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8 Abstract

9 Advancements in genome assembly and sequencing technology have made whole genome sequence
10 (WGS) data and reference genomes accessible to study polyploid species. The genome-wide coverage and
11 greater marker density provided by WGS data, compared to popular reduced-representation sequencing
12 approaches, can greatly improve our understanding of polyploid species and polyploid biology. However,
13 biological features that make polyploid species interesting also pose challenges in read mapping, variant
14 identification, and genotype estimation. Accounting for characteristics, like allelic dosage uncertainty,
15 homology between subgenomes, and variance in chromosome inheritance mode, in variant calling can
16 reduce errors. Here, I discuss the challenges of variant calling in polyploid WGS data and discuss where
17 potential solutions can be integrated into a standard variant calling pipeline.
18
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25 1. Introduction

26 Recent progress in genome assembly and sequencing technology has increased accessibility to study the
27 genomics of polyploids, or organisms that have experienced whole genome duplication and have more

28 than two sets of chromosomes (Formenti et al., 2022; Gladman et al., 2023). Notably, improvements in

29 long-read sequencing and the accuracy of scaffolding technology have enabled the assembly of highly

30 heterozygous and polyploid reference genomes at a chromosome-scale (Kyriakidou et al., 2018; Hotaling
31 et al., 2023). In parallel, the cost of short-read sequencing has continued to decline causing whole genome
32 resequencing of polyploid populations to become increasingly feasible (Fuentes-Pardo and Ruzzante,

33 2017). As polyploidy is a critical character of cancer cells, common in fish, amphibians, and insects, and
34 ubiquitous in the plant kingdom, including many economically important crops, the extension of modern
35 genomics technologies to polyploid systems is important for our broader understanding of medicine, and
36 biodiversity, agriculture (Udall and Wendel, 2006; Wood et al., 2009; Zack et al., 2013; One Thousand

37 Plant Transcriptomes Initiative, 2019; Roman-Palacios et al., 2021; David, 2022). These advances have
38 already begun to improve our understanding of the origins of polyploid species (Bertioli et al., 2019;

39 Edger et al., 2019; Goeckeritz et al., 2023), genome reorganization and stabilization after polyploidization
40 (Chen et al., 2020; Bohutinska et al., 2021; Wang et al., 2022; Session and Rokhsar, 2023), and the role of
41 polyploidy in adaptation of wild and domesticated species (Hollister et al., 2012; Chen et al., 2021; Lovell
42 et al., 2021; Ebadi et al., 2023; Hamala et al., 2023). Nevertheless, these studies have only scratched the
43 surface of polyploid biology.

44

45 Population and quantitative genetics particularly benefit from the availability of reference genomes and
46 whole genome sequence (WGS) data. These fields use variable loci, loci with two or more alleles

47 segregating in a population, to study the genetic composition of populations and complex traits over space
48 and time in response to selection, genetic drift, mutation, and migration. WGS data in combination with a
49 reference genome offers genome-wide coverage and the ability to identify variable loci, also referred to as

50 variants, at a higher density than reduced representation sequencing (RRS) approaches. RRS approaches,
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51 such as genotype-by-sequencing (GBS) and restriction site-associated DNA sequencing (RADseq), are
52 currently used in the majority of polyploid population and quantitative genetics studies due to their

53 comparatively low cost and the growing number of user-friendly software packages for analysis (Poland
54 and Rife, 2012). RRS approaches are useful for sampling a portion of the genome to, for example,

55 characterize population structure or complete quantitative trait locus (QTL) analysis. However, RRS does
56 not have high enough marker density for genome-wide analyses central to studying patterns of selection,
57 identifying the genetic basis of adaptive traits, and genomic prediction (Tiffin and Ross-Ibarra, 2014;

58 Lowry et al., 2017; but see de Bem Oliveira et al., 2020). Additionally, WGS data improves the detection
59 of structural variants (SVs) and transposable elements (TEs), although both are still challenging even in
60 diploid systems (Ewing, 2015; Baduel et al., 2019; Mahmoud et al., 2019; Cooke et al., 2022;

61 Ramakrishnan et al., 2022). Detection and inclusion of SVs and TEs are important because they affect

62 gene expression and function and are signatures of the stabilization and reorganization of the genome

63 post-polyploidization (Lisch, 2013; Kosugi et al., 2019).

64

65 The improvement in variant detection offered by WGS data is useful only when variants can be

66 confidently called and genotypes accurately estimated. Typical sources of error in diploid variant calling
67 include sequencing errors, misalignment of reads to the reference genome, misassembly of the reference
68 genome, and natural structural variation (Li, 2014; Mahmoud et al., 2019; Lou and Therkildsen, 2022).
69 Polyploidy exacerbates these sources of error and introduces additional challenges due to the associated
70 characteristics like large haploid genome sizes, homology between subgenomes, genome fractionation,
71 and elevated polymorphism (Bennett and Leitch, 2011; Page and Udall, 2015; Blischak et al., 2018). As a
72 result, there may be higher variant calling errors in polyploids. Errors in the variant calling pipeline will
73 subsequently be carried into all downstream analyses leading to misestimation of metrics like allele

74 frequencies, heterozygosity, and linkage.

75
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76 Universal solutions to reduce errors in variant calling are challenging to identify as polyploids are not a

77 uniform group. Polyploids are generally categorized as allopolyploids, which form through hybridization

78 of two or more species, or autopolyploids, which derive from genome doubling of a single species.

79 Further, they can be described by their chromosome inheritance patterns. Allopolyploids have disomic

80 inheritance, like diploids where chiasma for between only homologous chromosomes, and autopolyploids

81 have polysomic chromosome inheritance, where there is no preferential pairing among chromosomes and

82 chiasmata may form between more than two homologous chromosomes (Stift et al., 2008). However, the

83 rate of preferential pairing and chromosome inheritance mode may vary across the genome in allo- and

84 autopolyploids depending on the relatedness amongst subgenomes and the time since polyploidization

85 (Stebbins, 1947; Mason and Wendel, 2020). This distinction between inheritance modes is important

86 because even low rates of recombination between subgenomes can bias allele frequencies to be more

87 homozygous than expected (Meirmans and Van Tienderen, 2013). Polyploids may additionally vary in

88 haploid genome size, mating system, repeat content, and degree of diploidization, all of which may

89 impact variant calling and genotype estimation.

920

91 In this review, I identify significant challenges of variant calling in polyploid WGS data and, where

92 available, propose potential solutions that can be integrated into standard variant calling pipelines (Figure

93 1; Appendix S1, see Supporting Information with this article; reviewed in Van der Auwera et al., 2013;

94 De Summa et al., 2017; Fuentes-Pardo and Ruzzante, 2017; Therkildsen and Palumbi, 2017; O’Leary et

95 al., 2018; Lou et al., 2021). The scope of this discussion is limited to WGS data aligned to the study

96 species’ reference genome, although aspects of this discussion may apply to RRS and reference-free

97 approaches. Additionally, I focus on the identification of single nucleotide variants (SNVs) as well as

98 small SVs (< 50 bp) that can be identified by some polyploid variant calling software (Cooke et al.,

99 2022). As the genomics of polyploids is a rapidly growing area of research, established best practices are
100 limited. By highlighting barriers in variant calling, I aim to raise readers’ awareness of potential sources

101 of error and motivate the innovation of new and effective solutions.
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102

103 2. Challenges to variant calling in polyploid systems

104 2.1 Resource requirements scale with genome size

105 The foremost barrier to polyploid genomics remains the cost of sequencing and high-performance

106 computing (HPC) resources for analysis. Sequencing cost increases with both haploid genome size and
107 ploidy level while computational costs primarily scale with haploid genome size. Sequencing large

108 genomes is expensive as more sequencing runs are required to reach a target coverage, or the

109 genome-wide average number of reads sequenced for a given site. For example, Chen et al. (2024) have
110 found sequencing the allohexaploid bread wheat genome to 5X coverage currently costs 473 times that of
111 diploid rice and 21 times that of maize, a diploidized paleotetraploid (Gaut and Doebley, 1997). This

112 disparity in sequencing cost at low coverage is increased by many existing polyploid genotyping

113 algorithms requiring high coverage to overcome allelic dosage uncertainty, which is the ambiguity in the
114 number of alternate allele copies in polyploid genotypes (Gerard et al., 2018; Clark et al., 2019; Cooke et
115 al., 2022). The minimum coverage requirement to obtain high-confidence genotypes may range from 10
116 to over 50X depending on the ploidy level and genotyping software, whereas diploids need only 8X

117 coverage (Cooke et al., 2022; Jighly, 2022). After sequencing has been accomplished, access to HPC is
118 needed for data storage and analysis because the size of sequence alignment files (BAMs) and variant call
119 files (VCFs) produced in the variant calling pipeline scale with genome size and sample size (Muir et al.,
120 2016; WeiB et al., 2018). Failing to sequence to sufficient coverage or limiting sample size to meet budget
121 constraints may result in insufficient sampling of alleles and rare variants, the misestimation of allele

122 frequencies, and low power in analyses like admixture analysis and genome wide association (Jighly,

123 2022).

124

125 2.2 Genome-wide redundancy and elevated polymorphism increase errors in read mapping

126 Aligning reads to polyploid genomes is challenging because polyploids have an elevated level of

127 polymorphism and multiple occurrences of related sequences (Otto and Whitton, 2000; Page and Udall,
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128 2015). Both of these biological features violate assumptions of read mapping algorithms that assume

129 divergence among loci is larger than divergence among alleles at a single locus (Musich et al., 2021);
130 polymorphism creates an excess of divergence while repeated sequences are too similar. Violation of this
131 assumption results in the incorrect and failed mapping of reads. I will briefly describe how these two

132 biological features may create genotyping errors.

133

134 As the density of SNVs and SVs in a locus increases, sequence similarity among alleles declines and

135 reads containing alternate alleles are less likely to align (Nielsen et al., 2011; Brandt et al., 2015). This is
136 an issue in polyploids as they are expected to have higher diversity than their diploid progenitors due to
137 functional redundancy between subgenomes enabling the accumulation of mutations. Additionally, the
138 post-polyploidization process of fractionation, which is gene loss leading to stabilization of the polyploid
139 genome or diploidization, increases structural variation (Haldane, 1933; Otto and Whitton, 2000; Ma and
140 Gustafson, 2005; Emery et al., 2018; Beric et al., 2021). As an example in the 1000 Genomes Project
141 (Homo sapiens), 18.6% of SNV calls in highly polymorphic HLA genes were incorrect due to failed

142 mapping of the alternate allele creating bias towards the reference allele, known as allele bias (Brandt et
143 al., 2015). Alternate reads may also fail to align to inversions due to disagreement at the inversion

144 boundaries, and reads mapping to presence-absence variants (PAVs) will fail to align if the reference

145 contains the ‘absence’ variant (Sun et al., 2018; Gui et al., 2022). As a result, the reference genotype

146 selected for read mapping and time since whole genome duplication will determine the extent of allele
147 bias and the variants detected. Allele bias will be highest in autopolyploids, where reads are aligned to
148 only one copy of the duplicated genome (see Section 2.4). Allele bias is likely an issue genome-wide,
149 although the effect of increased polymorphism on read mapping has yet to be quantified in a polyploid
150 system.

151

152 Analogously, genomic features like loci of common ancestry, repetitive elements, and copy number

153 variants (CNVs) promote mismapping because there are multiple occurrences of similar sequences across
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154 the genome. In autopolyploids, whole genome duplication produces duplicate loci between subgenomes
155 that are indistinguishable immediately after duplication. Whereas in allopolyploids, loci of common

156 ancestry are brought back together by hybridization. Both diploids and polyploids contain repeat dense
157 regions and CNVs caused by small-scale duplications and retrotransposons (Brandt et al., 2015). As a
158 result, reads may have equal similarities to multiple positions in the reference genome causing reads to
159 equally map to multiple loci (i.e. multiply mapping reads) or improperly align to a closely related locus
160 (Li et al., 2008). The extent of error in read mapping due to these redundant genomic features is

161 dependent on the divergence among the loci of common ancestry, known as homologous loci, the age of
162 the polyploidization event, the divergence between parental genomes, mutation rate, and strength of

163 selection on a given locus. Given these factors, read mapping will be most challenging where loci of
164 common ancestry have not accumulated mutations, such as immediately after whole genome duplication
165 or in genes under purifying selection. Additionally, read mapping may be challenging in recently formed
166 polyploids if purifying selection is relaxed genome-wide post-polyploidization allowing rapid TE

167 expansion (McClintock, 1984).

168

169 If the errors in read mapping discussed here are not resolved, failed alignment of reads may lead to the
170 undercalling of variants, overestimation of homozygosity, and underestimation of population alternative
171 allele frequencies. The mismapping of reads further exacerbates these issues in addition to creating false
172 variants which could create false signals of allele sharing and alter patterns of genome-wide

173 heterozygosity. This can significantly increase downstream errors in the estimation of population

174 divergence, gene flow, genome-wide diversity, and identification of causal variants in GWAS and

175 selection scans.

176

177 2.3 Incomplete or misassembled polyploid reference genomes increase genotyping error

178 Undetected errors in the assembly of polyploid genomes create genotyping errors similar to homologous

179 loci and SVs. For instance, chimeric subgenome assemblies, where scaffolds from one subgenome are
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180 misassembled into another subgenome, cause reads to fail to map at misassembled scaffold junctions.
181 This leads to genotyping errors at scaffold junctions and incorrect variant positions that impact analyses
182 using linkage information, such as genome scan approaches and estimating runs of homozygosity. In an
183 incomplete reference genome, reads belonging to missing regions will either not align or map to

184 homologous loci (Fig. 2). Reads that successfully map to a homolog are likely to be biased toward the
185 reference allele. However, if reads with the alternative allele do align to a homolog, false heterozygotes
186 may be called (Fig. 2A). Comprehensively addressing the challenge of poor read mapping caused by low
187 reference genome quality will require continued improvement of the reference genome. As

188 comprehensive reviews on genome assembly are available elsewhere (Zhang et al., 2019; Zhou et al.,
189 2022; Gladman et al., 2023), I later discuss practical solutions to mitigate these issues and enhance the
190 accuracy of genotyping when using existing genome assemblies.

191

192 2.4 Allele dosage cannot be determined if ploidy and inheritance mode are unknown

193 Determining the allele dosage, the number of reference and alternate alleles, present at each sequenced
194 site for a given individual is imperative for accurate genotyping. In diploids, the reference genome is
195 ideally phased, meaning the maternal and paternal copy of each chromosome is assembled so each

196 chromosome in the assembly has two ‘haplotypes’ (Gladman et al., 2023). All reads are aligned to only
197 one of the two haplotypes and, as a result, the possible genotype values at a site are 0, 1, and 2

198 corresponding to the number of alternate alleles. The range of potential genotypes for a polyploid is less
199 clear as there are multiple factors to consider: ploidy level, chromosome inheritance mode, and the

200 reference genome quality. This is because autopolyploids and allopolyploids have distinct reference

201 genome structures (Kihara and Ono, 1926; Kyriakidou et al., 2018; Zhang et al., 2019). Ideally,

202 autopolyploid assemblies are phased so all copies (i.e. haplotypes) of the genome are assembled.

203 Assuming the autopolyploid has no preferential pairing amongst chromosomes (i.e. complete polysomic
204 inheritance), all reads should be aligned to only one haplotype, similar to diploids, and the maximum

205 allele dosage would be equal to the ploidy (Fig. 3B). In allopolyploids, the paternal and maternal
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206 haplotypes of each ancestral subgenome are assembled and reads are aligned to one haplotype of each
207 subgenome simultaneously (Fig. 3A). Here, the maximum allele dosage would be the ploidy divided by
208 the number of subgenomes. As an example, consider the allotetraploid switchgrass (Panicum virgatum)
209 reference genome, which contains two phased subgenomes (Napier et al., 2022). Switchgrass is a

210 mixed-ploidy species composed of tetraploids (2n = 4x) and octoploids (2n = 8x). As both subgenomes
211 were successfully assembled, Napier et al. (2022) concurrently aligned reads to one haplotype of each
212 subgenome and called genotypes for the tetraploid and octoploid samples as diploid (0, 1, 2) and

213 tetraploid genotype values (0, 1, 2, 3, 4), respectively. If the switchgrass reference genome was not

214 phased, the ploidy of each sample was unknown, or if it was unclear whether the species is allo- or

215 autopolyploid, the correct allele dosage could not be determined. Unknown or incorrect allele dosage can
216 result in the misestimation of allele frequencies and heterozygosity, similar to co-dominant markers like
217 AFLPs (Dufresne et al., 2014).

218

219 2.5 Existing tools cannot account for further biological complexity

220 The reach of polyploid population and quantitative genetics is limited by further biological complexities.
221 Commonly, populations may be mixed-ploidy, meaning they contain genotypes of varying ploidy levels
222 (Kolaf et al., 2017). Additionally, inheritance mode may vary along the genome (Allendorf et al., 2015).
223 Variance in inheritance mode occurs because, following whole genome duplication, it is likely that all
224 homologs pair together, and thus experience polysomic inheritance. However, over time, sequence

225 divergence among homologous chromosomes may lead to preferential pairing and allow the return of
226 disomic inheritance in some regions of the genome (Allendorf et al., 2015). In addition to mixed ploidy
227 and inheritance mode, polyploid species may have multiple origins (Holloway et al., 2006; Soltis et al.,
228 2009) and often hybridize (Alix et al., 2017), which makes population and quantitative genetics

229 challenging. It is difficult to develop a variant calling pipeline that considers this complexity in a

230 meaningful way while also producing genotypes that can be used in existing downstream tools. For

231 example, existing software packages that estimate genotypes for mixed-ploidy populations require
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232 separate estimations for each ploidy (Blischak et al., 2018; Gerard et al., 2018; Clark et al., 2019; Van der
233 Auwera and O’Connor, 2020; Cooke et al., 2021). In multi-sample variant calling, which incorporates
234 information from multiple samples to improve genotype estimates, the separation of samples by ploidy
235 reduces the utility and power of this approach (Liu et al., 2013). The mismapping of reads further

236 exacerbates these issues in addition to creating false variants which could create false signals of allele
237 sharing and alter patterns of genome-wide heterozygosity. Alternative approaches such as estimating

238 genotypes at the same allele dosage for all cytotypes will result in underestimating heterozygous

239 genotypes for higher ploidy levels and inaccurate allele frequency estimations.

240

241 3. Proposed solutions to incorporate polyploid complexity in variant calling

242 3.1 Balancing sequencing depth and precision may reduce sequencing costs

243 Careful experimental design, consideration of downstream analysis, and alternative genotyping

244 approaches can be leveraged to reduce the cost of working with polyploid WGS data. Although a certain
245 level of sequencing coverage is required to overcome allelic dosage uncertainty, high sequencing depth is
246 not required for all analyses. Jighly (2022) argues that sequencing depth should be selected depending on
247 the research question and analysis plan, in conjunction with the ploidy level, as sequencing depth has

248 diminishing returns. Analyses that require the detection of low-frequency and rare variants, such as

249 inferring novel alleles, will require a higher depth. In contrast, studies examining population structure and
250 differentiation, which rely on common alleles to differentiate groups, may accommodate a lower

251 sequencing depth. Therefore, considering the research question and analysis plan when determining the
252 target coverage will prevent over-sequencing and extend a budget.

253

254 The increased allele dosage uncertainty that comes from low sequencing depth (<10X) can be partially
255 mitigated by the use of genotype likelihoods (GLs) or continuous genotypes in place of categorical

256 genotypes. A GL is the probability of the sequencing data given the possible genotypes. GLs can be

257 directly used in some software or they can be used to infer genotypes. Polyploid-capable software such as
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258 GATK, EBG, Updog, and polyRAD (Blischak et al., 2018; Gerard et al., 2018; Clark et al., 2019; Van der
259 Auwera and O’Connor, 2020), infer categorical genotypes from GLs. Updog and polyRAD can also

260 estimate continuous genotypes, which are continuous values of the likely allele count (Gerard et al., 2018;
261 Clark et al., 2019; Njuguna et al., 2023). The combination of low-coverage data and GLs or continuous
262 genotypes is becoming increasingly popular in large-scale studies due to its affordability (Korneliussen et
263 al., 2014; Grandke et al., 2016; Batista et al., 2022). Further, GLs and continuous genotypes reduce allelic
264 dosage uncertainty by incorporating genotyping certainty and may be beneficial in moderate or

265 high-coverage sequence data. These alternative genotypes have been shown to provide more accurate

266 estimates than categorical genotypes in numerous population and quantitative genetics analyses

267 (Korneliussen et al., 2014; Grandke et al., 2016; Gerard, 2021b; Shastry et al., 2021; Batista et al., 2022;
268 Rasmussen et al., 2024). Continuous genotypes can be easily integrated into existing software, however,
269 software for downstream population and quantitative genetic analysis with polyploid GLs is still limited.
270

271 3.2 Alternative read alignment approaches, genotype callers, and variant filters may reduce errors

272 caused by poor read mapping

273 Several strategies can be applied to reduce read mapping errors caused by homology, high

274 polymorphism, or low reference genome quality throughout the variant calling pipeline. First, alternative
275 alignment approaches could be applied to improve read mapping and assignment to subgenomes. For

276 example, iterative read mapping is a promising strategy. Here, all reads are mapped to the reference

277 genome but only reads that map to exactly one place in the genome (i.e. uniquely mapped reads) are

278 retained. Then, a pseudo-reference genome is generated by replacing variable sites with the alternate

279 alleles from the uniquely mapping reads, reads are re-mapped to the pseudo-reference, and, again, only
280 uniquely mapped reads are retained (Rozowsky et al., 2011; Xu et al., 2020). When applied to maize

281 whole-genome bisulfite sequencing data to reduce mapping bias, this approach was found to increase the
282 detection of methylated cytosines by 5% (Xu et al., 2020). Alternatively, the software WASP alters the

283 mapped reads, instead of the reference genome, to have the opposite allele. The altered reads are
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284 remapped and only kept if they map in the same location (van de Geijn et al., 2015). Both iterative read
285 mapping approaches are particularly useful for reducing the number of multiply mapping reads and

286 reducing false heterozygotes. Other alternative read mapping solutions have been developed specifically
287 to identify subgenome differences in allopolyploids by either comparing polymorphisms to modern

288 diploid progenitors (Mithani et al., 2013; Page et al., 2013; Peralta et al., 2013; Khan et al., 2016) or

289 competitively mapping reads between subgenomes (Page and Udall, 2015). The former approach requires
290 knowledge of the diploid progenitors and the ladder approach has limited benefits if both subgenomes of
291 the allopolyploid are assembled. As a result, iterative read mapping is currently the most promising

292 solution for improving read mapping.

293

294 Second, a genotype caller that considers allele bias and read-mapping errors could be used in addition to
295 iterative read mapping to reduce the extent of false heterozygous or homozygous calls. The popular

296 polyploid genotype caller Updog estimates the degree of allele bias simultaneously with genotype

297 estimation (Gerard et al., 2018). No other polyploid genotype callers, to my knowledge, account for allele
298 bias. Emerging solutions to reducing genotyping error from poor read mapping include the modification
299 of variant calling algorithms developed for CNVs (Layer et al., 2014; Prodanov and Bansal, 2022) or

300 ancient DNA (Giinther and Nettelblad, 2019). For example, the software ancient DNA software, snpAD
301 (Priifer, 2018), iteratively estimates genotype probabilities and r, the frequency at which the sequences are
302 sampled from the reference allele at heterozygous sites, to account for reference bias. Although snpAD is
303 not currently able to estimate polyploid GLs, algorithms such as this have the potential to improve

304 uncertainty in polyploid genotyping caused by poor read mapping.

305

306 Third, variant filters may be applied to exclude any remaining false-positive variants and genotyping

307 errors caused by mismapped reads. Filters that have been used for this purpose discriminate variants by
308 mapping quality, maximum coverage, and local linkage disequilibrium (Fig. 1E). I will briefly review

309 these filters. To begin, mapping quality is a commonly applied ‘hard’ filter (Appendix S1) and is
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310 estimated as the phred-scaled probability a read is aligned to the wrong position. It is determined by the
311 number of mismatches in the alignment while considering the quality of all other possible alignments (Li
312 et al., 2008). Reads that map equally to multiple homologs (i.e. multiply mapping reads; Figure 2C) will
313 have a mapping quality of zero and be removed in standard variant filtering pipelines. Typically, a

314 mapping quality is applied to remove reads below a quality of 10 to 40 (Van der Auwera et al., 2013;

315 Korneliussen et al., 2014; Puritz et al., 2014), which is equivalent to removing sites with greater than

316 0.01-10% probability of alignment error.

317

318 Exclusion of mismapped reads could also be accomplished using a maximum coverage filter. If reads

319 improperly map to a given site, the site would have higher coverage than expected given the average

320 genome-wide coverage (Fig. 2A). Applying this logic, maximum depth filters are commonly used to

321 exclude false heterozygotes in repetitive regions of the genome (Li, 2014), but these are generally set too
322 high to exclude reads mismapping in non-repetitive regions. In polyploid systems, this approach has been
323 adopted to set a low per-site maximum depth threshold using models of expected read depth (Bohutinska
324 et al., 2021; Korani et al., 2021; Phillips et al., 2023; Yu et al., 2023), although the efficacy of this filter
325 and the best read depth model has not been determined.

326

327 A promising novel approach to exclude false-positive variants is to leverage the expectation that two true
328 neighboring variants may have correlated allele frequencies within a population, known as local linkage
329 disequilibrium (LD) (Bukowski et al., 2018). Variants in low LD with nearby variants would be excluded.
330 This approach may also be useful in resolving the alignment of multiply-mapping reads by measuring
331 local LD at each site the read is aligned to determine the most likely position, although this is likely

332 computationally time-consuming and is yet to be tested in diploids or polyploids. LD estimates are biased
333 by genotype uncertainty, which is exaggerated in polyploid genotypes, but this can be remedied with the
334 recently developed R package 1dsep that provides computationally efficient methods to estimate LD from

335 diploid and polyploid GLs (Gerard, 2021a, b).
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336

337 Other variant filters, such as the removal of loci with excess heterozygosity or departure from

338 Hardy-Weinberg equilibrium (HWE), have also been explored for removing false-positive variants. If the
339 mismapped reads carry the alternate allele, these filters may be able to remove false heterozygous sites
340 (Keller et al., 2013; McKinney et al., 2017; Ahrens et al., 2020; Clark et al., 2022; Bohutinska et al.,

341 2023). Researchers should exercise caution in applying filters that assume populations are at HWE

342 because many biological factors, such as a non-panmictic population structure, small population sizes,
343 and genetic drift, cause deviations from HWE (Pearman et al., 2022). Polyploidy itself deviates from

344 diploid HWE therefore methods developed in Gerard (2022b) and Gerard (2023) should be used to

345 properly account for unknown rates of double reduction (Gerard, 2022a).

346

347 3.3 Information on ploidy, chromosome inheritance mode, and reference quality can be integrated to
348 determine allele dosage

349 Investment in the determination of ploidy level and inheritance mode of the reference genotype and

350 sequenced genotypes towards the beginning of an experiment, although potentially time-intensive, is

351 strongly recommended to identify the correct allele dosage. Traditionally, ploidy and inheritance mode
352 have been determined using chromosome squashes (Goldblatt and Lowry, 2011), flow cytometry (Bennett
353 and Leitch, 2011; Pellicer and Leitch, 2020) and fluorescence in situ hybridization (FISH), where

354 fluorescent probes are used to label specific DNA sequences to identify and track chromosome pairings
355 (Szadkowski et al., 2010; Chester et al., 2013; Parra-Nunez et al., 2020). Unfortunately, these approaches
356 are time-intensive, require specialized equipment, and are an uncommon skill set. With the advent of

357 next-generation sequencing, there has been a large research effort to determine ploidy from allele

358 frequency distributions (Margarido and Heckerman, 2015; Augusto Corréa Dos Santos et al., 2017; Weif3
359 et al., 2018; Ranallo-Benavidez et al., 2020; Soraggi et al., 2022; Sun et al., 2023; Viruel et al., 2023;

360 Gaynor et al., 2024). Sequence-based approaches have also begun to be explored for determining

361 inheritance mode. One approach proposed by Scott et al. (2023) compares estimated allelic depth
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362 distributions to those expected under disomic and tetrasomic inheritance, although this approach is

363 sensitive to demography. Other approaches include leveraging divergence among genes duplicated during
364 whole genome duplication to detect windows of disomic or tetrasomic inheritance along the genome

365 (Campbell et al., 2019; Scott et al., 2023) and the joint inference of inheritance mode and demography
366 (Blischak et al., 2023; Roux et al., 2023) or genotypes (discussed in Section 3.4; Gerard et al., 2018;

367 Clark et al., 2019). Sequence-based approaches are exceptionally promising for determining ploidy and
368 inheritance mode in systems where flow cytometry and FISH are especially difficult or impossible, such
369 as succulents and herbarium samples.

370

371 In cases where allele dosage cannot be determined because the ploidy and inheritance mode of the

372 reference genotype is unknown, the reference scaffolds could be filtered to only one copy of syntenic

373 scaffolds for read mapping. If the scaffolds can be assigned into subgenomes, such as in an allopolyploid,
374 scaffolds would be filtered within each subgenome. This is a strategy applied in many systems with contig
375 assemblies (Hellsten et al., 2013; Neale et al., 2022; Phillips et al., 2023). The risk of aligning to only a
376 subset of scaffolds is that a large proportion of reads may not align and variants could be underdetected.
377

378 3.4 Current accepted practices for navigating polyploid data with additional biological complexity

379 Existing tools are limited in their ability to incorporate complexity such as mixed ploidy and inheritance
380 mode, but variant calling pipelines have the potential to accommodate this additional axis of diversity in
381 several ways. For datasets with mixed ploidy, the current best practice is to call genotypes separately for
382 each cytotype, if using a joint genotyping approach (Napier et al., 2022; Bohutinska et al., 2023; De Luca
383 et al., 2023). In cases where the secondary cytotype is rare or undersampled, it is advisable to exclude the
384 minority cytotypes from the study because variability in downstream analyses attributable to cytotype
385 differences may not be detectable with small sample sizes. If multiple cytotypes are included in the study,
386 it should be noted that polyploid genotypes have inherently different expected variations in allele

387 frequencies which can significantly impact downstream analyses (Faske, 2023). Similarly to
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388 mixed-ploidy analyses, allele dosage should be specified per-site in species with mixed inheritance

389 modes. If the regions of the genome with polysomic inheritance are known, the per-site specification can
390 be accomplished with any polyploid genotype caller, although this has rarely been applied outside of the
391 Salmonids (Campbell et al., 2019). Alternatively, if polysomic regions are known, sites could be filtered
392 to include only disomic or polysomic regions (Bourret et al., 2013). In the majority of cases, the rate of
393 preferential pairing or the regions undergoing polysomic inheritance will be unknown. Here, the genotype
394 calling software Updog (Gerard et al., 2018) and polyRAD (Clark et al., 2019) may be useful as their

395 approaches determine inheritance mode during genotype estimation. Updog accomplishes this by

396 simultaneously estimating genotypes and the rate of preferential pairing in a population, assuming

397 bivalent pairing only. Comparatively, polyRAD determines inheritance mode by estimating genotypes for
398 all possible user-specified genotypes and then uses a * statistic to determine the best genotype at each
399 site. The polyRAD approach is particularly useful as it allows both ploidy and inheritance mode to vary
400 among genotypes. There is no current best practice for mixed inheritance mode among these approaches,
401 but they should be considered as even low rates of polysomic inheritance can affect allele frequencies

402 across subgenomes (Meirmans and Van Tienderen, 2013). Consequently, careful consideration is required
403 when analyzing populations with biological complexity beyond polyploidy.

404

405 4. Conclusions

406 Complex polyploid biology may produce errors in read mapping, variant calling, and genotyping. The
407 extent of error often depends on the quality of the reference genome and biological reasons like the age of
408 the polyploidization event, extent of fractionation, divergence between parental genomes, and strength of
409 selection at a given locus. As such, bioinformatic solutions can be selectively applied to resolve sources
410 of error prevalent in a given polyploid system. In Figure 1, I summarize where existing solutions can be
411 integrated into a standard variant calling pipeline. The study of polyploid genomes is a growing field and,
412 as such, there may be additional solutions in active development.

413
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414 Further improvements to variant calling in polyploids will require focused research in three primary areas:
415 evaluation of variant filters, development of downstream software that incorporates genotype uncertainty,
416 and high-throughput estimation of ploidy and inheritance mode. First, empirical studies evaluating the
417 efficacy of variant filters are needed to understand when their application is appropriate and which

418 thresholds are effective. It is equally as important to set a threshold that excludes low-quality variants

419 while also not over-filtering the data, as variant classes important in downstream analyses may be

420 unintentionally excluded (Linck and Battey, 2019; Pearman et al., 2022). Second, continued development
421 of population and quantitative genetics software that utilize GLs is needed (Korneliussen et al., 2014;

422 Grandke et al., 2016; Gerard, 2021b; Shastry et al., 2021; Batista et al., 2022; Rasmussen et al., 2024).
423 The adoption of GLs to reduce sequencing costs is likely to be limited until more user-friendly software
424 becomes available. Theory and tools are also lacking for the analysis of mixed-ploidy and

425 mixed-inheritance mode datasets. Third, continued development of methods for high throughput

426 estimation of ploidy and inheritance mode is greatly needed. While there has been substantial

427 development in this area (see Section 3.3), the majority of approaches still necessitate ample ground

428 truthing (Gaynor et al., 2024).

429

430 Emerging technologies may have the potential to improve variant detection. Long-read sequencing data
431 overcomes many read mapping challenges as the extended read length increases the information available
432 to determine the best alignment (Chen et al., 2024). Similar to short-read sequencing, long-read

433 sequencing is increasingly cost-effective and accurate (De Coster et al., 2021; Kim et al., 2024).

434 Additionally, pan-genomic approaches, such as haplotype graphs and sequence variation groups, have
435 recently been applied in polyploid systems to detect a diversity of SVs as well as multiallelic sites

436 (Gordon et al., 2020; Bayer et al., 2021; Della Coletta et al., 2021; Lovell et al., 2021; Wang et al., 2022).
437 The adoption of the variant calling practices reviewed here, continued investment in the assembly of

438 polyploid reference genomes, and early adoption of novel genomic tools will enhance contemporary

439 population and quantitative genetics studies in polyploids.
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802 Figure 1. A standard variant calling pipeline (blue) can be adapted for polyploid systems (modifications
803 in green). (A) Before beginning variant calling, raw sequence data may need trimming to remove adapters
804 and low-quality bases. An effort should be made to determine the ploidy and chromosome inheritance
805 mode of the sequenced genotypes, as this information will be incorporated later in the pipeline. Multiple
806 approaches can be used to determine ploidy and inheritance mode depending on the researcher’s skillset.
807 (B) Reads are mapped to the reference genome using an aligner. Binary alignment maps (BAMs) are

808 output from the aligners and processed by adding read groups, removing duplicate reads, and then sorting.
809 Sequencing and alignment quality are assessed so low-quality samples may be identified and removed
810 before variant calling. Samples should be split by ploidy and regions by inheritance mode, if necessary, at
811 this stage. (C) Variants are called (D) and then genotype likelihoods and genotypes are estimated. Variant
812 calling and genotyping are often completed using the same software but can be run separately. Genotype
813 calling can be skipped if genotype likelihoods will be used downstream. A variant call file (VCF) is

814 output if invariant sites are discarded, otherwise the output is a genomic variant call file (GVCF). (E)

815 Variants are filtered first by removing low-quality sites (i.e. hard filtering). Then, variants are filtered to
816 prioritize variants specific to downstream analyses (i.e. soft filtering). A more detailed description of the
817 standard pipeline, including useful polyploid aligners and genotype calling software, is provided in

818 Appendix S1.

819

820

821

822

823

824



Phillips 30

SubA —

Sub B

825

826 Figure 2. A syntenic block between subgenome A and subgenome B in an allotetraploid is depicted. This
827 region in subgenome A contains three genes (light gray) while subgenome B (dark gray) contains two.
828 The genes contain one or two segregating sites, with alleles depicted as yellow, pink, and blue. The

829 assembly of subgenome A is incomplete, missing the farthest right gene (dashed line). Reads that should
830 have aligned to the missing gene (red reads) instead may (I) align to a homolog in subgenome B resulting
831 in a false heterozygote call, (II) map equally to other homologs within or across subgenomes, or (III) fail
832 to align. This figure was created with BioRender.com.
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835 Figure 3. Read mapping and the called allele dosage in allo- and autopolyploids differs due to the

836 structure of the reference genome. Reads (gray) are shown aligning the reference genome (black) with
837 alleles for the focal variant in pink or yellow. (A) In an allotetraploid with two subgenomes (subgenome
838 K in light gray and subgenome N in dark gray), reads are mapped to one haplotype of each parental

839 subgenome, and diploid genotypes are called. (B) In an autotetraploid with no preferential pairing, all
840 reads are mapped to a single haplotype. Here, reads are aligned to a haplotype carrying the yellow A
841 allele at the focal variant.

842

843

844



Phillips 1

Appendix S1

A brief overview of variant calling

In diploid and polyploid systems, variant calling involves a series of qualitative decisions that depend on
the biology of the study system and data quality. A variant calling pipeline, as described here, includes the
alignment of reads to the reference genome, variant calling, genotype estimation, and variant filtering.
Consideration of ploidy in downstream analyses has been well-reviewed elsewhere (Dufresne et al., 2014;
Meirmans et al., 2018; Ackiss and Balao, 2020; Bohutinska et al., 2023). Here, I aim to provide an
overview of a general variant calling pipeline to support discussions of where this pipeline may be

improved for polyploid systems. I provide citations for commonly used software where relevant.

To begin, reads are mapped to a reference genome using a short-read aligner to generate the sequence
alignment maps (SAMs) or binary alignment maps (BAMs). The aligner is selected depending on the read
length, sequencing method, and divergence of the sequenced sample from the reference genome (Altmann
et al., 2012; Bak et al., 2021; Musich et al., 2021). The Burrow-Wheeler aligner (BWA-MEM and
BWA-MEM?2) is a highly popular short-read aligner (Li, 2013; Md et al., 2019). Additionally, the best
practice is to use a reference genome closely related to your samples of interest, but how closely related
your reference genome needs to be to your samples will depend on the divergence between species and
amongst populations. (Giinther and Nettelblad, 2019). For example, in a Zea mays RNA-seq study, as
much as one-half of alleles with increased gene expression were not detected when reads from the inbred
line, B73, were mapped to the reference of a second inbred line, Mo17, because Z. mays has high

nucleotide diversity and structural variation (Zhan et al., 2021).

The SAMs or BAMs are processed to remove duplicate reads and add read groups, which provide an
improved evaluation of sequencing and alignment quality but have limited effect on variant detection

(Ebbert et al., 2016). SAMtools (Danecek et al., 2021) and GATK (De Summa et al., 2017; Van der
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Auwera and O’Connor, 2020) provide useful guidelines and pipelines for effectively processing the
alignment files. The sequencing and alignment quality should be evaluated for attributes such as mapping
quality, the percent of reads mapping, and coverage before variant calling (Nielsen et al., 2011). Although
this can be accomplished with custom scripts, software like Qual imap provides a user-friendly
evaluation of sequence quality (Garcia-Alcalde et al., 2012; Okonechnikov et al., 2016). If the quality is
poor, reads may need to be trimmed to remove adapters or low-quality bases and re-mapped (Sewe et al.,

2022). Trimmomatic (Sewe et al., 2022) and fastp (Chen et al., 2018; Chen, 2023) efficiently detect

and trim a wide variety of adaptor sequences.

Variants are then identified using a variant caller, which determines whether a particular site in a

sequenced sample is different from the reference genome. Many variant callers, such as GATK (Van der

Auwera and O’Connor, 2020), were developed for human genomes and have been adopted for use with
highly repetitive plant genomes. Before genotype calling, sites that are fixed across sequenced samples,
known as invariant sites, are often excluded to improve computational efficiency. It should be noted that
the inclusion of invariant sites is important for many population and quantitative genetics analyses, such
as the estimation of nucleotide diversity and demographic history, and they can be added back into the
pipeline after variant calling. Genotypes are subsequently called where the most likely genotype is
estimated based on the number of references and alternate reads that are mapped to a given site (Nielsen

etal., 2011).

The same software is often used for both variant calling and genotyping. Importantly, the genotype caller
selected should be able to estimate polyploid genotypes. Polyploid genotype callers have been sufficiently
compared and reviewed elsewhere (Grandke et al., 2016; Blischak et al., 2018; Gerard et al., 2018; Clark
et al., 2019; Cooke et al., 2022). Briefly, polyploid variant and genotype callers that can be applied to

whole genome sequence data include GATK, freebayes (Garrison and Marth, 2012),EBG
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(Blischak et al., 2018), Updog (Gerard et al., 2018), pol yRAD (Clark et al., 2019), and Octopus
(Cooke et al., 2021). Additionally, GATK, freebayes, and Octopus can identify small structural

variants under 50 bp (Cooke et al., 2022). Each polyploid genotype considers different aspects of
polyploid biology in their estimation, and as such, researchers should select the caller that fits the biology
of their study system the best. For example, Updog considers allele bias (see in Section 3.2) and
preferential pairing in genotype estimation, while polyRAD considers per-site variance in inheritance
mode (see in Section 3.4) (Gerard et al., 2018; Clark et al., 2019). Notably, Updog, polyRAD, and
Octopus support binomial priors, which are considered ‘informative’ priors because they assume
genotypes follow HWE, unlike GATK which usesuniform that assume genotypes have equal probabilities
(McKenna et al., 2010; Gerard et al., 2018; Clark et al., 2019; Cooke et al., 2021). Additionally, polyRAD
offers additional informative priors that consider population structure and mapping populations (Clark et
al., 2019). Genotype callers and priors should be carefully selected as genotypes will be heavily

influenced by the priors at low sequencing coverage (Clark et al., 2019).

Finally, variants are filtered to remove sites with false-positive variants and low-confidence genotypes.

This is often accomplished using custom scripts, GATK, VCFtools (Danecek et al., 2011), or several

other packages. Variant filtering is often grouped into two parts: ‘hard’ and ‘soft’ filtering (De Summa et
al., 2017). In hard filtering, sites that fail to pass a set of quality controls are removed to reduce the
likelihood of falsely identifying them as polymorphic. The quality controls may include mapping quality,
base quality, depth, and strand bias (defined in Van der Auwera and O’Connor, 2020). Biallelic sites are
typically selected when hard filtering, regardless of ploidy, as most empirical and theoretical population
and quantitative genetics assume only two alleles (but see Karlin, 1990; Balding and Nichols, 1995;
Ferretti et al., 2018; Broman et al., 2019 for examples of multi-allelic approaches). After hard filtering,

soft filters are applied to prioritize variants specific to downstream analyses, often ad-hoc. For example, a
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minor allele frequency filter is a soft filter often applied to exclude sites with rare variants. Thresholds for
hard and soft filtering are user-defined and formal testing of the significance of a given threshold is
uncommon. Researchers often derive thresholds from those previously applied within their study system,
review articles (Van der Auwera et al., 2013; Clevenger et al., 2015), or, less commonly, those tested in an
empirical study (Linck and Battey, 2019; Pearman et al., 2022). Importantly, researchers should take care
not to over-filter their datasets as many population and quantitative genetics analyses can be biased by

datasets where particular variant classes were excluded (Linck and Battey, 2019; Pearman et al., 2022).
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