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Abstract 28 

Animal social structures are remarkably diverse, encompassing relationships that 29 

range from strong, lifelong bonds to weaker, more transient connections. 30 

Understanding the drivers of this variation is a key question in behavioural ecology 31 

and has been the focus of numerous studies linking social structure to ecological, 32 

demographic, and life history patterns within groups, populations, and species. 33 

Equipped with this information, researchers are now turning to investigations of 34 

social structure that are comparative in nature. However, comparing social networks 35 

remains a considerable logistical and analytical challenge. Here, we present the 36 

layers of latency framework, which outlines how observed social networks are linked 37 

to the two underlying latent networks that are of interest for most research questions: 38 

the real social network (the actual pattern of social interactions), and the social 39 

preferences network driving these interactions. This conceptual framework provides 40 
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a clear and unified approach to understand when and why differences in network 41 

properties and sampling protocols can introduce discrepancies between observed 42 

and latent networks, potentially biasing or confounding statistical inference. We then 43 

use this conceptual framework to outline some of the central challenges to 44 

comparing animal social networks, focusing on differences between networks in 45 

behaviour type, sampling effort, sampling type, network size and network scale. For 46 

each of these focus points, we describe why and how they create challenges for 47 

comparative analyses, and we suggest potential directions for solutions. The layers 48 

of latency framework can help researchers to identify networks and features they can 49 

(or cannot) compare. In doing so, this framework facilitates advances in cross-species 50 

social network studies with the potential to generate new and important insights into 51 

the ecological and evolutionary drivers of variation in social structure across the 52 

animal kingdom. 53 
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The animal kingdom features a remarkable diversity of social systems, from solitary 60 

individuals to large cooperative groups (Clutton-Brock, 2016; Rubenstein & Abbot, 61 

2017). Yet, our understanding of the ecological and evolutionary causes and 62 

consequences of this diversity remains incomplete (Kappeler et al., 2019; Kurvers et 63 

al., 2014). Comparing animal populations facing distinct environmental challenges 64 

can provide insights into the influence of ecological variables such as predation and 65 

food availability on social patterns (Barsbai et al., 2021; Krause & Ruxton, 2002; Lukas 66 

& Clutton-Brock, 2018), and reciprocally, how these social patterns impact ecological 67 

factors, such as pathogen transmission (Albery et al., 2021; Bansal et al., 2007; White 68 

et al., 2017). Comparative analyses can also reveal how social systems evolve 69 

alongside life history traits (Silk & Hodgson, 2021) and interact with demographic 70 

mechanisms (Clements et al., 2022; Shizuka & Johnson, 2020). 71 

As a result of countless long-term efforts to collect social data (Clutton-Brock, 2021; 72 

Sheldon et al., 2022), numerous animal social datasets exist, capturing social 73 

structure across diverse species and environments. With the emergence of large 74 

databases bringing together these data across taxa (e.g. MacaqueNet, De Moor et 75 

al., 2023; Animal Social Network Repository (ASNR), Sah et al., 2019; DomArchive, 76 

Strauss et al., 2022), attention has turned to the statistical methods with which such 77 

datasets can be compared (Albery et al., 2024; Ellis et al., 2021). 78 

Comparative social network analysis offers a holistic approach to draw inference 79 

about the drivers and consequences of animal social structure (Albery et al. 2023; 80 
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Croft et al., 2016; Pinter-Wollman et al., 2013; Webber & Vander Wal, 2019). By 81 

explicitly representing social structure as an emergent property of social interactions 82 

between individuals (Hinde, 1976), social network analysis can be used to ask 83 

questions about social evolution at the level of individuals, dyads, social groups and 84 

populations. However, despite the value of comparative social network analysis, only 85 

a relatively small body of literature compares social networks across species and 86 

taxonomic groups (Albery et al., 2024). A major reason for the lack of such studies is 87 

the viability of comparing networks that are generated using different 88 

methodologies, and that may diverge widely in key properties such as network size 89 

and behaviour types (Faust & Skvoretz, 2002; Ogino et al. 2023; Pinter-Wollman et 90 

al., 2013).  91 

Here, we offer an overview of five key challenges that create disparities between 92 

social networks and provide guidance on what to consider when designing 93 

comparative analyses to minimise these challenges. A common theme to these 94 

challenges is that the observed networks we compare are most often different from 95 

the underlying, latent (i.e. unobservable) networks we want to make inferences 96 

about. We therefore begin by introducing the layers of latency framework that 97 

provides a unified representation of how different biological and observational 98 

processes interact to influence the social structures we observe. A clear 99 

understanding of how these processes contribute to variation in observed social 100 

networks will help researchers to make principled decisions on how best to compare 101 
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networks. While we introduce the layers of latency framework in the context of 102 

comparing networks, it contains valuable concepts for all social network analyses, be 103 

they comparative or not.  104 

The layers of latency framework 105 

One key issue in network analysis is that observed networks often do not directly, or 106 

exclusively, correspond to the biological phenomenon of interest. This lack of 107 

correspondence is due to two primary reasons. Firstly, the social networks we 108 

quantify are usually based on only a subset of interactions – those that have been 109 

recorded – and an observed network is therefore an estimation, not exact 110 

representation, of the  complete or “real” patterning of interactions (Handcock & 111 

Gile, 2010). Secondly, even when all interactions that happen in a group are 112 

recorded, they are unlikely to correspond directly to individual preferences regarding 113 

social partners because of constraints that hinder individuals in realising their 114 

preferred relationships. For example, if all individuals in a group prefer high-ranking 115 

individuals as partners, only a subset of those individuals may have that preference 116 

realised because the time high-ranking individuals have available to socialise is 117 

limited (Seyfarth, 1977). Instead, some individuals might end up interacting with their 118 

second, third, or even last choice of partner.  119 

To provide a structured way of thinking about this, we present the layers of latency 120 

framework, which represents social structure as a hierarchy of networks: an observed 121 

social network to which researchers have access, and two layers of latent networks - 122 
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the real social network and the underlying social preference network ( Fig. 1). An 123 

observed network represents a sample of the real network. The real network is the 124 

actual pattern of all interactions or associations between individuals. In turn, the real 125 

network is itself a (likely partial) realisation of the individuals’ social preferences. 126 

These preferences can also be represented as a network (e.g. a directed network 127 

representing the strength of preference that each individual has for others): the social 128 

preference network.  129 

Mismatches between an observed network and the two latent networks (or indeed 130 

between the two latent networks) are the result of two main processes: sampling 131 

biases and constraints (Fig. 1). Common examples of sampling biases include cases 132 

where certain individuals or interactions are better sampled than others (Altmann, 133 

1974; Bateson & Martin, 2021). For example, a researcher using biologgers to record 134 

proximity between pairs of animals may not be able to afford to put a biologger on 135 

every individual, or a researcher visually observing social interactions cannot 136 

simultaneously watch all individuals at once. Constraints include factors that prevent 137 

individuals from realising their social preferences. These constraints may come from 138 

different sources, including incompatible preferences between potential partners, 139 

social factors such as dominance structure, and environmental constraints such as 140 

spatial distances and barriers in the physical environment (Fisher et al., 2021; Webber 141 

& Vander Wal, 2018).  142 

 143 
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 144 

Fig 1. The layers of latency framework. Social structure can be considered a hierarchy of 145 

networks: an observed social network to which researchers have access, and two layers 146 

of latent networks - the real social network and the social preference network. When we 147 

compare networks across species (e.g. here a fish and a bird), we typically compare 148 

observed social networks (the eye icon), but our research questions typically concern 149 

differences between real social networks or between social preference networks (the 150 

question mark icons). To ensure that analyses of the observed networks accurately reflect 151 

the latent networks of interest, it is important to consider the factors along the path from 152 

the relevant question mark to the eye that could result in differences between the 153 

observed and the real and social preference networks. This includes accounting for 154 

sampling biases when the focus is on comparing real social networks and accounting for 155 

both sampling biases and constraints when comparing social preference networks. 156 

 157 
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Research questions are almost always about the latent network layers rather than the 158 

observed network (Lundberg et al., 2021). The social preference network is usually 159 

the level of interest when researchers seek to understand the causes of social 160 

behaviours, such as how kinship, age and sex impact partner choice, or the role of 161 

life history or ecology in shaping the types of social relationships individuals form 162 

(Chakrabarti et al., 2020; De Moor et al., 2020; Silk & Hodgson, 2021; Siracusa et al. 163 

2022, Smith, 2014; Snyder-Mackler et al., 2016). On the other hand, the real social 164 

network is usually the level of interest for investigations into the consequences of 165 

social behaviours, such as the influence of social structure on disease or information 166 

transmission (Aplin et al., 2012; Collier et al., 2022; Silk & Fefferman, 2021) and on 167 

fitness outcomes (Ellis et al., 2017; Ellis et al., 2019; Riehl & Strong, 2018; Sabol et 168 

al., 2020; Strauss & Holekamp, 2019). However, analyses are typically run on the level 169 
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of the observed network (Fig 1). Understanding which latent network layer is of 170 

interest for a given question, and how an observed network relates to that latent 171 

layer is therefore essential for reliable social network analyses. 172 

Challenges of comparative social network analysis 173 

BOX 1: MOVING BETWEEN LAYERS 
 
Recent developments in Bayesian network analysis provide methods to move between 
the network layers depicted in Fig. 1 (De Bacco et al., 2023; Hart et al., 2023; Redhead 
et al., 2023). These generative modelling approaches estimate the latent network 
layers based on the observed data, while incorporating information about the 
processes that generate the observed networks. This information is used to quantify 
how well the observed network is expected to reflect the underlying latent network, 
which is translated into uncertainties in the estimated edge weights (Ross et al. 2023). 
For instance, within the BISoN framework (Hart et al., 2023), network metrics are 
calculated from draws of the Bayesian posterior distribution of the latent real network 
edge weights, while accounting for sampling effort. Doing so generates a posterior 
distribution of network metric values (instead of a single value, or point estimate), 
therefore explicitly including uncertainty in the metric estimates, where higher 
sampling effort leads to narrower distributions. Once network metric posteriors have 
been generated, they can be passed to downstream statistical analyses thereby 
carrying uncertainty forward into statistical analyses, such that networks with higher 
observation effort carry more weight on inference.  
 
These methodological developments hold great promise for comparative social 
network analysis. They enable researchers to make inferences at the latent network 
level relevant to specific research questions, while also explicitly accounting for 
differences between networks that could potentially confound or bias comparisons (Fig 
1). However, such models require information on the generative processes giving rise 
to the observed neworks, which include both biological (e.g., social preferences and 
social and/or physical constraints in realising those preferences) and observational 
(e.g., sampling protocols and effort) factors. Understanding these generative processes 
is still very much in development in animal social network analysis (Brask et al. 2023; 
Hobson et al. 2021), and is an area where significant methodological advancements 
are needed to fully enable reliable comparative social network analysis. The layers of 
latency framework offers a clear and structured approach to understanding these 
generative processes. It makes explicit how the observed networks used in research 
are generated by underlying social preferences and are modulated by constraints and 
sampling biases. 
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Comparative social network analysis faces significant challenges due to the variability 174 

in how networks are constructed. Networks can be based on different behaviours, 175 

sampled using diverse data collection methods with varying degrees of effort, and 176 

sampled at different biological scales (Albery et al., 2024; Canteloup et al., 2020; 177 

Davis et al., 2018; Faust & Skvoretz, 2002). These differences can create disparities 178 

between the observed networks, reflecting sampling biases and constraints rather 179 

than true differences, thus confounding comparative analysis (Gagliardi et al., 2023; 180 

Ogino et al., 2023). 181 

Here, we consider five key challenges in comparative social network analysis: 182 

comparing networks that differ in 1) behaviour type, 2) sampling method, 3) sampling 183 

effort, 4) network size, and 5) biological scale. We summarise these challenges in 184 

Table 1 and discuss in greater detail how these differences introduce sampling biases 185 

and constraints, generating discrepancies between the observed and latent networks 186 

and affecting the comparisons of observed networks. Additionally, we provide 187 

guidance on how best to handle each of these challenges. 188 

While we present these challenges independently here for clarity, it is key to note 189 

that these challenges are closely linked (Fig. S2). For example, the size of the real 190 

network (in combination with the research questions being addressed) may influence 191 

the scale at which sampling is undertaken, which can then influence the size of the 192 

observed network.  193 



11 

Table 1: Summary of five key challenges faced when comparing animal social networks.  194 

Challenge Description 

Behaviour 

type 

Networks vary in the behaviours used to construct them. Whether networks 

based on different (or the same) behaviours can be compared depends on the 

biological functions of the behaviours in the given populations and the research 

question.  

Sampling 

effort 

Sampling effort can vary substantially between networks, influencing how 

reliably an observed network represents the real network. Bayesian models  that 

estimate the real network from observed data can account for sampling effort 

as uncertainty in the estimated network properties (Box 1). 

Sampling 

type 

Networks constructed using various sampling methodologies pose two main 

challenges: 1) different sampling protocols generate different sampling biases, 

and 2) how edge weights are quantified may not be directly comparable. Recent 

methodological advancements, such as mixture models and Bayesian models 

that estimate the real or social preference network from an observed network 

while explicitly accounting for sampling type, offer promising solutions (Box 1). 

Network 

size 

Networks can vary substantially in their size, which can influence network 

structure. Whether or not to account for network size depends on whether 

network size is central to the relationship between network structure and 

biological variables of interest. If controlling for network size is warranted, doing 

so correctly can be challenging as it requires knowledge of the generative 
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process underlying the network (Box 1), which determines how size impacts the 

network property of interest.  

Network 

scale 

Networks can be sampled at various scales, resulting in observed networks 

representing different parts of real networks. The scale of sampling significantly 

influences network structure, making networks sampled at different scales 

generally incomparable, particularly for global network properties. Bayesian 

models that impute missing data for networks sampled at smaller scales may 

provide a solution, but they necessitate an understanding of the generative 

process underlying the network at the larger scale (Box 1). 

 195 

1. Differences in behaviour type 196 

The first factor determining the comparability of networks is the type of behaviour 197 

used to construct them. For most comparative analysis, networks compared should 198 

be constructed on behaviours with similar biological functions, therefore reflecting 199 

similar social preferences or representing real networks with similar outcomes. While 200 

it might seem obvious that an affiliation network based on huddling should not be 201 

directly compared to an agonism network based on physical aggression, determining 202 

which behaviours can be compared often requires more nuanced considerations. For 203 

example, various behaviours have been used to quantify social relationships in 204 

different studies and species, ranging from direct interactions such as grooming and 205 

allopreening, to spatial associations and co-membership of a group (Webber & 206 
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Vander Wal, 2019). Whether these behaviours can be considered to represent the 207 

same biological function is contingent on the research question and the biology of 208 

the study species to be compared (Carter et al. 2015, Farine & Whitehead, 2015). In 209 

addition, the same behaviour can serve different functions in different systems and 210 

might reflect different information depending on the context. For instance, pairs of 211 

animals sitting within a 5m range of one another could be indicative of a close 212 

association in wild populations, whereas that same distance might not carry the same 213 

information in a captive population where individuals have less space over which to 214 

spread.  215 

Moreover, behaviours will differ in how strongly individuals are constrained in 216 

realising their social preferences. For example, certain behaviours like sex and 217 

grooming are often difficult to direct at more than one partner at a time. In contrast, 218 

individuals can sit near or vocalise to multiple partners at once and as such these 219 

types of behaviours are likely to be less constrained by limitations related to social 220 

preferences. Similarly, environmental constraints are more likely to impact 221 

behaviours that involve physical contact than behaviours that do not. Different 222 

behaviours are also influenced by sampling biases to different extents, so that an 223 

observed network of one behaviour might better represent the real network than 224 

another behaviour. Rare or less visible behaviours tend to be more heavily affected 225 

by sampling biases (Martin & Bateson, 2021). Moreover, the degree of sampling bias 226 

can vary for the same behaviours depending on the system or context. For example, 227 
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recording aggression in a terrestrial species may be easier than in an aquatic one. 228 

Consequently, a smaller proportion of interactions may be observed for the aquatic 229 

species compared to the terrestrial one.  230 

Considerations for comparing networks 231 

Any comparative study whose question depends on comparing ‘like to like’ will need 232 

to carefully evaluate whether the networks are constructed based on behaviours with 233 

comparable biological functions and facing similar sampling biases and constraints 234 

in their given context (or whether differences can be accounted for in the analyses). 235 

This is important because behaviours should either reflect similar social preferences 236 

or represent a real network with similar outcomes. Determining which behaviour 237 

types can be reliably compared is a critical first step in comparative social network 238 

analysis, which requires thoughtful consideration tailored to the specific research 239 

question and informed by knowledge of the species' biology under study. 240 

2. Differences in sampling effort 241 

Sampling effort can significantly impact how reliably an observed network represents 242 

the real network, with increasing effort improving reliability (Farine & Strandburg-243 

Peshkin, 2015; Franks et al. 2021). Accounting for uncertainty in the estimated 244 

network metrics is important for any social network analysis but becomes especially 245 

crucial when comparing networks constructed with varying sampling efforts. These 246 

networks inherently differ in the uncertainty surrounding their observed edge 247 
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weights and consequently any estimated network metrics. Failing to account for this 248 

uncertainty might lead to wrong conclusions. For instance, in a network constructed 249 

based on just one hour of observation, a dyad may appear to spend most of their 250 

time together. Yet, this estimate could be a highly uncertain representation of this 251 

dyad’s edge in the real network. Extending to 100 hours of sampling effort would 252 

provide a more accurate estimate of the weight of this edge in the real network and 253 

would lower the level of uncertainty around that estimate. Comparing a low 254 

observation effort network to a high observation effort network might falsely suggest 255 

that individuals in the low observation network spend more time together compared 256 

to those in the high observation network, but in reality the difference is due to 257 

sampling effort rather than actual differences in behaviour. One effective solution to 258 

address the challenge of variable sampling effort when comparing networks is to use 259 

models that estimate the real network based on the observed network as a latent 260 

structure, with an explicit degree of uncertainty (Box 1).  261 

Considerations for comparing networks 262 

When comparing networks, researchers should account for differences in sampling 263 

effort, which can strongly impact how well an observed network represents the real 264 

network. An effective solution to do so is to consider the real network as a latent 265 

structure, which is estimated with a degree of uncertainty, determined by the 266 

observation effort. Recent frameworks provide tools to estimate the real network 267 
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from an observed network, while explicitly estimating uncertainty in the estimated 268 

latent network based on sampling effort (Box 1). 269 

3. Differences in sampling type 270 

Many challenges are associated with comparing networks constructed using different 271 

sampling methodologies (Albery et al., 2024). The two we focus on here are 272 

differences in sampling protocol and differences in how data are summarised into 273 

edge weights. 274 

Different sampling protocols can impact how an observed network relates to the real 275 

network. Some of the most commonly used sampling protocols include focal 276 

continuous sampling (recording social interactions and/or associations, referred to 277 

collectively as ‘interactions’ from here on, that include a given individual for a set 278 

amount of time), group scan sampling (recording the social interactions of each 279 

individual in a group instantaneously at regular time intervals) and gambit of the 280 

group sampling (recording group compositions during repeated surveys, where 281 

individuals observed in the same group are taken to be associating with each other; 282 

Altmann, 1974; Whitehead, 2008). More recently, technologies such as camera traps, 283 

biologgers, or drones have been used to observe and record animal behaviour 284 

remotely (Webber & Vander Wal, 2019). Each of these sampling protocols have 285 

inherent biases in the interactions that are recorded (Altmann 1974). For instance, 286 

focal continuous sampling provides rich, detailed data on the focal individual and its 287 
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social partners for a given time but overlooks social interactions between all other 288 

individuals during that time. Similarly, sampling using biologgers is often limited to 289 

a subset of individuals in the group because of their high cost and deployment 290 

schedules (e.g., not all animals can have a biologger deployed at the same date). 291 

Sampling the whole group at regular time intervals (using scan sampling or camera 292 

traps), on the other hand, can capture the overall occurrence of interactions across 293 

group members to a greater extent, but misses interactions occurring between 294 

sampling intervals.  295 

A second challenge is that networks are built based on different measures of edge 296 

weights, which are not always directly comparable and can even sometimes 297 

represent different aspects of the social preference network. Raw data on social 298 

interactions typically comes from a count of the number of interactions and/or the 299 

duration of each interaction observed (Martin and Bateson, Altmann 1974). Which of 300 

these raw data are used is determined, in part, by the selected sampling protocol, 301 

although certain protocols permit the collection of multiple types of raw data. Edge 302 

weights may then be represented as the rate of social interactions per unit of time 303 

(rates, the count of the number of social interactions over observation time), as the 304 

proportion of observation time two individuals spend engaged in a social interaction 305 

(proportions), or as the likelihood of a social interaction occurring between two 306 

individuals within a specific time frame (probabilities, the ratio of samples during 307 

which an interaction is recorded over the total samples). Probabilities and 308 
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proportions are both unitless measurements bound between zero and one. Rates, 309 

on the other hand, are the expected number of events per unit time (e.g. associations 310 

per hour), with a lower bound of zero and no upper bound. Because the probability 311 

of being in a particular state at a point in time is equal to the proportion of time 312 

spent in that state, a unit increase in a probability is equivalent to a unit increase in a 313 

proportion, allowing direct comparisons between probabilities and proportions, all 314 

else being equal. However, comparing probabilities or proportions to rates is not as 315 

simple, as there is no natural way to interpret these two distributions of data on the 316 

same scale. This also relates to a more conceptual point: how often individuals 317 

interact with a given partner (rates), and how much of their social time they spend 318 

on a given partner (proportions/probabilities) are meaningful aspects of the social 319 

preference network, which do not necessarily carry the same information (Dunbar, 320 

1976). For instance, animals might interact frequently for brief amounts of time with 321 

certain types of partners and interact less often but for long amounts of time with 322 

others. 323 

Selecting an appropriate interaction index can help mitigate issues related to 324 

sampling type to a certain extent. Various indices have been devised to address 325 

different sampling biases, making networks built from different sampling protocols 326 

more comparable (Franks et al., 2010). Moreover, some network metrics, such as 327 

unweighted network metrics, or metrics that are expressed relative to the mean edge 328 

weight of the group, are less sensitive to differences in sampling type. In addition, 329 
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using a standardisation such as Z-scoring makes edge weights (or derived measures 330 

of network structure) interpretable in terms of standard deviations, thereby making 331 

rates and proportions/probabilities more comparable. However, these approaches 332 

do not account for the different sampling biases inherent to these distinct sampling 333 

processes, which may introduce disparities between an observed network and the 334 

real network. Nor do they account for how different measures of edge weights might 335 

capture different aspects of the social preference network. 336 

Alternatively, mixture models can be used to identify similar interaction levels in the 337 

observed network, creating categories of individuals that share strong, intermediate 338 

or weak social relationships (i.e. estimating the social preference network; Ellis et al., 339 

2021; Weiss et al., 2019). These categories are robust to variation in sampling type 340 

and can therefore readily be compared. Finally, the sampling process can be 341 

integrated into analytical models that estimate the real network based on an 342 

observed network (Box 1). Bayesian models have been developed to reconstruct 343 

latent networks by explicitly incorporating assumptions about how the sampling 344 

process impacts the relationship between an observed network and the real or even 345 

the social preference network (Young et al., 2020).  346 

Considerations for comparing networks 347 

When comparing networks derived from various sampling methods, two main factors 348 

need to be considered: 1) biases in the recorded social interactions due to differing 349 

sampling protocols, and 2) differences in how edge weights are measured. Although 350 
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employing suitable indices and Z-scoring edge weights can alleviate some of these 351 

concerns, these approaches do not account for the disparities between an observed 352 

network and the real or social preferences network that differences in sampling can 353 

generate (Fig. 1). Recent methodological advancements, including mixture models 354 

and models that estimate the real network as a latent structure while accounting for 355 

the sampling process offer promising avenues to navigate these challenges 356 

effectively (Box 1). 357 

4. Differences in network size 358 

Network size, or the number of nodes in a network, varies substantially in animal 359 

societies ranging from only a few individuals to large assemblages of several hundred 360 

individuals (Webber & Vander Wal, 2019). This variation is shaped in part by 361 

differences in social organisation, dispersal patterns, ranging behaviour and/or 362 

territoriality (Kappeler, 2019). In addition, observed networks can include different 363 

subsets of the underlying real network, driven by researchers’ choices regarding who 364 

is observed (for instance focusing only on adults or on habituated individuals). 365 

Observed network size therefore depends on the features of the social system being 366 

investigated (which determine real network size) as well as the decisions made by 367 

researchers when designing their study (which determine what subset of the real 368 

network is observed). Here we consider what different network sizes mean for the 369 

comparability of network structures. We explore the effects of sampling different 370 
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subsets of real networks in the next section (Differences in network scale across 371 

networks).  372 

Comparing networks of different sizes is a complex challenge because network size 373 

can greatly influence other aspects of network structure in non-trivial ways. The effect 374 

of network size on social structure depends on the nature of the underlying process 375 

generating the network (Box 1, Boccaletti et al., 2006; Hobson et al., 2021), and is 376 

often not the same for different measures of network structure (Anderson et al., 377 

1999; Naug, 2009). Therefore, controlling for network size (e.g. dividing network 378 

metrics by network size, or adding network size as a control predictor in analyses) 379 

does not always fully account for size effects, and may even introduce biases.  380 

The first question to consider when comparing networks of different sizes is whether 381 

it is appropriate to control for network size. Biological factors may influence key 382 

aspects of network structure through their effects on network size (at least in part). 383 

Network size can therefore be considered an important feature of social structure 384 

itself. For example, if an individual’s risk of being infected by a pathogen depends 385 

on its number of social partners, then being in a larger group can help explain higher 386 

exposure risk. In these cases, conditioning network comparisons on network size 387 

would mask effects of biological importance (Fig. 2A). However, for other research 388 

questions it may be necessary to condition on network size to make  meaningful 389 

biological comparisons. For example, to test the hypothesis that forest-living species 390 

(typically living in smaller groups) have denser social networks than those in open 391 



22 

habitats (typically living in larger groups), conditioning on network size is necessary 392 

to demonstrate that habitat influences network structure (density) in a manner that 393 

is not solely driven by the relationship between habitat and network size (Fig 2B).  394 

Figure 2: Potential causal mechanisms linking network size to structure. Note that ‘network’ 395 

here refers to the real network (Fig 1). The solid arrows represent causal relationships. The 396 

dashed line between biological factors and network size in panel B indicates a potential non-397 

causal association. The dashed boxes indicate that the structure of the real network is a latent, 398 

unobservable variable, which can be quantified, but not entirely captured by a network metric, 399 

i.e. a measure of network structure. In A, biological factors affect network structure partially 400 

via network size, and controlling for network size would mask some of the influence of 401 

biological factors on network size. In B, biological factors do not influence network size, but 402 

through exogenous variables, biological factors and network size may be correlated. Unless 403 

network size can be effectively controlled for, the overall impact of biological processes on 404 

network structure cannot be estimated, as network size is a possible confound. In both cases, 405 

potential confounds act on the network structure itself, not on the network metric. As long as 406 

the chosen network metric is an accurate quantification of network structure, potential 407 

challenges do not lie with the metric, but with underlying causal assumptions.  408 
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 409 

The next question to consider is how to control for differences in network size. Even 410 

when controlling for network size is appropriate for a specific question, doing so in 411 

a way that correctly removes size effects can be difficult. The relationship between 412 

size and network structure depends on the process that generates the network, and 413 

these processes are often unknown (Box 1, Brask et al. 2023). For instance, 414 

unweighted network density (the ratio of actual to potential connections in a 415 

network) is divergently impacted by network size, depending on the process that 416 

generates the network (Fig. 3). If individuals choose their interaction partners at 417 

random with a fixed probability, then network density stays the same regardless of 418 

the size of the network. In contrast, if individuals preferentially interact with their 419 

most popular groupmates and each individual forms a fixed number of relationships, 420 

then the density of the network declines exponentially with its size. Similarly, the 421 

strength of social relationships can depend on network size in different ways. If 422 

individuals get more partners when the network is larger but are restricted in the 423 

amount of time they have available to socialise, relationship strength will decrease 424 

with network size. In contrast, relationship strength can be independent of network 425 

size if individuals keep a constant number of partners regardless of network size, or 426 

if they get more partners and also increase the amount of time they spend socialising 427 

(so that they can spend the same amount of time with each of their partners even 428 

when their number of partners increases). Each of these scenarios require different 429 
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approaches to correctly remove the effect of network size (Hobson et al., 2021). That 430 

is, if the networks to be compared have emerged from different generative 431 

processes, then correctly controlling for size may involve a different control 432 

procedure for each network. 433 

434 

Figure 3: Measures of network structure can be influenced by network size in different ways, 435 

depending on the underlying processes that generate the network. In this example we compare 436 

how unweighted network density depends on network size for networks generated from two 437 

different processes. If individuals choose their interaction partners at random (‘random 438 

attachment’, captured by the Erdős-Rényi model, Erdős & Rényi 1959) with a fixed probability 439 

(e.g. each pair of individuals has a 20% chance of interacting) then the network density stays the 440 

same regardless of the size of the network. In contrast, if individuals preferentially interact with 441 

their most popular groupmates and each individual contributes with a fixed number of edges 442 

(‘preferential attachment’, captured by the Barabási-Albert model, Barabási & Albert 1999), then 443 

the density of the network declines exponentially with its size. 444 
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Properly accounting for network size in comparative network analysis is often 445 

difficult, if not impossible, unless valid assumptions are established about the 446 

underlying processes that generate the network (Hobson et al. 2021). Understanding 447 

generative processes in animal social networks is an area that still needs substantial 448 

methodological progress (Box 1, Brask et al. 2023), but one where the layers of 449 

latency framework may be particularly helpful. By explicitly considering the social 450 

preferences driving a given network, we can better understand the expected 451 

relationship between network size and relationship strength within the system. This 452 

in turn, can inform the design of simulations to predict how network structure varies 453 

with changes in size and guide decisions on whether and how to account for network 454 

size in subsequent analyses.  455 

Considerations for comparing networks 456 

When comparing networks, differences in network size are almost inevitable. 457 

Whether and how to account for differences in network size is a long-standing 458 

challenge in network science, and solutions are often context-dependent.  When 459 

network size is central to how network structure relates to biological variables of 460 

interest, conditioning on network size could mask important effects. When biological 461 

factors do not directly influence network size, or when biological effects that go 462 

through network size are not of interest, conditioning on network size is warranted. 463 

To condition properly requires an understanding of the generative processes (i.e. the 464 

social preferences and constraints) underlying the networks, to understand the 465 
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relationship between network size and measures of network structure (Box 1). As this 466 

information is often absent, we suggest restricting comparisons to networks of similar 467 

size, or where it is reasonable to assume similar underlying generative processes and 468 

similar relationships between network size and other components of network 469 

structure. 470 

5. Differences in network scale 471 

Networks can be studied at different social and spatial scales, depending on the 472 

ecological or evolutionary process of interest and limitations in data collection. For 473 

instance, in some cases a single group may be studied, in others the entire 474 

population. As a result, observed networks can represent samples of the real network 475 

at different scales, which can introduce biases in comparative analyses if they are not 476 

conducted with appropriate caution (Fig. 4).  477 
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 478 

Figure 4. An illustration of the challenges of scale in social network analyses. A. Social network 479 

analyses address diverse questions related to various ecological and evolutionary processes 480 

for which different scales of network structure are important. Networks can vary considerably 481 

between species across these scales. For instance, in species that cluster into groups, network 482 

modularity (illustrated), is higher at the population-level (macroscale) than the group-level 483 

(mesoscale). B. Research teams make decisions about the scale at which to sample networks 484 

based on biological properties of their study system, their research question and time and 485 

budget constraints. C. Research teams make decisions about the scale of analysis, focusing 486 

on measures that may capture the structure of their sampled network as a whole down to 487 

measurements that quantify the network position of single individuals. Any mismatches in the 488 

scales at which networks are sampled can generate challenges for subsequent comparative 489 

analyses.  490 
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The extent to which comparing across network scales poses a challenge depends on 491 

the scale of analysis required to answer the question of interest (Fig. 4). Measures of 492 

network structure that are being compared can vary from measures of the 493 

connectedness of individuals (microscale), to measures of the structure of the whole 494 

network (macroscale). Meso- and macroscale (whole) network metrics are likely to be 495 

particularly susceptible to differences in the scale of sampling between datasets 496 

(Ogino et al. 2023). For example, comparing network density (a macroscale measure) 497 

from a single social group with that of an entire population can be misleading 498 

because the scale of observation affects network density. Individuals within a single 499 

group are typically more strongly connected to each other, leading to higher density, 500 

while a population-level network includes multiple loosely connected groups, 501 

resulting in lower overall density. In contrast, microscale (individual-level) metrics of 502 

networks are often less affected by scale and will be more reflective of values in the 503 

real networks (including non-sampled individuals). However, this will vary according 504 

to the generative processes underlying the network structure and the specific choice 505 

of individual-level metric. For example, in species where individuals interact with 506 

others outside their group, an individual will have much higher betweenness 507 

centrality when a population- rather than group-level network is considered.  508 

In some cases, it may be possible to compare networks sampled at different scales 509 

by sub-sampling from the network sampled at a larger scale. But this process is 510 

untested and fraught with complex decisions on how best to subsample (e.g., see 511 
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the previous section Differences in network size across networks). Another potential 512 

solution is to estimate the real network as a latent structure from an observed 513 

network by using imputation to “fill in” missing parts of networks sampled at a 514 

smaller scale (Box 1, Young et al., 2020). Doing so requires information about the 515 

generative processes underlying the network, which currently are not well developed 516 

(Box 1). For example, in many studies focused on within-group networks, interactions 517 

with members of other groups may not be recorded or may occur so infrequently 518 

that they remain unobserved. This means we know little about the social preferences 519 

and constraints generating networks beyond the scale of the group. In these cases, 520 

it would be impossible to reliably infer the real network beyond the scale of the 521 

original study. 522 

Considerations for comparing networks 523 

Networks can be sampled across various scales, and observed networks representing 524 

different scales usually cannot directly be compared. One solution is to use 525 

methodological advancements that can impute missing data to reconstruct the real 526 

network at a larger scale. However, reliable imputation requires an understanding of 527 

the generative processes underlying the networks, including the processes that drive 528 

interactions beyond the scale that was sampled (Box 1). As this understanding is most 529 

often lacking, we suggest comparisons be restricted to cases where it is reasonable 530 

to assume networks have been sampled at a similar scale. 531 
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Discussion     532 

Comparative social network analysis offers huge potential to answer fundamental 533 

questions in ecology and evolution, but this approach comes with a set of major 534 

challenges that are yet to be fully resolved (Albery et al., 2023). In this paper, we 535 

present the layers of latency framework that explains how observed animal social 536 

networks are related to the latent social structures and processes of interest to 537 

researchers. We then outline five key challenges in comparative analyses of social 538 

networks. Using the layers of latency framework as a base, we consider how these 539 

challenges can lead to erroneous conclusions, and we discuss the current state of 540 

solutions to mitigate these challenges. By doing so, we have aimed to offer guidance 541 

on factors to consider before embarking on comparative social network analyses and 542 

to inspire further developments of methodological tools that enable these types of 543 

analysis to be conducted robustly and to their full potential. 544 

In addition to giving potential solutions for each specific challenge in the sections 545 

above, our summary of our overall current guidance for comparative network analysis 546 

is: 547 

● Identify the latent network layer to which your research question applies (Fig. 548 

1) - are you interested in the real network, or the social preference network? 549 

This will shape your analytical decisions going forward. 550 
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● Be clear about the limitations of any approach used. Different networks may 551 

have been affected by different inherent constraints and sampling biases, and 552 

this can influence observed differences between them.  553 

● Consider whether and how differences between networks to be compared 554 

can be addressed analytically. Bayesian methodological developments offer 555 

promising solutions, by estimating the real, or even the social preference 556 

network, while explicitly accounting for key differences in compared networks 557 

(Box 1). Maintain uncertainty when moving between network layers, and 558 

propagate this uncertainty into subsequent comparisons. 559 

● Consider the generative processes that link the latent networks to the 560 

observed network for different sampling methodologies and/or datasets (Box 561 

1). Understanding these processes can help identify how to account for 562 

methodological differences to make different networks comparable or can 563 

help (careful) imputation of missing information. 564 

The layers of latency framework highlights future theoretical and methodological 565 

work that will be central to facilitating analyses that make inferences about latent 566 

network layers (both for comparative network analyses and more generally). Moving 567 

between network layers necessitates detailed knowledge of the key processes that 568 

influence the emergent structure of animal social networks (Box 1). While such 569 

knowledge is available for some particularly well-studied species, a combination of 570 

theoretical modelling and empirical analyses will often be necessary to identify 571 
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patterns that can be used to pinpoint the generative processes underlying animal 572 

social networks. New statistical tools will then be required to efficiently estimate the 573 

latent networks, as well as to tailor existing observation models (e.g. from capture-574 

recapture models) to social network contexts (Silk & Gimenez, 2023). These steps 575 

forward will benefit greatly from interdisciplinary collaborations between behavioural 576 

ecologists, statisticians, and network scientists (Brask et al., 2021).  577 

We hope the challenges and potential solutions presented here will help to move 578 

the field towards a more comprehensive suite of tools for comparing social networks. 579 

With further development, comparative social network analysis could become an 580 

accessible, reliable and powerful approach to answer long-standing questions in 581 

ecology and evolution. We hope that this paper provides a better understanding of 582 

the key challenges facing researchers applying these approaches, and some 583 

potential ways to address them. Good luck! 584 

 585 
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 586 

Figure S2. Links between the five key challenges faced when comparing social networks 587 

 588 

References 589 

Albery, G. F., Bansal, S., & Silk, M. J. (2024). Comparative approaches in social network ecology. 590 

Ecology Letters, 27(1), e14345. https://doi.org/10.1111/ele.14345  591 

Albery, G. F., Becker, D. J., Brierley, L., Brook, C. E., Christofferson, R. C., Cohen, L. E., Dallas, 592 

T. A., Eskew, E. A., Fagre, A., Farrell, M. J., Glennon, E., Guth, S., Joseph, M. B., Mollentze, N., 593 

Neely, B. A., Poisot, T., Rasmussen, A. L., Ryan, S. J., Seifert, S., Sjodin, A. R., Sorrell, E. M., & 594 

Carlson, C. J. (2021). The science of the host-virus network. Nature Microbiology, 6(12), 1483-595 

1492. https://doi.org/10.1038/s41564-021-00999-5  596 

Altmann, J. (1974). Observational study of behavior: Sampling methods. Behaviour, 49(3-4), 227-597 

266. https://doi.org/10.1163/156853974X00534  598 



34 

Anderson, B. S., Butts, C., & Carley, K. (1999). The interaction of size and density with graph-599 

level indices. Social Networks, 21(3), 239-267. https://doi.org/10.1016/S0378-8733(99)00011-8  600 

Aplin, L. M., Farine, D. R., Morand-Ferron, J., & Sheldon, B. C. (2012). Social networks predict 601 

patch discovery in a wild population of songbirds. Proceedings of the Royal Society B, 279(1745), 602 

4199-4205. https://doi.org/10.1098/rspb.2012.1591  603 

Bansal, S., Grenfell, B. T., & Meyers, L. A. (2007). When individual behaviour matters: 604 

Jomogeneous and network models in epidemiology. Journal of The Royal Society Interface, 605 

4(16), 879-891. https://doi.org/10.1098/rsif.2007.1100  606 

Barabási, A., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 607 

509-512. https://doi.org/10.1126/science.286.5439.509 608 

Barsbai, T., Lukas, D., & Pondorfer, A. (2021). Local convergence of behavior across species. 609 

Science, 371(6526), 292-295. https://doi.org/10.1126/science.abb7481  610 

Bateson, M., & Martin, P. (2021). Measuring behaviour: An introductory guide. Cambridge 611 

University Press.  612 

Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwang, D. (2006). Complex networks: 613 

Structure and dynamics. Physics Reports, 424(4-5), 175-308. 614 

https://doi.org/10.1016/j.physrep.2005.10.009  615 

Brask, J. B., Ellis, S., & Croft, D. P. (2021). Animal social networks: An introduction for complex 616 

systems scientists. Journal of Complex Networks, 9(2), cnab001. 617 

https://doi.org/doi.org/10.1093/comnet/cnab001  618 

Brask, J. B., Koher, A., Croft, D. P., & Lehmann, S. (2023). Far-reaching consequences of trait-619 

based social preferences for the structure and function of animal social networks. arXiv. 620 

https://doi.org/10.48550/arXiv.2303.08107  621 



35 

Canteloup, C., Puga-Gonzalez, I., Sueur, C., & van de Waal, E. (2020). The effects of data 622 

collection and observation methods on uncertainty of social networks in wild primates. American 623 

Journal of Primatology, 82(7), e23137. https://doi.org/10.1002/ajp.23137  624 

Cantor, M., Maldonado-Chaparro, A. A., Beck, K. B., Brandl, H. B., Carter, G. G., He, P., 625 

Hillemann, F., Klarevas-Irby, J. A., Ogino, M., Papageorgiou, D., Prox, L., & Farine, D. R. (2021). 626 

The importance of individual-to-society feedbacks in animal ecology and evolution. Journal of 627 

Animal Ecology, 90(1), 27-44. https://doi.org/10.1111/1365-2656.13336 628 

Carter, A. J., Lee, A. E. G., & Marshall, H. H. (2015). Research questions should drive edge 629 

definitions in social network studies. Animal Behaviour, 104, e7-e11. 630 

https://doi.org/10.1016/j.anbehav.2015.03.020 631 

Chakrabarti, S., Kolipakam, V., Bump, J. K., & Jhala, Y. V. (2020). The role of kinship and 632 

demography in shaping cooperation amongst male lions. Scientific Reports, 10(1), 17527. 633 

https://doi.org/10.1038/s41598-020-74247-x  634 

Clements, S. J., Zhao, Q., Silk, M. J., Hodgson, D. J., & Weegman, M. D. (2022). Modelling 635 

associations between animal social structure and demography. Animal Behaviour, 188, 51-63. 636 

https://doi.org/10.1016/j.anbehav.2022.03.017  637 

Clutton-Brock, T. (2016). Mammal societies. John Wiley & Sons.  638 

Clutton-Brock, T. (2021). Social evolution in mammals. Science, 373(6561), eabc9699. 639 

https://doi.org/10.1126/science.abc9699  640 

Collier, M., Albery, G. F., McDonald, G. C., & Bansal, S. (2022). Pathogen transmission modes 641 

determine contact network structure, altering other pathogen characteristics. Proceedings of the 642 

Royal Society B, 289(1989), 20221389. https://doi.org/10.1098/rspb.2022.1389  643 

https://doi.org/10.1016/j.anbehav.2015.03.020
https://doi.org/10.1016/j.anbehav.2015.03.020


36 

Croft, D. P., Darden, S. K., & Wey, T. W. (2016). Current directions in animal social networks. 644 

Current Opinion in Behavioral Sciences, 12, 52-58. 645 

https://doi.org/10.1016/j.cobeha.2016.09.001  646 

Davis, G. H., Crofoot, M. C., & Farine, D. R. (2018). Estimating the robustness and uncertainty of 647 

animal social networks using different observational methods. Animal Behaviour, 141, 29-44. 648 

https://doi.org/10.1016/j.anbehav.2018.04.012  649 

De Bacco, C., Contisciani, M., Cardoso-Silva, J., Safdari, H., Lima Borges, G., Baptista, D., Sweet, 650 

T., Young, J., Koster, J., Ross, C. T., McElreath, R., Redhead, D., & Power, E. A. (2023). Latent 651 

network models to account for noisy, multiply reported social network data. Journal of the Royal 652 

Statistical Society Series A, 186(3), 355-375. https://doi.org/10.1093/jrsssa/qnac004 653 

De Moor, D., MacaqueNet, Skelton, M., Schülke, O., Ostner, J., Neumann, C., Duboscq, J., & 654 

Brent, L. J. (2023). MacaqueNet: Big-team research into the biological drivers of social 655 

relationships. bioRxiv. https://doi.org/10.1101/2023.09.07.552971  656 

De Moor, D., Roos, C., Ostner, J., & Schülke, O. (2020). Bonds of bros and brothers: Kinship and 657 

social bonding in postdispersal male macaques. Molecular Ecology, 29(17), 3346-3360. 658 

https://doi.org/10.1111/mec.15560  659 

Dunbar, R. I. M. (1976). Some aspects of research design and their implications in the 660 

observational study of behaviour. Behaviour, 58(1/2), 78-98. https://doi.org/10.2307/4533756  661 

Ellis, S., Franks, D. W., Weiss, M. N., Cant, M. A., Domenici, P., Balcomb, K. C., Ellifrit, D. K., & 662 

Croft, D. P. (2021). Mixture models as a method for comparative sociality: Social networks and 663 

demographic change in resident killer whales. Behavioral Ecology and Sociobiology, 75(4). 664 

https://doi.org/10.1007/s00265-021-03006-3  665 



37 

Ellis, S., Franks, D. W., Nattrass, S., Cant, M. A., Weiss, M. N., Giles, D., Balcomb, K. C., & Croft, 666 

D. P. (2017). Mortality risk and social network position in resident killer whales: Sex differences 667 

and the importance of resource abundance. Proceedings of the Royal Society B, 284(1865), 668 

20171313. https://doi.org/10.1098/rspb.2017.1313  669 

Ellis, S., Snyder-Mackler, N., Ruiz-Lambides, A., Platt, M. L., & Brent, L. J. N. (2019). 670 

Deconstructing sociality: The types of social connections that predict longevity in a group-living 671 

primate. Proceedings of the Royal Society B, 286(1917), 20191991. 672 

https://doi.org/10.1098/rspb.2019.1991  673 

Erdős, P., & Rényi, A. (1959). On random graphs. In Publicationes Mathematicae (Vol. 6, pp. 290–674 

297). 675 

Farine, D. R., & Strandburg-Peshkin, A. (2015). Estimating uncertainty and reliability of social 676 

network data using Bayesian inference. Royal Society Open Science, 2(9), 150367. 677 

https://doi.org/10.1098/rsos.150367 678 

Farine, D. R., & Whitehead, H. (2015). Constructing, conducting and interpreting animal social 679 

network analysis. Journal of Animal Ecology, 84(5), 1144-1163. https://doi.org/10.1111/1365-680 

2656.12418  681 

Faust, K., & Skvoretz, J. (2002). Comparing networks across space and time, size and species. 682 

Sociological methodology, 32(1), 267-299. https://doi.org/10.1111/1467-9531.00118  683 

Fisher, D. N., Kilgour, R. J., Siracusa, E. R., Foote, J. R., Hobson, E. A., Montiglio, P. O., Saltz, J. 684 

B., Wey, T. W., & Wice, E. W. (2021). Anticipated effects of abiotic environmental change on 685 

intraspecific social interactions. Biological Reviews, 96(6), 2661-2693. 686 

https://doi.org/10.1111/brv.12772  687 

https://doi.org/10.1098/rsos.150367
https://doi.org/10.1098/rsos.150367
https://doi.org/10.1098/rsos.150367


38 

Franks, D. W., Ruxton, G. D., & James, R. (2010). Sampling animal association networks with the 688 

gambit of the group. Behavioral Ecology and Sociobiology, 64(3), 493-503. 689 

https://doi.org/10.1007/s00265-009-0865-8  690 

Franks, D. W., Weiss, M. N., Silk, M. J., Perryman, R. J. Y., & Croft, D. P. (2021). Calculating effect 691 

sizes in animal social network analysis. Methods in Ecology and Evolution, 12(1), 33-41. 692 

https://doi.org/10.1111/2041-210x.13429  693 

Gagliardi, B. M., St-Amant, N., & Dakin, R. (2023). Social network structure scales with group size 694 

in a multi-species analysis. bioRxiv. https://doi.org/10.1101/2023.08.28.555173 695 

Handcock, M. S., & Gile, K. J. (2010). Modeling social networks from sampled data. The Annals 696 

of Applied Statistics, 4(1), 5-25. https://doi.org/10.1214/08-AOAS221  697 

Hart, J. D. A., Weiss, M. N., Franks, D. W., & Brent, L. J. N. (2023). BISoN: A Bayesian framework 698 

for inference of social networks. Methods in Ecology and Evolution, 14(9), 2411-2420. 699 

https://doi.org/10.1111/2041-210x.14171  700 

Hinde, R. A. (1976). Interactions, relationships and social structure. Man, 11, 1-17. 701 

https://doi.org/10.2307/2800384  702 

Hobson, E. A., Silk, M. J., Fefferman, N. H., Larremore, D. B., Rombach, P., Shai, S., & Pinter-703 

Wollman, N. (2021). A guide to choosing and implementing reference models for social network 704 

analysis. Biological Reviews, 96(6), 2716-2734. https://doi.org/10.1111/brv.12775  705 

Kappeler, P. M. (2019). A framework for studying social complexity. Behavioral Ecology and 706 

Sociobiology, 73(1), 13. https://doi.org/10.1007/s00265-018-2601-8  707 

Krause, J., & Ruxton, G. D. (2002). Living in Groups. Oxford University Press.  708 



39 

Kurvers, R. H., Krause, J., Croft, D. P., Wilson, A. D., & Wolf, M. (2014). The evolutionary and 709 

ecological consequences of animal social networks: Emerging issues. Trends in Ecology & 710 

Evolution, 29(6), 326-335. https://doi.org/10.1016/j.tree.2014.04.002  711 

Lukas, D., & Clutton-Brock, T. (2018). Social complexity and kinship in animal societies. Ecology 712 

Letters, 21(8), 1129-1134. https://doi.org/10.1111/ele.13079  713 

Lundberg, I., Johnson, R., & Stewart, B. M. (2021). What is your estimand? Defining the target 714 

quantity connects statistical evidence to theory. American Sociological Review, 86(3), 532-565. 715 

https://doi.org/10.1177/00031224211004187  716 

Naug, D. (2009). Structure and resilience of the social network in an insect colony as a function 717 

of colony size. Behavioral Ecology and Sociobiology, 63(7), 1023-1028. 718 

https://doi.org/10.1007/s00265-009-0721-x  719 

Ogino, M., Maldonado-Chaparro, A. A., Aplin, L. M., & Farine, D. R. (2023). Group-level 720 

differences in social network structure remain repeatable after accounting for environmental 721 

drivers. Royal Society Open Science, 10(7), 230340. https://doi.org/10.1098/rsos.230340 722 

Pinter-Wollman, N., Hobson, E. A., Smith, J. E., Edelman, A. J., Shizuka, D., de Silva, S., Waters, 723 

J. S., Prager, S. D., Sasaki, T., Wittemyer, G., Fewell, J., & McDonald, D. B. (2013). The dynamics 724 

of animal social networks: Analytical, conceptual, and theoretical advances. Behavioral Ecology, 725 

25(2), 242-255. https://doi.org/10.1093/beheco/art047  726 

Redhead, D., McElreath, R., & Ross, C. T. (2023). Reliable network inference from unreliable data: 727 

A tutorial on latent network modeling using STRAND. Psychological Methods. Advance online 728 

publication. https://doi.org/10.1037/met0000519 729 



40 

Riehl, C., & Strong, M. J. (2018). Stable social relationships between unrelated females increase 730 

individual fitness in a cooperative bird. Proceedings of the Royal Society B, 285(1876), 20180130. 731 

https://doi.org/10.1098/rspb.2018.0130 732 

Ross, C. T., McElreath, R., & Redhead, D. (2023). Modelling animal network data in R using 733 

STRAND. Journal of Animal Ecology. 93, 254-266. https://doi.org/10.1111/1365-2656.14021 734 

Rubenstein, D. R., & Abbot, P. (2017). Comparative Social Evolution. Cambridge University Press. 735 

https://doi.org/10.1017/9781107338319  736 

Sabol, A. C., Lambert, C. T., Keane, B., Solomon, N. G., & Dantzer, B. (2020). How does individual 737 

variation in sociality influence fitness in prairie voles? Animal Behaviour, 163, 39-49. 738 

https://doi.org/10.1016/j.anbehav.2020.02.009 739 

Sah, P., Mendez, J. D., & Bansal, S. (2019). A multi-species repository of social networks. Scientific 740 

Data, 6(1), 44. https://doi.org/10.1038/s41597-019-0056-z  741 

Seyfarth, R. M. (1977). A model of social grooming among adult female monkeys. Journal of 742 

Theoretical Biology, 65(4), 671-698. https://doi.org/10.1016/0022-5193(77)90015-7  743 

Sheldon, B. C., Kruuk, L. E. B., & Alberts, S. C. (2022). The expanding value of long-term studies 744 

of individuals in the wild. Nature Ecology & Evolution. 6, 1799–1801. 745 

https://doi.org/10.1038/s41559-022-01940-7  746 

Shizuka, D., & Johnson, A. E. (2020). How demographic processes shape animal social networks. 747 

Behavioral Ecology, 31(1), 1-11. https://doi.org/10.1093/beheco/arz083  748 

Silk, M. J., & Fefferman, N. H. (2021). The role of social structure and dynamics in the maintenance 749 

of endemic disease. Behavioral Ecology and Sociobiology, 75(8), 122. 750 

https://doi.org/10.1007/s00265-021-03055-8  751 



41 

Silk, M. J., & Hodgson, D. J. (2021). Differentiated social relationships and the pace-of-life-752 

history. Trends in Ecology & Evolution, 36(6), 498-506. 753 

https://doi.org/10.1016/j.tree.2021.02.007  754 

Silk, M. J., & Gimenez, O. (2023). Generation and applications of simulated datasets to integrate 755 

social network and demographic analyses. Ecology and Evolution, 13(5), e9871. 756 

https://doi.org/10.1002/ece3.9871 757 

Siracusa, E. R., Negron-Del Valle, J. E., Phillips, D., Platt, M. L., Higham, J. P., Snyder-Mackler, 758 

N., & Brent, L. J. N. (2022). Within-individual changes reveal increasing social selectivity with age 759 

in rhesus macaques. Proceedings of the National Academy of Sciences, 119(49), e2209180119. 760 

https://doi.org/10.1073/pnas.2209180119  761 

Smith, J. E. (2014). Hamilton's legacy: Kinship, cooperation and social tolerance in mammalian 762 

groups. Animal Behaviour, 92, 291-304. https://doi.org/10.1016/j.anbehav.2014.02.029  763 

Snyder-Mackler, N., Kohn, J. N., Barreiro, L. B., Johnson, Z. P., Wilson, M. E., & Tung, J. (2016). 764 

Social status drives social relationships in groups of unrelated female rhesus macaques. Animal 765 

Behaviour, 111, 307-317. https://doi.org/10.1016/j.anbehav.2015.10.033  766 

Strauss, E. D., DeCasien, A. R., Galindo, G., Hobson, E. A., Shizuka, D., & Curley, J. P. (2022). 767 

DomArchive: a century of published dominance data. Philosophical Transactions of the Royal 768 

Society B, 377(1845), 20200436. https://doi.org/10.1098/rstb.2020.0436  769 

Strauss, E. D., & Holekamp, K. E. (2019). Social alliances improve rank and fitness in convention-770 

based societies. Proceedings of the National Academy of Sciences, 116(18), 8919-8924. 771 

https://doi.org/10.1073/pnas.1810384116 772 

https://doi.org/10.1002/ece3.9871
https://doi.org/10.1002/ece3.9871
https://doi.org/10.1002/ece3.9871


42 

Webber, Q. M. R., & Vander Wal, E. (2018). An evolutionary framework outlining the integration 773 

of individual social and spatial ecology. Journal of Animal Ecology, 87(1), 113-127. 774 

https://doi.org/10.1111/1365-2656.12773  775 

Webber, Q. M. R., & Vander Wal, E. (2019). Trends and perspectives on the use of animal social 776 

network analysis in behavioural ecology: A bibliometric approach. Animal Behaviour, 149, 77-87. 777 

https://doi.org/10.1016/j.anbehav.2019.01.010  778 

Weiss, M. N., Franks, D. W., Brent, L. J. N., Ellis, S., Silk, M. J., & Croft, D. P. (2020). Common 779 

datastream permutations of animal social network data are not appropriate for hypothesis testing 780 

using regression models. Methods in Ecology and Evolution, 12, 255–265. 781 

https://doi.org/10.1101/2020.04.29.068056  782 

Weiss, M. N., Franks, D. W., Croft, D. P., & Whitehead, H. (2019). Measuring the complexity of 783 

social associations using mixture models. Behavioral Ecology and Sociobiology, 73(1), 8. 784 

https://doi.org/10.1007/s00265-018-2603-6  785 

Weiss, M. N., Franks, D. W., Giles, D. A., Youngstrom, S., Wasser, S. K., Balcomb, K. C., Ellifrit, 786 

D. K., Domenici, P., Cant, M. A., Ellis, S., Nielsen, M. L. K., Grimes, C., & Croft, D. P. (2021). Age 787 

and sex influence social interactions, but not associations, within a killer whale pod. Proceedings 788 

of the Royal Society B, 288(1953), 20210617. https://doi.org/10.1098/rspb.2021.0617 789 

White, L. A., Forester, J. D., & Craft, M. E. (2017). Using contact networks to explore mechanisms 790 

of parasite transmission in wildlife. Biological Reviews, 92(1), 389-409. 791 

https://doi.org/10.1111/brv.12236  792 

Whitehead, H. (2008). Comparing societies. In H. Whitehead (Ed.), Analyzing Animal Societies - 793 

Quantitative Methods for Vertebrate Social Analysis (pp. 241-250). University of Chicago Press.  794 



43 

Young, J., Cantwell, G. T., Newman, M. E. J., & Peixoto, T. P. (2020). Bayesian inference of 795 

network structure from unreliable data. Journal of Complex Networks, 8(6). 796 

https://doi.org/10.1093/comnet/cnaa046  797 


