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Mind the lag: understanding genetic extinction 
debt for conservation 
Highlights 
Time lag refers to delayed genetic conse-
quences after an environmental shift or 
population decline. 

Life-history traits such as long life span, 
vegetative propagation, overlapping 
generations, and mating by outcrossing, 
support the build-up of a time lag after an 
environmental shift; confounding factors 
include sampling strategy and marker 
choice. 
Roberta Gargiulo 1 , * , Katharina B. Budde 2 , and Myriam Heuertz 3 

The delay between disturbance events and genetic responses within populations 
is a common but surprisingly overlooked phenomenon in ecology and evolutionary 
and conservation genetics. If not accounted for when interpreting genetic data, this 
time lag problem can lead to erroneous conservation assessments. We (i) identify 
life-history traits related to longevity and reproductive strategies as the main deter-
minants of time lags, (ii) evaluate potential confounding factors affecting genetic 
parameters during time lags, and (iii) propose approaches that allow controlling 
for time lags. Considering the current unprecedented rate of loss of genetic diver-
sity and adaptive potential, we expect our novel interpretive and methodological 
framework for time lags to stimulate further research and discussion on the most 
appropriate approaches to analyse genetic diversity for conservation. 
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Time lags can be evaluated using tem-
poral sampling, different estimates of ef-
fective and census population sizes, 
and choice of a reference population. 

The  more widely recognized  ‘extinction 
debt’ problem in community ecology de-
pends on delayed genetic responses 
(‘genetic extinction debts’ = time lags) 
in the populations composing that 
community. 

Conservation strategies should account 
for time lags since actions taken today 
will impact future genetic composition, 
potentially mitigating negative effects 
before they become irreversible.
The time lag between disturbance events and genetic responses 
Population genetic data are typically believed to inform on the current genetic conservation status of 
populations (i.e., their likelihood to persist in the long term) [1]. However, genetic parameters often 
respond to disturbance events (see Glossary) with delay, or a time lag [2]. Failure to recognize 
and account for time lags in genetic responses can lead to overrating genetic diversity levels, 
misguiding the use of resources for biodiversity conservation. At a time of unprecedented biodiver-
sity loss [3], understanding time lags linked to population genetic diversity is therefore not only crucial 
in ecology and evolutionary genetics, but it is necessary to optimise conservation action. 

Disturbance events affect individual survival and reproduction, causing losses of genetic variants 
or changes in their frequencies, due to genetic drift, inbreeding and selection. This can lead to a 
decline in effective population size (Ne), which may or may not lead to a fitness reduction due 
to decreased adaptive potential, and/or increased genetic load in subsequent generations 
(Figure 1). If such changes are not reverted, their ultimate effect will be genome-wide genetic 
erosion, which will affect both neutral and functional/adaptive variation [4]. During time lags, 
moderate to high levels of genetic variation can persist despite deteriorated conditions [2], for ex-
ample, because of persistent individuals surviving adverse conditions. Contemporary levels of 
population genetic diversity thus bear the legacy of past environments [5,6]. For the same reason, 
today’s conservation actions shape the genetic diversity of future populations and their design 
should thus account for time lags [7].

Time lags in the genetic response to disturbance events have also been referred to as ‘genetic ex-
tinction debt’ or ‘extinction debt of genetic diversity’ [8–11], drawing a parallel with the concept of 
extinction debt, which describes the delayed loss of species following habitat degradation 
[12,13]. Extinction debts have received more attention, as they affect entire communities in 
perturbed ecosystems and environments [7]. However, as communities are composed of popula-
tions from different species, extinction debts at the community-level depend on delayed responses
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Genetic extinction debt or time lag is the delay in genetic 
response after a disturbance event 
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Figure 1. Conceptual plots showing the time lag or genetic extinction debt problem. A delayed genetic response is 
expected after a disturbance event, in the example above causing a population bottleneck. While the decline in census size 
(NC) can be immediate, changes in effective population size (Ne) and realised genetic load happen with delay, especially in lag 
prone species. The duration of the time lag mainly depends on the species’ life-history traits, but note that the conversion of 
masked into realised genetic load typically continues after Ne stabilisation in all species [42]. Lag-prone species have traits that 
extend the time and the opportunities for reproduction (e.g., long generation time and life spans). Short-lived species and those 
that experience frequent demographic changes (most r-strategists) tend to have shorter time lags. Technical factors such as sam-
pling strategy and molecular marker type can confound the detection of time lags and the interpretation of genetic diversity levels.

Glossary 
Adaptational lag: temporal disconnect 
between a change in the environment 
and the genetic change required to 
maintain or recover fitness (see 
references in [38]). 
Adaptive potential: genetic variation 
needed to respond to selection. This 
includes functional, as well as neutral 
and nearly neutral genetic variation that 
might become adaptive in changing 
environmental conditions. 
Census size (Nc): number of 
reproductively mature individuals in a 
population. 
Delta values of genetic metrics: 
comparison of genetic parameter 
estimates from the population under 
study between samples collected at 
different time points (e.g., historical 
versus contemporary samples). 
Disturbance event: any biotic or 
abiotic change in the population’s 
environment that can negatively affect its 
survival and reproduction. The impact of 
the disturbance event on the target 
population jointly depends on the 
generation time of the species and the 
severity and duration of the disturbance 
event. 
Effective population size (Ne): size of 
an ideal population (assumed to exhibit 
random-mating and a constant 
population size with non-overlapping 
generations) that experiences the same 
rate of genetic drift and level of 
inbreeding as the observed population 
[63]. 
Extinction debt: delay between a 
disturbance event that leads to the local 
extinction of species and the actual 
moment of extinction. 
Genetic drift debt: the time lag in 
genetic change, including delayed loss 
of genetic diversity due to (i) past 
balancing selection (at specific loci)  [37]; 
(ii) lag-favouring life-history traits 
(genome-wide, this paper); and (iii) the 
increase in realised genetic load due to 
inbreeding [64]. A synonym of genetic 
extinction debt. 
Genetic extinction debt: time lag in 
the genetic response at neutral, nearly 
neutral, and functional/adaptive loci to a 
disturbance event (see time lag, 
disturbance event, extinction debt, 
genetic drift debt). 
Genetic load: genetic variation that 
reduces the fitness of a population (in 
comparison with a reference genotype 
with the maximum fitness). The genetic 
load is composed of realised load
(genetic debts) at the population level [14] and, therefore, understanding genetic extinction debts or 
time lags at the population level deserves attention as an independent phenomenon.

Time lags may also contribute to explaining why genetic diversity is a poor predictor of global 
IUCN threat status [15], or why threatened species do not necessarily exhibit low genetic diversity 
([16,17], but see [18]). Such discrepancies require accounting for delayed genetic responses and 
do not undermine the importance of exploring genetic variation for conservation practice [18,19]. 

Conservation genetics is still lacking a framework for the interpretation of genetic diversity in light 
of the possible occurrence of time lags. Without an organic view of the time lag problem, misin-
terpretations of current levels of genetic variation might lead to setting wrong or no priorities for 
the conservation of populations and species. 

We explore the biological and ecological factors determining time lags and their associated con-
founding factors. We focus on disturbance events affecting abiotic or biotic conditions 
(e.g., habitat loss, fragmentation, climate change, pollution, diseases [2,12]) and their detrimental 
effects on individual survival and/or reproduction, leading to reduced genetic diversity and genetic 
erosion. We finally propose a framework to interpret genetic diversity parameters considering the 
possible occurrence of time lags. 

Determinants of time lags: factors delaying genetic diversity loss and its 
detectability 
We here generally focus on genetic diversity loss caused by disturbance events; this can be 
mild or more severe and might lead or not to severe genetic erosion with reduced fitness (in the
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(i.e., deleterious alleles that are 
homozygous and thus expressed) and 
of masked load (i.e., deleterious 
mutations in heterozygous genotypes 
that are not expressed) [65]. 
Genome-wide genetic erosion: loss 
of genetic diversity and increase in 
realised genetic load resulting in 
maladaptation, decrease in adaptive 
potential, and reduced fitness [4]. 
Random genetic drift: change in the 
frequency of existing alleles from one 
generation to the next due to chance 
(random sampling of allelic variants). 
Strength of the fine scale spatial 
genetic structure (Sp): synthetic 
statistic which describes the strength of 
the spatial family structure within a 
population. It is estimated from the 
regression of inter-individual kinship on 
spatial distance. 
Time lag: temporal delay between a 
disturbance event and the consequent 
changes in the genetic constitution of 
the population. 
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long term). We address determinants that delay genetic diversity loss through favouring the per-
sistence of polymorphisms, i.e., counteracting genetic drift.

Life-history traits and other biological traits (Table 1) play a crucial role in allowing genetic 
polymorphisms to persist even through deteriorated environmental conditions [20–22]. 
Such traits essentially both (i)  extend the time available for an individual to reproduce 
(e.g., long life span [23], vegetative propagation, long generation time); and (ii) increase the 
number of opportunities for reproduction and the number of allele combinations arising 
from reproduction (e.g., overlapping generations, mating by outcrossing, large numbers of 
offspring per individual; Table 1).

The influence of life-history traits on genetic diversity is mainly mediated by Ne, which  mirrors
major, long-term differences in genetic diversity between species of plants and animals [22]. At 
the population-level, Ne affects the rate of loss of genetic diversity by drift: populations with 
large census size Nc or large Ne preserve genetic diversity, whereas populations experiencing 
strong declines, historical size fluctuations, or with small Ne lose genetic diversity more rapidly. 
Contemporary Ne (i.e., referring to recent generations) is used in conservation genetics to assess 
whether a population remains large enough [24,25], as currently large populations have more 
chances to preserve genetic diversity and adaptive potential in the long term. However, some 
populations are slow to respond! 

Life-history traits affect how Ne changes in relationship to NC, with adult life span/adult mortal-
ity, age at maturity and lifetime variance in reproductive success having the greatest effects 
[26]. Life span and age at maturity determine generation time, which scales positively with 
Ne, whereas lifetime variance in reproductive success is inversely proportional to Ne. Other
life-history traits (Table 1) generally affect both generation time and lifetime variance in repro-
ductive success in the same direction, thus having opposite influence on Ne, which will be dif-
ficult to predict. 

Species with life-history traits favouring time lags include perennial, long-lived plants and other 
long-lived organisms such as sea turtles that produce large numbers of un-nurtured offspring 
(thereby combining the long life spans characterising strict K-strategists with high offspring num-
bers characterising strict r-strategists). For example, a meta-analysis in plants revealed significant 
negative effects of recent habitat fragmentation on genetic diversity in herbs or short-lived plants 
but not in trees [27], suggesting that the longer generation time of trees (Box 1) delays the nega-
tive effects of habitat fragmentation. Indeed, a study encompassing different plant life forms [20] 
found that genetic diversity was lost proportionally to the number of generations since fragmen-
tation. Another notable example of traits favouring time lags is the survival of individuals through 
seed banks (e.g., in annual plants or fire-adapted species), whose genetic diversity will reflect the 
population dynamics of previous generations (e.g., [6]). 

Species that lack lag-favouring traits, instead, for example, short-lived species and those that 
frequently experience demographic changes (most r-strategists), might more rapidly respond 
to contingent threats or they might face direct extinction without any warning signals of genetic 
erosion [21]. 

Other biological traits such as autopolyploidy can affect the persistence of polymorphism [28] and 
thus the build-up of time lags. Because of their higher number of orthologous alleles, autopoly-
ploid species lose genetic variation by drift more slowly than diploid species [29] and this reduced 
loss is also mediated by a larger Ne [28].
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Table 1. Traits favouring the persistence of polymorphisms and delaying genetic erosion after disturbance events and their effects on Ne (effective 
population size)a 

Life-history traits and other factors 
favouring time lags 

Mechanisms Effects on Ne or Ne/NC ratio Refs 

Long generation time, as a function of 
age at maturity, survival rate and 
age-specific fecundity; inverse function 
of annual mortality rate

-Persistence of individuals and increased 
opportunity to reproduce: genetic diversity will 
reflect previous generations
-Age at maturity (one of the main determinants of 
generation time) will dictate how fast the progeny 
representative of progressively eroded genetic 
diversity will reproduce, all else being equal

-Ne increases proportionally with generation time. 
General principle ‘lengthening the 
pre-reproductive period increases Ne’.
-Increased age at maturity increases both Ne and 
Ne/NC. 

[30] 

[26] 

Overlapping generations/iteroparity/age 
structure

-Increased opportunities for reproduction across 
age groups: genetic diversity will partially or 
entirely reflect previous generations 

Overlapping generations generate lifetime 
variance in reproductive success, thus reducing 
Ne. 

[31] 

Long life span (longevity)/high survival 
rate

-Persistence of individuals and increased 
opportunity to reproduce: genetic diversity will 
reflect previous generations 

The increase in survival rate is associated with a 
reduction in Ne/NC (counterbalanced by an 
opposite effect on Ne associated with a longer 
generation time). 

[26] 

Clonal and partially clonal reproduction 
(in general) 

Vegetative growth

-Persistence of individuals, increased 
opportunity to reproduce: genetic diversity will 
reflect previous generations
-As above, plus increase in physical size (with 
associated increase in organs for sexual 
reproduction)

-Same as for long life span and long generation 
time, relative contribution of other life-history 
traits is generally difficult to disentangle (see 
Outstanding questions).
-As above. If some (larger) individuals will 
consistently reproduce more (sexually), Ne and 
Ne/NC will be significantly reduced because of 
increased lifetime variance in reproductive 
success. 

[32,33] 

Mating system and dispersal strategy -Outcrossing and long-distance dispersal will 
promote population connectivity, buffering or 
delaying genetic erosion
-Selfing might initially favour a time lag, as 
individuals not affected by the disturbance event 
will continue reproducing as before: genetic 
diversity in the progeny of selfed individuals will 
reflect previous generations
-Shift from predominant outcrossing to selfing 
will cause a rapid drop in genetic diversity 

The interactive effect of mating system and other 
life-history traits on Ne is generally difficult to 
disentangle (see Outstanding questions).
-Selfing decreases Ne. 

[34] 

[30] 

Large populations/distribution ranges -Large populations in large distribution ranges 
have a large reservoir of genetic diversity that 
can compensate for local genetic diversity 
losses 

Large populations have large Ne. [35] 

Large number of offspring reaching 
reproductive maturity

-Effective reproduction will tend to buffer or delay 
genetic erosion, and genetic diversity will reflect 
previous generations, at least initially-
If many offspring are generated by parents 
whose genetic diversity is representative of the 
previous generation, it will take longer for genetic 
parameters to reflect new environmental 
conditions 

Mostly dependent on variance in reproductive 
success. More reproducing individuals will tend 
to even out variance in reproductive success, 
increasing both Ne and Ne/NC. Few individuals 
generating large numbers of offspring will 
increase variance in reproductive success, 
decreasing both Ne and Ne/NC. 

[22,25,31] 

Seed banks (e.g., in annual plants) 
Diapausing eggs (e.g., in freshwater 
crustaceans)

-Persistence of individuals, subject to successful 
germination/survival: genetic diversity will reflect 
previous generations 

Lengthening of the juvenile life-stage increases 
Ne; analogously, lengthening mean seed 
dormancy increases Ne. 

[6,30,36] 

Other biological traits or selective 
pressure potentially favouring time lags 

Balancing selection on adaptive locib -Polymorphism can be maintained at adaptive 
loci that were under past balancing selection 

[37] 

Inefficient directional selectionb on 
putatively adaptive loci under long 
generation times

-Slow responses to selective pressures generate 
time lags. 
In addition, other life-history traits can cause a 
cumulative effect in the build-up of time lags 

[38]
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Life-history traits and other factors
favouring time lags

Mechanisms Effects on Ne or Ne/NC ratio Refs

Selection in heterogeneous 
environments

-Environmental heterogeneity maintains more 
suitable habitat for individual survival after 
disturbance 

Ne kept high as the environment buffers the loss 
of genetic diversity 

[39] 

Autopolyploidy -Loss of heterozygosity (genetic diversity) is 
slower in autopolyploids and heterozygosity is 
higher at mutation-drift equilibrium compared 
with diploid populations 

Ne is larger in autopolyploid populations [28] 

a The difficulty in predicting changes in Ne generally arises from opposite effects of generation time and lifetime variance in reproductive success, which are in turn affected 
by other life-history traits. 
b The effect of selection only on specific loci might be considered among ‘confounding factors’ as genetic erosion can be actually detected if analysing other (neutral) regions. 
However, balancing selection has been included among the determinants of time lags, because it can induce a long-term persistence of polymorphism at the loci it acts upon.
Lag-favouring life-history traits can also lead to delayed responses to selection (i.e., adaptational 
lag), for example, when locally adapted populations become maladapted [38]. Adaptive genetic re-
sponses to selection can happen within a few generations and involve, for most traits, small allele fre-
quency shifts at many, partially redundant loci, and are most effective in large populations [40]. Loci 
under past balancing selection experience delay in the loss of genetic variation compared with the ge-
nomic background, a situation named (genetic) drift debt [37]. The concept of genetic drift debt 
was recently expanded to include the delay in the conversion of masked to realised genetic load 
due to inbreeding [41,42]. We can here further broaden the concept to genome-wide delays in ge-
netic diversity loss due to lag-favouring traits, effectively synonymising it with genetic extinction debt. 

Lastly, Table 1 includes additional ecological factors (e.g., heterogeneous environments) and bi-
ological traits favouring time lags, but more research is required to understand the entire suite of 
life-history traits/factors that could affect time lags and to disentangle their relative contributions. 

Factors confounding the interpretation of genetic studies when time lags occur 
When disturbance events occur, our ability to detect their impact on genetic diversity might be con-
founded depending on our methodological choices. As we expect that the changes will not affect all
Box 1. Species with lag-favouring traits: trees 

Studies on trees have provided a great insight into the persistence of genetic diversity under deteriorated habitat condi-
tions, as these species have many of the life-history traits favouring time lags. Forest tree populations are characterised 
by high levels of genetic diversity, much higher than, for example, herbaceous species [34]. Tree species are mostly 
outcrossing, have a high lifetime reproductive output, are subjected to strong selection pressures during early life stages, 
and they are particularly long-lived with overlapping generations [66]. In natural undisturbed populations, the genetic diver-
sity of dominant tree species positively correlates with the surrounding species diversity (e.g., [67,68]). However, while spe-
cies diversity is lower in disturbed habitats, this is not necessarily the case for genetic diversity, indicating non-parallel 
changes after disturbance events [67] possibly due to time lags. The genetic response to disturbance events such as log-
ging, fire, or dieback due to invasive pathogens depend on (i) the strength/rate of population size decline, and (ii) specific 
life-history traits of the tree species. In the case of deforestation, remnant forest sites can display genetic variation charac-
teristic of formerly continuous stands. The constituent species with already low genetic diversity might thus face higher ex-
tinction risks than interpretable based on their genetic variation [60]. Extensive clear-cuts can lead to dramatic declines of 
population size of tree species causing increased genetic drift which affects allele frequencies in the natural regeneration. 
Light-demanding and fast-growing pioneer species with efficient seed dispersal emerge first and gain abundance in clear-
cut sites while shade-tolerant, slow-growing species emerge with delay and at lower densities, making them more vulner-
able to genetic erosion, especially in tropical forest ecosystems [69,70]. Silvicultural practices, such as avoiding clearcuts 
or avoiding the selective removal of one of the sexes in dioecious species, raising minimum logging diameters, and rotation 
lengths, can attenuate these effects [71,72]. However, detecting recent loss of genetic diversity in tree populations is dif-
ficult, as remnant trees will reflect the genetic diversity of the previous generation, as expected in species with traits 
favouring time lags. Similar effects are likely in some marine fish, corals, sea grasses, other partially clonal species and 
in general species with K-strategy life-history traits [73,74].
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individuals simultaneously, depending on reproductive strategies and on the occurrence of genetic 
structure within a population [43,44], the sampling strategy adopted becomes a major determinant 
of the analytical outcomes (Figure 1). For example, recent ecosystem fragmentation was better cap-
tured in the genetic diversity (expected heterozygosity, percentage of polymorphic loci) measured in 
young cohorts versus in adults of long-lived plant species [9]. Similarly, recent population expansion 
and ongoing gene flow after a founder event were associated with a larger Ne estimated in juveniles 
of a long-lived, age-structured orchid than in adults from the same population [33].

The uncertainty associated with sampling design has been extensively discussed in conservation 
and population genomics, with the consensus being that analyses based on allele frequency cal-
culations require sampling that is representative of the allele frequencies in the population and that 
large sample sizes are generally needed to increase statistical power, especially in large popula-
tions (e.g., [45]). Rare alleles are not accurately represented in small sample sizes and this will es-
pecially bias the estimation of demographic parameters. Furthermore, sample sizes need to be 
similar when directly comparing different populations or cohorts. 

As changes in allele frequencies may not be simultaneously reflected in the entire genome, our ability 
to detect early signatures of genetic erosion will also depend on the choice of molecular markers or 
genomic regions analysed (Figure 1; [46]), on whether these genomic regions are under the effect of 
selection or not, and on the metrics used [4]. Genomic regions with higher mutation rates 
(e.g., microsatellites) will exhibit higher indices of genetic diversity than regions usually found in two 
allelic states (maximum expected heterozygosity equal to 0.5), such as SNPs. Because marker 
choice impacts the magnitude of the genetic metrics obtained, the interpretation of population ge-
netic metrics requires caution when comparing studies using different marker types. 

Genic and adaptive regions under the effect of balancing selection are expected to be more con-
served than neutral regions and might remain in the same state even in deteriorated environmen-
tal conditions [47]. Genetic diversity might remain high at loci affected by past balancing selection, 
despite an overall loss of genetic diversity due to genetic drift [37] and therefore a focus on such 
loci might mask the detection of genome-wide genetic diversity loss. 

Demographic processes might differentially be detected depending on the genetic diversity met-
rics considered. Since rare alleles are lost first under population decline, allelic richness and num-
ber of polymorphic loci respond more quickly than heterozygosity and nucleotide diversity to 
changes in population size. Heterozygosity, in particular, is only affected to a little extent by 
short bottlenecks [19,48]. 

Complementary information such as geographic coordinates of samples can improve the inter-
pretation of genetic data. In large populations with effective gene flow and isolation by distance 
(e.g., in trees), where Ne is difficult to estimate [49], recent demographic changes can be captured 
based on spatial genetic parameters such as the strength of the fine scale spatial genetic 
structure (Sp), which is sensitive to differential management and population dynamics [50]. 

Considering the factors confounding genetic interpretations under the occurrence of time lags, it 
becomes obvious that relatively high levels of genetic diversity may reflect past conditions and 
that genetic erosion may occur with a delay [17]. 

A framework for interpreting genetic parameters despite time lags 
Regardless of the time elapsed between the disturbance event and the onset of genetic erosion, 
the influence of confounding factors on genetic diversity can be mitigated by satisfying some
6 Trends in Ecology & Evolution, Month 2024, Vol. xx, No. xx
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methodological requirements (Figure 2A). Researchers should adopt sampling strategies that are 
representative of the entire target population, accounting for genetic differences between life-
stages in species with overlapping generations and barriers to random mating. Most importantly, 
consideration of population ecology, life-history traits and ploidy level is essential to interpret ge-
netic diversity and the possible occurrence of time lags. When the analysis of genome-wide var-
iation is not possible [51], analyses should target as many markers as possible, covering different 
genomic regions. Multiple genetic metrics should be used to account for their differential re-
sponses to demographic processes. Metrics that focus on processes in contemporary genera-
tions potentially mirroring recent disturbance events include parameters of the mating system, 
(e.g., outcrossing rates), variance in reproductive success, dispersal kernels and metrics on spa-
tial genetic structure [50,52], as well as metrics summarising rare allele frequencies such as allelic 
richness or the site frequency spectrum [53]. These can be complemented by metrics 
summarising the proportion of segregating sites such as Watterson’s theta, which is a proxy 
for long-term Ne [18]. 
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Figure 2. (A) Methodological requirements for the correct interpretation of population genetic diversity under time lags; 
(B) potential approaches to detect a time lag and correctly interpret population genetic diversity, and references to studies 
where similar approaches have been used to analyse genetic diversity, in the Iberian lynx, Lynx pardinus [57], the pink 
pigeon, Nesoenas mayeri [58], the Atlantic sturgeon, Acipenser oxyrinchus oxyrinchus [59], the legume tree Dimorphandra 
exaltata [60], the alpine ibex, Capra ibex [61] and the maritime pine, Pinus pinaster [62]. The approaches outlined in 
(A) and (B) also allow monitoring managed populations of lag-prone species, to assess whether conservation interventions 
have been effective. Abbreviations: NC, census size; Ne, effective population size.
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Outstanding questions 
How can time lags be quantified 
robustly across taxa, disentangling 
the contributions of different life-
history traits and the severity and dura-
tion of the disturbance event? 

What are the relative contributions of 
demographic processes and selection 
to the build-up of time lags? 

How do  genome size and  genomic  
architecture affect the persistence of 
genetic diversity and thus the build-up 
of time lags? 

Can time lags aid in preserving genetic 
diversity by granting more time for  
implementing management actions? 

How can we build a framework to unify 
the concept of extinction debt at 
the community level with genetic 
extinction debts (= time lags) at the 
population level?
Provided that the aforementioned requirements are satisfied, we summarise three potential ap-
proaches (Figure 2B) that might help detect early signs of genetic erosion despite the occurrence 
of time lags. 

(1) The joint genetic analysis of samples from contemporary populations and samples collected 
in the past (e.g., from herbaria, museums, and archaeological sites) is one of the strategies 
to evaluate loss of genetic variation, through the estimation of delta values of genetic 
metrics. Historical samples provide baseline levels of variation before the onset of the distur-
bance events causing genetic erosion [15,48,54,55]. The main limitation of this approach is 
the availability of temporal samples. In addition, temporal samples might be not representa-
tive, considering past population dynamics and sampling strategies (although see [54]), tech-
nical pitfalls such as post-mortem damage patterns, and genotyping errors associated with 
depth of sequencing coverage [15]. 

(2) The comparison between historical and contemporary estimates of Ne [56] and  NC might 
reveal differences in genetic drift over time (see Figure 1B,C in [54]). Because of the relative 
simplicity of estimating both historical and contemporary Ne with samples collected in a 
single point in time, these estimates can disclose loss of genetic variation when other metrics 
might not. The inclusion of temporal sampling of populations provides further analytical 
power to detect population genetic changes, although researchers should be aware of the 
biases associated with each estimation method [56]. 

(3) Comparison of genetic or genomic parameters of a population with those of one or several 
large and  stable reference populations  (ideally  from  the same gene pool) can  provide a
surrogate for baseline levels of genetic variation. Although finding reference populations is 
challenging because of the spatial distribution of genetic diversity (e.g., range marginality) 
and potentially different selective pressures, the intrinsic value of having reference popula-
tions can aid the conservation of the most threatened populations. 

Concluding remarks and future perspectives 
Time lags between disturbance events and genetic responses is a common but overlooked prob-
lem in ecology, evolutionary, and conservation genetics. Here, we unify the concepts of time lag, 
genetic extinction debt, and genetic drift debt under the definition of ‘genetic extinction debt’, 
recognising that they all involve a delayed change in genome-wide genetic diversity, either occur-
ring simultaneously or temporally shifted at neutral and functional loci. We identified questions that 
deserve exploration (see Outstanding questions) and open new avenues for the correct interpreta-
tions of genetic diversity levels despite the occurrence of time lags. These include disentangling the 
contributions of different life-history traits to genetic extinction debts and distinguishing delayed re-
sponses to neutral processes from delays in response to selection. Community ecology and con-
servation biology can both benefit from a unified framework in which genetic extinction debt is 
recognised as the basis for extinction debt at the community level. Finally, genetic extinction 
debt can offer valuable time to implement necessary conservation actions to prevent more severe 
genetic erosion. 
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