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Abstract 

Animal social systems are remarkably diverse, ranging from solitary individuals to well-

connected cooperative groups. Understanding the drivers of this variation is a key 

question in behavioural ecology and has been the focus of numerous studies linking 

social structure to ecological, demographic, and life history patterns within groups, 

populations, and species. Equipped with this information, researchers are now 

turning to investigations that are comparative in nature. However, comparing social 

networks remains a considerable logistical and analytical challenge. Here, we present 

the latent layers framework, which outlines how observed social networks are linked 

to the two underlying latent networks that are of interest for most research questions: 

the realised social network (the actual pattern of social interactions), and the social 

preference network driving these interactions. This conceptual framework provides a 

clear and unified approach to understand when and why differences in network 

properties and sampling protocols can introduce discrepancies between observed 

and latent networks, potentially biasing or confounding statistical inference. We then 

use this conceptual framework to outline some of the central challenges to comparing 

animal social networks, describe why and how they create challenges for comparative 

analyses, and suggest potential directions for solutions. The latent layers framework 

can help researchers to identify networks they can (or cannot) compare. In doing so, 

this framework facilitates advances in comparative social network studies with the 

potential to generate new and important insights into the ecological and evolutionary 

drivers of variation in social structure across the animal kingdom. 
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Introduction 

The animal kingdom features a remarkable diversity of social systems, from solitary 

individuals to well-connected cooperative groups (Clutton-Brock, 2016; Rubenstein 

& Abbot, 2017). Yet, our understanding of the ecological and evolutionary causes 

and consequences of this diversity remains incomplete (Kappeler et al., 2019; Kurvers 

et al., 2014). Comparing animal populations facing distinct environmental challenges 

can provide insights into the influence of ecological variables such as predation and 
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food availability on social patterns (Barsbai et al., 2021; Bonnell et al., 2022; Krause 

& Ruxton, 2002; Lukas & Clutton-Brock, 2018), and reciprocally, how these social 

patterns impact ecological factors, such as pathogen transmission (Albery et al., 2021; 

Bansal et al., 2007; White et al., 2017). Comparative analyses can also reveal how 

social systems evolve alongside life history traits (Silk & Hodgson, 2021) and interact 

with demographic mechanisms (Clements et al., 2022; Shizuka & Johnson, 2020). 

As a result of countless efforts to collect social data (Clutton-Brock, 2021; Sheldon et 

al., 2022), numerous animal social datasets exist, capturing social structure across 

diverse species and environments. With the emergence of databases bringing 

together these data across taxa (e.g. MacaqueNet, De Moor et al., 2025; Animal 

Social Network Repository (ASNR), Sah et al., 2019; DomArchive, Strauss et al., 2022), 

attention has turned to the statistical methods with which such data can be compared 

(Albery et al., 2024; Ellis et al., 2021; Hobson et al., 2019; Shizuka & McDonald 2015). 

Comparative social network analysis offers a holistic approach to draw inference 

about the drivers and consequences of animal social structure (Albery et al. 2024; 

Croft et al., 2016; Hobson et al., 2019; Pinter-Wollman et al., 2013; Shizuka & 

McDonald 2015; Webber & Vander Wal, 2019). By explicitly representing social 

structure as an emergent property of social interactions between individuals (Hinde, 

1976), social network analysis can be used to ask questions about social evolution at 

the level of individuals, dyads, social groups and populations. Various insights into 

animal societies can therefore be gained by either directly comparing the entire 

networks as objects themselves (e.g. correlating entire network matrices) or after 

compressing networks into summary measures and statistics (e.g. comparing global, 

dyadic and/or individual network metrics or other summary statistics; Hobson et al., 

2019; McDonald & Shizuka, 2013). However, despite the potential value of 

comparative social network analysis, only a relatively small body of literature 

compares social networks across species and taxonomic groups (Albery et al., 2024). 

A major reason for the lack of such studies is the viability of comparing networks that 

are generated using different methodologies, and that may diverge widely in key 

properties such as network size and behaviour types (Faust & Skvoretz, 2002; Ogino 

et al. 2023; Pinter-Wollman et al., 2013).  

Here, we offer an overview of five key challenges that create disparities between 

social networks and provide guidance on what to consider when designing 

comparative analyses to minimise these challenges. A common theme to these 

challenges is that the observed networks we compare are most often different from 

the underlying, latent (i.e. unobservable), networks we want to make inferences 
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about. We therefore begin by introducing the latent layers framework that provides 

a unified representation of how different biological and observational processes 

interact to influence the social structures we observe. Our aim is to outline these 

issues in a way that helps behavioural ecologists in making meaningful and informed 

comparisons of social structures. A clear understanding of how these processes 

contribute to variation in observed social networks will help researchers to make 

principled decisions on how best to compare network, regardless of the nature of 

their comparison (e.g. comparing network matrices or suites of network-level 

descriptive measures or comparing networks across species or across time). While we 

introduce the latent layers framework in the context of comparing networks, it 

contains valuable concepts for all social network analyses, be they comparative or 

not.  

The latent layers framework 

One key issue in network analysis is that observed networks often do not directly, or 

exclusively, correspond to the biological phenomenon of interest (Brugere et al., 

2018; Kawam et al., 2024). This lack of correspondence is due to two primary reasons. 

Firstly, the social networks we quantify are usually based on only a subset of 

interactions – those that have been recorded – and an observed network is therefore 

an estimation, not exact representation, of the complete or “real” patterning of 

interactions (Handcock & Gile, 2010; Shizuka & McDonald, 2015). Secondly, even 

when all interactions that happen in a group are recorded, they are unlikely to 

correspond directly to individual preferences regarding social partners because of 

constraints that hinder individuals in realising their preferred relationships. For 

example, if all individuals in a group prefer high-ranking individuals as partners, only 

a subset of those individuals may have that preference realised because the time 

high-ranking individuals have available to socialise is limited (Seyfarth, 1977). Instead, 

some individuals might end up interacting with their second, third, or even last choice 

of partner.  

To provide a structured way of thinking about this, we present the latent layers 

framework, which represents social structure as a hierarchy of networks: an observed 

social network, the realised social network and the social preference network (Fig. 1). 

The realised social network and the social preference network are latent and cannot 

be directly observed, but they can be inferred from the observed social interactions. 

An observed network represents a sample of the realised network. The realised 

network is the actual pattern of all interactions or associations between individuals. 

In turn, the realised network is itself a (likely partial) realisation of the individuals’ social 
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preferences. These preferences can also be represented as a network (e.g. a directed 

network representing the strength of preference that each individual has for others 

for a given behaviour, see Box 2): the social preference network.  

Mismatches between an observed network and the two latent networks (or indeed 

between the two latent networks) are the result of two main processes: sampling 

biases and constraints (Fig. 1). Common examples of sampling biases include cases 

where certain individuals or interactions are better sampled than others (Altmann, 

1974; Bateson & Martin, 2021). For example, a researcher using biologgers to record 

proximity between pairs of animals may not be able to afford to put a biologger on 

every individual, or a researcher visually observing social interactions cannot 

simultaneously watch all individuals at once. Constraints include factors that prevent 

individuals from realising their social preferences. These constraints may come from 

different sources, such as incompatible preferences between potential partners, 

where one individual may wish to interact but the other does not, preventing the 

preferred relationship from forming. Other examples include spatial constraints, 

where individuals are separated by physical barriers or large distances that prevent 

access to preferred partners, and social factors such as dominance and kinship 

structures, that limit opportunities for interaction.  (Fisher et al., 2021; Webber & 

Vander Wal, 2018). 

Research questions are almost always about the latent network layers rather than the 

observed network (Lundberg et al., 2021). The social preference network is usually 

the level of interest when researchers seek to understand the causes of social 

behaviours, such as how kinship, age and sex impact partner choice, or the role of life 

history, ecology, or the social environment in shaping the types of social relationships 

individuals form (Chakrabarti et al., 2020; De Moor et al., 2020; Hobson, Monster et 

al., 2021; Silk & Hodgson, 2021; Siracusa et al. 2022, Smith, 2014; Snyder-Mackler et 

al., 2016). On the other hand, the realised social network is usually the level of interest 

for investigations into the consequences of social behaviours, such as the influence 

of social structure on disease or information transmission (Aplin et al., 2012; Collier et 

al., 2022; Silk & Fefferman, 2021) and on fitness outcomes (Ellis et al., 2017; Ellis et 

al., 2019; Riehl & Strong, 2018; Sabol et al., 2020; Strauss & Holekamp, 2019). 

However, analyses are typically run on the level of the observed network (Fig. 1). 

Understanding which latent network layer is of interest for a given question, and how 

an observed network relates to that latent layer is therefore essential for reliable social 

network analyses. In a comparative context, deconstructing networks in this way 

clarifies that valid comparisons depend not on the differences between networks 
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themselves, but on the mechanisms through which these differences create 

discrepancies between the observed and latent networks. 

 

Challenges of comparative social network analysis 

Comparative social network analysis faces significant challenges due to the variability 

in how networks are constructed. Networks can be based on different behaviours, 

sampled using diverse data collection methods with varying degrees of effort, and 

sampled at different biological scales (Albery et al., 2024; Canteloup et al., 2020; 

Davis et al., 2018; Faust & Skvoretz, 2002). These differences can create disparities 

between the observed networks, reflecting sampling biases and constraints rather 

than true differences, thus confounding comparative analysis (Gagliardi et al., 2023; 

Ogino et al., 2023; Shizuka & McDonald, 2015). Recent methodological 

developments treat observed interactions as the outcome of generative processes 

that can be modelled, allowing researchers to explicitly account for sampling biases 

and constraints analytically by inferring the latent network layers based on the 

observed network; for further technical detail, see Box 1. 

Here, we consider five key challenges in comparative social network analysis: 

comparing networks that differ in 1) behaviour type, 2) sampling method, 3) sampling 

effort, 4) network size, and 5) biological scale. We summarise these challenges in 

Table 1 and discuss in greater detail how these differences introduce sampling biases 

and constraints, generating discrepancies between the observed and latent networks 

and affecting the comparisons of observed networks. Additionally, we provide 

guidance on how best to handle each of these challenges, and—because the most 

appropriate solutions often depend on the study systems being used and the 

questions being asked—we build on the example above comparing a fish network to 

a bird network (Fig. 1) to make this guidance more concrete and practically useful. In 

our example, we are interested in comparing the social structure of the two species, 

asking whether individuals prefer to form many social relationships or a few strong 

ones. This question lies at the level of the social preference network, meaning that 

we need to consider both sampling biases and constraints. At the end of the section 

on each challenge, we explain how we deal with differences in the observed networks 

of the two species to make comparisons as robust as possible. 

While we present these challenges independently here for clarity, it is key to note that 

these challenges are closely linked (Fig. 5). For example, the size of the realised 

network (in combination with the research questions being addressed) may influence 
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the scale at which sampling is undertaken, which can then influence the size of the 

observed network.  

 
=========================================================================== 
BOX 1: MOVING BETWEEN LAYERS 

Recent developments in Bayesian network analysis provide methods that allow us to 

attempt moving between the network layers depicted in Fig. 1 (De Bacco et al., 2023; 

Hart et al., 2023; Kawam et al, 2024; Redhead et al., 2023).  

These Bayesian models treat observed interactions as the outcome of a two-step 

process: a generative process that gives rise to the latent realized network (e.g. 

reflecting social preferences, influenced by factors such as individual traits, dyadic 

relatedness, or environmental conditions) and an observation process that links the 

realized network to the observed data (influenced by sampling-related factors such 

as effort and biases in the visibility of individuals or behaviours). By explicitly 

modelling both processes, these models estimate the distribution of plausible latent 

social networks that could have produced the observed interactions, while accounting 

for constraints in realizing social preferences and sampling biases in observation. 

Similar approaches are commonly used in ecological Hidden Markov Models, for 

example to estimate demographic states from capture–recapture data (Gimenez & 

Gaillard, 2017; McClintock et al., 2020).   

In essence, these generative modelling approaches estimate the latent network layers 

underlying social interaction patterns based on the observed data, while 

incorporating information about the processes that generate the observed networks. 

For example, starting from the observed fish and bird networks in our example (Fig. 

1), we can incorporate our knowledge about the suspected constraints (limited time 

to socialize in the fish population) and sampling biases (overrepresentation of 

gregarious individuals in the bird population) when estimating distributions of 

possible social preference and realized networks that could underlie those observed 

social networks. 

Generative modelling approaches can be used to quantify how well the observed 

network is expected to reflect the underlying latent network layers, which is translated 

into uncertainties in the estimated strength of dyadic connections (i.e. edge weights; 

Ross et al. 2023). For instance, within the BISoN framework (Hart et al., 2023), network 

metrics are calculated from draws of the Bayesian posterior distribution of the latent 

realised network edge weights, while accounting for sampling effort and structured 

influences where needed. Doing so generates a posterior distribution of network 

metric values (instead of a single value, or point estimate), therefore explicitly 
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including uncertainty in the metric estimates, where higher sampling effort leads to 

narrower distributions. Once network metric posteriors have been generated, they 

can be passed to downstream statistical analyses thereby carrying uncertainty forward 

into statistical analyses, such that networks with higher observation effort carry more 

weight on inference. In our example (Fig. 1), gregarious birds are observed more 

often than less gregarious ones. By using BISoN, this sampling bias is taken into 

account by narrower posterior distributions for the edge weights and network metrics 

of those more frequently observed individuals—indicating greater confidence in their 

estimated social positions, which will therefore carry more weight in downstream 

inference. 

These methodological developments hold great promise for comparative social 

network analysis. They enable researchers to make inferences at the latent network 

level relevant to specific research questions, while also explicitly accounting for 

differences between networks that could potentially confound or bias comparisons 

(Fig. 1). However, moving between layers is still challenging, especially for systems 

where the generative social processes are poorly understood. Bayesian models that 

estimate latent network layers require causal inference, and so information on the 

generative processes giving rise to the observed networks, which include both 

biological (e.g., social preferences and social and/or physical constraints in realising 

those preferences) and observational (e.g., sampling protocols and effort) factors 

(Franks et al., 2025; Pearl & Mackenzie, 2018).  

For instance, individual decisions regarding who to affiliate and fight with are likely 

driven by underlying rules based on characteristics of the individual, their potential 

social partners, and the broader social context (Hobson, Monster et al. 2021). 

Identifying what these factors are, and what needs to be controlled for statistically 

needs to be defined using causal inference methods such as Directed Acyclic Graphs 

(DAGs) that define the data generating process (Franks et al. 2025). Yet, 

understanding these generative processes – and the extent to which they are 

generalizable across taxa – is still very much in development in animal social network 

analysis (Brask et al. 2023; Hobson, Monster et al. 2021; Hobson, Silk et al. 2021). This 

is an area where significant methodological advancements are needed to fully enable 

reliable comparative social network analysis. The latent layers framework offers a clear 

and structured approach to understanding these generative processes. It makes 

explicit how the observed networks used in research are generated by underlying 

social preferences and are modulated by constraints and sampling biases. 
=========================================================================== 
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Table 1: Summary of five key challenges faced when comparing animal social networks.  

Challenge Description 

Behaviour 
type 

Networks vary in the behaviours used to construct them. Whether networks 

based on different (or the same) behaviours can be compared depends on the 

biological functions of the behaviours in the given populations and the research 

question.  

Sampling 
effort 

Sampling effort can vary substantially between networks, influencing how reliably 

an observed network represents the realised network. Bayesian models that 

estimate the realised network from observed data can account for sampling 

effort as uncertainty in the estimated network properties (Box 1). 

Sampling 
type 

Networks constructed using various sampling methodologies pose two main 

challenges: 1) different sampling protocols generate different sampling biases, 

and 2) how the strength of dyadic connections (edge weights) are quantified may 

not be directly comparable. Recent methodological advancements, such as 

mixture models and Bayesian models that estimate the realised or social 

preference network from an observed network while explicitly accounting for 

sampling type, offer promising solutions (Box 1). 

Network 
size 

Networks can vary substantially in their size, which can influence network 

structure. Whether or not to account for network size depends on whether 

network size is central to the relationship between network structure and 

biological variables of interest (Fig. 2). If controlling for network size is warranted, 

doing so correctly can be challenging as it requires knowledge of the generative 

process underlying the network (Box 1), which determines how size impacts the 

network property of interest.  

Network 
scale 

Networks can be sampled at various scales, resulting in observed networks 

representing different subsets of realised networks. The scale of sampling 

significantly influences network structure, making networks sampled at different 

scales generally incomparable, particularly for global network properties. 

Bayesian models that impute missing data for networks sampled at smaller scales 

may provide a solution, but they necessitate an understanding of the generative 

process underlying the network at the larger scale (Box 1). 

 

1. Differences in behaviour type 

The first factor determining the comparability of networks is the type of behaviour 

used to construct them. For most comparative analyses, networks compared should 
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be constructed on behaviours with similar biological functions, therefore reflecting 

similar social preferences or representing realised networks with similar outcomes 

(Box 2). While it might seem obvious that an affiliation network based on huddling 

should not be directly compared to an agonism network based on physical 

aggression, determining which behaviours can be compared often requires more 

nuanced considerations. For example, various behaviours have been used to quantify 

affiliative social relationships in different studies and species, ranging from direct 

interactions such as grooming and allopreening, to spatial associations and co-

membership of a group (Smith-Aguilar et al., 2018; Webber & Vander Wal, 2019). 

Whether these behaviours can be considered to represent the same biological 

function is contingent on the research question and the biology of the study species 

to be compared (Carter et al. 2015, Farine & Whitehead, 2015). In addition, the same 

behaviour can serve different functions in different systems and might reflect different 

information depending on the context. For instance, pairs of animals sitting within a 

5m range of one another could be indicative of a close association in wild 

populations, whereas that same distance might not carry the same information in a 

captive population where individuals have less space over which to spread.  

Moreover, behaviours will differ in how strongly individuals are constrained in 

realising their social preferences. For example, certain behaviours like grooming or 

biting are often difficult to direct at more than one partner at a time. In contrast, 

individuals can sit near or vocalise to multiple partners at once, so that these types of 

behaviours are likely to be less constrained by limitations related to social 

preferences. Similarly, environmental constraints, such as spatial barriers, are more 

likely to impact behaviours that involve physical contact than behaviours that do not. 

Different behaviours are also influenced by sampling biases to different extents, so 

that an observed network of one behaviour might better represent the realised 

network than another behaviour. Rare or less visible behaviours tend to be more 

heavily affected by sampling biases (Martin & Bateson, 2021). Moreover, the degree 

of sampling bias can vary for the same behaviours depending on the system or 

context. For example, recording aggression in a terrestrial species may be easier than 

in an aquatic one. Consequently, a smaller proportion of interactions may be 

observed for the aquatic species compared to the terrestrial one.  

Considerations for comparing networks of different behaviour types 

Any comparative study whose question depends on comparing ‘like to like’ will need 

to carefully evaluate whether the networks are constructed based on behaviours with 

comparable biological functions and facing similar sampling biases and constraints in 
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their given context (or whether differences can be accounted for in the analyses). This 

is important because behaviours should either reflect similar social preferences or 

represent a realised network with similar outcomes. Determining which behaviour 

types can be reliably compared is a critical first step in comparative social network 

analysis, which requires thoughtful consideration tailored to the specific research 

question and informed by knowledge of the species' biology under study. 

In our fish and bird example, we have data on multiple social behaviours for each 

species: cooperative predator mobbing and swimming in parallel in the fish, 

cooperative nest-building and preening in the birds. Of these, we choose to use 

predator mobbing in fish and nest-building in birds, as they are functionally 

comparable, both reflecting cooperative social interactions that likely involve partner 

investment decisions.  

 

2. Differences in sampling effort 

Sampling effort can significantly impact how reliably an observed network represents 

the realised network, with greater effort improving reliability (Croft 2008; Farine & 

Strandburg-Peshkin, 2015; Franks et al. 2021; Shizuka & McDonald, 2015; Whitehead 

2008). Accounting for uncertainty in estimated network metrics is important for any 

social network analysis but becomes especially crucial when comparing networks 

constructed with varying sampling efforts. These networks inherently differ in how 

reliably the observed strength of dyadic connections, i.e. edge weights, represent the 

underlying actual edge weights. Failing to account for this uncertainty might lead to 

wrong conclusions. For instance, in a network constructed based on just one hour of 

observation, a dyad may appear to spend most (or none) of their time together. Yet, 

this estimate could be a highly uncertain representation of this dyad’s connection in 

the realised network. Extending to 100 hours of sampling effort may provide a more 

accurate estimate of the dyad’s edge weight in the realised network and would lower 

the level of uncertainty around that estimate. Comparing a low observation effort 

network to a high observation effort network might falsely suggest that individuals in 

the low observation network spend more (or less) time together compared to those 

in the high observation network, but in reality, the difference is due to sampling effort 

rather than actual differences in behaviour. One effective solution to address the 

challenge of variable sampling effort when comparing networks is to use models that 

estimate the realised network based on the observed network as a latent structure, 

with an explicit degree of uncertainty (Box 1).  
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Considerations for comparing networks of different sampling effort 

When comparing networks, researchers should account for differences in sampling 

effort, which can strongly impact how well an observed network represents the 

realised network. An effective solution to do so is to consider the realised network as 

a latent structure, which is estimated with a degree of uncertainty, determined by the 

observation effort. Recent frameworks provide tools to estimate the realised network 

from an observed network, while explicitly estimating uncertainty in the estimated 

latent network based on sampling effort (Box 1). 

In our fish and bird example, the networks have been sampled in different ways. For 

the fish, two datasets are available: one based on high-intensity sampling over a 

single month, and another based on lower-intensity sampling conducted over several 

months. For the birds, data were collected over several months. Because our research 

question focuses on more stable social relationships rather than short-term 

interactions—and to ensure better comparability with the bird network—we decide 

to use the longer-term, lower-intensity fish dataset. The fish network includes many 

more individuals than the bird network, so even though the study duration and rate 

of interaction in our behaviours of interest is similar across both species, the per-

individual sampling effort is comparatively lower in the fish. To account for this 

difference, we use BISoN (Hart et al. 2023), which allows us to quantify uncertainty in 

estimated relationships based on variation in social effort and to carry this (difference 

in) uncertainty through into downstream inference. 

3. Differences in sampling type 

Many challenges are associated with comparing networks constructed using different 

sampling methodologies (Albery et al., 2024). The two we focus on here are 

differences in sampling protocol and differences in how data are summarised into 

edge weights. 

Different sampling protocols can impact how an observed network relates to the 

realised network. Some of the most commonly used sampling protocols include focal 

continuous sampling (recording social interactions and/or associations, referred to 

collectively as ‘interactions’ from here on, that include a given individual for a set 

amount of time), group scan sampling (recording the social interactions of each 

individual in a group instantaneously at regular time intervals) and gambit of the 

group sampling (recording group compositions during repeated surveys, where 

individuals observed in the same group are taken to be associating with each other; 

Altmann, 1974; Whitehead, 2008). More recently, technologies such as camera traps, 
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biologgers, or drones have been used to observe and record animal behaviour 

remotely (Smith & Pinter-Wollman, 2021; Webber & Vander Wal, 2019). Each of these 

sampling protocols have inherent biases in the interactions that are recorded 

(Altmann 1974). For instance, focal continuous sampling provides rich, detailed data 

on the focal individual and its social partners for a given time but overlooks social 

interactions between all other individuals during that time. Similarly, sampling using 

biologgers is often limited to a subset of individuals in the group because of their 

high cost and deployment schedules (e.g., not all animals can have a biologger 

deployed at the same date). Sampling the whole group at regular time intervals (using 

scan sampling or camera traps), on the other hand, can capture the overall occurrence 

of interactions across group members to a greater extent, but misses interactions 

occurring between sampling intervals.  

A second challenge is that networks are built based on different measures to quantify 

the strength of dyadic connections (edge weights), which are not always directly 

comparable and can even sometimes represent different aspects of the social 

preference network. Social interactions are typically collected by recording a count 

of the number of interactions observed or the duration of each interaction observed 

(Martin and Bateson, Altmann 1974). Which of these methods are used is determined, 

in part, by the selected sampling protocol, although certain protocols allow for the 

collection of multiple types of data. Edge weights may then be represented as 

(1) the rate of social interactions per unit of time (a count of the number of social 

interactions recorded divided by observation time), (2) the proportion of time two 

individuals spend engaged in a social interaction (the total duration of social 

interactions recorded divided by observation time), or (3) the probability of a social 

interaction occurring between two individuals within a specific time frame (a count of 

the number of samples during which an interaction is recorded divided by the total 

number of samples; i.e. a ratio). Probabilities and proportions are both unitless 

measurements bound between zero and one. Rates, on the other hand, are the 

expected number of events per unit time (e.g. associations per hour), with a lower 

bound of zero and no upper bound. Because the probability of being in a particular 

state at a point in time is equal to the proportion of time spent in that state, a unit 

increase in a probability is equivalent to a unit increase in a proportion, allowing direct 

comparisons between probabilities and proportions, all else being equal. However, 

comparing probabilities or proportions to rates is not as simple, as there is no natural 

way to interpret these two distributions of data on the same scale. This also relates to 

a more conceptual point: how often individuals interact with a given partner (rates), 
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and how much of their social time they spend on a given partner 

(proportions/probabilities) are meaningful aspects of the social preference network, 

which do not necessarily carry the same information (Dunbar, 1976). For instance, 

animals might interact frequently for brief amounts of time with certain types of 

partners and interact less often but for long amounts of time with others. 

Selecting an appropriate interaction index can help mitigate issues related to 

sampling type to a certain extent. Various indices have been devised to address 

different sampling biases, making networks built from different sampling protocols 

more comparable (Franks et al., 2010). Moreover, some network metrics, such as 

unweighted network metrics, or metrics that are expressed relative to the mean edge 

weight of the group, are less sensitive to differences in sampling type. In addition, 

using a standardisation such as Z-scoring makes edge weights (or derived measures 

of network structure) interpretable in terms of standard deviations, thereby making 

rates and proportions/probabilities more comparable. However, these approaches 

do not account for the different sampling biases inherent to these distinct sampling 

processes, which may introduce disparities between an observed network and the 

realised network. Nor do they account for how different measures of edge weights 

might capture different aspects of the social preference network. 

Alternatively, mixture models can be used to identify similar interaction levels in the 

observed network, creating categories of individuals that share strong, intermediate 

or weak social relationships (i.e. estimating the social preference network; Ellis et al., 

2021; Weiss et al., 2019). These categories are robust to variation in sampling type 

and can therefore readily be compared. A final solution is to integrate the sampling 

process into analytical models that estimate the realised network based on an 

observed network (Box 1). Bayesian models have been developed to reconstruct 

latent networks by explicitly incorporating assumptions about how the sampling 

process impacts the relationship between an observed network and the realised or 

even the social preference network (Young et al., 2020).  

Considerations for comparing networks of different sampling type 

When comparing networks derived from various sampling methods, two main factors 

need to be considered: 1) biases in the recorded social interactions due to differing 

sampling protocols, and 2) differences in how edge weights are measured. Although 

employing suitable indices and Z-scoring edge weights can alleviate some of these 

concerns, these approaches do not account for the disparities between an observed 

network and the realised or social preference network that differences in sampling 
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can generate (Fig. 1). Recent methodological advancements, including mixture 

models and models that estimate the realised network as a latent structure while 

accounting for the sampling process offer promising avenues to navigate these 

challenges effectively (Box 1). 

In our fish and bird example, the behaviours we chose to build the networks on—

predator mobbing in fish and nest-building in birds—were collected using different 

methods. Predator mobbing was recorded using group scan sampling, yielding 

proportions of scans in which individuals co-occurred during mobbing events, while 

nest-building was recorded through focal continuous sampling, providing durations 

of each nest-building event involving the focal subject. Despite these methodological 

differences, we prioritised the functional comparability of behaviours when selecting 

them for our comparative study, and proceed with our analysis accounting for 

differences in sampling type as best we can. To assess the number of social 

relationships formed by each individual, differences in sampling type are not very 

problematic, as we are primarily interested in whether an individual did or did not 

interact with each potential partner. However, differences in sampling type can have 

a stronger influence on the estimated relationship strength with each partner. To 

address this, we use mixture models to identify distinct clusters of relationship 

strength in the observed data—a method that is more robust to variation in sampling 

type. 

4. Differences in network size 

Network size, or the number of nodes in a network, varies substantially in animal 

societies ranging from only a few individuals to large assemblages of several hundred 

individuals (Webber & Vander Wal, 2019). This variation is shaped in part by 

differences in social organisation, dispersal patterns, ranging behaviour and/or 

territoriality (Kappeler, 2019). In addition, observed networks can include different 

subsets of the underlying realised network, driven by researchers’ choices regarding 

who is observed (for instance focusing only on adults or on habituated individuals; 

Richardson & Cords, 2025). Observed network size therefore depends on the features 

of the social system being investigated (which determine realised network size) as 

well as the decisions made by researchers when designing their study (which 

determine what subset of the realised network is observed). Here we consider what 

different network sizes mean for the comparability of network structures. We explore 

the effects of sampling different subsets of realised networks in the next section 

(Differences in network scale across networks).  
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Comparing networks of different sizes is a complex challenge because network size 

can greatly influence other aspects of network structure in non-trivial ways. The effect 

of network size on social structure depends on the nature of the underlying process 

generating the network (Box 1, Boccaletti et al., 2006; Hobson, Silk et al., 2021), and 

is often not the same for different measures of network structure (Fig. 3; Anderson et 

al., 1999; Naug, 2009). Therefore, controlling for network size (e.g. dividing network 

metrics by network size, or adding network size as a control predictor in analyses) 

does not always fully account for size effects, and may even introduce biases (Deffner 

et al. 2022).  

The first question to consider when comparing networks of different sizes is whether 

it is appropriate to control for network size. Biological factors may influence key 

aspects of network structure through their effects on network size (at least in part; 

Kawam et al., 2024; Shizuka & McDonald, 2015). Network size can therefore be 

considered an important feature of social structure itself. For example, if an 

individual’s risk of being infected by a pathogen depends on its number of social 

partners, then being in a larger group can be part of the cause of a higher exposure 

risk. In these cases, conditioning network comparisons on network size would mask 

effects of biological importance (Fig. 2A). However, for other research questions it 

may be necessary to condition on network size to make meaningful biological 

comparisons. For example, to test the hypothesis that forest-living species (typically 

living in smaller groups) have denser social networks than those in open habitats 

(typically living in larger groups), conditioning on network size is necessary to 

demonstrate that habitat influences network structure (density) in a manner that is not 

solely driven by the relationship between habitat and network size (Fig 2B).  

The next question to consider is how to control for differences in network size: even 

when controlling for network size is appropriate for a specific question, doing so in a 

way that correctly removes size effects can be difficult. The relationship between size 

and network structure depends on the process that generates the network, and these 

processes are often unknown (Box 1, Brask et al. 2023). For instance, unweighted 

network density (the ratio of actual to potential connections in a network) is differently 

impacted by network size, depending on the process that generates the network (Fig. 

3). If individuals choose their interaction partners at random with a fixed probability, 

then network density stays the same regardless of the size of the network. In contrast, 

if individuals preferentially interact with their most popular groupmates and each 

individual forms a fixed number of relationships, then the density of the network 

declines exponentially with its size. Similarly, the strength of social relationships can 
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depend on network size in different ways. If individuals get more partners when the 

network is larger but are restricted in the amount of time they have available to 

socialise, relationship strength will decrease with network size. In contrast, 

relationship strength can be independent of network size if individuals keep a 

constant number of partners regardless of network size, or if they get more partners 

and also increase the amount of time they spend socialising (so that they can spend 

the same amount of time with each of their partners even when their number of 

partners increases). Each of these scenarios require different approaches to correctly 

remove the effect of network size (Hobson, Silk et al., 2021). That is, if the networks 

to be compared have emerged from different generative processes, then correctly 

controlling for size may involve a different control procedure for each network. 

Properly accounting for network size in comparative network analysis is often difficult, 

if not impossible, unless valid assumptions are established about the underlying 

processes that generate the network (Hobson, Silk et al. 2021). Understanding 

generative processes in animal social networks is an area that still needs substantial 

methodological progress (Box 1, Brask et al. 2023), but one where the latent layers 

framework may be particularly helpful. By explicitly considering the social preferences 

driving a given network, we can better understand the expected relationship between 

network size and relationship strength within the system. This in turn, can inform the 

design of simulations to predict how network structure varies with changes in size and 

guide decisions on whether and how to account for network size in subsequent 

analyses.  

Considerations for comparing networks of different size 

When comparing networks, differences in network size are almost inevitable. Whether 

and how to account for differences in network size is a long-standing challenge in 

network science, and solutions are often context-dependent (Croft 2008; Whitehead 

2008).  When network size is central to how network structure relates to biological 

variables of interest, conditioning on network size could mask important effects. 

When biological factors do not directly influence network size, or when biological 

effects that go through network size are not of interest, conditioning on network size 

is warranted. To condition properly requires an understanding of the generative 

processes (i.e. the social preferences and constraints) underlying the networks, to 

understand the relationship between network size and measures of network structure 

(Box 1). As this information is often lacking, we suggest restricting comparisons to 

networks of similar size, or where it is reasonable to assume similar underlying 
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generative processes and therefore similar relationships between network size and 

other components of network structure. 

In our fish and bird example, the fish network includes considerably more individuals 

than the bird network—a difference that reflects real biological variation in group size 

(we here consider larger networks than the toy networks depicted in Fig. 1). One 

consequence of this is that each fish has been observed less than each bird, 

something we accounted for by incorporating observation effort into our analyses 

(see Considerations for comparing networks of different sampling effort). Whether 

to account for group size beyond this methodological difference is a complex issue, 

as our central research question—whether individuals tend to invest in many 

relationships or a few strong ones—is intrinsically linked to network size. We therefore 

choose to run our models both with and without controlling for network size: once to 

understand how much variation in social structure remains after accounting for 

network size, and once to capture the full extent of variation in social structure, 

including that which may reflect meaningful biological differences driven by 

differences in network size. 

5. Differences in network scale 

Networks can be studied at different social and spatial scales, depending on the 

ecological or evolutionary process of interest and limitations in data collection. For 

instance, some studies may focus on a single group, while others examine the entire 

population; similarly, some studies include all individuals, whereas others sample 

specific subsets of individuals based on traits such as sex or age (Richardson & Cords, 

2025). . As a result, observed networks can represent samples of the realised network 

at different scales, which can introduce biases in comparative analyses if they are not 

conducted with appropriate caution (Fig. 4).  

The extent to which comparing across network scales poses a challenge depends on 

the scale of analysis required to answer the question of interest (Fig. 4). Measures of 

network structure that are being compared can vary from measures of the 

connectedness of individuals (microscale), to measures of the structure of the whole 

network (macroscale; Hobson et al., 2019). When comparing networks, it is important 

to think carefully about the scale of interest for the research question, and whether 

that scale is the same or different for the study systems to be compared (Hobson et 

al., 2019). Just as for behaviours (see the previous section Differences in Behaviour 

types), the same scale does not necessarily represent the same biological 

phenomenon in different systems. Comparing networks at different scales might also 
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reveal differences that would not appear at one scale alone (McDonald & Shizuka, 

2013). For instance, individuals of two different species might form the same number 

of relationships on average, but the overall network density might be very different if 

individuals from one species live in small groups and those from the other species 

live in large groups, if one species was sampled at the group-level and the other 

species at the population-level, or if one study focused solely on adult females and 

the other on adult males. Moreover, properties at one scale can influence properties 

at a different scale and vice versa (Cantor et al., 2021). 

Meso- and macroscale (whole) network metrics are likely to be particularly susceptible 

to differences in the scale of sampling between datasets (Ogino et al. 2023). For 

example, comparing network density (a macroscale measure) from a single social 

group with that of an entire population can be misleading because the scale of 

observation affects network density. Individuals within a single group are typically 

more strongly connected to each other, leading to higher density, while a population-

level network often includes multiple loosely connected groups, resulting in lower 

overall density. In contrast, microscale (individual-level) metrics of networks are often 

less affected by scale and will be more reflective of values in the realised networks 

(including non-sampled individuals). However, this is not necessarily true, and 

depends on the generative processes underlying the network structure and the 

specific choice of individual-level metric. For example, in species where individuals 

interact with others outside their group, an individual will have much higher 

betweenness centrality when a population- rather than group-level network is 

considered.  

In some cases, it may be possible to compare networks sampled at different scales 

by sub-sampling from the network sampled at a larger scale, but this process is 

untested and fraught with complex decisions on how best to subsample (e.g., see the 

previous section Differences in network size across networks). Another potential 

solution is to estimate the realised network as a latent structure from an observed 

network by using imputation to “fill in” missing parts of networks sampled at a smaller 

scale (Box 1, Young et al., 2020). Doing so requires information about the generative 

processes underlying the network, which currently are not well developed (Box 1). For 

example, in many studies focused on within-group networks, interactions with 

members of other groups may not be recorded or may occur so infrequently that they 

remain unobserved. This means that we know little about the social preferences and 

constraints generating networks beyond the scale of the group. In these cases, it 
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would be impossible to reliably infer the realised network beyond the scale of the 

original study. 

Considerations for comparing networks of different scale 

Networks can be sampled across various scales, and observed networks representing 

different scales usually cannot directly be compared. One solution is to use 

methodological advancements that can impute missing data to reconstruct the 

realised network at a larger scale. However, reliable imputation requires an 

understanding of the generative processes underlying the networks, including the 

processes that drive interactions beyond the scale that was sampled (Box 1). As this 

understanding is most often lacking, we suggest that comparisons should be 

restricted to cases where it is reasonable to assume networks have been sampled at 

a similar scale.      

In our fish and bird example, the networks differ in the scale at which they are 

sampled. The fish network represents the entire local population, while for the birds, 

networks were originally built for each individual nest of cooperative breeders. 
However, because we have data from most nests in the population, we choose to 

combine these to construct a single network representing the entire breeding 

population, to allow for more direct comparability with the fish network. 

=========================================================================== 
BOX 2: LATENT LAYERS AND MULTILAYERS IN SOCIAL NETWORK ANALYSIS 

There are some superficial similarities between our latent layers framework and the 

concept of multilayer networks (Finn et al., 2019; Kivelä et al., 2014). In fact, it would 

be possible to represent the observed, realised and social preference networks as 

layers of a multiplex network. But given that the latent layers represent abstractions 

of the same social structure, analysing them as a multiplex network is unlikely to be 

helpful. However, the latent layers framework could equally apply to multiplex 

networks. For example, in a case where a researcher was studying multiple social 

behaviour types together (e.g., grooming, nuzzling and greeting interactions) then 

each layer of our framework could be multiplex rather than single layer networks, with 

an observed multiplex network and a realised multiplex network. In this case it is 

interesting to consider whether the social preference network is best described as 

multiplex (representing different preference networks for different types of social 

interactions) or as a single layer (the same preferences combining with constraints in 

different ways to generate the realised network). 
=========================================================================== 
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Discussion     

Comparative social network analysis offers huge potential to answer fundamental 

questions in ecology and evolution, but this approach comes with a set of major 

challenges that are yet to be fully resolved (Albery et al., 2024). In this paper, we 

present the latent layers framework that explains how observed animal social 

networks are related to the latent social structures and processes of interest to 

researchers. We then outline five key challenges in comparative analyses of social 

networks. Using the latent layers framework as a base, we consider how these 

challenges can lead to erroneous conclusions, and we discuss the current state of 

solutions to mitigate these challenges. By doing so, we have aimed to offer guidance 

on factors to consider before embarking on comparative social network analyses and 

to inspire further developments of methodological tools that enable these types of 

analysis to be conducted robustly and to their full potential. 

In addition to giving potential solutions for each specific challenge in the sections 

above, our summary of our overall current guidance for comparative network analysis 

is: 

● Identify the latent network layer to which your research question applies (Fig. 

1) - are you interested in the realised network, or the social preference 

network? This will shape your analytical decisions going forward. 

● Be mindful and clear about the limitations of any approach used. Different 

networks may have been affected by different inherent constraints and 

sampling biases, and this can influence observed differences between them.     

● Consider whether constraints and sampling biases should be treated as noise, 

signal or part of the causal pathway for your research question. For example, 

if the aim is to understand individual strategies given ecological or social 

limitations, constraints should be explicitly modelled as part of the generative 

process. Similarly, differences in network size can generate sampling biases, in 

which case they should be accounted for, or be a major driver of the difference 

of interest, in which case accounting for size would mask relevant differences. 

● Consider how differences between networks to be compared can be 

addressed analytically. Bayesian methodological developments offer 

promising solutions, by estimating the realised, or even the social preference 

network, while explicitly accounting for key differences in compared networks 
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(Box 1). Maintain uncertainty when moving between network layers and 

propagate this uncertainty into subsequent comparisons. 

● Consider the generative processes that link the latent networks to the 

observed network for different sampling methodologies and/or datasets (Box 

1). Understanding these processes can help identify how to account for 

methodological differences to make different networks comparable or can 

help (careful) imputation of missing information. 

The latent layers framework highlights future theoretical and methodological work 

that will be central to facilitating analyses that make inferences about latent network 

layers (both for comparative network analyses and for network analysis more 

generally). Moving between network layers necessitates detailed knowledge of the 

key processes that influence the emergent structure of animal social networks (Box 

1). While such knowledge is available for some particularly well-studied species, a 

combination of theoretical modelling and empirical analyses will often be necessary 

to identify patterns that can be used to pinpoint the generative processes underlying 

animal social networks. New statistical tools will then be required to efficiently 

estimate the latent networks, as well as to tailor existing observation models (e.g. 

from capture-recapture models) to social network contexts (Silk & Gimenez, 2023). 

These steps forward will benefit greatly from interdisciplinary collaborations between 

behavioural ecologists, statisticians, and network scientists (Brask et al., 2021).  

Through decades of research on animal social behaviour, a substantial and growing 

body of social network data has been collected across a wide range of animal species, 

capturing rich variation in social structure within and between populations. Combined 

with advances in analytical methods and a shift toward more collaborative research 

practices, the field is now well positioned to move beyond single-species studies and 

begin addressing broader, comparative questions about the drivers of variation in 

social systems across the animal kingdom. With further development, comparative 

social network analysis could become an accessible, reliable, and powerful approach 

to answer long-standing questions in ecology and evolution. We hope this paper 

motivates researchers to adopt comparative approaches to social structure and 

equips them with the insights needed to meet the challenges ahead. Good luck!  

 

Glossary 

Social preference network: A network that represents individuals’ preferences for 

how frequently they would like to interact/associate and with whom.  
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Realised social network: A network representing the full pattern of social interactions 

or associations among individuals.  

Observed social network: A network that researchers typically work with, built from 

the interactions or associations that were observed and recorded. 

Sampling biases: Systematic differences in how well certain individuals or 

interactions/associations are observed and recorded. Sampling biases can arise from 

factors such as uneven observation effort across individuals, and more observations 

in better visible or accessible areas, or only during certain times of the day or year. 

Constraints: Factors that prevent individuals from realizing their social preferences. 

Constraints can arise from several factors, including individual limitations like 

energetic constraints or trade-offs in time and resource allocation, incompatible 

preferences between potential partners, or social factors (such as dominance 

hierarchies or kinship structures) and environmental barriers (such as spatial distance 

or rivers) that restrict access to certain partners. 

Behaviour type: The specific social behaviour used to construct a network.  

Sampling effort: The intensity or duration of data collection per individual or group.  

Sampling type: The data collection approach (e.g., focal sampling, group scans, 

biologgers) used to record social interactions. 

Network size: The total number of individuals in a network.  

Network scale: The social or spatial level at which a network is sampled and/or 

analysed (e.g. at the level of the whole population or of the social group).  
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