
Harnessing Large Language Models for Coding,
Teaching, and Inclusion to Empower Research in
Ecology and Evolution

Natalie Cooper1*, Adam T. Clark2, Nicolas Lecomte3, Huijie Qiao4 and Aaron M. Ellison5,6

1Science Group, Natural History Museum London, Cromwell Road, London, SW7 5BD, UK.
2Institute of Biology, University of Graz, Holteigasse 6, 8010, Graz, Austria.
3Canada Research Chair in Polar and Boreal Ecology, Department of Biology, University of

Moncton, Moncton, New Brunswick, E1A 3E9, Canada.
4Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese

Academy of Sciences; Chaoyang, Beijing, 110101, China
5Harvard University Herbaria, Harvard University, Cambridge, MA 02138, USA
6Sound Solutions for Sustainable Science, Boston, MA 02135, USA

*Corresponding author: natalie.cooper@nhm.ac.uk

Abstract
1. Large language models (LLMs) are a type of artificial intelligence (AI) that can perform

various natural language processing tasks. The adoption of LLMs has become increasingly

prominent in scientific writing and analyses because of the availability of free applications

such as ChatGPT. This increased use of LLMs raises concerns about academic integrity,

but also presents opportunities for the research community. Here we focus on the

opportunities for using LLMs for coding in ecology and evolution. We discuss how LLMs

can be used to generate, explain, comment, translate, debug, optimise, and test code. We

also highlight the importance of writing effective prompts and carefully evaluating the

outputs of LLMs. In addition, we draft a possible road map for using such models inclusively

and with integrity.

2. LLMs can accelerate the coding process, especially for unfamiliar tasks, and free up time

for higher-level tasks and creative thinking while increasing efficiency and creative output.

LLMs also enhance inclusion by accommodating individuals without coding skills, with

limited access to education in coding, or for whom English is not their primary written or

spoken language. However, code generated by LLMs is of variable quality and has issues

related to mathematics, logic, non-reproducibility, and intellectual property; they can also

include mistakes and approximations, especially in novel methods.

mailto:natalie.cooper@nhm.ac.uk


Coding with LLMs

3. We highlight the benefits of using LLMs to teach and learn coding, and advocate for guiding

students in the appropriate use of AI tools for coding. Despite the ability to assign many

coding tasks to LLMs, we also reaffirm the continued importance of teaching coding skills

for interpreting LLM generated code and to develop critical thinking skills.

4. As editors of MEE, we support—to a limited extent—the transparent, accountable, and

acknowledged use of LLMs and other AI tools in publications. If LLMs or comparable AI

tools (excluding commonly-used aids like spell-checkers, Grammarly and Writefull) are

used to produce the work described in a manuscript, there must be a clear statement to

that effect in its Methods section, and the corresponding or senior author must take

responsibility for any code (or text) generated by the AI platform.

Keywords: artificial intelligence, ChatGPT, coding, inclusion, large language models, teaching

Introduction

Artificial intelligence (AI) is a rapidly expanding field, with myriad uses in ecology and evolution

(Borowiec et al., 2022; Christin et al., 2019; Han et al., 2023; Pichler & Hartig, 2023; Tabak et al.,

2019). Although AI is not new, the increasing availability of resources such as GitHub Copilot,

ChatGPT, and Dall-E is leading to more researchers and students using these tools for research

and study. Although there is widespread concern within the community about the use of AI tools

(van Dis et al., 2023), our focus in this Perspective is on the positive opportunities for responsibly

using AI, specifically large language models (LLMs), to assist with coding, both for research and in

the classroom. We provide recommendations for publishing research that has used “LLMs” (which

we take herein to include LLMs and comparable generative AI tools, but not well-used aids such as

spell-checkers, Grammarly, and Writefull)..

What are LLMs and how do they work?
Artificial intelligence (AI) is the ability of a machine, generally a computer or robot, to perform tasks

normally associated with intelligent humans (for an extended discussion of the merits of calling AI

“intelligent,” which is well outside the bounds of this Perspective; see Searle, 1997). Current

discussion mostly centres on forms of generative AI, in which computers are able to produce

content based on a set of training data. There are many types of generative AI, including several

with which ecologists and evolutionary biologists will have some familiarity (e.g., machine-learning,

deep learning, neural networks). Our focus here is on large language models (LLMs), which are

machine-learning algorithms that can perform various natural language processing tasks, such as

classifying and generating text (including computer code), and responding to questions in a

conversational style. There are several available LLMs, including ChatGPT (see Box 1), Gemini

2



Coding with LLMs

(previously Bard), Llama, Guanaco, and OpenLLaMA, and many more are in development.

In simple terms, LLMs such as ChatGPT aim to predict the next part of a word or phrase based on

a user-provided text prompt. The prediction is made by passing the prompt through a deep neural

network, which itself has been trained to find relationships among words and phrases in an

enormous corpus of training data (the “large” in LLMs refers to the massive amount of data used to

train these models). The predictions of LLMs are based on the content and structure of the corpus

used to train them, including rules of grammar and syntax, how often words are found in a

particular sequence, and even how facts and ideas are presented together (regardless of whether

or not that presentation is actually correct). Contextual clues also are used to improve the accuracy

of the predictions, and models can be (imperfectly) trained to reduce the prevalence of certain

problematic words and phrases (e.g., violent, racist, or illegal ones). Rather than always selecting

the absolute best option, most LLM algorithms build in a degree of randomness into their

responses. This has consequences for reproducibility, see below, though several tools now allow

implementations where the user can remove this random component (e.g., ChatGPT v 4.0).

BOX 1: What is ChatGPT?
ChatGPT (https://chat.openai.com) was launched in late 2022 (OpenAI, 2022), and is the most

popular (and infamous) LLM currently available. It uses a generative pretrained transformer (GPT)

LLM, that functions as a chatbot, allowing users to have interactive conversations to generate

content. ChatGPT is popular because it is (still) free, although you need to pay for the newest

version (at the time of writing version 3.5 is free, and version 4.0 must be paid for). It is a “very

large” LLM, which means it performs better than other “large” LLMs. It also is relatively general,

allowing users to apply it to multiple different kinds of tasks. An advantage for teaching with

ChatGPT is that it has been trained and constrained to (mostly) avoid saying problematic things,

e.g., violent, racist, or illegal questions and answers are blocked. Note that although it is the most

commonly used LLM application, ChatGPT is not always the best tool for what you want to do;

other AI tools, such as GitHub Copilot and Llama, are optimised for programming. The LLM market

is changing rapidly, so being flexible and investigating new tools as they emerge is likely to be a

good strategy.

Using LLMs for coding

LLMs and other AI applications are uncannily good at generating well-functioning and

understandable computer code based on natural language prompts from users—including users

without a programming background (Ellis & Slade 2023). Within ecology and evolution, many

researchers and students already are using LLMs to help them write code (Duffy 2024). Doing so

3

https://chat.openai.com


Coding with LLMs

requires two main skills: writing effective prompts, and evaluating the responses. In addition, users

need to know how to apply these tools responsibly.

Writing effective prompts
Prompts are how you interact with an AI to generate a response. Prompts can include questions,

comments, code snippets, or examples, and should be written in full sentences in “natural”

language (i.e., plain text, as you might use to communicate with a colleague), not as a string of

keywords as you would enter into a search engine. For example, if you wanted to learn how to run

a linear regression in R, you might use the keywords “linear regression” and “R” in a search

engine, but for an LLM, a better prompt would be something like “Please show me how to perform

a linear regression in R” (it is up to the user whether polite terms like “please” are necessary). A

good prompt will be detailed and specify as much context as possible (the who, what, when,

where, why, and how of the question).

For programming questions, prompts should include the programming language, any specific

packages you want to use, and what you want to achieve with the code. Prompts also can be

“chained;” you can query the LLM with an initial prompt and then follow up with another prompt to

update the response. Most LLMs intended for use by the general public will “remember” the

context provided in previous prompts within a single chat session (or multiple previous sessions

depending on the tool in question), and use this to generate its responses. For example, if you ask

for code to create a boxplot, in the next prompt you could ask it to change the colours, without

needing to re-specify the details of the boxplot. Another useful tip is to ask the LLM to “explain with

examples,” or “explain as if I am a high school student.” Note, however, that most LLMs have a

character or token limit for questions. In ChatGPT version 3.5 (which is currently free), the limit is

4,096 tokens or approximately 3,000 words, which may limit the amount of detail you can put into

your prompt.

Evaluating the outputs
The hardest, yet most important part of using LLMs to generate code is evaluating the accuracy of

the code produced (Lubiana et al., 2023). Indeed, AIs “hallucinate.” They can be completely

confident in a response even when that response is inaccurate or entirely incorrect. Hallucinations

tend to occur either when the prompts have not given the AI enough context to answer correctly,

when the training data does not include sufficient information to address the prompt, or if the

training data itself includes mistakes. Hallucinations tend to be more common for less frequently

used analyses, packages, or programming languages. Because most LLMs are trained to produce

answers that are perceived as correct by human editors, they also may favour grammatical

correctness and plausibility over accuracy. It is therefore extremely important to be sceptical of any

response given by any AI, and to always check that any code produced works in the way you want

or expect it to. Consequently, to effectively use LLMs for coding, you still need to understand

4



Coding with LLMs

enough about the programming language to understand whether the outputs are correct or not.

Other uses of LLMs in coding
In addition to generating code, LLMs can also help with the following routine coding activities (see

also Lubiana et al., 2023).

1. Explain code (to yourself and others). It is not uncommon to have code that you did not
write (e.g., taken from a paper, a collaborator, GitHub, or StackOverflow) or code that you

wrote in the past and did not document well. With good prompts, LLMs can explain what

the code is doing and why. A major advantage is that AIs are infinitely patient, so you can

continue asking the same question repeatedly if the first explanation does not make sense.

2. Commenting code. Commenting is key to good, reproducible code (Cooper & Hsing

2017), but some routine commenting is often skipped. LLMs can quickly comment code,

including routine sections, saving researcher time and effort, which can be applied to

commenting on more complex or bespoke sections of the code. Again, verifying the

generated comments is critical.

3. Translate code. Many researchers are familiar with only one programming language, but
may find they need to use another language to solve certain problems. LLMs can translate

code from one language to another (e.g., from Python to R) or from one package to another

(e.g., from tidyverse to base R).

4. Debug code. If your code is broken, you can provide the code to an LLM and ask it to find

any errors. Ideally you should include any error messages and the aim of the code as

context to your question. LLMs can be particularly good at explaining arcane error

messages.

5. Optimise code. Sometimes it is easier to quickly write code that works, rather than
spending a lot of time optimising the code to make it efficient and fast to run. LLMs can take

unoptimised code and edit it to make it run faster and more efficiently. However, the correct

metrics of optimization are important to verify beforehand.

6. Unit tests. LLMs can be used to write standard unit tests for functions.

Note that, as with generating code, all of the above come with the caveat that you must check
that the AI has done what you expected and that any code produced runs and produces
accurate results. In particular, debugging with LLMs can be rife with errors—recall that most LLMs

are trained to produce results that look plausible to a human, meaning that errors in the code can

be difficult to find.

Benefits and challenges of using LLMs for coding
The primary benefit of using LLMs to generate code is that it is often faster than writing it

ourselves, especially if we are non-professional programmers (i.e., most of us in ecology and

5



Coding with LLMs

evolution), or for tasks and problems that we have not encountered before. LLMs can lower the

opportunity cost of trying something that might be complex to learn independently, and can speed

up routine tasks leaving more time for other things like synthesis and idea development. LLMs also

increase equity and inclusion, as they provide more opportunities for people without coding skills,

with neurodivergent traits, who have less fluent English skills, and others who may benefit from

different ways of working (Box 2).

Furthermore, LLMs can generate more than one suggestion for doing a given data-analysis task,

complete with implemented and well-commented solutions and code examples. This not only can

increase the rate at which coding skills can be learned, but also may enable less seasoned

scholars, particularly students, to rapidly develop complex, multi-step methods for analysing a

specific dataset, compare the outputs, and choose the most appropriate way(s) to interpret the

results.

The challenges of using LLMs for coding include the fact that responses vary greatly in quality—

often in ways that are not readily apparent. For commonly used, well-documented functions,

packages and languages, LLMs are typically fast, efficient, and largely accurate because they have

more examples of these in their training datasets; for example, answers using R packages like

ggplot2 tend to be correct. Hallucinations are more common, however, when asking about

less-used packages; for example, fitting phylogenetic comparative models using OUwie often give

nonsensical results. Many LLMs also struggle with mathematics and logic, and need efficient

prompts and extensive testing to debug or identify the errors (Chang et al., 2023; López Espejel et

al., 2023). Responses also are typically not reproducible (at least for regular users), so different

people may get different results with the same prompt. This inconsistency can be disconcerting to

novice users.

BOX 2: Equity and inclusion with LLMs

Debate around LLMs and inclusion tends to focus on the biases inherent in these models

(Schwartz et al., 2022). If the training data being used to generate responses are biased (and we

know that it is), then LLMs naturally will reflect this bias in their outputs. This is obviously

undesirable. Although many developers of LLMs are trying to fix this issue, training data are still

focused on materials that are available in languages that are well-represented on the Internet, such

as English or German, and that are produced in wealthy nations of the Global North. Thus,

responses will tend to share the perspectives and biases of these regions and cultural groups. New

LLMs are also expensive to develop, in terms of staff, equipment, and infrastructure, and their

development will, in all likelihood, continue to be dominated by those with the most money and

power. An additional, large concern is that currently free platforms may either cease to be free, or

6



Coding with LLMs

stop being supported and developed, leaving anyone unable to pay for AI tools being left to use

substandard products. In addition, the use of several tools is already blocked in some countries

(e.g., China) and workplaces (e.g., US Government Agencies). It is important to ask who is

benefitting from AI and who is missing out.

There are also potential equity and inclusion benefits of LLMs. The availability of free AI tools

should help to level opportunities for those who do not have coding skills, access to coding

education, or the ability to pay to learn them. Already, we can use LLMs in a classroom setting to

provide bespoke advice and feedback to students. A student may be more comfortable asking a

chatbot for help than a teaching assistant or lecturer, especially if they need to ask the same

question multiple times to understand the answer, or students may be able to use LLMs to get

those answers in a language or style that is more approachable to them. Teaching students to use

LLMs for coding can also reduce inequities introduced by some students finding coding much

harder than others. There are special advantages for neurodivergent students, and for students

whose first language is not English. These benefits should also be considered when thinking about

equity and inclusion in AI.

LLMs and coding in the classroom

As long as LLMs remain easy to access (and particularly while they remain free to use), students

will use them whether educators like it or not. Our recommendation is to guide and advise students

on responsible use of AI rather than attempting to regulate or ban its use (see also Duffy, 2024,

Lubiana et al., 2023; and https://cs50.ai/). Our own experience is that LLMs can be excellent aids

for teaching and learning coding. Students can use LLMs to generate, explain, comment, translate,

debug, and optimise code. Students also can use AIs as personal tutors, and continue asking the

same question repeatedly in different ways as they work to fully understand the answers. Students

also may be happier to ask chatbots for help than to ask a human instructor, out of fear that the

latter will judge them harshly for not knowing the answers to simple questions. Likewise, LLMs can

be a real help for instructors in crowded classrooms by providing a first point of contact for student

questions. This facility may be particularly valuable for neurodivergent students or students whose

first language is not English (or whatever the working language of the class in question is) and

naturally shy students (e.g., Liu et al., 2024). Two especially helpful features are that most LLMs

can readily provide answers in multiple languages and they can quickly summarise or translate text

from user manuals or help forums.

7



Coding with LLMs

Should we still teach or learn coding?
One of our workshop provocations was to ask participants whether we still need to teach coding

skills or learn them as researchers, or if we should just outsource the process to AIs. We think that

we should still teach students to code. Although LLMs can facilitate learning by students who

otherwise struggle with coding, interpreting the outputs of LLMs and determining whether they are

accurate still requires a basic understanding of coding, statistics, and mathematics. In addition, we

must be able to detect when and why the code generated by an LLM is not working. Students also

need to know what to ask the LLM to do, and why. Thus, coding skills will continue to be vital for

students in ecology and evolution, in the same way that learning the basics of arithmetic is

necessary for the effective use of a calculator or spreadsheet. We anticipate that simple debugging

features and repetitive tasks can be identified and addressed easily with LLMs, saving time and

efficiency, just as spelling- and grammar-checkers speed up proof-reading of manuscripts.

Teaching coding skills also provides pedagogical benefits. For instance, learning to code requires

us to break down large problems into smaller chunks that are usually easier to solve. It also

requires strong logic and scientific reasoning to understand what you need to do and how to get a

machine to do it for you. Moreover, developing these skills is a strategic process that can help to

maximise creativity and create novel material, both of which are essential for doing science,

making discoveries, and spurring innovations (e.g., Fletcher & Benveniste 2022). In summary, critical

thinking skills will continue to be important, even in a world replete with text, video, and code

generated by LLMs.

Best practice for publishing code generating using LLMs

Current journal policies for publishing code at Methods in Ecology and Evolution (MEE) require that

code needs to be novel, usable, and understandable. MEE places emphasis on the quality,

usability, accessibility, and functionality of code (see https://besjournals.onlinelibrary.wiley.com/

hub/editorial-policies). Concern has been raised about accountability and transparency of

publishing code generated using AI (e.g., van Dis et al., 2023). Who is accountable for the code (or

text) and who should get credit for it? Most journals, including MEE, expect that the corresponding

and senior authors of a paper are accountable for all of its contents. All authors are asked to read

and agree to the submission of a final draft of a manuscript before submission. We know that not

every author reads all the code associated with a paper, but at least one author must do so, and

take responsibility for it. Using an LLM to help generate the code does not change this fact. When

using an LLM, we would expect the responsible author(s) to follow the same kinds of quality

assurance checks as they would if the code was written by them independently.

8

https://besjournals.onlinelibrary.wiley.com/hub/editorial-policies
https://besjournals.onlinelibrary.wiley.com/hub/editorial-policies


Coding with LLMs

Going forward, when LLMs are used to generate code in publications at MEE, we will require the

following:

1. At least one author must take responsibility for all associated code (or text)
generated by the LLM. This responsibility must be explicitly noted in the Author
Contributions section.

2. The use of AI/LLMs must be clearly stated in the manuscript in the Methods section.
The AI application (e.g., ChatGPT) and version (e.g., 3.5) must be reported, along with
details of how much of the content was generated by the AI.

3. The portions of code generated by the LLM must be annotated with comments
stating that they were generated in this way.

Note that our focus here is on using LLMs for coding; the British Ecological Society (BES) journals,

including MEE, also have a policy on AI-generated content more generally

(https://besjournals.onlinelibrary.wiley.com/hub/editorial-policies), which also must be followed. One

important part of this is that an AI cannot be considered as an author.

An important concern regarding code produced by LLMs is a lack of reproducibility. It is true that if

you ask most LLMs the same question repeatedly, they will give different, and perhaps inaccurate,

answers—but how much of a problem is this? Two researchers working on the same problem may

produce different code solutions; indeed, one researcher working on the same problem at different

times may do so, too. There will be specific situations where this will be a problem (e.g., using an

LLM to collate data for a meta-analysis), but for basic code generation, this lack of reproducibility is

not an issue as long as the code itself generates reproducible results and meets MEE’s criteria of

quality, usability, accessibility, and functionality

(https://besjournals.onlinelibrary.wiley.com/hub/editorial-policies), and that the authors acknowledge

the use of LLMs in generating the code. To this end, it appears to us that the lack of reproducibility

related to LLMs is similar to that of other tools—the results should be replicable but the precise

process that went into deciding how to create those specific results may not be. In our opinion, that

is simply how the creative process of science works.

More generally, we also caution that all uses of LLMs and AI require careful consideration of credit

and liability. These considerations are relevant both in terms of intellectual contribution (i.e., who

came up with the relevant ideas), and intellectual property (i.e., who has copyrighted the material

that you or your LLM are using). Both the United States and the EU are in the midst of enacting

regulations on the topic, and, in most cases, it appears that, if an LLM draws heavily on

copyrighted text or images in the production of a published output, the human author may be held

liable for copyright infringement. Similarly, if an LLM reproduces illegal contents (e.g., hate speech

9

https://besjournals.onlinelibrary.wiley.com/hub/editorial-policies
https://besjournals.onlinelibrary.wiley.com/hub/editorial-policies


Coding with LLMs

or symbols from banned political parties) that are then included in a published work, then the

human author, not the LLM, likely will be held responsible for its products.

Conclusion

AI and LLMs are not new technologies; various AI applications have existed since the 1960s. Many

researchers concerned about the rise of LLM applications like ChatGPT forget that spell-checkers

and auto-complete functions, which we use every day in many different settings, also are various

types of AI. However, the capabilities of generative AI and LLMs are increasing rapidly, and new

developments appear almost daily. It is partially this speed of change, and the feeling of not being

able to keep up, that is driving concerns. For example, that the AI in Excel reformats genetic

sequences as dates is, after decades of pain, relatively common knowledge, but what do we know

about similar bugs in tools like ChatGPT or Gemini? Change does not always have to be bad,

however, and AI and LLMs are not going away anytime soon. We need to engage with these tools

proactively and responsibly while promoting the best available practices, which themselves will

continue to change. We accept that AI is a rapidly evolving field and we expect that our thoughts

about it also will continue to evolve. We also note that we have different levels of expertise in using

and developing AI tools; even experts do not know where the field will be a year from now.

However, we still think—at least for now—that the potential positives of using LLMs for coding

outweigh the potential negatives.

We also recognise the challenges inherent in these methods. Training LLMs has a staggeringly

large environmental impact (Box 3), and these tools have the potential to increase global inequities
(Box 2). As a community, we should consider how to use AI tools most effectively and ethically,

who benefits, who is missing out, and how we can reduce their environmental impacts. Ultimately,

we think that AI is not here to replace us, but rather to assist us (more like the robots in Asimov’s I

Robot books than those in Čapek’s R.U.R or The Terminator films). However, given the rapid

advances in AI, it probably would not hurt to add “please” and “thank you” to your ChatGPT

prompts. Just in case.

BOX 3: The environmental impact of LLMs

There has been much public concern about the effects of AI on academic integrity but there has

been far less discussion about the direct and indirect environmental impacts of AI (Jay et al., 2024,

Rillig et al., 2023, van Wynsberghe, 2021). CO2 emissions for model training and tuning for just

one natural language processing model have been estimated to exceed the average lifetime CO2

emissions for a person living in the USA (Strubbel et al 2019). Using ChatGPT-like services in a

10



Coding with LLMs

single year produced 25 times the carbon emissions of training GPT-3 (Chien et al., 2023). LLMs

also require a lot of infrastructure and equipment, all of which have associated environmental

impacts; examples include water use and contamination, mining for rare-earth elements, and the

energy required for temperature control of servers (Rillig et al., 2023). Much current research is

focussed on creating sustainable, lower-carbon LLMs (Chien et al., 2023, Patterson et al., 2021),

but until these are successful, it is worth being very circumspect about unnecessary use of AI for

simple tasks. You might be adding substantially to your carbon footprint just to save a couple of

minutes of effort.

Acknowledgments
Thanks to attendees of our “Coding with ChatGPT and other LLMs” workshops at the BES

2023 Annual Meeting in Belfast, Natural History Museum London, and University of

Sheffield, and to various contributors on social media, for discussion and suggestions

which informed this Perspective. ChatGPT v. 3.5 wrote the title under supervision of NC.

The title was gently rearranged for clarity by AME.

Conflict of interest
We are all editors at British Ecological Society (BES) journals, and (excluding ATC) we are

compensated by BES for our work, thus we have vested interest in the adoption of these

guidelines.

Author contributions
NC wrote the first draft with input from other authors. All authors edited the manuscript and

approved the final version for submission.

References

Borowiec, M. L., Dikow, R. B., Frandsen, P. B., McKeeken, A., Valentini, G., & White, A. E. (2022).

Deep learning as a tool for ecology and evolution. Methods in Ecology and Evolution, 13,

1640–1660. https://doi.org/10.1111/2041-210X.13901.

Chang, Y., Wang, X., Wang, J., Wu, Y., Yang, L., Zhu, K., Chen, H., Yi, X., Wang, C., Wang, Y.,

Ye, W., Zhang, Y., Chang, Y., Yu, P. S., Yang, Q., & Xie, X. (2024). A survey on

evaluation of large language models. ACM Transactions on Intelligent Systems and

Technology. https://doi.org/10.1145/3641289.

11

https://doi.org/10.1111/2041-210X.13901


Coding with LLMs

Chien, A. A., Lin, L., Nguyen, H., Rao, V., Sharma, T., & Wijayawardana, R. (2023). Reducing the

carbon impact of generative AI inference (today and in 2035). Proceedings of the 2nd

Workshop on Sustainable Computer Systems, 1–7.

https://dl.acm.org/doi/10.1145/3604930.3605705

Christin, S., Hervet, É., & Lecomte, N. (2019). Applications for deep learning in ecology. Methods in

Ecology and Evolution, 10, 1632–1644. https://doi.org/10.1111/2041-210X.13256.

Cooper, N., & Hsing, P-Y. (eds). 2017. A Guide to Reproducible Code in Ecology and Evolution.

BES Guides to Better Science.

https://www.britishecologicalsociety.org/wp-content/uploads/2017/12/guide-to-reproducible-

code.pdf.

van Dis, E. A. M., Bollen, J., Zuidema, W., van Rooij, R., & Bockting, C. L. (2023). ChatGPT: five

priorities for research. Nature, 614, 224–226. https://doi.org/10.1038/d41586-023-00288-7.

Duffy, M. (2024). Generative AI and graduate training in ecology. Dynamic Ecology blog.

https://dynamicecology.wordpress.com/2024/01/15/generative-ai-graduate-training-in-ecolo

gy/#more-66157. Accessed 15th January 2024.

Ellis, A. R., & Slade, E. (2023) A new era of learning: considerations for ChatGPT as a tool to

enhance statistics and data science education. Journal of Statistics and Data Science

Education, 31, 128–133. https://doi.org/10.1080/26939169.2023.2223609.

Fletcher, A., & Benveniste, M. (2022). A new method for training creativity: narrative as an

alternative to divergent thinking. Annals of the New York Academy of Sciences, 1512,

29–45. https://doi.org/10.1111/nyas.14763.

Han, B. A., Varshney, K. R., LaDeau, S., Subramaniam, A., Weathers, K. C., & Zwart, J. (2023). A

synergistic future for AI and ecology. Proceedings of the National Academy of Sciences,

120, e2220283120. https://doi.org/10.1073/pnas.2220283120.

Jay, C., Yu, Y., Crawford, I., Archer-Nicholls, S., James, P., Gledson, A., Shaddick, G., Haines, R.,

Lannelongue, L., Lines, E., Hosking, S., & Topping, D. (2024). Prioritize environmental

sustainability in use of AI and data science methods. Nature Geoscience, 17, 106–108.

https://doi.org/10.1038/s41561-023-01369-y.

Liu, R., Zenke, C., Liu, C., Holves, A., Thornton, P., & Malan, D. J. (2024). Teaching CS50 with AI:

leveraging generative artificial intelligence in computer science education. Proceedings of

the 55th ACM Technical Symposium on Computer Science Education V. 1 (SIGCSE 2024),

March 20–23, 2024, Portland, OR, USA. ACM, New York, NY, USA, 1–7.

12

https://doi.org/10.1073/pnas.2220283120


Coding with LLMs

https://doi.org/10.1145/3626252.3630938.

López Espejel, J., Ettifouri, E. H., Yahaya Alassan, M. S., Chouham, E. M., & Dahhane, W. (2023).

GPT-3.5, GPT-4, or BARD? Evaluating LLMs reasoning ability in zero-shot setting and

performance boosting through prompts. Natural Language Processing Journal, 5, 100032.

https://doi.org/10.1016/j.nlp.2023.100032.

Lubiana, T., Lopes, R., Medeiros, P., Silva, J. C., Goncalves, A. N. A., Maracaja-Coutinho, V.,

Nakaya, H. I. (2023). Ten quick tips for harnessing the power of ChatGPT in computational

biology. PLoS Computational Biology, 19, e1011319.

https://doi.org/10.1371/journal.pcbi.1011319

Open AI. (2022). ChatGPT: Optimizing language models for dialogue.

https://openai.com/blog/chatgpt/. Accessed 8th January 2024.

Patterson, D., Gonzalez, J., Le, Q., Liang, C., Munguia, L. M., Rothchild, D., So, D., Texier, M., &

Dean, J. (2021). Carbon emissions and large neural network training. arXiv:2104.10350.

https://doi.org/10.48550/arXiv.2104.10350.

Pichler, M., & Hartig, F. (2023). Machine learning and deep learning—A review for ecologists.

Methods in Ecology and Evolution, 14, 994–1016. https://doi.org/10.1111/2041-210X.14061.

Rillig, M. C., Ågerstrand, M., Bi, M., Gould, K. A., & Sauerland, U. (2023). Risks and benefits of

large language models for the environment. Environmental Science and Technology, 57,

3464-3466. https://doi.org/10.1021/acs.est.3c01106.

Schwartz, R., Vassilev, A., Greene, K., Perine, L., Burt, A., & Hall, P. (2022). Towards a standard

for identifying and managing bias in artificial intelligence. National Institute of Standards

Special Publication, 1270. https://doi.org/10.6028/NIST.SP.1270

Searle, J.R. (1997) The Mystery of Consciousness. The New York Review of Books, New York,

USA.

Strubell, E., Ganesh, A., McCallum, A. (2019). Energy and policy considerations for deep learning

in NLP. Proceedings of the 57th Annual Meeting of the Association for Computational

Linguistics, Association for Computational Linguistics: Florence, Italy, 2019, 3645–3650.

https://doi.org/10.18653/v1/P19-1355.

Tabak, M. A., Norouzzadeh, M. S., Wolfson, D. W., Sweeney, S. J., Vercauteren, K. C., Snow, N.

P., Halseth, J. M., Di Salvo, P. A., Lewis, J. S., White, M. D., Teton, B., Beasley, J. C.,

Schlichting, P. E., Boughton, R. K., Wight, B., Newkirk, E. S., Ivan, J. S., Odell, E. A., Brook,

13



Coding with LLMs

R. K., Lukacs, P. M., Moeller, A. K., Mandeville, E. G., Clune, J., & Miller, R. S. (2019).

Machine learning to classify animal species in camera trap images: Applications in ecology.

Methods in Ecology and Evolution, 10, 585–590. https://doi.org/10.1111/2041-210X.13120.

van Wynsberghe, A. (2021). Sustainable AI: AI for sustainability and the sustainability of AI. AI

Ethics 1, 213–218. https://doi.org/10.1007/s43681-021-00043-6.

14


