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 Abstract 

 Advancements in genome assembly and sequencing technology have made whole genome sequence 

 (WGS) data and reference genomes accessible to study polyploid species. The genome-wide coverage and 

 greater marker density provided by WGS data, compared to popular reduced-representation sequencing 

 approaches, can greatly improve our understanding of polyploid species and polyploid biology. However, 

 biological features that make polyploid species interesting also pose challenges in read mapping, variant 

 identification, and genotype estimation. Accounting for characteristics, like allelic dosage uncertainty, 

 homology between subgenomes, and variance in chromosome inheritance mode, in variant calling can 

 reduce errors. Here, I discuss the challenges of variant calling in polyploid WGS data and discuss where 

 potential solutions can be integrated into a standard variant calling pipeline. 

 Keywords:  polyploidy, variant calling, whole genome  sequence, population genetics, quantitative 

 genetics, mixed-ploidy 
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 1. Introduction 

 Recent progress in genome assembly and sequencing technology has increased accessibility to study the 

 genomics of polyploids, or organisms that have experienced whole genome duplication and have more 

 than two sets of chromosomes  (Formenti et al., 2022;  Gladman et al., 2023)  . Notably, improvements in 

 long-read sequencing and the accuracy of scaffolding technology have enabled the assembly of highly 

 heterozygous and polyploid reference genomes at a chromosome-scale  (Kyriakidou et al., 2018; Hotaling 

 et al., 2023)  . In parallel, the cost of short-read  sequencing has continued to decline causing whole genome 

 resequencing of polyploid populations to become increasingly feasible  (Fuentes-Pardo and Ruzzante, 

 2017)  . As polyploidy is a critical character of cancer  cells, common in fish, amphibians, and insects, and 

 ubiquitous in the plant kingdom, including many economically important crops, the extension of modern 

 genomics technologies to polyploid systems is important for our broader understanding of medicine, and 

 biodiversity, agriculture  (Udall and Wendel, 2006;  Wood et al., 2009; Zack et al., 2013; One Thousand 

 Plant Transcriptomes Initiative, 2019; Román-Palacios et al., 2021; David, 2022)  . These advances have 

 already begun to improve our understanding of the origins of polyploid species  (Bertioli et al., 2019; 

 Edger et al., 2019; Goeckeritz et al., 2023)  , genome  reorganization and stabilization after polyploidization 

 (Chen et al., 2020; Bohutínská et al., 2021; Wang et al., 2022; Session and Rokhsar, 2023)  , and the  role of 

 polyploidy in adaptation of wild and domesticated species  (Hollister et al., 2012; Chen et al., 2021;  Lovell 

 et al., 2021; Ebadi et al., 2023; Hämälä et al., 2023)  .  Nevertheless, these studies have only scratched the 

 surface of polyploid biology. 

 Population and quantitative genetics particularly benefit from the availability of reference genomes and 

 whole genome sequence (WGS) data. These fields use variable loci, loci with two or more alleles 

 segregating in a population, to study the genetic composition of populations and complex traits over space 

 and time in response to selection, genetic drift, mutation, and migration. WGS data in combination with a 

 reference genome offers genome-wide coverage and the ability to identify variable loci, also referred to as 

 variants, at a higher density than reduced representation sequencing (RRS) approaches. RRS approaches, 
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 such as genotype-by-sequencing (GBS) and restriction site-associated DNA sequencing (RADseq), are 

 currently used in the majority of polyploid population and quantitative genetics studies due to their 

 comparatively low cost and the growing number of user-friendly software packages for analysis  (Poland 

 and Rife, 2012)  . RRS approaches are useful for sampling  a portion of the genome to, for example, 

 characterize population structure or complete quantitative trait locus (QTL) analysis. However, RRS does 

 not have high enough marker density for genome-wide analyses central to studying patterns of selection, 

 identifying the genetic basis of adaptive traits, and genomic prediction  (Tiffin and Ross-Ibarra, 2014; 

 Lowry et al., 2017; but see de Bem Oliveira et al., 2020)  . Additionally, WGS data improves the detection 

 of structural variants (SVs) and transposable elements (TEs), although both are still challenging even in 

 diploid systems  (Ewing, 2015; Baduel et al., 2019;  Mahmoud et al., 2019; Cooke et al., 2022; 

 Ramakrishnan et al., 2022)  . Detection and inclusion  of SVs and TEs are important because they affect 

 gene expression and function and are signatures of the stabilization and reorganization of the genome 

 post-polyploidization  (Lisch, 2013; Kosugi et al.,  2019)  . 

 The improvement in variant detection offered by WGS data is useful only when variants can be 

 confidently called and genotypes accurately estimated. Typical sources of error in diploid variant calling 

 include sequencing errors, misalignment of reads to the reference genome, misassembly of the reference 

 genome, and natural structural variation  (Li, 2014;  Mahmoud et al., 2019; Lou and Therkildsen, 2022)  . 

 Polyploidy exacerbates these sources of error and introduces additional challenges due to the associated 

 characteristics like large haploid genome sizes, homology between subgenomes, genome fractionation, 

 and elevated polymorphism  (Bennett and Leitch, 2011;  Page and Udall, 2015; Blischak et al., 2018)  . As  a 

 result, there may be higher variant calling errors in polyploids. Errors in the variant calling pipeline will 

 subsequently be carried into all downstream analyses leading to misestimation of metrics like allele 

 frequencies, heterozygosity, and linkage. 
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 Universal solutions to reduce errors in variant calling are challenging to identify as polyploids are not a 

 uniform group. Polyploids are generally categorized as allopolyploids, which form through hybridization 

 of two or more species, or autopolyploids, which derive from genome doubling of a single species. 

 Further, they can be described by their chromosome inheritance patterns. Allopolyploids have disomic 

 inheritance, like diploids where chiasma for between only homologous chromosomes, and autopolyploids 

 have polysomic chromosome inheritance, where there is no preferential pairing among chromosomes and 

 chiasmata may form between more than two homologous chromosomes  (Stift et al., 2008)  . However, the 

 rate of preferential pairing and chromosome inheritance mode may vary across the genome in allo- and 

 autopolyploids depending on the relatedness amongst subgenomes and the time since polyploidization 

 (Stebbins, 1947; Mason and Wendel, 2020)  . This distinction  between inheritance modes is important 

 because even low rates of recombination between subgenomes can bias allele frequencies to be more 

 homozygous than expected  (Meirmans and Van Tienderen,  2013)  . Polyploids may additionally vary in 

 haploid genome size, mating system, repeat content, and degree of diploidization, all of which may 

 impact variant calling and genotype estimation. 

 In this review, I identify significant challenges of variant calling in polyploid WGS data and, where 

 available, propose potential solutions that can be integrated into standard variant calling pipelines  (Figure 

 1; Appendix S1, see Supporting Information with this article; reviewed in Van der Auwera et al., 2013; 

 De Summa et al., 2017; Fuentes-Pardo and Ruzzante, 2017; Therkildsen and Palumbi, 2017; O’Leary et 

 al., 2018; Lou et al., 2021)  . The scope of this discussion  is limited to WGS data aligned to the study 

 species’ reference genome, although aspects of this discussion may apply to RRS and reference-free 

 approaches. Additionally, I focus on the identification of single nucleotide variants (SNVs) as well as 

 small SVs (< 50 bp) that can be identified by some polyploid variant calling software  (Cooke et al., 

 2022)  . As the genomics of polyploids is a rapidly  growing area of research, established best practices are 

 limited. By highlighting barriers in variant calling, I aim to raise readers’ awareness of potential sources 

 of error and motivate the innovation of new and effective solutions. 
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 2. Challenges to variant calling in polyploid systems 

 2.1 Resource requirements scale with genome size 

 The foremost barrier to polyploid genomics remains the cost of sequencing and high-performance 

 computing (HPC) resources for analysis. Sequencing cost increases with both haploid genome size and 

 ploidy level while computational costs primarily scale with haploid genome size. Sequencing large 

 genomes is expensive as more sequencing runs are required to reach a target coverage, or the 

 genome-wide average number of reads sequenced for a given site. For example, Chen et al.  (2024)  have 

 found sequencing the allohexaploid bread wheat genome to 5X coverage currently costs 473 times that of 

 diploid rice and 21 times that of maize, a diploidized paleotetraploid  (Gaut and Doebley, 1997)  . This 

 disparity in sequencing cost at low coverage is increased by many existing polyploid genotyping 

 algorithms requiring high coverage to overcome allelic dosage uncertainty, which is  the ambiguity in the 

 number of alternate allele copies in polyploid genotypes  (Gerard et al., 2018; Clark et al., 2019; Cooke et 

 al., 2022)  . The minimum coverage requirement to obtain  high-confidence genotypes may range from 10 

 to over 50X depending on the ploidy level and genotyping software, whereas diploids need only 8X 

 coverage  (Cooke et al., 2022; Jighly, 2022)  . After  sequencing has been accomplished, access to HPC is 

 needed for data storage and analysis because the size of sequence alignment files (BAMs) and variant call 

 files (VCFs) produced in the variant calling pipeline scale with genome size and sample size  (Muir et al., 

 2016; Weiß et al., 2018)  . Failing to sequence to sufficient  coverage or limiting sample size to meet budget 

 constraints may result in insufficient sampling of alleles and rare variants, the misestimation of allele 

 frequencies, and low power in analyses like admixture analysis and genome wide association  (Jighly, 

 2022)  . 

 2.2 Genome-wide redundancy and elevated polymorphism increase errors in read mapping 

 Aligning reads to polyploid genomes is challenging because polyploids have an elevated level of 

 polymorphism and multiple occurrences of related sequences  (Otto and Whitton, 2000; Page and Udall, 
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 2015)  . Both of these biological features violate assumptions of read mapping algorithms that assume 

 divergence among loci is larger than divergence among alleles at a single locus  (Musich et al., 2021)  ; 

 polymorphism creates an excess of divergence while repeated sequences are too similar. Violation of this 

 assumption results in the incorrect and failed mapping of reads. I will briefly describe how these two 

 biological features may create genotyping errors. 

 As the density of SNVs and SVs in a locus increases, sequence similarity among alleles declines and 

 reads containing alternate alleles are less likely to align  (Nielsen et al., 2011; Brandt et al., 2015)  .  This is 

 an issue in polyploids as they are expected to have higher diversity than their diploid progenitors due to 

 functional redundancy between subgenomes enabling the accumulation of mutations. Additionally, the 

 post-polyploidization process of fractionation, which is gene loss leading to stabilization of the polyploid 

 genome or diploidization, increases structural variation  (Haldane, 1933; Otto and Whitton, 2000; Ma and 

 Gustafson, 2005; Emery et al., 2018; Beric et al., 2021)  . As an example in the 1000 Genomes Project 

 (  Homo sapiens  ), 18.6% of SNV calls in highly polymorphic  HLA  genes were incorrect due to failed 

 mapping of the alternate allele creating bias towards the reference allele, known as allele bias  (Brandt  et 

 al., 2015)  . Alternate reads may also fail to align  to inversions due to disagreement at the inversion 

 boundaries, and reads mapping to presence-absence variants (PAVs) will fail to align if the reference 

 contains the ‘absence’ variant  (Sun et al., 2018;  Gui et al., 2022)  . As a result, the reference genotype 

 selected for read mapping and time since whole genome duplication will determine the extent of  allele 

 bias and the variants detected. Allele bias will be highest in autopolyploids, where reads are aligned to 

 only one copy of the duplicated genome (see Section 2.4). Allele bias is likely an issue genome-wide, 

 although the effect of increased polymorphism on read mapping has yet to be quantified in a polyploid 

 system. 

 Analogously, genomic features like loci of common ancestry, repetitive elements, and copy number 

 variants (CNVs) promote mismapping because there are multiple occurrences of similar sequences across 
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 the genome. In autopolyploids, whole genome duplication produces duplicate loci between subgenomes 

 that are indistinguishable immediately after duplication. Whereas in allopolyploids, loci of common 

 ancestry are brought back together by hybridization. Both diploids and polyploids contain repeat dense 

 regions and CNVs caused by small-scale duplications and retrotransposons  (Brandt et al., 2015)  . As a 

 result, reads may have equal similarities to multiple positions in the reference genome causing reads to 

 equally map to multiple loci (i.e. multiply mapping reads) or improperly align to a closely related locus 

 (Li et al., 2008)  . The extent of error in read mapping  due to these redundant genomic features is 

 dependent on the divergence among the loci of common ancestry, known as homologous loci, the age of 

 the polyploidization event, the divergence between parental genomes, mutation rate, and strength of 

 selection on a given locus. Given these factors, read mapping will be most challenging where loci of 

 common ancestry have not accumulated mutations, such as immediately after whole genome duplication 

 or in genes under purifying selection. Additionally, read mapping may be challenging in recently formed 

 polyploids if purifying selection is relaxed genome-wide post-polyploidization allowing rapid TE 

 expansion  (McClintock, 1984)  . 

 If the errors in read mapping discussed here are not resolved, failed alignment of reads may lead to the 

 undercalling of variants, overestimation of homozygosity, and underestimation of population alternative 

 allele frequencies. The mismapping of reads further exacerbates these issues in addition to creating false 

 variants which could create false signals of allele sharing and alter patterns of genome-wide 

 heterozygosity. This can significantly increase downstream errors in the estimation of population 

 divergence, gene flow, genome-wide diversity, and identification of causal variants in GWAS and 

 selection scans. 

 2.3 Incomplete or misassembled polyploid reference genomes increase genotyping error 

 Undetected errors in the assembly of polyploid genomes create genotyping errors similar to homologous 

 loci and SVs. For instance, chimeric subgenome assemblies, where scaffolds from one subgenome are 
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 misassembled into another subgenome, cause reads to fail to map at misassembled scaffold junctions. 

 This leads to genotyping errors at scaffold junctions and incorrect variant positions that impact analyses 

 using linkage information, such as genome scan approaches and estimating runs of homozygosity. In an 

 incomplete reference genome, reads belonging to missing regions will either not align or map to 

 homologous loci (Fig. 2). Reads that successfully map to a homolog are likely to be biased toward the 

 reference allele. However, if reads with the alternative allele do align to a homolog, false heterozygotes 

 may be called (Fig. 2A). Comprehensively addressing the challenge of poor read mapping caused by low 

 reference genome quality will require continued improvement of the reference genome. As 

 comprehensive reviews on genome assembly are available elsewhere  (Zhang et al., 2019; Zhou et al., 

 2022; Gladman et al., 2023)  , I later discuss practical  solutions to mitigate these issues and enhance the 

 accuracy of genotyping when using existing genome assemblies. 

 2.4 Allele dosage cannot be determined if ploidy and inheritance mode are unknown 

 Determining the allele dosage  ,  the number of reference  and alternate alleles,  present at each sequenced 

 site for a given individual is imperative for accurate genotyping. In diploids, the reference genome is 

 ideally phased, meaning the maternal and paternal copy of each chromosome is assembled so each 

 chromosome in the assembly has two ‘haplotypes’  (Gladman  et al., 2023)  . All reads are aligned to only 

 one of the two haplotypes and, as a result, the possible genotype values at a site are 0, 1, and 2 

 corresponding to the number of alternate alleles. The range of potential genotypes for a polyploid is less 

 clear as there are multiple factors to consider: ploidy level, chromosome inheritance mode, and the 

 reference genome quality. This is because autopolyploids and allopolyploids have distinct reference 

 genome structures  (Kihara and Ono, 1926; Kyriakidou  et al., 2018; Zhang et al., 2019)  . Ideally, 

 autopolyploid assemblies are phased so all copies (i.e. haplotypes) of the genome are assembled. 

 Assuming the autopolyploid has no preferential pairing amongst chromosomes (i.e. complete polysomic 

 inheritance), all reads should be aligned to only one haplotype, similar to diploids, and the maximum 

 allele dosage would be equal to the ploidy (Fig. 3B). In allopolyploids, the paternal and maternal 
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 haplotypes of each ancestral subgenome are assembled and reads are aligned to one haplotype of each 

 subgenome simultaneously (Fig. 3A). Here, the maximum allele dosage would be the ploidy divided by 

 the number of subgenomes. As an example, consider the allotetraploid switchgrass (  Panicum virgatum  ) 

 reference genome, which contains two phased subgenomes  (Napier et al., 2022)  . Switchgrass is a 

 mixed-ploidy species composed of tetraploids (2  n  =  4  x  ) and octoploids (2  n  = 8  x  ). As both subgenomes 

 were successfully assembled, Napier et al.  (2022)  concurrently aligned reads to one haplotype of each 

 subgenome and called genotypes for the tetraploid and octoploid samples as diploid (0, 1, 2) and 

 tetraploid genotype values (0, 1, 2, 3, 4), respectively. If the switchgrass reference genome was not 

 phased, the ploidy of each sample was unknown, or if it was unclear whether the species is allo- or 

 autopolyploid, the correct allele dosage could not be determined. Unknown or incorrect allele dosage can 

 result in the misestimation of allele frequencies and heterozygosity, similar to co-dominant markers like 

 AFLPs  (Dufresne et al., 2014)  . 

 2.5 Existing tools cannot account for further biological complexity 

 The reach of polyploid population and quantitative genetics is limited by further biological complexities. 

 Commonly, populations may be mixed-ploidy, meaning they contain genotypes of varying ploidy levels 

 (Kolář et al., 2017)  . Additionally, inheritance mode  may vary along the genome  (Allendorf et al., 2015)  . 

 Variance in inheritance mode occurs because, following whole genome duplication, it is likely that all 

 homologs pair together, and thus experience polysomic inheritance. However, over time, sequence 

 divergence among homologous chromosomes may lead to preferential pairing and  allow  the return of 

 disomic inheritance in some regions of the genome  (Allendorf et al., 2015)  . In addition to mixed ploidy 

 and inheritance mode, polyploid species may have multiple origins  (Holloway et al., 2006; Soltis et al., 

 2009)  and often hybridize  (Alix et al., 2017)  , which  makes population and quantitative genetics 

 challenging. It is difficult to develop a variant calling pipeline that considers this complexity in a 

 meaningful way while also producing genotypes that can be used in existing downstream tools. For 

 example, existing software packages that estimate genotypes for mixed-ploidy populations require 
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 separate estimations for each ploidy  (Blischak et al., 2018; Gerard et al., 2018; Clark et al., 2019; Van der 

 Auwera and O’Connor, 2020; Cooke et al., 2021)  . In  multi-sample variant calling, which incorporates 

 information from multiple samples to improve genotype estimates, the separation of samples by ploidy 

 reduces the utility and power of this approach  (Liu  et al., 2013)  . The mismapping of reads further 

 exacerbates these issues in addition to creating false variants which could create false signals of allele 

 sharing and alter patterns of genome-wide heterozygosity. Alternative approaches such as estimating 

 genotypes at the same allele dosage for all cytotypes will result in underestimating heterozygous 

 genotypes for higher ploidy levels and inaccurate allele frequency estimations. 

 3. Proposed solutions to incorporate polyploid complexity in variant calling 

 3.1 Balancing sequencing depth and precision may reduce sequencing costs 

 Careful experimental design, consideration of downstream analysis, and alternative genotyping 

 approaches can be leveraged to reduce the cost of working with polyploid WGS data. Although a certain 

 level of sequencing coverage is required to overcome allelic dosage uncertainty, high sequencing depth is 

 not required for all analyses. Jighly  (2022)  argues  that sequencing depth should be selected depending on 

 the research question and analysis plan, in conjunction with the ploidy level, as sequencing depth has 

 diminishing returns. Analyses that require the detection of low-frequency and rare variants, such as 

 inferring novel alleles, will require a higher depth. In contrast, studies examining population structure and 

 differentiation, which rely on common alleles to differentiate groups, may accommodate a lower 

 sequencing depth. Therefore, considering the research question and analysis plan when determining the 

 target coverage will prevent over-sequencing and extend a budget. 

 The increased allele dosage uncertainty that comes from low sequencing depth (<10X) can be partially 

 mitigated by the use of genotype likelihoods (GLs) or continuous genotypes in place of categorical 

 genotypes. A GL is the probability of the sequencing data given the possible genotypes. GLs can be 

 directly used in some software or they can be used to infer genotypes. Polyploid-capable software such as 

https://paperpile.com/c/FJOl6k/CUW2F+ynVda+mhHn8+83lgf+3yqa
https://paperpile.com/c/FJOl6k/CUW2F+ynVda+mhHn8+83lgf+3yqa
https://paperpile.com/c/FJOl6k/qbD5o
https://paperpile.com/c/FJOl6k/wmaE/?noauthor=1


 Phillips  11 

 GATK, EBG, Updog, and polyRAD  (Blischak et al., 2018; Gerard et al., 2018; Clark et al., 2019; Van der 

 Auwera and O’Connor, 2020)  , infer categorical genotypes  from GLs. Updog and polyRAD can also 

 estimate continuous genotypes, which are continuous values of the likely allele count  (Gerard et al.,  2018; 

 Clark et al., 2019; Njuguna et al., 2023)  . The combination  of low-coverage data and GLs or continuous 

 genotypes is becoming increasingly popular in large-scale studies due to its affordability  (Korneliussen et 

 al., 2014; Grandke et al., 2016; Batista et al., 2022)  .  Further, GLs and continuous genotypes reduce allelic 

 dosage uncertainty by incorporating genotyping certainty and may be beneficial in moderate or 

 high-coverage sequence data. These alternative genotypes have been shown to provide more accurate 

 estimates than categorical genotypes in numerous population and quantitative genetics analyses 

 (Korneliussen et al., 2014; Grandke et al., 2016; Gerard, 2021b; Shastry et al., 2021; Batista et al., 2022; 

 Rasmussen et al., 2024)  . Continuous genotypes can  be easily integrated into existing software, however, 

 software for downstream population and quantitative genetic analysis with polyploid GLs is still limited. 

 3.2 Alternative read alignment approaches, genotype callers, and variant filters may reduce errors 

 caused by poor read mapping 

 Several strategies can be applied to reduce read mapping errors caused by homology, high 

 polymorphism, or low reference genome quality throughout the variant calling pipeline. First, alternative 

 alignment approaches could be applied to improve read mapping and assignment to subgenomes. For 

 example, iterative read mapping is a promising strategy. Here, all reads are mapped to the reference 

 genome but only reads that map to exactly one place in the genome (i.e. uniquely mapped reads) are 

 retained. Then, a pseudo-reference genome is generated by replacing variable sites with the alternate 

 alleles from the uniquely mapping reads, reads are re-mapped to the pseudo-reference, and, again, only 

 uniquely mapped reads are retained  (Rozowsky et al.,  2011; Xu et al., 2020)  . When applied to maize 

 whole-genome bisulfite sequencing data to reduce mapping bias, this approach was found to increase the 

 detection of methylated cytosines by 5%  (Xu et al.,  2020)  . Alternatively, the software WASP alters the 

 mapped reads, instead of the reference genome, to have the opposite allele. The altered reads are 
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 remapped and only kept if they map in the same location  (van de Geijn et al., 2015)  . Both iterative read 

 mapping approaches are particularly useful for reducing the number of multiply mapping reads and 

 reducing false heterozygotes. Other alternative read mapping solutions have been developed specifically 

 to identify subgenome differences in allopolyploids by either comparing polymorphisms to modern 

 diploid progenitors  (Mithani et al., 2013; Page et  al., 2013; Peralta et al., 2013; Khan et al., 2016)  or 

 competitively mapping reads between subgenomes  (Page  and Udall, 2015)  . The former approach requires 

 knowledge of the diploid progenitors and the ladder approach has limited benefits if both subgenomes of 

 the allopolyploid are assembled. As a result, iterative read mapping is currently the most promising 

 solution for improving read mapping. 

 Second, a genotype caller that considers allele bias and read-mapping errors could be used in addition to 

 iterative read mapping to reduce the extent of false heterozygous or homozygous calls. The popular 

 polyploid genotype caller Updog estimates the degree of allele bias simultaneously with genotype 

 estimation  (Gerard et al., 2018)  . No other polyploid  genotype callers, to my knowledge, account for allele 

 bias. Emerging solutions to reducing genotyping error from poor read mapping include the modification 

 of variant calling algorithms developed for CNVs  (Layer  et al., 2014; Prodanov and Bansal, 2022)  or 

 ancient DNA  (Günther and Nettelblad, 2019)  . For example,  the software ancient DNA software, snpAD 

 (Prüfer, 2018)  , iteratively estimates genotype probabilities  and  r  , the frequency at which the sequences are 

 sampled from the reference allele at heterozygous sites, to account for reference bias. Although snpAD is 

 not currently able to estimate polyploid GLs, algorithms such as this have the potential to improve 

 uncertainty in polyploid genotyping caused by poor read mapping. 

 Third, variant filters may be applied to exclude any remaining false-positive variants and genotyping 

 errors caused by mismapped reads. Filters that have been used for this purpose discriminate variants by 

 mapping quality, maximum coverage, and local linkage disequilibrium (Fig. 1E). I will briefly review 

 these filters. To begin, mapping quality is a commonly applied ‘hard’ filter (Appendix S1) and is 
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 estimated as the phred-scaled probability a read is aligned to the wrong position. It is determined by the 

 number of mismatches in the alignment while considering the quality of all other possible alignments  (Li 

 et al., 2008)  . Reads that map equally to multiple  homologs (i.e. multiply mapping reads; Figure 2C) will 

 have a mapping quality of zero and be removed in standard variant filtering pipelines. Typically, a 

 mapping quality is applied to remove reads below a quality of 10 to 40  (Van der Auwera et al., 2013; 

 Korneliussen et al., 2014; Puritz et al., 2014)  , which  is equivalent to removing sites with greater than 

 0.01-10% probability of alignment error. 

 Exclusion of mismapped reads could also be accomplished using a maximum coverage filter. If reads 

 improperly map to a given site, the site would have higher coverage than expected given the average 

 genome-wide coverage (Fig. 2A). Applying this logic, maximum depth filters are commonly used to 

 exclude false heterozygotes in repetitive regions of the genome  (Li, 2014)  , but these are generally  set too 

 high to exclude reads mismapping in non-repetitive regions. In polyploid systems, this approach has been 

 adopted to set a low per-site maximum depth threshold using models of expected read depth  (Bohutínská 

 et al., 2021; Korani et al., 2021; Phillips et al., 2023; Yu et al., 2023)  , although the efficacy of  this filter 

 and the best read depth model has not been determined. 

 A promising novel approach to exclude false-positive variants is to leverage the expectation that two true 

 neighboring variants may have correlated allele frequencies within a population, known as local linkage 

 disequilibrium (LD)  (Bukowski et al., 2018)  . Variants  in low LD with nearby variants would be excluded. 

 This approach may also be useful in resolving the alignment of multiply-mapping reads by measuring 

 local LD at each site the read is aligned to determine the most likely position, although this is likely 

 computationally time-consuming and is yet to be tested in diploids or polyploids. LD estimates are biased 

 by genotype uncertainty, which is exaggerated in polyploid genotypes, but this can be remedied with the 

 recently developed R package ldsep that provides computationally efficient methods to estimate LD from 

 diploid and polyploid GLs  (Gerard, 2021a, b)  . 
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 Other variant filters, such as the removal of loci with excess heterozygosity or departure from 

 Hardy-Weinberg equilibrium (HWE), have also been explored for removing false-positive variants. If the 

 mismapped reads carry the alternate allele, these filters may be able to remove false heterozygous sites 

 (Keller et al., 2013; McKinney et al., 2017; Ahrens et al., 2020; Clark et al., 2022; Bohutínská et al., 

 2023)  . Researchers should exercise caution in applying  filters that assume populations are at HWE 

 because many biological factors, such as a non-panmictic population structure, small population sizes, 

 and genetic drift, cause deviations from HWE  (Pearman  et al., 2022)  . Polyploidy itself deviates from 

 diploid HWE therefore methods developed in Gerard  (2022b)  and Gerard  (2023)  should be used to 

 properly account for unknown rates of double reduction  (Gerard, 2022a)  . 

 3.3 Information on ploidy, chromosome inheritance mode, and reference quality can be integrated to 

 determine allele dosage 

 Investment in the determination of ploidy level and inheritance mode of the reference genotype and 

 sequenced genotypes towards the beginning of an experiment, although potentially time-intensive, is 

 strongly recommended to identify the correct allele dosage. Traditionally, ploidy and inheritance mode 

 have been determined using chromosome squashes  (Goldblatt  and Lowry, 2011)  , flow cytometry  (Bennett 

 and Leitch, 2011; Pellicer and Leitch, 2020)  and fluorescence  in situ  hybridization (FISH), where 

 fluorescent probes are used to label specific DNA sequences to identify and track chromosome pairings 

 (Szadkowski et al., 2010; Chester et al., 2013; Parra-Nunez et al., 2020)  . Unfortunately, these approaches 

 are time-intensive, require specialized equipment, and are an uncommon skill set. With the advent of 

 next-generation sequencing, there has been a large research effort to determine ploidy from allele 

 frequency distributions  (Margarido and Heckerman,  2015; Augusto Corrêa Dos Santos et al., 2017; Weiß 

 et al., 2018; Ranallo-Benavidez et al., 2020; Soraggi et al., 2022; Sun et al., 2023; Viruel et al., 2023; 

 Gaynor et al., 2024)  . Sequence-based approaches have  also begun to be explored for determining 

 inheritance mode. One approach proposed by Scott et al.  (2023)  compares estimated allelic depth 
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 distributions to those expected under disomic and tetrasomic inheritance, although this approach is 

 sensitive to demography. Other approaches include leveraging divergence among genes duplicated during 

 whole genome duplication to detect windows of disomic or tetrasomic inheritance along the genome 

 (Campbell et al., 2019; Scott et al., 2023)  and the  joint inference of inheritance mode and demography 

 (Blischak et al., 2023; Roux et al., 2023)  or genotypes  (discussed in Section 3.4; Gerard et al., 2018; 

 Clark et al., 2019)  . Sequence-based approaches are  exceptionally promising for determining ploidy and 

 inheritance mode in systems where flow cytometry and FISH are especially difficult or impossible, such 

 as succulents and herbarium samples. 

 In cases where allele dosage cannot be determined because the ploidy and inheritance mode of the 

 reference genotype is unknown, the reference scaffolds could be filtered to only one copy of syntenic 

 scaffolds for read mapping. If the scaffolds can be assigned into subgenomes, such as in an allopolyploid, 

 scaffolds would be filtered within each subgenome. This is a strategy applied in many systems with contig 

 assemblies  (Hellsten et al., 2013; Neale et al., 2022;  Phillips et al., 2023)  . The risk of aligning to only  a 

 subset of scaffolds is that a large proportion of reads may not align and variants could be underdetected. 

 3.4 Current accepted practices for navigating polyploid data with additional biological complexity 

 Existing tools are limited in their ability to incorporate complexity such as mixed ploidy and inheritance 

 mode, but variant calling pipelines have the potential to accommodate this additional axis of diversity in 

 several ways. For datasets with mixed ploidy, the current best practice is to call genotypes separately for 

 each cytotype, if using a joint genotyping approach  (Napier et al., 2022; Bohutínská et al., 2023; De  Luca 

 et al., 2023)  . In cases where the secondary cytotype  is rare or undersampled, it is advisable to exclude the 

 minority cytotypes from the study because variability in downstream analyses attributable to cytotype 

 differences may not be detectable with small sample sizes. If multiple cytotypes are included in the study, 

 it should be noted that polyploid genotypes have inherently different expected variations in allele 

 frequencies which can significantly impact downstream analyses  (Faske, 2023)  . Similarly to 
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 mixed-ploidy analyses, allele dosage should be specified per-site in species with mixed inheritance 

 modes. If the regions of the genome with polysomic inheritance are known, the per-site specification can 

 be accomplished with any polyploid genotype caller, although this has rarely been applied outside of the 

 Salmonids  (Campbell et al., 2019)  . Alternatively,  if polysomic regions are known, sites could be filtered 

 to include only disomic or polysomic regions  (Bourret  et al., 2013)  . In the majority of cases, the rate  of 

 preferential pairing or the regions undergoing polysomic inheritance will be unknown. Here, the genotype 

 calling software Updog  (Gerard et al., 2018)  and polyRAD  (Clark et al., 2019)  may be useful as their 

 approaches determine inheritance mode during genotype estimation. Updog accomplishes this by 

 simultaneously estimating genotypes and the rate of preferential pairing in a population, assuming 

 bivalent pairing only. Comparatively, polyRAD determines inheritance mode by estimating genotypes for 

 all possible user-specified genotypes and then uses a χ  2  statistic to determine the best genotype at  each 

 site. The polyRAD approach is particularly useful as it allows both ploidy and inheritance mode to vary 

 among genotypes. There is no current best practice for mixed inheritance mode among these approaches, 

 but they should be considered as even low rates of polysomic inheritance can affect allele frequencies 

 across subgenomes  (Meirmans and Van Tienderen, 2013)  .  Consequently, careful consideration is required 

 when analyzing populations with biological complexity beyond polyploidy. 

 4. Conclusions 

 Complex polyploid biology may produce errors in read mapping, variant calling, and genotyping. The 

 extent of error often depends on the quality of the reference genome and biological reasons like the age of 

 the polyploidization event, extent of fractionation, divergence between parental genomes, and strength of 

 selection at a given locus. As such, bioinformatic solutions can be selectively applied to resolve sources 

 of error prevalent in a given polyploid system. In Figure 1, I summarize where existing solutions can be 

 integrated into a standard variant calling pipeline. The study of polyploid genomes is a growing field and, 

 as such, there may be additional solutions in active development. 
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 Further improvements to variant calling in polyploids will require focused research in three primary areas: 

 evaluation of variant filters, development of downstream software that incorporates genotype uncertainty, 

 and high-throughput estimation of ploidy and inheritance mode. First, empirical studies evaluating the 

 efficacy of variant filters are needed to understand when their application is appropriate and which 

 thresholds are effective. It is equally as important to set a threshold that excludes low-quality variants 

 while also not over-filtering the data, as variant classes important in downstream analyses may be 

 unintentionally excluded  (Linck and Battey, 2019;  Pearman et al., 2022)  . Second, continued development 

 of population and quantitative genetics software that utilize GLs is needed  (Korneliussen et al., 2014; 

 Grandke et al., 2016; Gerard, 2021b; Shastry et al., 2021; Batista et al., 2022; Rasmussen et al., 2024)  . 

 The adoption of GLs to reduce sequencing costs is likely to be limited until more user-friendly software 

 becomes available. Theory and tools are also lacking for the analysis of mixed-ploidy and 

 mixed-inheritance mode datasets. Third, continued development of methods for high throughput 

 estimation of ploidy and inheritance mode is greatly needed. While there has been substantial 

 development in this area (see Section 3.3), the majority of approaches still necessitate ample ground 

 truthing  (Gaynor et al., 2024)  . 

 Emerging technologies may have the potential to improve variant detection. Long-read sequencing data 

 overcomes many read mapping challenges as the extended read length increases the information available 

 to determine the best alignment  (Chen et al., 2024)  .  Similar to short-read sequencing, long-read 

 sequencing is increasingly cost-effective and accurate  (De Coster et al., 2021; Kim et al., 2024)  . 

 Additionally, pan-genomic approaches, such as haplotype graphs and sequence variation groups, have 

 recently been applied in polyploid systems to detect a diversity of SVs as well as multiallelic sites 

 (Gordon et al., 2020; Bayer et al., 2021; Della Coletta et al., 2021; Lovell et al., 2021; Wang et al., 2022)  . 

 The adoption of the variant calling practices reviewed here, continued investment in the assembly of 

 polyploid reference genomes, and early adoption of novel genomic tools will enhance contemporary 

 population and quantitative genetics studies in polyploids. 
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 Figure 1.  A standard variant calling pipeline (blue) can be adapted for polyploid systems (modifications 

 in green). (A) Before beginning variant calling, raw sequence data may need trimming to remove adapters 

 and low-quality bases. An effort should be made to determine the ploidy and chromosome inheritance 

 mode of the sequenced genotypes, as this information will be incorporated later in the pipeline. Multiple 

 approaches can be used to determine ploidy and inheritance mode depending on the researcher’s skillset. 

 (B) Reads are mapped to the reference genome using an aligner. Binary alignment maps (BAMs) are 

 output from the aligners and processed by adding read groups, removing duplicate reads, and then sorting. 

 Sequencing and alignment quality are assessed so low-quality samples may be identified and removed 

 before variant calling. Samples should be split by ploidy and regions by inheritance mode, if necessary, at 

 this stage. (C) Variants are called (D) and then genotype likelihoods and genotypes are estimated. Variant 

 calling and genotyping are often completed using the same software but can be run separately. Genotype 

 calling can be skipped if genotype likelihoods will be used downstream. A variant call file (VCF) is 

 output if invariant sites are discarded, otherwise the output is a genomic variant call file (GVCF). (E) 

 Variants are filtered first by removing low-quality sites (i.e. hard filtering). Then, variants are filtered to 

 prioritize variants specific to downstream analyses (i.e. soft filtering). A more detailed description of the 

 standard pipeline, including useful polyploid aligners and genotype calling software, is provided in 

 Appendix S1. 
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 Figure 2  . A syntenic block between subgenome A and  subgenome B in an allotetraploid is depicted. This 

 region in subgenome A contains three genes (light gray) while subgenome B (dark gray) contains two. 

 The genes contain one or two segregating sites, with alleles depicted as yellow, pink, and blue. The 

 assembly of subgenome A is incomplete, missing the farthest right gene (dashed line). Reads that should 

 have aligned to the missing gene (red reads) instead may  (I)  align to a homolog in subgenome B resulting 

 in a false heterozygote call,  (II)  map equally to  other homologs within or across subgenomes, or  (III)  fail 

 to align. This figure was created with BioRender.com. 
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 Figure 3.  Read mapping and the called allele dosage  in allo- and autopolyploids differs due to the 

 structure of the reference genome. Reads (gray) are shown aligning the reference genome (black) with 

 alleles for the focal variant in pink or yellow.  (A)  In an allotetraploid with two subgenomes (subgenome 

 K in light gray and subgenome N in dark gray), reads are mapped to one haplotype of each parental 

 subgenome, and diploid genotypes are called.  (B)  In  an autotetraploid with no preferential pairing, all 

 reads are mapped to a single haplotype. Here, reads are aligned to a haplotype carrying the yellow A 

 allele at the focal variant. 
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 Appendix S1 

 A brief overview of variant calling 

 In diploid and polyploid systems, variant calling involves a series of qualitative decisions that depend on 

 the biology of the study system and data quality. A variant calling pipeline, as described here, includes the 

 alignment of reads to the reference genome, variant calling, genotype estimation, and variant filtering. 

 Consideration of ploidy in downstream analyses has been well-reviewed elsewhere  (Dufresne et al., 2014; 

 Meirmans et al., 2018; Ackiss and Balao, 2020; Bohutínská et al., 2023)  .  Here, I aim to provide an 

 overview of a general variant calling pipeline to support discussions of where this pipeline may be 

 improved for polyploid systems. I provide citations for commonly used software where relevant. 

 To begin, reads are mapped to a reference genome using a short-read aligner to generate the sequence 

 alignment maps (SAMs) or binary alignment maps (BAMs). The aligner is selected depending on the read 

 length, sequencing method, and divergence of the sequenced sample from the reference genome  (Altmann 

 et al., 2012; Bąk et al., 2021; Musich et al., 2021)  .  The Burrow-Wheeler aligner (  BWA-MEM  and 

 BWA-MEM2  ) is a highly popular short-read aligner  (Li,  2013; Md et al., 2019)  . Additionally, the best 

 practice is to use a reference genome closely related to your samples of interest, but how closely related 

 your reference genome needs to be to your samples will depend on the divergence between species and 

 amongst populations.  (Günther and Nettelblad, 2019)  .  For example, in a  Zea mays  RNA-seq study, as 

 much as one-half of alleles with increased gene expression were not detected when reads from the inbred 

 line, B73, were mapped to the reference of a second inbred line, Mo17, because  Z. mays  has high 

 nucleotide diversity and structural variation  (Zhan  et al., 2021)  . 

 The SAMs or BAMs are processed to remove duplicate reads and add read groups, which provide an 

 improved evaluation of sequencing and alignment quality but have limited effect on variant detection 

 (Ebbert et al., 2016)  .  SAMtools  (Danecek et al., 2021)  and  GATK  (De Summa et al., 2017; Van der 
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 Auwera and O’Connor, 2020)  provide useful guidelines and pipelines for effectively processing the 

 alignment files. The sequencing and alignment quality should be evaluated for attributes such as mapping 

 quality, the percent of reads mapping, and coverage before variant calling  (Nielsen et al., 2011)  . Although 

 this can be accomplished with custom scripts, software like  Qualimap  provides a user-friendly 

 evaluation of sequence quality  (García-Alcalde et  al., 2012; Okonechnikov et al., 2016)  . If the quality  is 

 poor, reads may need to be trimmed to remove adapters or low-quality bases and re-mapped  (Sewe et al., 

 2022)  .  Trimmomatic  (Sewe et al., 2022)  and  fastp  (Chen  et al., 2018; Chen, 2023)  efficiently detect 

 and trim a wide variety of adaptor sequences. 

 Variants are then identified using a variant caller, which determines whether a particular site in a 

 sequenced sample is different from the reference genome. Many variant callers, such as  GATK  (Van der 

 Auwera and O’Connor, 2020)  , were developed for human  genomes and have been adopted for use with 

 highly repetitive plant genomes. Before genotype calling, sites that are fixed across sequenced samples, 

 known as invariant sites, are often excluded to improve computational efficiency. It should be noted that 

 the inclusion of invariant sites is important for many population and quantitative genetics analyses, such 

 as the estimation of nucleotide diversity and demographic history, and they can be added back into the 

 pipeline after variant calling. Genotypes are subsequently called where the most likely genotype is 

 estimated based on the number of references and alternate reads that are mapped to a given site  (Nielsen 

 et al., 2011)  . 

 The same software is often used for both variant calling and genotyping. Importantly, the genotype caller 

 selected should be able to estimate polyploid genotypes. Polyploid genotype callers have been sufficiently 

 compared and reviewed elsewhere  (Grandke et al., 2016;  Blischak et al., 2018; Gerard et al., 2018; Clark 

 et al., 2019; Cooke et al., 2022)  . Briefly, polyploid  variant and genotype callers that can be applied to 

 whole genome sequence data include  GATK  ,  freebayes  (Garrison  and Marth, 2012)  ,  EBG 
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 (Blischak et al., 2018)  ,  Updog  (Gerard et al., 2018)  ,  polyRAD  (Clark et al., 2019)  , and  Octopus 

 (Cooke et al., 2021)  . Additionally,  GATK  ,  freebayes  ,  and  Octopus  can identify small structural 

 variants under 50 bp  (Cooke et al., 2022)  . Each polyploid  genotype considers different aspects of 

 polyploid biology in their estimation, and as such, researchers should select the caller that fits the biology 

 of their study system the best. For example, Updog considers allele bias (see in Section 3.2) and 

 preferential pairing in genotype estimation, while polyRAD considers per-site variance in inheritance 

 mode (see in Section 3.4)  (Gerard et al., 2018; Clark  et al., 2019)  . Notably, Updog, polyRAD, and 

 Octopus support binomial priors, which are considered ‘informative’ priors because they assume 

 genotypes follow HWE, unlike GATK which usesuniform that assume genotypes have equal probabilities 

 (McKenna et al., 2010; Gerard et al., 2018; Clark et al., 2019; Cooke et al., 2021)  . Additionally, polyRAD 

 offers additional informative priors that consider population structure and mapping populations  (Clark  et 

 al., 2019)  . Genotype callers and priors should be  carefully selected as genotypes will be heavily 

 influenced by the priors at low sequencing coverage  (Clark et al., 2019)  . 

 Finally, variants are filtered to remove sites with false-positive variants and low-confidence genotypes. 

 This is often accomplished using custom scripts,  GATK  ,  VCFtools  (Danecek et al., 2011)  , or several 

 other packages. Variant filtering is often grouped into two parts: ‘hard’ and ‘soft’ filtering  (De Summa  et 

 al., 2017)  . In hard filtering, sites that fail to  pass a set of quality controls are removed to reduce the 

 likelihood of falsely identifying them as polymorphic. The quality controls may include mapping quality, 

 base quality, depth, and strand bias  (defined in Van  der Auwera and O’Connor, 2020)  . Biallelic sites are 

 typically selected when hard filtering, regardless of ploidy, as most empirical and theoretical population 

 and quantitative genetics assume only two alleles  (but see Karlin, 1990; Balding and Nichols, 1995; 

 Ferretti et al., 2018; Broman et al., 2019 for examples of multi-allelic approaches)  . After hard filtering, 

 soft filters are applied to prioritize variants specific to downstream analyses, often ad-hoc. For example, a 
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 minor allele frequency filter is a soft filter often applied to exclude sites with rare variants. Thresholds for 

 hard and soft filtering are user-defined and formal testing of the significance of a given threshold is 

 uncommon. Researchers often derive thresholds from those previously applied within their study system, 

 review articles  (Van der Auwera et al., 2013; Clevenger  et al., 2015)  , or, less commonly, those tested in  an 

 empirical study  (Linck and Battey, 2019; Pearman et  al., 2022)  . Importantly, researchers should take  care 

 not to over-filter their datasets as many population and quantitative genetics analyses can be biased by 

 datasets where particular variant classes were excluded  (Linck and Battey, 2019; Pearman et al., 2022)  . 
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