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1. Abstract 32 
Archival instruments attached to animals (biologgers) have enabled exciting discoveries 33 

and have promoted effective conservation and management for decades. Recent research 34 
indicates that the field of biologging is poised to shift from pattern description to process 35 
explanation. Here we describe how biologgers have been - and can be - used to test 36 
hypotheses and challenge theory in behavior and ecology through three case studies and many 37 
short examples. These examples, spanning predator-prey interactions, state-dependent risk-38 
taking, resource tracking, and collective movement decisions, show how biologging can resolve 39 
long-standing mysteries if research is designed with a solid conceptual foundation. The next 40 
phase of biologging science will require scaling studies from individuals to populations and 41 
possibly to ecosystems. It will also benefit from building equitable international and 42 
interdisciplinary partnerships, bridging the terrestrial-marine divide, and addressing ethical 43 
conundrums including animal handling and open science practices. Doing so will help cement 44 
biologging as an indispensable tool for producing generalizable knowledge about how 45 
organisms and ecosystems function.   46 
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2. Background 47 
A holistic understanding of complex ecological processes requires creative solutions for 48 

measuring broad-scale, high-resolution data across sites, species, and systems. Archival 49 
instruments attached to animals (hereafter, “biologgers”) have become routine tools for 50 
recording physiological, behavioral, and demographic characteristics of individuals, and their 51 
interactions with environmental and ecological features 1 (Figure 1).  52 

The inception of biologging enabled novel discoveries such as understanding how 53 
animals migrate across the globe relative to their prey and predators, including questions at 54 
temporal and spatial scales that far exceed those from traditional approaches. Like other 55 
technologically-driven disciplines including astronomy and genetics, biologging is poised to shift 56 
from pattern discovery to designing studies with strong conceptual underpinnings 2. Biologging 57 
studies have transitioned from providing unique observations to adopting a rigorous scientific 58 
approach in recent years. Researchers now formulate defined questions, ensure adequate 59 
sample sizes, and conduct in-depth analyses, shifting from simple movement descriptions to 60 
hypothesis-driven investigations. For example, biologgers have provided data on foraging 61 
success, which can be used to test hypotheses about functional response types, risk-reward 62 
trade-offs, and resource tracking (Figure 1).  63 

Biologging studies have also applied “big-data” approaches to tackle behavioral and 64 
ecological mechanisms underlying movements and the proximate internal and external factors 65 
that constrain them (Figure 1) 3. In turn, the discoveries and natural history descriptions enabled 66 
by new technology are primed for the testing and refinement of long-standing theories 4, with 67 
implications for broad generalizations 5 and evidence-based conservation solutions 6. The next 68 
step is to answer questions that span multiple taxa, such as whether generalizable “rules” 69 
underpin complex movements and species interactions 7.  70 

For many of these outstanding questions, ecological theory exists to generate 71 
hypotheses about how animals behave and how behavior scales to ecosystem processes such 72 
as distribution and abundance across trophic levels 8. Previous empirical tests of many theories 73 
have been limited to controlled laboratory experiments. In contrast, biologging in natural settings 74 
enables precise measurements in ecologically relevant contexts where competing selective 75 
pressures such as predation, starvation, and infection exist. Thus, biologging is perfectly 76 
positioned to test many hypotheses from long-standing ecological theories that are underpinned 77 
by animal behavior.  78 

 79 
3. Objectives 80 

The rapid development of biologging has motivated numerous proposals for future 81 
directions. Previous researchers have urged the biologging community to integrate with other 82 
disciplines 9, use mathematics and optimality 9,10, re-unite big data approaches with field-based 83 
ecological processes 11, target key knowledge gaps 12, and reconnect tools and questions 13,14. 84 
We believe a key next step is to test long-standing ecological theories through biologging 85 
studies, and to identify areas of intensive data collection that are well-positioned to bridge this 86 
gap. This review aims to illustrate how biologging is uniquely suited to test hypotheses and 87 
refine theory because it can integrate complexity into mechanistic tests. First, we describe three 88 
case studies (representing state-dependent behavior, learning, and memory) and many 89 
example publications in which observational data led to discoveries that were then leveraged to 90 
test hypotheses and develop robust conceptual frameworks. Second, we identify outstanding 91 
questions in ecological theory that would be best addressed with large-scale integration of 92 
biologging studies across systems. Finally, we discuss practical steps toward theory-grounded 93 
biologging through data synthesis across the terrestrial-marine divide, concept-driven motivation 94 
for technology development, open data practices, and intentional interdisciplinary partnerships.  95 
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4. Examples of development from discovery to theory 96 
We provide three case-studies below that range from single-species behavioral research 97 

to multispecies interactions and consequences for population dynamics (Figure 2). These case 98 
studies show how discoveries and theory testing can comprise a positive feedback loop, where 99 
observations lead to insights that inform hypotheses, and testing those hypotheses can lead to 100 
theory development, which can then be refined through continued observations and discoveries. 101 
In addition to summarizing key findings, we propose directions for future research questions that 102 
could be addressed with targeted biologging studies or comparative studies using existing data 103 
grounded in conceptually solid foundations.   104 
 105 
4.1. State-dependent risk-taking throughout migration in elephant seals 106 

Body condition has been hypothesized to mediate how animals navigate risk-reward 107 
trade-offs; however, the difficulty of measuring body condition, predation risk, and food rewards 108 
in the wild has limited our understanding of how intrinsic states affect risk-taking behavior 15. 109 
Biologgers have begun to address this gap by collecting data on animal movement behavior; 110 
pioneering time-depth recorders facilitated the discovery that elephant seals cease swimming 111 
and passively drift during some dives 16. These so-called “drift dives” often occur after foraging 112 
bouts, and seals with less body fat at the start of the foraging trip sink faster 17. Later, drift rates 113 
were validated against longitudinal energy gain rates 18 as a valuable metric for estimating body 114 
composition 19 at fine spatio-temporal scales throughout migrations. At the same time, inertial 115 
measurements of drifting seals provided further support for hypotheses about the functions of 116 
drift dives for resting and food processing 20. Finally, biologgers were used to confirm that seals 117 
sleep during drift dives 21 and derive body composition estimates and ethograms at a daily scale 118 
throughout months-long migrations to test predictions from state-dependent risk aversion theory 119 
about when animals should rest and forage 22. This three-decade research arc examining 120 
whether behavior is state-dependent throughout oceanic migrations suggests that seals in 121 
superior body condition sacrifice more profitable nocturnal foraging hours to sleep in the safety 122 
of darkness (Figure 2) 22.  123 

When grounded in a strong conceptual framework, the development of new technologies 124 
and analytical approaches holds great promise for studying state-dependent behavior in free-125 
ranging animals. New on-board processing algorithms have been developed to estimate and 126 
transmit real-time body composition data to test state-dependent behavior in species that do not 127 
perform drift dives 23. Likewise, other components of an animal’s internal state (e.g., hunger, 128 
heat, stress, exhaustion 24) may influence behavior and could be measured with new sensors. 129 
Could new physiological biologgers that measure brain activity 25 and heart rate 26 be used to 130 
test theories of physiological recharge, rebound, and replenishment (e.g., sleep quotas) in other 131 
species 27? Can we simultaneously instrument predators and prey to parse spatial and temporal 132 
dimensions of risk and reward in “dynamic landscapes of fear” or “dynamic energy landscapes” 133 
theoretical frameworks 28,29? 134 
 135 
4.2. Social and experiential learning in whooping cranes 136 

How animals learn long-distance migrations is an outstanding question that has 137 
implications for wildlife conservation and management including the designation of protected 138 
areas and strategic planning of species re-introductions. The role of social versus experiential 139 
learning in migratory behavior has been tested in studies of re-introduced whooping cranes 140 
(Grus americana) (Figure 2). Using satellite transmitters and VHF tags, movements and survival 141 
of re-introduced whooping cranes demonstrated successful migration and dispersal patterns 30. 142 
A decade later, a reanalysis of these data tested the hypothesis that re-introduced cranes 143 
migrate more efficiently when flying with experienced birds 31. More recently, researchers used 144 
a long-term satellite tracking dataset to discover an ontogenetic switch from social to 145 
experiential learning as birds age, allowing them to track resources throughout their migration at 146 

https://www.zotero.org/google-docs/?broken=vhm7RZ
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all ages 32. This work transitioned from initial descriptive discoveries (examining whether re-147 
introduction was a successful management strategy) to theory-testing (disentangling the roles of 148 
social versus experiential learning) and laid the groundwork for testing many long-standing 149 
ecological questions. For example, if social learning is a primary mechanism by which 150 
movement strategies evolve, will interrupted information transfer have population-level 151 
consequences 33? How do implicit or explicit social cues influence the timing of animal 152 
migrations 34? How do migratory animals gain information from other species 35? To what extent 153 
does social learning shape the outcomes of predator–prey interactions and demographic 154 
processes 36?  155 

 156 
4.3. Migration based on past and current resource availability across species 157 

Strong foundational biologging discoveries about memory and behavioral 158 
compensation have set the stage for rich theory and emerging tools to address long-standing 159 
questions about migration 37. One area that has seen significant theoretical progress across 160 
species and systems is the influence of variation in resource availability on migratory behavior 161 
(Figure 2). In the late 1970’s, researchers observed simultaneous changes in plant phenology 162 
and migratory movements in waterfowl 38. Later, biologgers were used to examine the link 163 
between vegetation green-up and ungulate migration decisions 39. Follow-up studies tested 164 
hypotheses that mule deer migrate in concert with green-up, maximizing energy intake rather 165 
than speed 40, and that the rate and order of green-up influences the ability of animals to green-166 
wave surf 41. Simulation of zebras and mule deer and empirical validation with GPS tracks 167 
showed that previous experience (memory) with green-up patterns also plays an essential role 168 
in migration 42,43. More recently, data analysis from biologgers suggested revising the theory 169 
about the relative roles of memory 44 and proximate cues 34 in the movement of terrestrial and 170 
marine animals.  171 

Biologging can help us address the interplay of animal migrations in response to 172 
environmental drivers. Questions that can be addressed include: What movement patterns 173 
emerge in response to stochastic resource patterns (i.e., neither pulses nor waves) 45,46? How 174 
can in situ resource availability be measured (instead of inferred from physical environmental 175 
metrics) at a sufficiently fine resolution to inform theory about animal movement, especially in 3-176 
dimensional ocean environments 47,48? Can we unite theory examining predation risk and 177 
resource tracking to integrate top-down and bottom-up processes in estimating risk-reward 178 
trade-offs and optimal decision-making during migration 49? In turn, can we develop and revise 179 
theories about how animals contribute to resource pulses and environmental predictability 180 
through environmental feedback 50? For example, one could determine if migratory marine 181 
megafauna that serve as ecosystem engineers promote a green wave of productivity that 182 
sustains themselves and their ecosystems, like bison in terrestrial systems 51. Biologging data 183 
are uniquely suited to understand how animals respond to and influence resource pulses, 184 
particularly in a changing world. 185 
 186 
4.4. Examples in other sub-disciplines. 187 

There are many additional examples of biologging studies in both the marine and 188 
terrestrial realms that successfully test theory and/or have strong conceptual foundations. In 189 
Figure 3, we provide short summaries of studies spanning a broad set of sub-disciplines 190 
including Morphology, Physiology, Behavior, Demography, Sociality, Ecology and Cross-taxa 191 
studies and crossing levels of biological organization from individuals to populations and to 192 
ecosystems (Figure 1). These examples demonstrate how biologging scientists can maximize 193 
the impact of their work by ensuring that theoretical concepts ground our research (e.g., Figure 194 
3), regardless of whether the work is more motivated by pattern (inductive) or by theory 195 
(deductive) 52.  196 
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5. Outstanding Questions  197 
Emerging questions that can be answered with biologgers, ranging across temporal and 198 

spatial scales, are provided in Figure 4. Many of the highlighted questions are moderately well 199 
understood from a theoretical perspective but are primed for empirical testing through finer-200 
resolution or larger-scale biologging data. For other questions cases, extensive empirical data 201 
could challenge or refine theory by identifying deviations from optimality or highlighting 202 
discrepancies between theory and empirical data. Many cases represent significant 203 
opportunities for developing both theory and empirical evidence, especially across disciplinary 204 
boundaries. All can be used as an agenda for further research and a benchmark for future 205 
evaluations of progress in biologging science.  206 

 207 
6. Roadmap for the Future 208 
6.1. Big data syntheses 209 

Synthesis of multiple biologging datasets with extensive breadth and depth can produce 210 
generalizable knowledge about patterns and processes in the natural world across vast spatial 211 
and temporal scales (Figure 4). Recent efforts include the Tagging Of Pacific Predators 53, 212 
Retroactive Analysis of Antarctic Tracking Data, 54, Arctic Animal Movement Archive 55, COVID-213 
19 Bio-Logging Initiative 56, and Wyoming Migration Initiative 57. Many of these efforts were 214 
necessarily discovery-based but laid a foundation for future concept-driven research, such as 215 
answering questions like: Can we identify multispecies hotspots in three-dimensional space and 216 
time? What role do these hotspots play in ecosystem function (Figure 4)? Re-analyzing and 217 
synthesizing datasets can maximize insights and minimize research impacts including animal 218 
handling. A promising area for future conceptual research is bridging terrestrial and marine 219 
systems. For example, terrestrial studies often include in situ focal follows to interpret biologging 220 
data 58. In contrast, marine studies commonly bridge the spatio-temporal scales between 221 
coarser environmental and finer movement parameters by integrating environmental sensors 222 
into biologgers 14,59. The few studies that span the marine-terrestrial interface have produced 223 
valuable comparative insights  60 and deepened our understanding of relationships between 224 
land and sea 61.  225 
 226 
6.2. Interdisciplinary integration 227 

Integrating biologging with complementary disciplines can also generate new theory and 228 
hypotheses at the interfaces between the two 62. For example, including genomic and 229 
demographic covariates could help disentangle the contributions of genetic mechanisms, 230 
ontogeny, and senescence to animal movement patterns 63,64. Similarly, combining mark-231 
recapture studies with biologging studies could help elucidate the fitness consequences of 232 
movement 65,66. Merging trait databases (e.g., inter-specific variation in body size, brain size, 233 
sensory organs, reproductive characteristics, and diet 67) with tracking data 68 or vulnerability 234 
risk assessments 69 could facilitate large-scale ecological-evolutionary insights (Figure 4). 235 
Alternatively, using biologgers to measure traits and putting those traits into an eco-evo 236 
framework can provide insightful phylogenetic contexts for behaviors and species interactions 237 
70–72.  238 

Biologging data can also facilitate field-based experimental biology by allowing for the 239 
quantification of movement responses to experimental treatments such as simulated human 240 
activity 73. Long-duration interdisciplinary studies that span a range of environmental conditions 241 
and extreme events are necessary to predict future changes and answer a key outstanding 242 
question: How sensitive are behavior-performance relationships to environmental context 243 
(Figure 4) 62,74? Understanding and predicting the spatio-temporal dynamics of populations is a 244 
central goal in ecology and conservation, and requires understanding variation in, and genetic 245 
and phenotypic drivers of, demographic rates 75–77.  246 
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Another emerging interdisciplinary direction is field sensory biology, which focuses on 247 
the detection of prey by predators 47 and less commonly the detection of predators by prey 78. 248 
Future biologging studies of feeding behavior and prey detection can help address questions 249 
including, including how animals perceive and respond to multimodal sensory information 250 
(vision, olfaction, tactile, acoustic) in natural systems 79? How can biologgers measure how 251 
animals produce and perceive auditory cues to respond to conspecifics, heterospecifics, and 252 
their environment 80? How is sensory perception built into an animal’s cognitive map of its 253 
environment 81,82?  254 
 255 
6.3. Novel tools, approaches, and theories 256 

Using existing biologging data to address new questions outside those of the initial study 257 
is sometimes problematic. New tools, approaches, or theories may be needed to answer a 258 
given conceptual question in these cases. Here, concept-driven motivation for improved tagging 259 
technologies can drive the collaborative development of smaller biologgers and more reliable 260 
sensors that overcome current limitations in measuring the covariates that matter to animals 261 
(e.g., in situ resources, predator abundance, real-time measurements of endocrine markers, 262 
infection status, or heat stress). For example, the recent use of real-time monitoring 83, back-263 
mounted accelerometers 84, and underwater cameras triggered by accelerometry during feeding 264 
attempts 85 have facilitated conceptual advances in movement decisions, interspecific 265 
communication, and resource acquisition. In some cases, this may require the integration of 266 
several theories; for example, can we unite the Landscape of Fear with the Landscape of 267 
Disgust theories to empirically test how animals navigate the risks of mobile parasites and 268 
predators 86–88? 269 

 270 
6.4. Inclusive, equitable biologging 271 

 More collaborative and diverse teams facilitate innovation and transformative scientific 272 
insights 89,90. More equitable approaches to biologging science, including data collection, 273 
processing, archiving, and reporting, will provide the greatest impact and the broadest 274 
participation by diverse individuals, institutions, and nations. For example, the research 275 
community can seek to understand and preserve the socio-ecological systems within which the 276 
animals operate through global and interdisciplinary collaborators 14, including Indigenous 277 
communities who can be compensated for their time and meaningfully involved in 278 
instrumentation decisions. Likewise, a global tag registry could help the biologging community 279 
know who to contact about sampling efforts and datasets 91. Standardized and reproducible 280 
data can fast-track comparative biological analyses and interdisciplinary research using 281 
biologgers 92 by ensuring that data are both available and usable. This is especially needed for 282 
non-spatial data such as physiologging, accelerometry, and video data that do not fit the 283 
standards developed for spatial data 93. Open-access publication of those datasets could credit 284 
those who collect and share data 68. 285 
 286 
7. Concluding Remarks 287 

The key to moving from anecdote to generalizable theory is to examine interdisciplinary 288 
patterns and processes across species and habitats. For example, habitat selection can be 289 
influenced by the population context (e.g., density and social dynamics), by the community 290 
context (e.g., predators and competitor density), and by the environmental context (e.g., 291 
drought, fire) (Figure 1). Biologging enables efficient, fine-scale data collection that can provide 292 
the breadth and depth needed to develop, test, and refine our understanding of ecological 293 
processes. Research with a conceptual focus is often more impactful and can provide insights 294 
across various disciplines and systems (Figure 3) 66. Moreover, predictive models used in 295 
management and conservation will be most accurate when they are informed by process-based 296 
understandings of animal movements and their roles in ecological processes 94.  297 
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Similarly, theory can be applied to humans in their roles as shields (creating a spatial 298 
refuge 'shielding' prey from predators) 95, predators, resource drivers, disease sources, and 299 
tested with biologgers to inform conservation and management actions 96. Of course, theory 300 
testing and refinement are not always possible. Research is still in the description and discovery 301 
phase for species that have never been instrumented. In these cases, a closer connection 302 
between conceptual questions and biologging technology can expedite the development of new 303 
theories and contribute to the iterative process of testing and refinement 13. We believe 304 
biologging can have “unimaginably important applications” 62 and address new ideas by 305 
focusing on theory-driven hypothesis testing. Through these avenues, biologging can illuminate 306 
how nature works and thus provide a roadmap for better protection of species, ecosystems, and 307 
the services they provide 68. 308 
 309 
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 557 
 558 
Figure 1. Archival or transmitting biologgers measure extrinsic and intrinsic variables (colored 559 
circles) that can be used to address key research topics (white squares) in behavior and 560 
ecology across scales from individuals to populations to communities and ecosytems. 561 
 562 
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(c) 

 
 564 
Figure 2. Illustrated examples of the development from discovery to hypothesis testing to theory 565 
refinement for each of three case studies: (a) state-dependent risk taking throughout migration 566 
in elephant seals, (b) social and experiential learning in whooping cranes, and (c) migration 567 
based on past and current resource availability across species. 568 
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 570 
 571 
Figure 3. Examples of biologging studies with strong conceptual/theoretical foundations. 572 
Examples are organized by discipline. See references for full citations 39,55,58,65,70,72,95,98–111. 573 
  574 
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 575 
Figure 4. Some promising areas of research that could be addressed using biologgers, across 576 
temporal and spatial scales. Colored by discipline (see Fig 4 for key). 577 
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