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Abstract 1 

Urban greenspaces are essential for both human well-being and biodiversity, with their 2 

importance continually growing in the face of increasing urbanization. The dual role of these 3 

spaces raises questions about how their planning and management can best serve the diverse 4 

needs of both people and biodiversity. Our goal was to quantify the synergies and tradeoffs 5 

between human utility and biodiversity benefits in urban greenspaces. Through a detailed 6 

inventory, we mapped 639 urban greenspaces throughout Broward County, Florida — one of the 7 

most populous counties in the United States. We identified and categorized various physical 8 

attributes (N=8 in total), including playgrounds, athletic facilities, and picnic areas and derived a 9 

‘human utility index’. Concurrently, we assessed biodiversity by estimating species richness 10 

within an urban greenspace. We found little relationship between our human utility index and 11 

biodiversity. More specifically, when the index was broken down to its parts, we found a positive 12 

correlation between some attributes such as playgrounds, bodies of water, nature preserves, and 13 

dog parks with biodiversity, indicating potential synergies rather than tradeoffs. This alignment 14 

between our human utility index and biodiversity suggests that urban parks can effectively serve 15 

multiple values without necessarily sacrificing one for the other. Both the human utility index 16 

and biodiversity correlate with greenspace size, emphasizing the significance of larger 17 

greenspaces in accommodating diverse values. Our results offer insights for optimizing planning 18 

and management of urban greenspaces to simultaneously benefit local communities and 19 

ecosystems, highlighting the potential for harmonizing human and biodiversity needs to foster 20 

sustainable cities.  21 

 22 
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1. Introduction 1 

Rapid growth in urbanization (United Nations, 2018; Trivedi, Sareen, & Dhyani, 2008) has 2 

transformed cities worldwide. This rapid urban expansion reshapes the daily lives of people 3 

living within cities as well as how ecosystems, and associated biodiversity, operate within urban 4 

areas. One component of cities that is critical to both humans and biodiversity are urban 5 

greenspaces. Urban greenspaces (i.e., broadly defined as open-space areas within cities for parks 6 

and recreational purposes) play a pivotal role in urban environments due to their role in 7 

providing essential habitats to various forms of life and sustaining vital urban ecosystem services 8 

(Li et al., 2019; Tzoulas et al., 2007). Urban greenspaces can provide substantial ecosystem 9 

services, encompassing air and water purification, climate regulation, carbon sequestration, 10 

landscape aesthetics and recreational benefits, and supporting biodiversity (Aronson et al., 2017; 11 

Mexia et al., 2018). Understanding how urbanization influences greenspace availability, 12 

structure, and function is key to ensuring that cities can meet the needs of both humans and 13 

biodiversity. 14 

 15 

Biodiversity in urban greenspaces is essential for maintaining healthy ecosystems and supporting 16 

ecosystem services such as pollination, pest control, and climate regulation (Aronson et al., 17 

2017). High levels of biodiversity enhance the resilience of urban ecosystems, allowing them to 18 

better withstand environmental stressors (Beninde et al., 2015). Furthermore, biodiversity-rich 19 

greenspaces provide opportunities for people to connect with nature, which can have profound 20 

effects on physical and mental health (Veen et al., 2020). To promote such benefits, strategies 21 

developed in the context of supporting biodiversity in urban greenspaces include increasing tree 22 

canopy with native species (Shackleton et al., 2015), expanding greenspaces near one another to 23 



increase connectivity (Beninde et al., 2015), and restoring habitats where diverse species can 24 

thrive (Blaustein, 2013). Human preference for the planning of greenspaces has shown to be 25 

driven by their ability to maximize health benefits (Veen et al., 2020). Preferences for attributes 26 

in greenspaces include experiencing and interacting with nature (Lafrenz, 2022), athletic and 27 

sport facilities (Mahmoudi Farahani & Maller, 2018), and play zones (Almanza et al., 2012). 28 

Beyond recreation and health, urban greenspaces also provide utilitarian benefits such as urban 29 

foraging (Adeyemi and Shackleton 2023) or other cultural ecosystem services (Sultana and 30 

Selim 2021), both of which are related to anthropogenic uses. As a result, common greenspace 31 

management techniques are not always strategically and explicitly aimed at enhancing 32 

biodiversity. Standard management procedures, such as turf grass lawns, pesticide and herbicide 33 

usage, and the introduction of non-native plant species, could minimize the potential of urban 34 

biodiversity (Aronson et al., 2017). 35 

 36 

Biodiversity benefits and human utility represent the functions of urban greenspace that could 37 

potentially lie at opposite ends of the social-ecological spectrum. The design and planning of 38 

urban greenspaces differ based on human preferences for how users interact with, and perceive, a 39 

greenspace (Mahmoudi Farahani & Maller, 2018). In some instances, a greenspace can be 40 

designed with ‘biodiversity benefits’ in mind, for example, a greenspace can be created and 41 

designed to duplicate a natural system (e.g., a nature preserve). In contrast, an urban greenspace 42 

can be designed with ‘human benefits’ in mind, and organized primarily to serve human 43 

activities (e.g., athletic facilities, playgrounds, walking paths), driven primarily by utilitarian 44 

benefits (Lafrenz, 2022; Veen et al., 2020).  45 

 46 



Depending on the focus of the planning for urban greenspaces, there can be contrasting benefits 47 

for biodiversity and humans, leading to potential tradeoffs with urban greenspaces impacting 48 

biodiversity and human utility separately (Brown & Grant 2005; Sadler et al. 2010; Belaire et al. 49 

2022). As an example, light installations might be installed for safety purposes after dark which 50 

can benefit human safety; but also lead to light pollution, negatively impacting biodiversity such 51 

as nocturnal insects, birds, and bats (Eisenbeis et al., 2009; Stone et al., 2015; Lao et al. 2020). 52 

Or, frequent mowing might be conducted to meet human aesthetic preferences but this can have 53 

negative impacts on native pollinator diversity (Proske, Lokatis, & Rolff, 2022). Contrarily, park 54 

visitation is influenced by a desire to visit nature, and while biodiversity is not often directly 55 

considered by park visitors, it is a secondary benefit that visitors derive from their visit to urban 56 

parks (Taylor et al., 2020; Raymond et al., 2017). While some studies explore these contrasting 57 

objectives (Semeraro et al. 2021; Belaire et al. 2022), many have yet to comprehensively 58 

integrate both biodiversity and human utility in one study (Proske et al., 2022; Song et al., 2022). 59 

Rather, existing research which assesses urban greenspaces tends to focus on biodiversity and 60 

human utility in isolation, without adequately addressing how greenspaces may be managed to 61 

support both biodiversity and human utility simultaneously (Taylor & Hochuli, 2017). This 62 

division has led to gaps in our understanding of how design strategies can harmonize both goals. 63 

There is still a gap in empirical research investigating how specific greenspace attributes impact 64 

biodiversity and human use in one framework, particularly in urbanized subtropical cities, where 65 

biodiversity faces unique pressures over the past decades (Crouzeilles et al., 2021; Lee et al., 66 

2021).  67 

 68 



Data to produce a comprehensive understanding of biodiversity and human utility among urban 69 

greenspaces from traditional fieldwork-intensive methods can be difficult to scale up, posing a 70 

challenge to an empirical understanding of the human-biodiversity dynamic in urban 71 

greenspaces. Leveraging big data platforms, such as iNaturalist, can expedite the collection of 72 

ecological data, providing biodiversity data and offering a scalable solution for understanding 73 

biodiversity patterns on a broader scale (Callaghan et al., 2021a). Further, this dataset provides 74 

insight into how people interact with biodiversity. Human utility—the overall usefulness of a 75 

greenspace for humans—encompasses various functions of greenspaces, including recreational 76 

opportunities, social interaction spaces, aesthetic enjoyment, and ecosystem services that 77 

contribute to human well-being (McLain et al., 2012; Shackleton et al., 2015). Visitor facilities 78 

significantly influence visitation levels (Grilli et al., 2020), which is why the overall usefulness 79 

of an urban greenspace for humans can be directly and indirectly correlated with the presence of 80 

specific physical attributes within greenspaces (Chuang et al. 2022). This is evidenced by 81 

previous frameworks that categorize greenspace usage into utilitarian, recreational, sport, and 82 

play functions (Tzoulas & James, 2010; Ives et al., 2017; see Methods). Additionally, 83 

incorporating the physical attributes of a greenspace can provide an understanding of how 84 

greenspace attributes can influence biodiversity. 85 

 86 

We perform a large-scale assessment which examines the relationship between human utility and 87 

biodiversity across over 600 urban greenspaces within a subtropical system. This large dataset, 88 

made possible by citizen science, allows for a comprehensive comparison of how human utility, 89 

defined as the sum of eight identified physical attributes, correlates with biodiversity across 90 

diverse urban greenspaces. Our overall objective was to investigate the synergies and tradeoffs 91 



between human utility and biodiversity among urban greenspaces. Specifically, we first 92 

quantified the distribution of human utility within these greenspaces, and then assessed how it 93 

relates to biodiversity and how both attributes relate to greenspace size. Our study addresses key 94 

gaps in the literature by focusing on both biodiversity and human utility simultaneously. This 95 

research provides an empirical framework to optimize urban greenspaces for both biodiversity 96 

conservation and human well-being.  97 

 98 

2. Methods 99 

2.1. Study Area 100 

Our research was conducted throughout Broward County, Florida, United States. Broward 101 

County is Florida’s second most populated county and ranked among the top 20 largest counties 102 

in the U.S. with roughly 1.9 million residents (U.S. Census Bureau, 2021). The majority of 103 

Broward County’s expanse is the Everglades Wildlife Management Area that extends to the 104 

western border, but with a sharp demarcation that delineates the urban boundary within the 105 

county which is represented by a mostly developed land cover (Fig. 1; Volk et al., 2017). The 106 

county encompasses a total area of 342,655 hectares, with 8.5% of the total area consisting of 107 

water. Broward county contains 31 municipalities, with urbanized areas occupying 110,799 108 

hectares of land (U.S. Census Bureau, 2021). The Broward County Parks and Recreation 109 

division consists of nearly 2,630 hectares of land (Broward County Parks and Recreation, 2023). 110 

Our selection of Broward County was based on the following reasons: (1) its representation of 111 

highly urbanized landscapes (Volk et al., 2017); (2) where urban greenspaces are much needed 112 

but also face threats from ongoing development (Volk et al., 2017); and (3) it represents a 113 



subtropical and tropical urban system that remain less understood in the literature but has the 114 

potential to harbor substantial levels of urban biodiversity.  115 

 116 

2.2. Defining and delineating urban greenspaces 117 

In this study, our focus was on defining urban greenspace predominantly in the context of urban 118 

parks and similar green areas within urbanized regions. Urban greenspace refers to green zones 119 

predominantly surrounded by urban development, distinct from contiguous natural vegetation, 120 

and generally accessible to the public (Taylor & Hochuli, 2017). These spaces exhibit qualitative 121 

disparities from adjoining green areas, emphasizing their unique character within an urban 122 

landscape. We adapted the definition by Callaghan et. al (2020) of urban spaces as ‘managed and 123 

designated’ parks or recreational spaces accessible to the community that are adjacent to built-up 124 

landcover. A key guiding principle in our definition was that a given urban greenspace had a 125 

high likelihood of being a contingent management unit, therefore neglecting vacant lots and 126 

other similar types of green areas that are less likely to have management interventions. 127 

 128 

Based on the above definition, we stratified our delineation of urban greenspaces throughout 129 

Broward County by municipality. Broward County consists of 31 municipalities, however, two 130 

of them (Village of Lazy Lake and Village of Sea Ranch Lakes) did not contain any greenspaces 131 

based on the definition we are using in this study (see Table A.1. for a full table of greenspaces 132 

per municipality). To map urban greenspaces, each municipality’s official Parks and Recreation 133 

website was reviewed to compile a list of urban parks and greenspaces. OpenStreet maps and 134 

Google Maps were used to create, verify, and delineate the boundaries of each identified 135 

greenspaces, individually in GEOJSON format. OpenStreet maps was utilized for their open 136 



source, user contributed, up-to-date geographic information, which allowed for precise 137 

identification and mapping of greenspaces, and was accessed through geojson.io. Additionally, 138 

Broward County managed parks were mapped separately as its own municipality, rather than 139 

incorporating them into their respective municipality based on location. Exclusions were made 140 

for types of parks that did not qualify as a greenspace for the purpose of this study, such as 141 

marinas or small beach areas (N = 40), standalone indoor recreation centers (N = 5), and 142 

greenways (i.e., long contiguous strips of vegetation; N = 8). We also excluded cemeteries (N = 143 

15) and golf courses (N = 40) due to their infrequency, specificity, and lack of range in human 144 

utility characteristics. Finally, we excluded large wildlife management areas that are not 145 

surround by built area such as Everglades and Francis S. Taylor Wildlife Management Area and 146 

the Everglades Wildlife Management Area. In total, 749 greenspaces were identified, of which 147 

110 were excluded based on the aforementioned criteria, resulting in 639 urban greenspaces that 148 

were mapped and included in our final analyses (Fig. 1). All geographical analyses used the 149 

World Geodetic System 1984 (WGS 84) datum.  150 

 151 

2.3. Quantifying physical attributes of urban greenspaces and a human utility index 152 

The characteristics of greenspaces used in this analysis were adapted from prior studies that 153 

investigate the human perception of value in a greenspace that groups greenspace usage into four 154 

broad categories: utilitarian, recreation, sport, and play (Tzoulas & James, 2010). Ives et al. 155 

(2017) created a final typology of values including nature, activity/physical exercise, and social 156 

interaction. Building upon these conceptual frameworks, we generated and defined a list of eight 157 

distinct physical attributes that represent common forms of human utility (see Table 1). These 158 

attributes were chosen to balance ease of annotation and generalizability to be relatively 159 



employable throughout all urban greenspaces, following some exploratory analyses of 160 

individually searching each urban greenspace for different types of physical attributes. For 161 

example, while some urban greenspaces have additional types of characteristics that can serve 162 

human utility (e.g., disc golf course), these were excluded because they do not broadly represent 163 

multiple human utilities of urban greenspaces based on our literature review and were often 164 

uncommon, only appearing in a handful of urban greenspaces during our preliminary scoping 165 

analyses. The primary author, with input from co-authors, determined the presence or absence of 166 

each type of physical human attribute per individual greenspace (i.e., binary annotation). We 167 

chose this methodology based on previous research, which found that the presence of human 168 

utility attributes, such as number of trees, playgrounds, and other facilities, influence people's 169 

preferences for urban parks (Vliet et al., 2021). To assign the presence or absence of each type, 170 

the primary author used a combination of aerial imagery, content from Google Reviews accessed 171 

through the internet, and the municipality’s parks and recreation website as sources to gather the 172 

data. Table 1 provides a detailed overview of each characteristic and their corresponding 173 

definition. After we annotated each urban greenspace with the physical attributes, we calculated 174 

a human utility attribute index. Hereafter, referred to as “human utility.” To do this, we counted 175 

the number of physical attributes for each greenspace and scaled the count between 0 to 1 using 176 

the “rescale” function in the R package Scales (Wickham & Seidel, 2022). We found this data to 177 

be normally distributed. This rescaling process provided a relative index of potential human use 178 

based on features present to compare among greenspaces and to biodiversity (see next section). 179 

 180 

2.4. Estimating biodiversity 181 



To quantify the use of greenspaces for biodiversity benefits, we calculated a standardized species 182 

richness value for each greenspace that served as a proxy for biodiversity. To obtain a measure 183 

of biodiversity, we used citizen science data from the platform iNaturalist (www.inaturalist.org), 184 

an online social network for sharing observations of organisms and obtaining crowdsourced 185 

species identifications (Callaghan et al., 2022). In Broward County alone, there are 186 

approximately 140,000 observations from more than 9,000 users on iNaturalist (iNaturalist, 187 

2023), indicating the potential robustness of available data to quantify biodiversity. Citizen 188 

science data are prevalent in urban areas, even more so than professionally collected biodiversity 189 

data, making this data source ideal for quantifying biodiversity in urban greenspaces (Li et al., 190 

2019). We downloaded all iNaturalist data from Broward County, Florida, United States directly 191 

from the iNaturalist website so we could obtain all non-research grade and research grade 192 

observations (i.e., observations with two thirds agreement on species identification) to increase 193 

the sample size of the dataset (iNaturalist Community, 2023). While the inclusion of non-194 

research grade observations may introduce falsely identified species, Hochmair et al. (2020) 195 

found that the use of non-research grade observations can successfully be used to map species 196 

presence. Additionally, our focus was not on the absolute species richness value (i.e., how many 197 

species per urban greenspace), but rather a relative measure of user submitted biodiversity across 198 

different urban greenspaces. However, we did remove observations of captive organisms, which 199 

are occasionally shared with iNaturalist for casual documentation but are not appropriate for 200 

biodiversity calculation. We did not account for native versus non-native species because of the 201 

diverse public perceptions of non-native species and native pest species (Van Eeden et al., 2020). 202 

Because our measure of biodiversity is taxon agnostic, we do not present on the raw species 203 

richness values, but the data downloaded are available in our data repository accompanying the 204 

http://www.inaturalist.org/


paper (see below). Additionally, in Appendix A, we present a table (Table A.2.) summarizing the 205 

number of observations by taxon group and listing the top five species within each taxon group, 206 

along with their observation counts. 207 

 208 

To predict a relative value of species richness across all greenspaces, we first obtained habitat 209 

data for all greenspaces. The habitat variables were obtained from raster data on percentage of 210 

tree cover (DiMinceli et al. 2017), non-tree vegetation (DiMinceli et al., 2017), water (Global 211 

Inland Water, 2015), and impervious surface coverage (Dewitz and US. Geological Survey, 212 

2021), accessed from within the Google Earth Engine Data Catalog. From the raster files, we 213 

calculated average percentage of tree cover per 250 m2 (resolution of raster), average percentage 214 

of non-tree vegetation cover per 250 m2 (resolution of raster), the percentage of area that 215 

contained water (at 30 m resolution), and average percentage of impervious surface cover per 30 216 

m2 (minimum resolution of raster). 217 

 218 

To understand the relationship between species richness and our predictor variables, we used a 219 

random forest analysis to model species richness in greenspaces with iNaturalist data using the 220 

randomForest R package (Liaw & Wiener, 2002). The model included log10 transformed species 221 

richness (number of observed species) as the response variable and number of iNaturalist 222 

observations, number of iNaturalist users, average percentage of tree cover (%), water cover area 223 

(%), average percentage of impervious surface (%), and average percentage of non-tree 224 

vegetation cover (%) as the predictor variables. To test the predictive ability of the random forest 225 

analysis from our dataset, we created a model from a training dataset (80% of data) and used it to 226 

calculate species richness values from a test dataset (20% of the data). We found a linear 227 

association between the predicted richness and observed richness in the test dataset (R2 = 0.99), 228 



meaning the random forest model is reliable for predicting richness. Next, we ran the random 229 

forest model for the entire dataset, and found this model explained 96.39% of variance in the 230 

data. 231 

 232 

To make species richness comparable across greenspaces, we chose a constant value for number 233 

of observations and used this to predict species richness for each park. We chose a constant value 234 

of 1,000 to allow for trends in the data, and subsequently scaled the number of observers 235 

(number of observers * (1000/number of observations)) based on this value. The other predictor 236 

variables are percentage of habitat coverage for each park, so these values were not scaled. From 237 

this new dataset, we used the predict function in the randomForest package (Liaw & Wiener, 238 

2002) to predict species richness for the scaled values based on the previously calculated random 239 

forest model.  240 

 241 

Finally, to calculate species richness values for greenspaces with no iNaturalist data (N=355), we 242 

used a random forest imputation algorithm from the R package missForest (Stekhoven, 2022). 243 

For the greenspaces with missing iNaturalist data, we set the total number of observations to 244 

1,000. We combined the data with the predicted species richness, scaled covariates, and habitat 245 

variables dataset calculated previously, and ran the random forest imputation to fill in missing 246 

values. To test the predictive ability of this analysis, we conducted a leave-one-out cross 247 

validation analysis and found a linear association between predicted and observed values (R2 = 248 

0.93), meaning this method is valid for predicting species richness. We additionally compared 249 

the relationship of the imputed richness values to the richness values calculated from the real 250 

data, and found that the imputed values align well with trends in the real data (Fig. A.1) 251 



signifying that our predictions were within bounds of the training data. Lastly, we scaled the 252 

predicted bio-use to values between 0 to 1 using the “rescale” function in the R package Scales 253 

(Wickham & Seidel, 2022) to get a relative measure of biodiversity that is comparable to the 254 

human utility attribute index. Because imputation requires a solid understanding of the 255 

ecological system (Bowler et al. 2024) and becomes less reliable with larger data gaps, we tested 256 

four alternative approaches for calculating biodiversity and how these varying measures 257 

influenced our overall understanding of the relationship between biodiversity and the human 258 

utility index. These included different methods for estimation, as well as different sample sizes 259 

for urban greenspaces, including no imputation at all. The full methods and results from the 260 

comparison of these methods to the imputation method detailed in this paper are presented in 261 

Appendix B. Because we found that our random forest model captured 93% of the variation in 262 

species richness, and to retain all the information on human utility values in the analyses 263 

involving biodiversity, we chose to use random forest models to scale the data and impute 264 

missing values, as described in detail above.  265 

 266 

2.5. Statistical analyses 267 

We first empirically summarized the correlations between human utility by calculating 268 

correlation coefficients and visualizing the data as a correlogram using the “corrplot” function in 269 

R package corrplot (Wei & Simko, 2021). From the correlation matrix, we report the degree of 270 

correlation (r), and the lower and upper 95% confidence interval (CI). To quantify the 271 

relationships between human utility and biodiversity we first ran a linear model using the “lm” 272 

function in R. This model included scaled biodiversity as the response variable and scaled human 273 

utility as a predictor variable. In addition, because greenspace size was positively correlated with 274 



human utility and biodiversity (Fig. A.2), we also included log10-transformed greenspace size 275 

(m2), due to the positively skewed distribution, as a predictor variable. We ran three models, one 276 

with human utility and greenspace area as the predictor variables, one with just human utility as 277 

the predictor variable, and one with just greenspace area as the predictor variable. We did this to 278 

account for all combinations of variables and compared models using the Akaike Information 279 

Criterion (AIC). To assess whether specific physical attributes (i.e., Table 1) were related to 280 

biodiversity, we used a linear model with biodiversity as the response variable and a binary 281 

categorical variable for each of the eight physical attributes and log10-transformed greenspace 282 

size (m2) as the predictor variables. For all models (N=8), we examined the relationship between 283 

residuals and fitted values and the QQ plot to ensure model assumptions were met.  284 

 285 

2.6. Data analysis and availability 286 

Unless otherwise stated, all analyses were conducted in R statistical software (R Core Team, 287 

2023). We report statistical significance following the convention suggested by Muff et al. 288 

(2022), where p-values between 0.1 – 1 indicate little or no evidence, 0.05 – 0.1 indicate weak 289 

evidence, 0.01 – 0.05 indicate moderate evidence, 0.001 – 0.01 indicate strong evidence, and less 290 

than 0.001 indicate very strong evidence of a relationship between variables of interest. Data 291 

from iNaturalist are openly available (see inaturalist.org), but summarized versions as well as our 292 

data on human utility attributes are available at this GitHub repository 293 

(https://github.com/coreytcallaghan/greenspaces_broward) and will be archived in Zenodo 294 

following acceptance. We additionally share a supplementary table containing the greenspace 295 

area, number of iNaturalist observations, number of iNaturalist users, biodiversity value, and 296 

human utility index values for every park.  297 



 298 

3. Results 299 

We analyzed 639 greenspaces in Broward County with an average size of 8.0 ha (range = 0.03 to 300 

376 ha; Fig. 1). On average, there were about 22 greenspaces included per municipality. The 301 

number of physical attributes in urban greenspaces is approximately normally distributed (Fig. 302 

2a), with the median number of 3 attributes per urban greenspace, few having 1 physical attribute 303 

and few having 7 (the maximum observed). The most frequent physical attributes were 304 

pavilion/picnic area (23.08%), followed by kid’s playground (21.72%), jogging/walking path 305 

(18.50%), athletic facility (16.06%), indoor/outdoor fitness center (6.67%), body of water 306 

(8.48%), dog park (2.94%), and nature preserve (2.54%) as illustrated by Fig. 2b.  307 

 308 

When assessing the relationships between physical attributes in urban greenspaces we found a 309 

mix of positive and negative associations (Fig. A.3). The strongest positive pairs with a strong 310 

correlation (p < 0.001) include pavilion/picnic area and kid’s playground (r = 0.36, CI = 0.29 – 311 

0.42), kid’s playground and athletic facility (r = 0.44, CI = 0.37 – 0.50). There was a strong 312 

correlation (p < 0.001) between nature preserve and body of water (r = 0.09, CI = 0.02 – 0.17); 313 

pavilion/picnic area and body of water (r = 0.12, CI = 0.05 – 0.20); athletic facility and 314 

pavilion/picnic area (r = 0.21, CI = 0.14 – 0.29); jog/walk path and body of water (r = 0.21, CI = 315 

0.14 – 0.29), nature preserve (r = 0.17, CI = 0.09 – 0.25), and pavilion/picnic area (r = 0.22, CI = 316 

0.14 – 0.29); and indoor/outdoor fitness center and pavilion/picnic area (r = 0.15, CI = 0.07 – 317 

0.22), kid’s playground (r = 0.21, CI = 0.13 – 0.28), athletic facility (r = 0.22, CI = 0.15 – 0.30), 318 

dog park (r = 0.11, CI = 0.03 – 0.19), and jog/walk path (r = 0.25, CI = 0.17 – 0.32). There is a 319 

near neutral trend between nature preserve and picnic area (p < 0.001, r = 0.02, CI = -0.06 – 320 



0.09), and near neutral trend between dog park and pavilion/picnic area (p = 0.041, r = 0.08, CI = 321 

0.00 – 0.16). Conversely, strong evidence (p < 0.001) points to a negative correlation between 322 

kid’s playground and body of water (r = -0.14, CI = -0.21 – -0.06), kid’s playground and nature 323 

preserve (r = -0.21, CI = -0.29 – -0.14), athletic facility and body of water (r = -0.14, CI = -0.21 – 324 

-0.06), and athletic facility and nature preserve (r = -0.18, CI = -0.26 – -0.11).  325 

 326 

3.1. Association between human utility attributes and biodiversity 327 

We found very strong evidence of a positive, logarithmic relationship between biodiversity and 328 

greenspace size (β = 0.048, SE = 0.004, p < 0.001) and human utility and greenspace size (β = 329 

0.076, SE = 0.005, p < 0.001; Table 2; Fig. A.2.). However, at the aggregated level, we found no 330 

evidence of a relationship between biodiversity and human utility (β = -0.018, SE = 0.030, p = 331 

0.546; Table 2; Fig. 3). Our linear model with just greenspace size as the predictor variable 332 

performed slightly better than the full model (ΔAIC = 1.633). When we modeled biodiversity in 333 

relation to human utility and greenspace area using the four alternative methods of calculating 334 

biodiversity, we consistently observed the same trends (Appendix B). 335 

 336 

However, for the different physical attributes, we did find significant relationships between 337 

certain physical attributes and biodiversity (Table 2; Fig. 4). There was moderate evidence of a 338 

positive relationship between body of water (β = 0.034, SE = 0.012, p = 0.07) and biodiversity; 339 

strong evidence of a positive relationship between the presence of kid’s playground (β = 0.035, 340 

SE = 0.012, p = 0.004) and biodiversity; and very strong evidence of a positive relationship 341 

between presence nature preserve (β = 0.168, SE = 0.024, p < 0.001) and biodiversity. 342 

Additionally, we found moderate evidence of a negative relationship between pavilion/picnic 343 



area (β = -0.021, SE = 0.011, p = 0.065) and biodiversity, and very strong evidence of a negative 344 

relationship between presence of an athletic facility (β = -0.069, SE = 0.012, p < 0.001) and 345 

biodiversity. We found little to no evidence of a relationship between the presence of jog/walk 346 

path (β = 0.011, SE = 0.011, p = 0.325) and indoor/outdoor fitness center (β = -0.013, SE = 347 

0.014, p = 0.326) and biodiversity. The trends were consistent across different methods of 348 

calculating biodiversity (Appendix B). 349 

 350 

4. Discussion 351 

By mapping more than 600 urban greenspaces and quantifying human utility attributes we found 352 

that our human utility index is approximately normally distributed among greenspaces and that 353 

there was no evidence of tradeoffs in overall human utility and biodiversity benefits at the 354 

aggregated level. Our findings suggest that there are notable synergies between certain physical 355 

attributes and biodiversity in urban greenspaces, illustrating the potential of urban greenspaces to 356 

be designed and managed to simultaneously benefit both human populations and local 357 

biodiversity (Connop et al., 2016; van Leeuwen et al., 2010). The positive associations between 358 

certain physical attributes — such as kid’s playgrounds, dog parks, bodies of water, and nature 359 

preserves — and biodiversity underscore the potential of thoughtful urban greenspace design 360 

(Daniels et al., 2018) to foster biodiversity alongside recreational and social activities. 361 

 362 

The absence of a direct tradeoff between human utility attributes and biodiversity in our analysis 363 

challenges a commonly held assumption that urban development inevitably leads to minimizing 364 

ecological integrity (Balfors et al., 2016). Potential benefits derived from urban greenspaces for 365 

human populations does not necessarily conflict with the maintenance of biodiversity, supporting 366 



previous work by Engemann et al. (2024) who found that residents use greenspaces and benefit 367 

from greenspaces which have high biodiversity value. Our results suggest that with careful 368 

planning and consideration of ecological principles, urban greenspaces can be optimized to serve 369 

dual purposes effectively, specifically supporting ecosystem services from a multifunctionality 370 

perspective (Semeraro et al. 2021). This outcome is particularly relevant in the context of rapid 371 

urbanization and the increasing need for spaces that support human well-being while preserving 372 

and enhancing urban biodiversity (Tzoulas et al., 2007). However, overall greenspace size 373 

appears to be an important factor in urban greenspace utility, positively influencing both human 374 

utility attributes and biodiversity. This phenomenon makes sense as larger greenspaces 375 

accommodate a larger range of human activities and provide more varied habitats for 376 

biodiversity (Callaghan et al., 2018), backing the idea that size matters in optimizing the 377 

multifunctionality potential of urban greenspaces. This result contrasts with others who have 378 

found that the marginal value per hectare of urban greenspace decreases with increasing size of 379 

the urban greenspace (Roberts et al. 2022b). One thing we did not account for is the number of 380 

visitors that are attracted to an urban greenspace — another potential measure of human utility 381 

that could be explored in future work (e.g., Taylor et al. 2020). 382 

 383 

From an urban planning perspective, our findings highlight the importance of considering 384 

multiple benefits derived from both humans and biodiversity, challenging the division between 385 

prioritizing human utility or biodiversity solely. Our results extend the literature of 386 

understanding the contributions of biodiversity to ecosystem services (Haines-Young & 387 

Potschin, 2010; Le Provost et al., 2023; Mitchell et al., 2024) to the potential use and benefits of 388 

urban greenspaces to humans’ welfare. For instance, the specific design and management of 389 



greenspaces — such as the maintenance of native plant species, the provision of water features, 390 

and the limitation of light pollution — are critical factors that can encourage park visitation and 391 

influence the biodiversity of these areas (Song et al., 2022; Threlfall et al., 2017). Further, active 392 

facilitation of community stewardship to improve visitor interactions with nature can further 393 

increase the biodiversity of greenspaces (Garrad, 2017). Additionally, although dog parks, kid’s 394 

playgrounds, and pavilion/picnic area cater more towards ‘human benefit,’ we found that they 395 

also are associated with higher biodiversity. This relationship is likely due to these features 396 

encouraging park visitation and use of other features, such as walking trails, which are valued by 397 

both dog owners and children (Lee, Shepley, & Huang, 2009; Song et al., 2022; Veitch et al., 398 

2020). Contrarily, fitness centers do not tend to significantly increase or decrease biodiversity 399 

likely due to their limited impact on long-term park visitation (Song et al., 2022). Pavilion and 400 

picnic areas and athletic facilities, which significantly decrease biodiversity, are primarily 401 

designed for structured human activities, and often if in a large greenspace do not occupy a large 402 

area, and if in a small greenspace might occupy a significant proportion of the greenspace. As 403 

such, they are unlikely to offer sufficient habitat or resources to support biodiversity.  404 

 405 

4.1 Limitations and future research directions 406 

Our analysis illustrates the importance of integrating biodiversity and human utility, but 407 

nevertheless takes a macroecological scale approach, looking across many urban greenspaces at 408 

once. While we performed a comprehensive search of all urban greenspaces throughout Broward 409 

County, it is possible that not every urban greenspace is included as some gated communities, for 410 

example, have privately managed greenspaces, or municipality websites could be out-of-date. 411 

Additionally, we did not examine the extent of physical attributes in each park, which could 412 



provide more insight into potential human utility. Nevertheless, our methodologies, specifically 413 

the use of big data platforms like iNaturalist for biodiversity analysis, provide a scalable solution 414 

to understand urban biodiversity patterns.  415 

 416 

The iNaturalist data has been widely used to calculate species richness across a range of spatial 417 

scales (e.g., Roberts et al. 2022a; Zhu and Newman 2025), and here in this study allowed us to 418 

analyze a large sample of greenspaces. However, there are some potential biases in this data that 419 

worth mentioning. Namely, observations require photo or audio evidence of an organism, 420 

making large bodied and less mobile organisms more likely to be captured on iNaturalist 421 

(Callaghan et al., 2021b). We focused on species richness as a proxy for biodiversity, and it is 422 

important to acknowledge that species richness alone does not fully capture the complexity of 423 

biodiversity. For example, we considered all non-native and native species as equal due to the 424 

diverse values that people hold for these species (Van Eeden et al., 2013).  Future studies could 425 

incorporate metrics such as functional or phylogenetic diversity to help distinguish areas with 426 

high ecological value from those that may simply support many species, many of which could be 427 

generalists or non-native. Additionally, many greenspaces included in this study lacked 428 

iNaturalist data, which we addressed by imputing missing values (Bowler et al. 2024). However, 429 

collecting additional data from these greenspaces would help improve model certainty. 430 

 431 

Our work focused on publicly accessible urban greenspaces, which could lead to a bias of human 432 

activity in urban greenspaces where biodiversity tends to be more frequently observed. Although 433 

physical attributes have a strong influence on greenspace visitation levels (Grilli et al., 2020), we 434 

recommend future studies could use in situ counts of visitors using various attributes at each 435 



greenspace to directly assess human utility and disentangle potential confounding bias between 436 

where humans are more likely to frequent. While this study provides valuable insights into the 437 

relationship between human utility and biodiversity, it is focused on a specific region—Broward 438 

County, Florida. While this region represents the populous and rapidly urbanizing coastal 439 

metropolitans, this regional focus may limit the generalizability of our findings to other 440 

subtropical or tropical cities with different ecological and urban planning contexts. Indeed, others 441 

have found that the relationship between ecosystem services and green infrastructure are variable 442 

and highly context-dependent (Zhang et al. 2024). However, our inclusion of over 600 urban 443 

greenspaces represents a significant advantage over previous studies, allowing for a robust 444 

analysis of these relationships at a large scale. Future research should conduct cross-regional 445 

comparisons to determine whether similar synergies between human utility and biodiversity are 446 

observed across varied socio-ecological conditions. 447 

 448 

Big data and AI can be leveraged to obtain human utility data on a larger scale to provide further 449 

information on the human experience of greenspaces through online reviews and aerial imagery. 450 

Future research should explore incorporating other big data platforms for a more refined 451 

understanding of human utility, incorporating online reviews, social media, and citizen 452 

engagement for broader and more nuanced insights of the human and biodiversity dynamics 453 

(e.g., actual human uses of greenspaces). This methodology contrasts with the laborious task of 454 

searching through each individual urban greenspace manually to annotate physical attributes (see 455 

Methods). We also did not assess individual management actions, for example, our approach 456 

estimates biodiversity from a holistic perspective. However, within an urban greenspace, 457 

management actions can have a significant influence (positively or negatively) on biodiversity, 458 



either for individual taxa or at aggregated levels, as well as on extent to which greenspaces can 459 

better serve human needs and utilities (Threlfall et al., 2017). And further from this, staff, 460 

funding levels, and the population that an urban greenspace serves could all be informative 461 

avenues to explore in future work. Understanding the effects of scale and urban greenspace 462 

management (Borgström et al., 2006), for example how actions within one urban greenspace 463 

correlate and correspond with actions among all urban greenspaces, remains an important avenue 464 

for future research. 465 

 466 

5. Conclusions 467 

While there are many calls to integrate urban biodiversity and human use within urban planning 468 

(e.g., Sadler et al., 2010), we have provided empirical data showing that indeed, there is a lack of 469 

evidence of inherent tradeoffs between biodiversity and human utility attributes. Our results also 470 

illustrated multiple synergies between urban biodiversity and certain physical attributes, 471 

highlighting the potential to achieve ‘win-win’ outcomes for sustainable urban greenspace 472 

management. As cities continue to grow, our study highlights the importance of considering 473 

multifunctional benefits in urban greenspaces. Urban greenspaces are important components of 474 

cities for both people and nature. 475 

 476 

 477 

 478 
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Tables 

 

Table 1. Human utility characteristics found in greenspaces and definitions. 

 

 

Attribute type Definition Uses Examples 

Pavilion/Picnic Area A sheltered area within a park that provides 

seating and tables. 

Outdoor dining, special 

events, socializing. 

Benches, picnic tables, pavilions, 

gazebos. 

Kids Playground An area specifically designed with play 

equipment and features tailored to children.  

Physical exercise, playing, 

and social interaction 

among children.  

Slides, swings, climbing 

structures, splash pads, water 

parks. 

Body of water A natural or man-made water feature within 

or surrounding a park.  

Boating, fishing, 

swimming, water view. 

Ponds, rivers, lakes, canals, 

beaches.  

Jog/Walk Path A designated route or trail typically paved or 

surfaced with materials suitable for foot 

traffic. May be marked with signage or 

directional indicators.  

Walking, jogging, running 

activities.  

Nature trail, exercise path.  

Athletic Facility An area designed with infrastructure and 

amenities for various organized sports.  

Soccer, basketball, tennis, 

volleyball, swimming, etc. 

Sports fields, courts, tracks, 

swimming pools. 

Nature Preserve A designated area that is actively managed 

and protected to serve natural ecosystems 

and biodiversity.  

Bird watching, scientific 

research, education, 

nature-based recreation. 

Contain native plants, animal 

species, and preserved natural 

features. 



Dog Park An area or open field that provides a 

controlled environment for dogs to exercise 

and play off leash.  

Recreational activities for 

dogs and dog owners.  

Fenced boundaries, waste disposal 

stations, water stations, agility 

equipment.  

Indoor/Outdoor 

Fitness Center 

An enclosed or open air space with 

equipment to promote physical fitness 

through exercise. 

Individual or group 

fitness, yoga, calisthenics, 

strength training. 

Exercise machines, weights, 

cardio equipment, allocated spaces 

for physical activities.  

 

 



 

Table 2. Linear models (lm) to compare the relationship between (1 – 3) scaled biodiversity to 

scaled human utility values and log transformed greenspace area (m2), (4) scaled human utility 

values to greenspace area, and (5) scaled bio-use values to eight physical attributes and log 

transformed area (m2). The human utility attributes are binary, and the model estimates are for 

attribute presence. For each model, we report the adjusted R2 value. 

Model specification Estimate SE t value p-value 

lm(biodiversity ~ human_utility + log(area))         

Human Utility -0.018 0.030 -0.604 0.546 

Area 0.050 0.004 11.766 <0.001 

Adj R2 = 0.22     

lm(biodiversity ~ human_utility)         

Human Utility 0.168 0.028 6.069 <0.001 

Adj R2 = 0.05     

lm(biodiversity ~ log(area))         

Area 0.048 0.004 13.530 <0.001 

Adj R2 = 0.22     

lm(human_utility ~ log(area))         

Area 0.076 0.005 15.885 <0.001 

Adj R2 = 0.28     

lm(biodiversity ~ pp + kp + w + path + af + np + 

dp + fc + log(area)) 

        

Pavilion/Picnic Area (pp) -0.021 0.011 -1.847 0.065 



Kids Playground (kp) 0.035 0.012 2.860 0.004 

Body of Water (w) 0.034 0.012 2.728 0.07 

Jog/Walk Path (path) 0.011 0.011 0.985 0.325 

Athletic Facility (af) -0.069 0.012 -5.644 <0.001 

Nature Preserve (np) 0.092 0.021 4.301 <0.001 

Dog Park (dp) 0.034 0.018 1.864 0.063 

Indoor/Outdoor Fitness Center (fc) -0.013 0.014 -0.982 0.326 

Area 0.045 0.004 11.225 <0.001 

Adj R2 = 0.16     

 

  



Figures 

 

Fig. 1. (a) Location of Broward County, Florida, USA. (b) Map of study area and the 639 

delineated urban greenspaces. (c) The histogram displays the distribution of greenspace area on 

the log10 scale for ease of interpretation. 

 

  



 

Fig. 2. The (a) distribution of number of physical attributes per greenspace and (b) the count of 

presence and absence of each physical attribute for all greenspaces. 

 



 

 

 

Fig. 3. Comparison of human utility attributes and biodiversity value by log10 transformed 

greenspace area. The blue slope line and 95% confidence interval is from a linear model that 

compared biodiversity to human utility and greenspace area (see Table 2). 

 

 



 

Fig. 4. Linear model predictions of human utility attributes by bio-use value (see Table 2). The 

linear model included scaled bio-use values as the response variable and log10 transformed 

greenspace area (m2) and each human utility attribute (binary) as predictor variables. *p-value 

<0.05 and ≥ 0.001 **p-value < 0.001 



Appendix A: Supporting Information 

 

Table A.1. Number of greenspaces that were used in analysis by municipality.  

Municipality 
Number of 

greenspaces 

 
Municipality 

Number of 

greenspaces 

Coconut Creek 24  North Lauderdale 16 

Cooper City 23  Oakland Park 15 

Coral Springs 43  Parkland 9 

Dania Beach 17  Pembroke Park 2 

Davie 36  Pembroke Pines 34 

Deerfield Beach 32  Plantation 38 

Fort Lauderdale 109  Pompano Beach 40 

Hallandale Beach 12  Southwest Ranches 7 

Hollywood 42  Sunrise 18 

Lauderdale Lakes 5  Tamarac 11 

Lauderdale by the 

Sea 

3  West Park 3 

Lauderhill 23  Weston 15 

Lighthouse Point 3  Wilton Manors 7 

Margate 19  Village of Lazy Lake 0 

Miramar 35  Village of Sea Ranch Lakes 0 

 

  



Table A.2. Summary of taxa observed in Broward County, Florida greenspaces. The first 

column displays the total number of observations under each described taxon. For taxon groups 

with over 20 observations, the "Species" and "Count" columns highlight the top five most 

frequently reported species, along with their respective observation counts. Species names are 

presented as the common name followed by the scientific name in parentheses. If no common 

name is available, only the scientific name is provided. 

 

Taxon name Species Count 

Plantae 

(N = 11,039) 

Shiny-leaved wild coffee (Psychotria nervosa) 349 

White beggarticks (Bidens alba)  231 

American beautyberry (Callicarpa americana) 225 

Largeflower Mexican clover (Richardia grandiflora) 212 

Cabbage palmetto (Sabal palmetto) 184 

Insecta 

(N = 5,756) 

Zebra longwing (Heliconius charithonia) 260 

White peacock (Anartia jatrophae) 209 

Monarch (Danaus plexippus) 188 

Gulf fritillary (Dione vanillae) 181 

Band-winged dragonlet (Erythrodiplax umbrata) 167 

Aves 

(N = 3,960) 

Burrowing owl (Athene cunicularia) 202 

Boat-tailed grackle (Quiscalus major) 192 

Domestic muscovy duck (Cairina moschata) 183 

White ibis (Eudocimus albus) 166 

North American common gallinule (Gallinula galeata) 150 

Reptilia 

(N = 1,918) 

Green iguana (Iguana iguana) 343 

Brown anole (Anolis sagrei) 334 

Brown basilisk (Basiliscus vittatus) 207 

Northern curly-tailed lizard (Leiocephalus carinatus) 138 

Green anole (Anolis carolinensis) 128 

Arachnida 

(N = 597) 

Golden silk spider (Trichonephila clavipes) 155 

Spinybacked orbweaver (Gasteracantha cancriformis) 110 

Leucauge argyra 52 

Mabel orchard orbweaver (Leucauge argyrobapta) 41 

Magnolia green jumping spider (Lyssomanes viridis) 35 

Mammalia 

(N = 545) 
Eastern gray squirrel (Sciurus carolinensis) 231 

Common raccoon (Procyon lotor) 121 

Marsh rabbit (Sylvilagus palustris) 78 

Coyote (Canis latrans) 24 

Nine-banded armadillo (Dasypus novemcinctus) 20 



Fungi 

(N = 398) 
Hairy hexagonia (Hexagonia hydnoides) 57 

Clathrus crispus 25 

Cinnabar bracket (Trametes sanguinea) 22 

Favolus brasiliensis 12 

green-spored parasol (Chlorophyllum molybdites) 11 

Actinopterygii 

(N = 312) 
Mayan cichlid (Mayaheros urophthalmus) 53 

Spotted tilapia (Pelmatolapia mariae) 25 

Checkered puffer (Sphoeroides testudineus) 25 

Sailfin molly (Poecilia latipinna) 15 

Florida gar (Lepisosteus platyrhincus) 14 

Animalia - Other 

(N = 295) 

Mangrove tree crab (Aratus pisonii) 88 

Blue land crab (Cardisoma guanhumi) 36 

Bumblebee millipede (Anadenobolus monilicornis) 24 

Atlantic sand fiddler crab (Leptuca pugilator) 21 

New Guinea flatworm (Platydemus manokwari) 19 

Amphibia 

(N = 206) 

Cuban tree frog (Osteopilus septentrionalis) 141 

Greenhouse frog (Eleutherodactylus planirostris) 17 

Cane toad (Rhinella marina) 17 

Eastern narrow-mouthed toad (Gastrophryne carolinensis) 9 

Pig frog (Lithobates grylio) 7 

Mollusca 

(N = 201) 
Mangrove periwinkle (Littoraria angulifera) 29 

Island apple snail (Pomacea maculata) 20 

West Indian bulimulus (Bulimulus guadalupensis) 15 

Cuban brown snail (Zachrysia provisoria) 15 

Lined treesnail (Drymaeus multilineatus) 12 

 



 
Fig. A.1. Comparison of imputed values (red) to real values that were scaled to 1,000 total 

observations (black). This plot shows that the imputation correctly followed the trends in the real 

data.  

 

 

  



 

 
Fig. A.2. The relationship between human utility value and greenspace area (top) and 

biodiversity and greenspace area (bottom). The x-axis is displayed on the log10-scale. The blue 

line represents the linear model trend line using geom_smooth() and the grey shading is the 95% 

confidence interval. 



 
Fig. A.3. Correlogram of physical attributes, displayed as clusters from hierarchical clustering. 

Colors represent the correlation coefficient and values in the boxes represent p-values.  

 

 

 



Appendix B: Method comparison for calculating a measure of relative biodiversity 

 

Our dataset includes 639 parks, with 288 having iNaturalist observations to predict biodiversity. 

To address this limitation and increase data availability, we used a random forest imputation to 

estimate biodiversity utility for parks that do not have observations (see paper for full methods). 

However, imputing missing data can potentially influence model outputs. Therefore, we 

compared different methods to calculate biodiversity utility to assess the impact of our approach 

on the results. We conducted all analyses presented in the paper using five different methods for 

calculating biodiversity. The methods are described below (Table B.1): 

 

• Method 1: We created a random forest model and used this to predict species richness at 

a constant value of 1,000 observations for each park. Afterwards, we used a random 

forest imputation algorithm to impute species richness for parks without iNaturalist 

observations. The resulting predicting is species richness for parks with and without 

iNaturalist data. This method was used in the main paper (N = 639). 

• Method 2: We created a random forest model and used this to predict species richness at 

a constant value of 1,000 observations for each park. The resulting prediction is species 

richness for parks that have iNaturalist data (N = 288). 

• Method 3: We used a Generalized Additive Model to predict richness for 1,000 total 

observations. The resulting prediction is species richness values for parks that have 

iNaturalist data (N = 288).  

• Method 4: Because many parks have a small amount of iNaturalist observations, we 

filtered the data to parks that have at least 50 iNaturalist observations. Then we created a 



random forest model and predicted species richness at 1,000 observations for each park. 

The resulting prediction is species richness for parks that have greater than 50 iNaturalist 

observations (N = 72). 

• Method 5: We filtered the data to parks that have at least 50 iNaturalist observations. 

Then, used a generalized additive model to scale richness for 1,000 total observations for 

parks that have iNaturalist data (N = 72). 

 

In each method, we used the log10 transformed species richness as the response variable and 

number of iNaturalist observations, number of iNaturalist users, average percentage of tree cover 

(%), water cover area (%), average percentage of impervious surface (%), and average 

percentage of non-tree vegetation cover (%) as the predictor variables. The methods for the 

random forest models and imputation are described in detail in the main paper. For the 

generalized additive models (GAM), the predictor variables were modeled as smooth terms using 

cubic regression splines. To determine the appropriate number of basis functions (k), we tested 

various values and used the gam.check() function to ensure the model fit was suitable. 

Specifically, we ensured that the residuals were not significant and that the effective degrees of 

freedom were not overly constrained.  

 

Results 

Overall, we observed consistent trends across all methods; however, the sample size influenced 

the strength of these trends. When we compared biodiversity utility to human utility while 

controlling greenspace area, we found that all models indicated a non-significant trend between 

biodiversity utility and human utility and a significant positive trend between biodiversity utility 



and greenspace area (Table B.2, Figure B.1). The random forest model demonstrated better fit, as 

indicated by the adjusted R2. As expected, methods that reduced the sample size of parks led to 

higher standard errors. 

 

The method to calculate biodiversity utility influenced the linear model comparing biodiversity 

utility to binary human utility attributes (Table B.3, Figure B.2). While all significant trends 

identified using the primary method present in the main paper were also present in the other 

methods, the significance of these relationships varied. The first method found a significant, 

positive relationship between biodiversity utility and kid’s playground (β = 0.035, SE = 0.012, p 

= 0.004), body of water (β = 0.034, SE = 0.012, p = 0.007), and nature preserve (β = 0.092, SE = 

0.021, p < 0.001), and a significant, negative relationship between biodiversity utility and athletic 

facility (β = -0.069, SE = 0.012, p < 0.001). Method 2 found a significant negative relationship 

between biodiversity utility and athletic facility (β = -0.098, SE = 0.023, p < 0.001). Method 3 

found a significant, positive trend between biodiversity utility and nature preserve (β = 0.118, SE 

= 0.052, p = 0.025). Method 4 found no significant trends. Finally, Method 5 found a significant 

positive trend between biodiversity utility and indoor/outdoor fitness centers (β = 0.141, SE = 

0.019, p = 0.050). These results highlight that the sample size does impact the quantitative results 

slightly, but the qualitative patterns and overall relative effect sizes remain comparable. 

Nevertheless, we provide all ‘methods’ of calculating biodiversity for transparency here.  

 

  



Table B.1. Description of the five different methods we tested to calculate biodiversity utility. 

Method Data filtering Sample Size Model Imputation 

Method 1 All data 639 Random Forest Model Yes 

Method 2 

Parks with iNaturalist 

observations 

288 Random Forest Model No 

Method 3 

Parks with iNaturalist 

observations 

288 

Generalized Additive 

Model 

No 

Method 4 

Parks with >50 

iNaturalist observations 

72 Random Forest Model No 

Method 5 

Parks with >50 

iNaturalist observations 

72 

Generalized Additive 

Model 

No 

 

 

  



Table B.2. Comparison of linear model outputs to compare the relationship between five 

methods to calculate biodiversity utility and scaled human utility values and log transformed 

greenspace area (m2). 

Method Variable Estimate SE t value P-value Adj R2 

Method 1 Human utility -0.024 0.027 -0.871 0.384 0.218 

Greenspace 

area 

0.046 0.004 11.80 <0.001  

Method 2 Human utility -0.041 0.051 -0.820 0.413 0.238 

Greenspace 

area 

0.064 0.007 8.77 <0.001  

Method 3 Human utility -0.076 0.80 -0.952 0.342 0.143 

Greenspace 

area 

0.07566 0.012 6.558 <0.01  

Method 4 Human utility -0.028 0.132 -0.214 0.831 0.261 

Greenspace 

area 

0.097 0.022 4.434 <0.001  

Method 5 Human utility 0.157 0.110 1.425 0.159 0.187 

Greenspace 

area 

0.047 0.018 2.572 0.012  

 

  



 

Fig. B.1. Comparison of human utility attributes and biodiversity value, calculated from five 

methods, by log10 transformed greenspace area. The blue slope line and the shaded 95% 

confidence interval is from the linear model that compared biodiversity to human utility and 



greenspace area (see Tabe B2). In every model, human utility was not a significant predictor of 

biodiversity.  

  



Table B.3. Comparison of model outputs from linear models comparing the relationship between 

biodiversity utility values, calculated using five different methods, to eight physical attributes 

and log transformed area (m2).  

Method Variable Estimate SE t value p-value 

Method 1 Pavilion/Picnic 

Area 

-0.021 0.011 -1.847 0.065 

Kids 

Playground 

0.035 0.012 2.860 0.004 

Body of Water 0.034 0.012 2.728 0.007 

Jog/Walk Path 0.011 0.011 0.985 0.325 

Athletic 

Facility 

-0.069 0.012 -5.644 <0.001 

Nature 

Preserve 

0.092 0.021 4.301 <0.001 

Dog Park 0.034 0.018 1.864 0.063 

Indoor/Outdoor 

fitness Center 

-0.013 0.014 -0.982 0.326 

Area 0.045 0.004 11.225 <0.001 

Adj R2 = 0.312     

Method 2 Pavilion/Picnic 

Area 

-0.038 0.022 -1.717 0.087 

Kids 

Playground 

0.044 0.023 1.883 0.061 

Body of Water 0.021 0.020 1.026 0.306 

Jog/Walk Path 0.036 0.022 1.645 0.101 

Athletic 

Facility 

-0.098 0.023 -4.193 <0.001 

Nature 

Preserve 

0.048 0.032 1.512 0.132 

Dog Park 0.050 0.031 1.618 0.107 

Indoor/Outdoor 

fitness Center 

-0.012 0.025 -0.442 0.659 

Area 0.062 0.007 8.446 <0.001 

Adj R2 = 0.314     

Method 3 Pavilion/Picnic 

Area 

-0.063 0.036 -1.727 0.085 

Kids 

Playground 

-0.004 0.038 -0.111 0.912 

Body of Water 0.021 0.033 0.639 0.523 

Jog/Walk Path 0.061 0.036 1.712 0.088 



Athletic 

Facility 

-0.038 0.038 -1.004 0.316 

Nature 

Preserve 

0.118 0.052 2.253 0.025 

Dog Park 0.007 0.050 0.113 0.910 

Indoor/Outdoor 

fitness Center 

-0.008 0.040 -0.208 0.835 

Area 0.064 0.012 5.339 <0.001 

Adj R2 = 0.177     

Method 4 Pavilion/Picnic 

Area 

-0.016 0.073 -0.222 0.825 

Kids 

Playground 

0.030 0.074 0.407 0.685 

Body of Water 0.019 0.063 0.301 0.764 

Jog/Walk Path 0.052 0.084 0.616 0.540 

Athletic 

Facility 

-0.101 0.069 -1.449 0.152 

Nature 

Preserve 

0.076 0.069 1.096 0.277 

Dog Park -0.018 0.108 -0.170 0.865 

Indoor/Outdoor 

fitness Center 

0.083 0.071 1.165 0.248 

Area 0.088 0.023 3.776 <0.001 

Adj R2 = 0.244     

Method 5 Pavilion/Picnic 

Area 

-0.013 0.061 -0.209 0.835 

Kids 

Playground 

0.041 0.061 0.674 0.503 

Body of Water 0.083 0.053 1.566 0.122 

Jog/Walk Path 0.000 0.030 -0.004 0.997 

Athletic 

Facility 

-0.052 0.058 -0.906 0.368 

Nature 

Preserve 

0.035 0.058 0.600 0.550 

Dog Park -0.072 0.090 -0.801 0.426 

Indoor/Outdoor 

fitness Center 

0.141 0.059 2.367 0.021 

Area 0.039 0.019 2.014 0.050 

Adj R2  0.17     

  



 

 

 

Fig. B.2. Linear model predictions of human utility attributes by biodiversity utility values, 

calculated using five methods. The linear model included scaled biodiversity utility as the 

response variable and each human utility attribute and log10 transformed greenspace area (m2) as 

the predicator variable. *p-value <0.05 and ≥ 0.001 **p-value < 0.001 


