM sites where ASPT values were 395 

predicted in the present study. Based on this assessment, the need for countermeasures 396 
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such as the establishment or refinement of effluent standards is further examined for 397 

regulating a given chemical (Naito et al. 2010). In this process, the biological status at 398 

the environmental reference points has not been considered even if the objective of 399 

environmental water quality standards is the protection of aquatic organisms. Yet, river 400 

ecosystems are subject to multiple influences (Birk et al. 2020), and thereby the 401 

regulation of individual chemicals may result in limited conservation benefits, 402 

particularly in areas where biological communities are already severely impacted 403 

(Iwasaki et al. 2018). Information about biological status, such as that can be inferred 404 

from ASPT in the present study, should be valuable as foundational knowledge for 405 

implementing the effective managements in freshwater ecosystems. 406 

  407 
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 408 

 409 

Fig. 5. Relationships between average score per taxon (ASPT) and macroinvertebrate 410 

metrics for taxon richness (number of taxa per 625 cm2) and abundance (number of 411 

individuals per 625 cm2). 412 

Asterisks indicate p < 0.05. Macroinvertebrate metrics are averages of three 25 × 25 cm 413 

quadrat samples collected per site. Note that for the illustration on a log10-scale, we 414 

added 1 to each observed value (i.e., X + 1) to avoid any zero values. 415 
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