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 25 

Abstract 26 

Improving tropical forest biomass predictions can accurately value tropical forests for their 27 
ecosystem services and establish confidence in carbon trading schemes such as REDD+. Optical 28 

remote sensing estimates of tropical forest biomass have produced spatially contradictory results 29 
that differ from ground plot biomass data.  Recently, the Global Ecosystem Dynamics 30 
Investigation (GEDI) lidar was activated on the international space station (ISS) to improve 31 
biomass predictions by providing detailed 3D forest structure and height data.  However, there is 32 
still debate on how best to predict tropical forest biomass using GEDI data.  Here we compare 33 

GEDI predicted biomass to 2,102 tropical forest biomass plots and find that adding a remotely 34 
sensed (RS) trait map of LMA (Leaf Mass per Area) significantly (P<0.001) improves field 35 

biomass predictions, but by only a small amount (r2=0.01).  However, it may also help reduce the 36 

bias of the residuals because, for instance, there was a negative relationship between both LMA 37 
(r2 of 0.34) and % P (r2=0.31) and residuals.  This improvement in predictability corresponds 38 
with measurements from 523 individual trees where LMA predicts Diameter at Breast height 39 

(DBH) (the critical measurement underlying plot biomass) with an r2=0.04, and spectroscopy 40 
(400-1075 nm) predicts DBH with an r2=0.01.  Adding environmental datasets may offer further 41 
improvements and max temperature (Tmax) predicts Amazonian biomass residuals with an r2 of 42 

0.76 (N=66).  Finally, for a network of net primary production (NPP) and gross primary 43 
production (GPP) plots (N=21), RS traits are better at predicting fluxes than structure variables 44 

like tree height or Height Of Median Energy (HOME).  Overall, trait maps, especially future 45 
improved ones produced by surface biology geology (SBG), may improve biomass and carbon 46 
flux predictions by a small but significant amount. 47 

  48 
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 49 

Introduction 50 

In an era of rapid climate change, accurately predicting forest carbon stocks is 51 
increasingly important because carbon stored in forests can potentially offset anthropogenic 52 

emissions that cause climate change.  For this reason, international climate agreements such as 53 
REDD+ (Reducing Emissions from Deforestation and Degradation) have been developed to 54 
encourage countries to conserve their forests.  Using forests as natural climate change solutions, 55 
by incentivizing carbon trading and offset schemes, requires accurate and repeatable 56 
measurements of forest aboveground biomass (AGB) (CEOS, 2014, Goetz et al., 2015).  Earth 57 

observation satellite remote sensing (RS), coupled with ground-based measurements, have the 58 
potential to provide systematic estimates of AGB over vast spatial extents. Therefore, much 59 

effort has been put into developing such maps of AGB, albeit with mixed results.  For instance, 60 

two remotely sensed biomass maps showed markedly different biomass trends from each other 61 
and from 413 ground plots (Baccini et al., 2012; Mitchard et al., 2014; Saatchi et al., 62 
2011)(Avitabile et al., 2016).  Mitchard et al 2014 found the uncertainties were actually > 25% 63 

more than those listed in the RS maps of Baccini et al 2012 and Saatchi et al 2011 (Mitchard et 64 
al., 2013, 2014). They advise to incorporate basal area-weighted wood density estimates and note 65 
that depending only on the relationships between tree height and biomass may lead to large, 66 

spatially correlated errors. Partially in response to such difficulties in predicting biomass with 67 
optical RS, the Global Ecosystem Dynamics Investigation (GEDI) Lidar mission was launched 68 

and installed on the International Space Station (ISS) in late 2018 and operational products 69 
started in March 2019 (R. Dubayah et al., 2020).  GEDI is the first spaceborne lidar designed for 70 
terrestrial ecosystem research and the first specifically developed to accurately measure forest 71 

canopy 3D structure.  However, converting from laser energy returns to accurate biomass 72 

predictions is not trivial. 73 

GEDI covers most land areas below 52 degrees latitude, but it does not provide wall to 74 
wall coverage and gaps between GEDI tracks are greatest at tropical latitudes owing to the 75 
orbital configuration of the ISS.  To develop pre-launch calibrated models of AGB, ground 76 

biomass plots were combined with coincident aircraft lidar data using a waveform simulator 77 
(Hancock et al., 2019) to produce the GEDI  Level-4A (footprint level) algorithm (Duncanson et 78 
al., 2022).  Currently the L4A product for tropical forests uses relative height (RH) 98 and RH 50 79 

to predict a median Above Ground Biomass (AGB) of 300 Mg Ha-1 for tropical forests (0.66 r2 80 
and RMSE of 10.4). Duncanson et al. (2022) compares these results to previous studies.  For 81 
instance, Asner and Mascaro (2014) used a network of 804 field inventory plots and aircraft 82 
discrete return lidar in 5 tropical countries to estimate biomass with a R2 = 0.92 and RMSE = 83 

17.1 Mg/ha.  Saatchi et al. (2011) combined several datasets with a Maximum Entropy 84 
modelling framework across the Tropics to get an r2 of 0.80 and RMSE= 23.8.   Baccini et al. 85 
(2012) used GLAS (Global Laser Altimetry System) on IceSat-1 together with image data from 86 

MODIS (MODerate resolution Imaging Sensor) across the Tropics in a modelling framework of 87 
ordinary least squares regression and random forest machine learning algorithms with predictors 88 
of HOME (Height of Median Energy), other Height Metrics, and total Canopy returned energy to 89 
get an r2 of 0.83 and RMSE= 22.6.   These early studies exemplify the wide variety of techniques 90 
and accuracies used to predict biomass in tropical forests.  Forest structure data products derived 91 
from GEDI are also related to AGB.  For instance, Doughty et al 2023 found forest stratification 92 
(% of forests with only one peak in PAVD (Plant Area Volume Density) versus those with 93 
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several peaks) correlated with biomass more strongly than tree height (Doughty et al., 2023). 94 
Duncanson et al 2022 used algorithms stratified by 4 plant functional types and 6 world regions 95 

but did not include other remotely sensed (e.g. optical image) data as predictor variables for 96 
biomass.  Here we explore the extent to which incorporating external datasets and having more 97 
regional calibrations can improve GEDI biomass predictions across tropical forests.     98 

Environment (e.g., soils and climate) influences the community assembly of tropical 99 

forests and knowing species composition could improve biomass estimates since different 100 
species have different wood density and structure. For instance, Amazonian plant biogeography 101 
may follow a south-west/north-east soil fertility gradient and a north-west/south-east 102 
precipitation gradient (ter Steege et al., 2006).  Soil cation concentrations are the primary driver 103 
of floristic variation for Amazonian trees (Tuomisto et al., 2019) with climate being of secondary 104 

importance.  However, in central African forests, climate is considered to be the driving factor of 105 
floristic patterns (Réjou-Méchain et al., 2021).  Therefore, inclusion of soils or forest floristic 106 

maps could improve biomass predictions. 107 

Leaf traits may also improve tropical forest biomass predictions.  One global study of 108 
plant traits found that three-quarters of trait variation is captured in a two-dimensional global 109 
spectrum of plant form and function (Díaz et al., 2016). One major dimension within this plane 110 
reflects the size of whole plants and their parts; the other represents the leaf economics spectrum, 111 
which balances leaf construction costs against growth potential (Díaz et al., 2016).  Since the size 112 
of whole plants may reflect their biomass, there are leaf traits correlated with plant size and 113 

structure that may prove predictive.  Traits, such as foliar chemical content, like nitrogen (N), 114 
and morphological traits, like leaf mass area (LMA), can be predicted remotely using high-115 

resolution leaf (Asner & Martin, 2008)(Homolová et al., 2013) and canopy (Asner et al., 116 

2016)(Cawse-Nicholson et al., 2021) spectroscopy  (400-2500nm) and algorithms based on 117 

partial least squares (PLS) regression or other machine learning statistical techniques.  Spectral 118 
properties can even predict chemicals not directly expressed in the spectrum, such as base 119 

cations or phosphorus (P) because these chemicals have stoichiometric relationships with 120 
chemicals that are expressed spectrally (Ustin et al., 2006).  Other tree traits such as wood 121 
density can be predicted with spectroscopy, i.e. traits that are not directly expressed in leaf 122 

spectra but that are instead correlated with leaf traits such as LMA (Doughty et al., 2017).  Wall 123 

to wall trait maps for leaf chemistry, leaf thickness (r2 = 0.52) leaf carbon content (r2 = 0.70) and 124 
maximum rates of photosynthesis (r2 = 0.67) have recently been created using Sentinel-2 spectral 125 
data, soils and environmental data (Aguirre-Gutiérrez et al., 2021). 126 

Gross primary production (GPP) and Net Primary Production (NPP) are also important 127 

fluxes to calculate, but currently are not accurately predicted for tropical forests.  For instance, 128 
Cleveland et al 2015 compared tropical NPP estimates from field-based methods, RS methods 129 

(like MODIS) and mechanistic model-based methods (like CLM). The three methods had similar 130 
estimates of NPP (i.e., ~ 10 Mg C yr−1), but displayed differing patterns of NPP through space 131 
and through time.  The RS based methods to predict NPP made limited use of RS spectral data 132 
and relied more on climate based inputs.  We are approaching the era of Surface Biology and 133 
Geology (SBG) an upcoming wall to wall hyperspectral satellite) (Cawse-Nicholson 2021; 134 

Schimel & Poulter, 2022) with hopes for accurate wall to wall trait maps of tropical forests.   135 
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For this paper we focus on the extent to which plant trait data may help to improve 136 
predictions of tropical forest biomass and fluxes.  We start by using a large trait database to 137 

explore whether traits can predict individual tree DBH.  Next, we compare GEDI predicted 138 
biomass to field plot biomass and examine how well RS derived trait maps predict field and RS 139 
biomass.  Finally, we determine the extent to which structure and traits can improve predictions 140 
of tropical forest carbon fluxes (NPP and GPP).  We test the following hypotheses: 141 

H1 - Leaf spectral and trait data can predict tree diameter (DBH), the main variable in 142 
predicting biomass. 143 

H2 - Leaf traits and environmental data will improve predictions of both field and GEDI 144 

biomass. 145 

H3 - GEDI structure or RS trait maps will improve NPP or GPP predictions. 146 

  147 
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 148 

Materials and Methods 149 

Field leaf trait and spectroscopy data  - We used leaf trait and spectral data from an extensive 150 
field campaign along an elevation gradient (from 3500 m to 220 m elevation) in the Peruvian 151 

Amazon where leaf traits for 60-80% of basal area of trees >10cm DBH were measured within a 152 
well-studied 1 ha plot network  from April – November 2013 (Enquist et al., 2017).   In each one 153 
ha plot (N=10 plots), we sampled the most abundant species as determined through basal area 154 
weighting (enough species generally to cover ~80% of the plot’s basal area).  For each species, 155 
we sampled the five (three in the lowlands) largest trees (based on diameter at breast height 156 

(DBH)) and sampled one sun and one shade branch.  On each of these branches, leaf chemistry 157 
and leaf mass area (LMA) was measured with methodology detailed in Asner et al. (2014).  On 158 

five randomly selected leaves for each branch, we measured hemispherical reflectance with an 159 

ASD Fieldspec Handheld 2 with fiber optic cable, contact probe which has its own calibrated 160 
light source and a leaf clip (Analytical Spectral Devices High Intensity Contact Probe and Leaf 161 
Clip, Boulder, Colorado, USA) following (Doughty et al., 2017).  We measured leaf 162 

spectroscopy (400-1075 nm) on the same branches where the leaf traits were collected.   Both 163 
LMA and Chlorophyl A had previously been shown with this dataset to have a correlation with 164 
leaf spectroscopy (Doughty et al., 2017).  However, we had not previously tried to compare leaf 165 

spectral data with DBH directly.   166 

Plot data –  167 

Aboveground biomass - We used 2,102 of 19,160 total AGB field plots between +30° and -30° 168 

latitude classified as broadleaf evergreen trees by MODIS PFT using public data from 169 

Duncanson et al 2022 that was organized and publicly available through ORNL DAAC as an 170 

RDS (R data serialization) file.  Distribution of plots are shown in Fig S1 (AGB) and S2 171 

(residuals). 172 

NPP and GPP - We also used 21, 1 ha plots where NPP and sometimes GPP were measured 173 

following the GEM protocol (Malhi et al., 2021).  We focused on two regions: a Peruvian 174 

elevation transect with both NPP + GPP (n= 10, RAINFOR plot codes are ALP11, ALP30, 175 

SPD02, SPD01, TRU03, TRU08, TRU07, ESP01, WAY01, ACJ01(Malhi et al., 2017)) and a 176 

Bornean logging transect with only NPP (n= 11 RAINFOR plot codes are DAN-04, DAN-05, 177 

LAM-01, LAM-02, MLA-01, MLA-02, SAF-01, SAF-02, SAF-03, SAF-04, SAF-05 (Riutta et 178 

al., 2018).  These plots were chosen because there are large changes in NPP/GPP across the 179 

elevation or logging gradient. 180 

GEDI data – We used the vertical forest structure (L2A and L2B, Version 2) and biomass (L4a) 181 
products from the GEDI instrument (R. Dubayah et al., 2020) between April 2019 to December 182 
2022 for tropical forest regions (R. O. Dubayah et al., 2023).  We used a quality filtering recipe 183 
developed in collaboration with GEDI Science Team members from University of Maryland and 184 
NASA Goddard to identify the highest quality GEDI vegetation shots (R. Dubayah et al., 185 

2022).  A data layer that this iterative local outlier detection algorithm uses to exclude data is 186 
publicly available at (R. O. Dubayah et al., 2023).   For instance, some of the key data filters we 187 
applied were: included degrade flags of 0,3,8,10,13,18,20,23,28,30,33,38,40,43,48,60,63,68, 188 

L2A and L2B quality flags = 1 (only use highest quality data), sensitivity >= 0.98.  With the 189 
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GEDI data we used canopy height, height of median energy (HOME), and the number of canopy 190 
layers following Doughty et al 2023 (Doughty et al., 2023).   191 

Across all tropical forests, we created 300 by 300 m pixels containing all averaged 192 
(mean) GEDI data between 2019 and 2022.   Using the centroid coordinates from each of the 193 
2,102 plots, we found the 300 by 300 m averaged GEDI pixel that encompassed the plot.  If the 194 
plot was not encompassed by the GEDI data, we searched a wider area by incrementally 195 
averaging a gradually increasing area of 1, 3, 5, and 10 pixels.  In other words, if no 300 by 300 196 

m pixel encompassed the plot, then we averaged all GEDI data an area one pixel out (4 by 4 = 197 
1200 by 1200 m, 6 by 6 = 1800 by 1800m, 11 by 11 = 3300m by 3300m), gradually increasing 198 
the square until it encompassed an area with GEDI data.  To compare with the NPP/GPP plots 199 
we compared RS trait and GEDI data for individual footprints within a 0.03 km radius of the plot 200 
coordinates. 201 

 202 
Remotely sensed leaf trait data -  Based on a broader set of field campaigns, Aguirre-Gutiérrez 203 
et al., (2021) used Sentinel-2, climatic, topography and soil data to create remotely sensed 204 

canopy trait maps for P=phosphorus % leaf concentration, WD = wood density g.cm-3, and 205 

LMA=Leaf mass area g m-2.   206 

Other data layers – We compared % one peak to several other climate, soils, leaf traits, and 207 
ecoregion maps listed below for the Amazon basin.  Each dataset had its own resolution, which 208 
we standardized to 0.1 by 0.1 degrees.  We used total cation exchange capacity (CEC) from soil 209 

grids (Batjes et al., 2020) from 0-5cm in units of mmol(c)/kg. We averaged TerraClimate 210 
(Abatzoglou et al., 2018) data between 2000 and 2018 for Vapor Pressure Deficit (VPD in kPa), 211 

Mean Monthly Precipitation (MMP) (mm/month), potential evapotranspiration (PET) and 212 
maximum and minimum temperature (°C).   213 

Statistical analysis –We used the matlab (Matlab, MathWorks Inc., Natick, MA, USA) function 214 
“fitlm” to fit linear models to compare variables such as soils data, environmental data, leaf trait 215 
data (at 0.1° resolution) and GEDI structure data (300m and bigger resolution) to field biomass 216 

and NPP/GPP estimates.  The P values listed are for the t-statistic of the two-sided hypothesis 217 
test.  We used R to create a linear model to predict the best model ranked by AIC and parsimony 218 

using the dredge function from the MuMIn library(Bartoń, 2009).  We also used CAR package 219 
(Fox J & S, 2019) and the VIF command to test for multi-collinearity between variables.  To 220 
account for spatial autocorrelation, we used Simultaneous Auto-Regressive (SARerr) models (F. 221 
Dormann et al., 2007) using the R library ‘spdep’ (Bivand, Hauke, & Kossowski, 2013). We 222 
tested different neighborhood distances from 10 km to 300 km and found that AIC was 223 

minimized at 80 km (Fig S3) and the corresponding correlogram showed reduced spatial 224 

autocorrelation (Fig S4).  To predict leaf traits with the spectral information, we used the Partial 225 

Least Squares Regression (PLSR) (Geladi & Kowalski, 1986) using the PLSregress command in 226 
Matlab (Matlab, MathWorks Inc., Natick, MA, USA).  To avoid over-fitting the number of latent 227 
factors we minimized the mean square error with K-fold cross validation.  We use 70% of our 228 
data to calibrate our model and then the remaining 30% to test the accuracy of our model using 229 
r2.  We use adjusted r2  which penalizes for small sample sizes throughout the manuscript. 230 

  231 



8 
 

Results 232 

We compared averaged trait values collected from cut branches to the DBH of that tree for 3695 233 
leaves from 523 trees (Doughty et al., 2017) along a Peruvian elevation gradient which exhibited 234 
a low correlation (r2<0.01) between leaf chemistry (N and P) and DBH.  However, LMA showed 235 
a significant (P<0.0001) positive correlation with DBH and Chlorophyl A showed a significant 236 
(P<0.0001) negative correlation but with relatively low variance explained (r2=~0.04 and 0.06 237 

respectively) (Figure 1). LMA had a significant (P<0.0001) negative correlation with tree height 238 
(r2=~0.17). We then compared tree averaged leaf spectral data (400 to 1075 nm) to DBH using 239 
the PLSR technique and found only a weak correlation (Figure 2, r2=0.01).  LMA is predictable 240 
with spectroscopy (r2 = 0.63) and DBH is weakly predictable with LMA (r2=0.04), and this 241 
translated into spectra being able to predict DBH with an r2=0.01 in this dataset. 242 

We then compared predictions of GEDI biomass to 2,102, 25m (although some 1 ha) biomass 243 

plots across all tropical forests (not just Peru) (Fig 3).  These plot data were used to create 244 
GEDI’s Level 4 footprint-level AGB product using simulated waveforms from ALS collocated 245 
with field plots.  In contrast, we created 300 by 300 m pixels containing all averaged (mean) 246 

GEDI data between 2019 and 2022 across all tropical forests.  We acknowledge a degree of 247 
circularity in our analysis, but the comparison is different than Duncanson et al 2022 because due 248 
to the variable nature of GEDI data collection, owing to the variable ISS orbital tracks, only 249 

~45% of the plots had plot data within the 300 by 300m pixel and ~2.5% of the plots needed an 250 
area of 3300m by 3300m. We therefore are not aligning field and GEDI data but are instead 251 

assessing regional correlations among variables of interest, thus our expected correlations will be 252 
much lower than where GEDI and field plots are geolocated and temporally aligned.  We then 253 
subtracted GEDI regional averages of predicted biomass from field derived biomass (henceforth 254 

referred to as residuals) for 2102 plots across the tropics and showed both their location, AGB, 255 

and the average difference from the GEDI predicted value (Fig 3).  There are spatial patterns 256 
with the residuals with, for instance, GEDI overestimating AGB in the Yucatan Peninsula and 257 
underestimating in the Eastern Amazon.  Overall, the residuals have two modes at ~-100 and 100 258 

Mg ha-1.   Next, our goal is to determine whether the bias can be reduced by incorporating RS 259 
leaf traits or other external datasets.   260 

For these 2,102 plots, there was a significant (P<0.0001) negative correlation between the 261 
remotely sensed trait of LMA for both GEDI biomass (r2=0.38) and GEDI measured forest 262 

height (r2=~0.43) (Fig 4).  There was a significant (P<0.0001) negative correlation between 263 
remotely sensed % P and biomass and height (r2=0.31 and r2=0.36 respectively).  However, 264 
LMA predicted field derived biomass poorly (r2~=0.01) and % P was not correlated with field 265 
derived biomass (P>0.05).  LMA was always a stronger predictor than P concentration, for 266 

height, RS biomass and field derived biomass. 267 

We then compared LMA, %P, GEDI height and % one peak to biomass residuals and found a 268 

negative relationship between LMA and residuals (r2 of 0.34, N=66) and a negative relationship 269 
with % P (r2=0.31).  Of GEDI structure variables, % one peak did poorly, only predicted 4 % of 270 
the variance but tree height predicted biomass strongly with an r2 of 0.74 (Figure 5).  We then 271 
subset the AGB field plots for the Amazon basin (N=66 of 2102 total) to match our climate and 272 
soils datasets.   We compared climate data (VPD, Tmax, PET) and soils data (cation exchange 273 
capacity - CEC) to biomass residuals and found Tmax was best in predicting residuals with an r2 274 
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of 0.79 followed by PET (r2=0.70) and VPD (r2=0.28) (Figure 6).  We did not find a significant 275 
relationship (P>0.05) between CEC and biomass residuals. 276 

We tested for spatial autocorrelation and found that averaging around a radius of 80 km (this 277 
large radius may incorporate broader climate trends) minimized AIC (Figure S3) which reduced 278 
spatial autocorrelation according to the correlogram (Figure S4).  There was some collinearity 279 
between the trait variables and structure variables (VIF>3), so we removed %P and HOME and 280 

this reduced all collinearity scores to under ~1.5.  To predict RS biomass, the best model by AIC 281 
included LMA, height, and % one peak, but LMA was only marginally significant (Table 1).  For 282 
field biomass, the best model by AIC again included all three variables but % one peak was not 283 
significant.  After controlling for spatial autocorrelation by grouping the plot data into 284 
neighborhoods of 80km, the statistical models changed.  Adding LMA (but not %P, HOME, or 285 

% one peak) significantly (P<0.0001) improved field biomass predictions.   Adding traits 286 

(neither LMA or P) did not significantly improve RS biomass but both % one peak and HOME 287 

did (P<0.0001).  Overall, canopy height was always by far the most important predictor of AGB 288 
but adding RS LMA did improve predictions of field biomass by ~0.01 r2.  289 

We then predicted NPP and GPP data with traits (LMA and % P) and structure (biomass, tree 290 
height, and % one peak).    LMA showed the strongest correlation with both NPP (r2=0.38) and 291 
GPP (r2=0.41) (Figure 7).  Tree height and % one peak were not significantly correlated with the 292 

NPP/GPP plot data.  For the logging gradient in Borneo there was a significant correlation with 293 
both tree height and LMA to NPP with LMA stronger.  However, when we combined the Borneo 294 

and Amazonia data sets together, only LMA remained significantly correlated with NPP (Figure 295 
8).   296 

 297 

 298 

  299 
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Discussion 300 

After controlling for spatial autocorrelation, adding RS derived LMA trait data significantly 301 
improves predictions of field measured (but not GEDI estimated) tropical forest biomass, only by 302 
a small amount (improving r2 by ~0.01) but information criteria (AIC) suggest LMA should be 303 
added.  An important caveat is that we are not comparing geolocated field plot data to GEDI and 304 
trait data for the same exact area, but instead for the broader region (i.e. only 45% of the ABG 305 

plots have GEDI data within a 300 by 300m area).  This differs from Duncanson et al 2022 306 
where airborne lidar data were used to simulate GEDI data for each plot, therefore comparing 307 
predicted GEDI structure for the same area as the field plots. Since there is much regional 308 
variation in biomass, our predictions of field measured biomass are very low (r2~0.03) but were 309 
significantly improved with RS LMA data.  LMA also directly predicts field biomass with an r2 310 

~0.01 (Figure 4). At the individual tree scale (Figure 1), we show similar results with LMA 311 

predicting 4% of DBH variance (highly correlated with biomass) and spectral properties 312 

predicting 1% of DBH variance (Figure 2).  However, predicting biomass at the canopy scale 313 
may have more success than at the leaf scale, because canopies incorporate more spectral 314 
information with higher LAI (Baret et al., 1994).  Therefore, we estimate that adding RS trait 315 
data to GEDI results in a real, but very small improvement in field biomass predictability, but is 316 
this meaningful?  The GEDI L4A product for tropical forests currently has an accuracy of 0.66 r2 317 
(Duncanson et al., 2022), so any real improvement is welcome, if real.  However, adding non-318 
GEDI data to biomass predictions could also introduce error which could cancel out the 1% 319 

improvement.     320 

 Some of our results tentatively suggest that adding traits could lead to a greater improvement in 321 
AGB prediction than suggested above by reducing bias in the residuals.  For instance, we found 322 

the remotely sensed trait of LMA was correlated with both GEDI biomass (r2=0.38) and GEDI 323 

measured forest height (r2=~0.43) (Fig 4).  We also found both LMA (r2 of 0.34) and % P 324 
(r2=0.31) correlated with the biomass residuals.   This suggests that traits could potentially 325 
correct for bias in current GEDI predictions, which could be more useful than a 0.01 326 

improvement in r2.  However, because the leaf traits maps use predictors of soils and climate data 327 
in addition to Sentinel 2 spectral data, the improvements to biomass prediction may be due to the 328 

influence of the underlying climate variables as shown in Fig 6.  LMA and % P correlated more 329 
with RS AGB than field AGB possibly for this reason as well.  There is optimism for future 330 
improvements in predictability because our leaf spectral data only extends through 1075 nm, and 331 
there is likely important spectral information at longer wavelengths (e.g. in the shortwave 332 
infrared).  The current RS trait maps (Aguirre-Gutiérrez et al., 2021) use a few Sentinel 2 333 

spectral bands but future satellites like Surface Biology Geology (SBG) (Cawse-Nicholson 2021; 334 

Schimel & Poulter, 2022) or the Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission 335 

(Gorman et al., 2019) will have improved or wall to wall hyperspectral data and therefore future, 336 
more accurate trait maps may improve biomass predictions by a greater amount. 337 

Our strongest (non-GEDI) predictor of biomass residuals was Tmax with an r2 of 0.79, but we 338 
note that this is based on a much smaller Amazon only dataset (N=66) (Fig 6).  The negative 339 
correlation suggests that GEDI underpredicts biomass in regions where VPD or Tmax is on 340 
average higher.  Stressful temperature or water conditions may reduce tree biomass and height 341 
from their maximum potential or select for smaller species with more conservative strategies.  342 
This result is supported by other literature showing higher temperatures reduce tropical forest 343 
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growth rates (Clark et al., 2003).  Soil cation concentration was not a strong predictor of biomass 344 
residuals in our dataset which is surprising because soil cation concentrations are the primary 345 

driver of floristic variation for Amazonian trees (Tuomisto et al., 2019) with climate being of 346 
secondary importance.   347 

In a previous paper, we had hypothesized that forest stratification (% one peak or the number of  348 
single stratum forests as a percentage of total) might improve biomass predictions better than a 349 

simple metric like rh50 (Doughty et al., 2023) because in that paper, % one peak predicted 350 
biomass better than tree height.  Ecological theory suggests that a stratified forest with more 351 
large emergent trees is indicative of an older forest (Halle et al., 1980), which generally has 352 
higher biomass and carbon content.  However, in our study, % one peak was a fairly poor 353 
predictor of the residuals explaining only 4% of the variance compared to 75% with tree height, 354 

16% with rh50 and 36% with HOME.  When we added % one peak to our overall model it did 355 

not improve the AIC, and therefore seems a poor predictor of biomass across tropical forests.  356 

Moving forward, terrestrial lidar can expand our understanding of tree structure and possibly 357 
create improved biomass estimates beyond DBH (Stovall & Shugart, 2018).   358 

Remotely sensed MODIS NPP and GPP is a commonly used input to many global models 359 
(Zhang et al., 2012) but previous studies have found that MODIS NPP does not match ground 360 
based estimates of NPP seasonality and therefore, there is a need for improved remote sensed 361 

NPP estimates (Cleveland et al., 2015).  Our results (Fig 7 and 8) suggest that adding trait maps 362 
to predictions of GPP and NPP could potentially improve accuracy, but GEDI structure metrics 363 

did not improve predictability.  For instance, remotely sensed LMA predicted GPP (r2=0.4) and 364 
NPP (r2=0.35) better than GEDI height in an Andean elevation gradient (Fig 7).  When we 365 
combined both datasets, only LMA continued to predict NPP (Fig 8).  However, although we 366 

used the biggest NPP and GPP dataset in the tropics, our sample size (N=21) was small. More 367 

ground based NPP/GPP networks are necessary for validation before we would have confidence 368 
in this result.     369 

Overall, we find adding RS trait maps may slightly improve predictions of tropical forest 370 
biomass and fluxes and may be further improved in the future with data from new satellite 371 

missions like SBG. 372 

 373 

 374 

 375 

  376 
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Table 1 – Model results (ΔAIC and adjusted R2) for field derived biomass, and GEDI predicted 377 

biomass using GEDI measured forest height, GEDI measured maximum PAVD height, % one 378 
peak, and leaf traits of LMA and % P.  For ΔAIC we give the change in ΔAIC between the best 379 
model and the second-best model.   The best model column gives the best model according to 380 
AIC and the variable removed (bolded and italicized) for the next best model. 381 
 

 field derived biomass RS 
biomass 

 
 

Variables ΔAIC Best model Adj r2 ΔAIC Best model Adj r2 
height, peak, P 1 height, P, PEAK 0.0356 1.5 height, 

peak, P 
0.799 

height, peak, LMA 
 
height, peak 0.0281 

 
height, peak 0.799 

height, HOME, P 3 height, P, HOME 0.0368 22 height, 
HOME, P 

0.795 

height, HOME, LMA 2 height,HOME, LMA 0.0326 7 height, 
HOME, LMA 

0.793 

height -  0.0272 -  0.787 

 382 

  383 
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Figures 384 

 385 

Fig 1 –Individual tree DBH compared with leaf LMA (top), Chlorophyl A (middle) and % N 386 
(bottom), averaged on ~3 branches and 5 leaves per branch.  387 

  388 
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 389 

 390 

Fig 2 –Leaf spectral (400-1075 nm) (N= 4690 individual leaves) averaged on ~3 branches and 5 391 
leaves per branch versus their diameter at Breast Height (DBH) (left) or Leaf Mass Area (LMA) 392 

(right) using the PLSR technique (blue is training data and red is the validation data).  393 

  394 
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 395 

  396 

 397 

Fig 3–GEDI predicted biomass minus field biomass (residuals) (left) and field biomass (right) 398 

where (top) the color dots represents the value (residuals Mg ha-1 between 100 and -100 = green, 399 
>100 = red, and <-100 blue and AGB Mg ha-1 < 150=green, between 150 and 300 = red and 400 
>300 = blue).  For the maps we show a subset of the data for visual clarity.  The full maps are 401 

shown in fig S1 and S2.  On the bottom, we show a histogram of the residuals (left) and field 402 
biomass (right).  All comparisons were aggregated to 300 by 300 m areas.   403 

 404 
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 405 

 406 

Fig 4 – RS biomass (top), tree height (middle), and field derived biomass (bottom) versus remote 407 

sensed derived leaf traits LMA (left) and leaf % P (right).    408 

 409 

 410 

 411 

 412 
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 413 

Fig 5 – Biomass residuals (plot biomass minus GEDI predicted biomass) versus remotely sensed 414 

leaf traits (P and LMA) and GEDI predicted structural variables (height and HOME).   415 
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 416 

Fig 6 –Biomass residuals (plot biomass minus GEDI predicted biomass) versus soils (cation 417 

exchange capacity - CEC) and climate data (vapor pressure deficit (VPD), potential 418 
evapotranspiration (PET), and maximum temperature (Tmax).  419 

 420 
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 421 

Fig 7 – Net Primary Production (left) and Gross primary production (right) data from South 422 

America compared to % one peak (top) with 1 = more than one peak and 0 = one peak, GEDI 423 
calculated tree height (middle), and remote sensed LMA (bottom).  GEDI data are from the 424 

nearest 0.03 degrees pixel.  425 

 426 
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 427 

Fig 8 – Net Primary Production data from Borneo and South America compared to GEDI 428 

calculated tree height (top), % one peak (middle) (with 1 = more than one peak and 0 = one 429 
peak) and remote sensed LMA (bottom).   430 

 431 

  432 
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Supplemental figures 577 

 578 

 579 

 580 

 581 

Figure S1–GEDI predicted biomass minus field biomass (residuals) where the color dots 582 

represents the value (residuals Mg ha-1 between 100 and -100 = green, >100 = red, and <-100 583 

blue.   584 

 585 

 586 

 587 
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 588 

Figure S2–Field biomass where the color dots represent the value AGB Mg ha-1 (< 150=green, 589 

between 150 and 300 = red and >300 = blue).   590 
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 592 

 593 

 594 

Figure S3 –Comparing model AIC to radius (km) to average data showing a reduced AIC value 595 

with a neighborhood distance of 80km model for a model using height, bulk, and LMA to predict 596 

field biomass.   597 
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 599 

Figure S4 – Example Correlogram for model using height, bulk, and LMA to predict field 600 

biomass with no neighborhood removing spatial autocorrelation (red dashed line) and for a 601 

neighborhood of 80km (blue dots).   602 
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