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Abstract 15	

1. Climate change causes warmer and more variable temperatures globally, impacting physiological 16	

rates and function in ectothermic animals. Acclimation of physiological rates can help maintain 17	

function. However, it is unresolved how variance in physiological rates changes with temperature 18	

despite its potential ecological and evolutionary importance. 19	

2. We developed new effect sizes that capture how both the mean and variation in physiological rates 20	

change across temperature (based on the temperature coefficient, 𝑄!"), and used them to test how 21	

acclimation and acute thermal responses vary across aquatic and terrestrial ectotherms using meta-22	

analysis (>1900 effects from 226 species). Comparing both the magnitude of acclimation and changes 23	

in variation side-by-side provides unique opportunities for evaluating the importance of plasticity and 24	

selection under climate change. 25	

3. We show that variance in physiological rates increases at higher temperatures, but that the magnitude 26	

of change depends on habitat. Freshwater and marine ectotherms are capable of acclimation and have 27	

the greatest increase in variance. In contrast, terrestrial ectotherms have reduced acclimation abilities 28	

and smaller increases in physiological rate. Simulations suggest that these patterns may result from 29	

differences in among-individual variation in thermal breadth and optima of performance curves 30	

across habitats. 31	

4. Our results highlight the greater vulnerability of terrestrial ectotherms to climate change because of 32	

both a lack of acclimation capacity and a limited increase in variance that may provide less raw 33	
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material for evolutionary adaptation. Considering both acclimation capacity and variance in 34	

physiological rates side-by-side is therefore important for understanding how climate change will 35	

impact populations. 36	

 37	

Running head: Physiological rate variation in ectotherms 38	

 39	
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Introduction 42	

Climate change is expected to result in warmer and more variable thermal environments globally (Suarez-43	

Gutierrez, Müller, & Marotzke, 2023; Ummenhofer & Meehl, 2017). Greater thermal variability is predicted 44	

to pose strong selection pressure that leads to genetic adaptation and/or the evolution of adaptive phenotypic 45	

plasticity – both of which are considered important for population resilience to human-induced climate 46	

change (Chevin & Hoffmann, 2017; Chevin & Lande, 2015; Chevin, Lande, & Mace, 2010; Cooke et al., 47	

2021; Seebacher, Narayan, Rummer, Tomlinson, & Cooke, 2023; Seebacher, White, & Franklin, 2015). 48	

Without plasticity or adaptation, high extinction rates are expected unless organisms can migrate to track 49	

suitable habitats (Cahill et al., 2012). 50	

Reversible phenotypic plasticity, such as physiological acclimation, is relatively rapid and can be fine-tuned 51	

to environmental conditions making it the first ‘line-of-defense’ against environmental change (Dewitt, Sih, 52	

& Wilson, 1998). For example, physiological rates are known to speed up as temperature increases because 53	

of the thermodynamic effects on chemical reaction rates – so called ‘acute’ temperature responses. However, 54	

longer-lasting (days-weeks) temperature increases that move environmental conditions away from thermal 55	

optima can be mitigated by acclimation, which adjust reaction rates or the thermal optima itself (Havird et 56	

al., 2020; Seebacher et al., 2015). Physiological acclimation is driven by endocrine and epigenetic processes 57	

that change the underlying physiology to allow organisms to maintain physiological performance despite 58	

changes in the environment (Little, Kunisue, Kannan, & Seebacher, 2013; Seebacher & Simmonds, 2019; 59	

Taff & Vitousek, 2016). Acclimation therefore alters acute thermal sensitivity to offset the potentially 60	

negative effects of acute temperature changes (e.g., higher energetic demands). Acclimation, however, does 61	

not necessarily result in complete compensation in response to environmental change (sensu Huey, Berrigan, 62	

Gilchrist, & Herron, 1999). Rather, increased physiological rates are often only partially compensated such 63	

that ectotherms acclimated to, and measured at, warmer temperatures have higher physiological rates than 64	

those acclimated to, and measured at, cooler temperatures (Havird et al., 2020; Huey et al., 1999). 65	



Acclimation is expected to evolve in populations experiencing high but predictable environmental variability, 66	

and when the fitness costs of plasticity are low (Chevin & Hoffmann, 2017; Dewitt et al., 1998; Reed, 67	

Waples, Schindler, Hard, & Kinnison, 2010). Rohr et al. (2018) show relationships between acclimation 68	

capacity, latitude and body size suggesting climate could be an important driver of acclimation responses. In 69	

addition, distinct patterns of dispersal, habitat use, and costs of plasticity may result in life-history stages 70	

diverging in their capacity for acclimation (Rossi, Cochrane, Tunnah, & Wright, 2019). Species occupying 71	

terrestrial habitats exhibit weaker acclimation capacities and, therefore may be particularly vulnerable to 72	

climate change given their greater probability of experiencing thermal extremes that overwhelm 73	

physiological homeostasis (Gunderson & Stillman, 2015; Hoffmann, Chown, & Clusella-Trullas, 2013; 74	

Morley, Peck, Sunday, Heiser, & Bates, 2019; Seebacher et al., 2015). In contrast, marine and freshwater 75	

organisms appear to have greater physiological acclimation capacity (Pottier et al., 2022; e.g., Seebacher et 76	

al., 2015), possibly because of differences in thermal variability in these environments (e.g., Steele, Brink, & 77	

Scott, 2019) that selects for differences in plasticity. However, the focus of research up to now has been 78	

primarily on mean physiological responses neglecting how variability in physiological processes might also 79	

be impacted by higher temperatures. 80	

As mean physiological rates increase with temperature it is likely that intrapopulation variability will also be 81	

impacted. Positive mean-variance relationships are common across biology suggesting that, as physiological 82	

rates increase with temperature, so too should variability [i.e., Taylor’s Law; Giometto, Formentin, Rinaldo, 83	

Cohen, & Maritan (2015)]. Differences in the shape of thermal performance curves (thermal breadth, 84	

maximal performance and thermal maxima) can reflect among-individual variability at higher temperatures, 85	

which can also differ between different levels of biological organisation, environmental conditions, and 86	

acclimation responses (Angilletta, 2009; Rezende & Bozinovic, 2019; Schulte, Healy, & Fangue, 2011; 87	

Tattersall et al., 2012). Presumably, increases in variation in physiological rates reflects environment-88	

mediated changes to underlying regulatory networks, which can lead to an increased variation in phenotypic 89	

outcomes (Costanzo et al., 2021; Matthey-Doret, Draghi, & Whitlock, 2020). Quantifying levels of among-90	

individual variation in thermal performance curves is important to understand their capacity to evolve, as 91	

well as the resilience of populations to environmental change (Careau, Biro, Bonneaud, Fokam, & Herrel, 92	

2014). 93	

Changes in physiological rate variability is expected to have consequences for the flow of energy within and 94	

between populations, communities, and ecosystems (Barneche et al., 2021; Bolnick et al., 2011; Sanderson et 95	

al., 2023; Seebacher et al., 2023). Generally, more variable populations are predicted to be associated with 96	

broader niches, have increased growth rates, and decreased vulnerability to environmental change, lowering 97	

extinction risk (i.e., “portfolio effects,” Schindler et al., 2010) (Bolnick et al., 2011; Forsman, 2014; see also, 98	



Forsman, 2015; Hart, Schreiber, & Levine, 2016; Pörtner, 2021; Schindler et al., 2010). In addition, if 99	

phenotypic and genetic variation in physiological rates are correlated and linked to fitness, reduced 100	

phenotypic variation may limit responses to selection and reduce the capacity of populations to evolve 101	

(Hoffmann & Sgrò, 2011; Pelletier & Coulson, 2012). Therefore, maintaining intrapopulation variability in 102	

physiological rates in a warmer world may be important for population resilience to climate change. 103	

Here, we use meta-analysis to establish the current state-of-knowledge of the extent to which aquatic and 104	

terrestrial ectotherms are capable of physiological plasticity. We then developed new effect sizes to quantify 105	

how variance in physiological rates change with temperature to ask the following questions regarding 106	

acclimation-induced changes in trait means and variances: 1) Does variance in physiological rates change as 107	

temperatures rise? 2) Are temperature effects on means of physiological rates greater than changes in 108	

variance across aquatic and terrestrial ectotherms? 3) How do changes in trait mean and variance relate to 109	

different life-stages, traits, and habitats? 4) Are changes in mean and variance of physiological rates impacted 110	

by past climate history? 5) How are variances in physiological rates expected to change under climate 111	

change? 112	

Materials and Methods 113	

Literature collection 114	

We compiled literature on ectothermic animals that measured physiological rates (e.g., metabolic rates, heart 115	

rates, enzyme reaction rates) at two or more temperatures after having been acclimated at these temperatures 116	

for at least 1 week. We used data from a previous meta-analysis (Seebacher et al., 2015) and updated 117	

Seebacher et al. (2015)’s data by extracting data from suitable studies from our own searches that followed 118	

the same search protocol. We extracted data from an extra 65 papers (with a total of 238 effects; a 34.03% 119	

increase in the number of published articles). For full details on the search protocol, see the Supplementary 120	

Materials, where we also provide a PRISMA flow diagram of our extraction process (Figure S1). 121	

Data Compilation 122	

We extracted means, standard deviations, and sample sizes for physiological rates measured at the two test 123	

temperatures that coincided with acclimation temperatures (Figure 1A). If there were more than two 124	

temperatures, we chose only the temperatures that fell within the most likely natural range of temperatures 125	

experienced by the species in question (Figure 1). We extracted these data from text, tables or figures of a 126	

given paper. Data were extracted from figures using the R package metaDigitise (Pick, Nakagawa, & Noble, 127	

2019). We also recorded the phylum, class, order, genus and species, and the latitude and longitude from 128	

where the experimental animals were sourced. For studies that did not provide latitude and longitude for the 129	



population, we searched for similar studies by the same lab group to identify where the population was likely 130	

to have been sourced. If the experimental animals were derived from the wild, we recorded the nearest 131	

latitude and longitude of the field collection site. If the animals were sourced from a commercial supplier, we 132	

took the latitude and longitude of the supplier. When it was not possible to find latitude and longitude using 133	

these methods, we looked up the distribution of the species in question and took the latitude and longitude of 134	

the centroid of the species’ distributional range. 135	

𝑸𝟏𝟎 Based Effect Sizes and Sampling Variances for Means and Variances 136	

Following Noble et al. (2022) we calculated a series of temperature-corrected effect sizes that compared 137	

mean physiological rates (𝑙𝑛𝑅𝑅#!") as well as the variability in physiological rates (𝑙𝑛𝑉𝑅#!") (Figure 1). 138	

These effect sizes are similar to the traditional temperature coefficient (𝑄!"), but with formal analytical 139	

approximations of their sampling variances. Sampling variances for effect sizes allowed us to make use of 140	

traditional meta-analytic modelling approaches. 141	

Comparing changes in mean physiological rates 142	

To compare mean physiological rates, we calculated the log 𝑄!" response ratio, 𝑙𝑛𝑅𝑅#!" (Noble et al., 2022) 143	

as follows: 144	

𝑙𝑛𝑅𝑅#!" = 𝑙𝑛 )
𝑅$
𝑅!
* )	

10∘𝐶
𝑇$ − 𝑇!

*  (1) 145	

Where, 𝑅! and 𝑅$ are mean physiological rates at temperatures 𝑇! and 𝑇$, respectively. Log transformation 146	

of this ratio makes the effect size normally distributed. Equation 1 is essentially a temperature corrected 147	

equivalent to the log response ratio (lnRR) (Hedges, Gurevitch, & Curtis, 1999; Lajeunesse, 2011) when the 148	

numerator and denominator are measured at different temperatures. This allows comparisons of the means 149	

from two temperature treatments directly regardless of the absolute measurement temperatures. The sampling 150	

variance for Equation 1 can be computed as follows (as described in Noble et al., 2022): 151	
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𝑆𝐷$$

𝑅$$𝑁$
+
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𝑇$ − 𝑇!

*
$

  (2) 152	

Here, 𝑆𝐷!$ and 𝑆𝐷$$ are the standard deviations, and 𝑁! and 𝑁$ are the sample sizes of the groups measured at 153	

𝑇! and 𝑇$, respectively (Figure 1A). 154	

 155	



 156	

Figure 1- Calculations of acute and acclimation 𝑙𝑛𝑉𝑅#!" and 𝑙𝑛𝑅𝑅#!". (A) Two idealised thermal 157	
performance curves for animals acclimated at ‘cold’ (‘blue’) temperatures and warm (‘red’) temperatures. 158	
Physiological rates are measured for a sample of ectotherms at two different temperatures along the thermal 159	
performance curves (𝑇! = 20°C and 𝑇$ = 30°C) for both curves. At each temperature a mean physiological 160	
rate (R) (points) and its standard deviation (SD) (error bars above and below mean) are estimated. R1.1 and 161	
R1.2 are the rates and associated SD (subscripted) for the cold acclimated animals at temperature 1 and 2, 162	
respectively. R2.1 and R2.2 are the rates and associated SD (subscripted) for the warm acclimated animals at 163	
temperature 1 and 2, respectively. An example of how acute and acclimation 𝑙𝑛𝑉𝑅#!" and 𝑙𝑛𝑅𝑅#!" are 164	
calculated from the treatments within the study is provided on the right-hand side of the figure with reference 165	
to each of the four possible groups. Two acute effect sizes can be calculated, one for the cold acclimated 166	
animals and one for the warm acclimated animals. Acute effects quantify the thermodynamic impacts of 167	
temperature on reaction rates whereas acclimated reaction rates measure how much (if at all) these rates are 168	
suppressed from having experienced the temperatures chronically (B) Species are expected, a priori, to vary 169	
in their thermal performance curves (thin lines) around an average (thick black line). We restricted our data 170	
to areas of each species’ performance curve that fell within the natural thermal range of the species (thick 171	



lines on each species-level curve). However, given it was not possible to measure the full performance curve 172	
for each species some test temperatures within studies may have converged on or moved past the thermal 173	
maxima. In such cases, we expected our 𝑄!" effect sizes to be smaller as indicated by comparing the black 174	
dashed lines to grey dashed lines. 175	

Comparing variance in physiological rates 176	

Nakagawa et al. (2015) proposed analogous effect size estimates to lnRR that allow for comparisons of 177	

changes in variance between two groups, the log variance ratio (lnVR) and the log coefficient of variation 178	

(lnCVR). Here, we focus on lnVR but derivations for lnCVR, along with re-analyses with lnCVR, are 179	

presented in the Supplementary Materials. In short, lnVR is a ratio that describes the difference in trait 180	

variability between two groups. Like lnRR, lnVR can also easily be extended to its 𝑄!" analogue (and 181	

associated sampling variance) as follows: 182	

𝑙𝑛𝑉𝑅#!" = 𝑙𝑛 )
𝑆𝐷$
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where parameters are defined above. Equation 3 and Equation 4 describe the change in physiological rate 185	

variance (Equation 3) normalised to a 10°C temperature change along with its sampling variance 186	

(Equation 4). 187	

Calculating acute and acclimation 𝒍𝒏𝑹𝑹𝑸𝟏𝟎 and 𝒍𝒏𝑽𝑹𝑸𝟏𝟎 estimates 188	

Effect sizes can be calculated from samples of organisms measured acutely at two temperatures or after 189	

having been acclimated these same temperatures (Figure 1A). For studies that measure acute and acclimated 190	

responses we used the mean, standard deviation, and sample size to derive both acute and acclimation 191	

𝑙𝑛𝑅𝑅#!" and 𝑙𝑛𝑉𝑅#!" estimates. For studies that only measured 𝑅!, 𝑅$, 𝑆𝐷!$ and 𝑆𝐷$$ after acclimation we 192	

could only calculate acclimation versions of these effect size estimates. Ideally, all studies would have a fully 193	

factorial design but this was not always the case making it challenging to compare acute and acclimated 194	

responses within studies. Nonetheless, our analytical models are suitable for dealing with missing within-195	

study acute effects (see below). In addition, analysis of a subset of the data where acute and acclimation 196	

effects could be compared within studies yields the same conclusion (See Supplementary Materials). For all 197	

effect sizes the higher temperature was in the numerator and the lower of the two temperatures in the 198	

denominator. As such, positive effect sizes indicate that the mean (i.e., 𝑙𝑛𝑅𝑅#!") or variance (𝑙𝑛𝑉𝑅#!") is 199	

larger at the higher of the two temperatures (numerator) when standardized to 10°C. When measuring 200	

plasticity, it is the difference between 𝑙𝑛𝑅𝑅#!" acute (denoted, 𝑙𝑛𝑅𝑅#!"&'()*) and acclimation (denoted, 201	



𝑙𝑛𝑅𝑅#!"&''+,-&),./
) that captures the degree to which organisms plastically adjust (or acclimate). As done by 202	

Seebacher et al. (2015), we consider acute 𝑙𝑛𝑅𝑅#!" and 𝑙𝑛𝑉𝑅#!" as animals measured acutely at both 203	

temperatures even though one of the acute measurements is also the acclimation temperature. A better 204	

measure of “acute” responses would be to calculate 𝑙𝑛𝑅𝑅#!" and 𝑙𝑛𝑉𝑅#!" on two completely new 205	

temperatures but this was not often done in studies. Importantly, our effect sizes, as with 𝑄!" more generally, 206	

all assume that the effect of temperature on physiological rates (or changes in variance) is log-linear (see 207	

Figure 1B & Supplementary Materials for further discussion). We test and control for any violations of these 208	

assumptions in our analysis (see below). 209	

Moderator Variables 210	

We recorded or derived a series of moderator variables from each study that are expected to have an impact 211	

on our effect size estimates. This included the duration of acclimation in days given that acclimation 212	

responses may depend on how long chronic temperature exposure occurs. We also recorded if the sample of 213	

animals were derived from captive or wild stocks, the life-history stage of the animals used (“adult” or 214	

“juvenile”) and the habitat type (“freshwater”, “marine” or “terrestrial”) given that Seebacher et al. (2015) 215	

show that these factors can impact 𝑄!" estimates. Physiological rate measures varied widely across the 216	

studies but could generally be grouped into two broad categories that included whole-organism measures, 217	

which all integrate a diversity of physiological and biochemical processes, and biochemical processes (e.g., 218	

enzyme reaction rates, proton leak) (Rezende & Bozinovic, 2019; Seebacher et al., 2015). We explore 219	

differences across more detailed trait categories in Supplemental Materials, but note sample sizes are limited 220	

for many traits. Traits that could not be categorised into these two we classified as ‘Other’. 221	

Meta-Analysis 222	

We analysed our data using multilevel meta-analytic (MLMA) and meta-regression (MLMR) models in R 223	

(vers. 4.4.2) using brms (vers. 2.22.0 Bürkner, 2017, 2018; “Stan Development Team. RStan,” 2021) and 224	

metafor (vers. 4.6.0 Viechtbauer, 2010). We fit both Bayesian and frequentist approaches to ensure that our 225	

results were consistent, and to create orchard plots that more easily convey heterogeneity in effects with 226	

prediction intervals (Nakagawa et al., 2023; vers. 2.0, Nakagawa, Lagisz, et al., 2021). Prediction intervals 227	

can be interpreted as the range of expected effects from future studies (Noble et al., 2022). In addition, 228	

Bayesian methods better protect against type I errors in the presence of complex sources of non-229	

independence (Nakagawa, Senior, Viechtbauer, & Noble, 2021; D. W. Noble, Lagisz, O’Dea, & Nakagawa, 230	

2017; Song, Peacor, Osenberg, & Bence, 2021). In all cases, frequentist and Bayesian models resulted in the 231	

same conclusions. For our Bayesian models, we ran 4 MCMC chains, each with a warm-up (burn-in) of 1000 232	



followed by 4000 sampling iterations keeping every 5 iterations for a minimum of 3200 samples from the 233	

posterior distribution. We used flat Gaussian priors for ‘fixed’ effects (i.e.,𝑁(0,10)) and a student t-234	

distribution for ‘random’ effects (i.e., 𝑠𝑡𝑢𝑑𝑒𝑛𝑡+(3, 0, 10)). We checked that all MCMC chains were mixing 235	

and had converged (i.e., 𝑅,-+ = 1). We also explored the potential for publication bias in our dataset but there 236	

was no evidence it existed (details in Supplementary Materials). We report overall meta-analytic means 237	

(denoted by 𝜇) and contrasts between meta-analytic means (denoted by 𝛽) throughout. 238	

Multi-level Meta-analysis (MLMA) Models 239	

We first fit multi-level meta-analysis (MLMA) models (i.e., intercept-only models) for both 𝑙𝑛𝑅𝑅#!" and 240	

𝑙𝑛𝑉𝑅#!", that included study, species, trait type, and phylogeny as random effects to account for non-241	

independence and identify sources of variability. We refer to this model structure as “Model 1” in the results. 242	

Our MLMA models allowed us to partition the variation in 𝑙𝑛𝑅𝑅#!" and 𝑙𝑛𝑉𝑅#!" among these key sources 243	

while accounting for total sampling variance in each. This allowed us to calculate the proportion of total 244	

heterogeneity [i.e., 𝐼+.+-&$ ; sensu Nakagawa & Santos (2012); Noble et al. (2022)] along with various 𝐼$ 245	

metrics describing the proportion of variance explained by each random effect level (Nakagawa & Santos, 246	

2012). We also present 95% prediction intervals which describe the expected distribution of effects for future 247	

studies (Nakagawa, Lagisz, et al., 2021; Noble et al., 2022). 248	

A phylogeny was derived using the Open Tree of Life (OTL) with the rotl package in R (vers. 3.1.0) 249	

(Michonneau, Brown, & Winter, 2016), and plotted using ggtree (vers. 3.14.0) (Yu, Smith, Zhu, Guan, & 250	

Lam, 2017). We resolved all polytomies in the tree randomly using using the multi2di function in ape (vers. 251	

5.8) (Paradis & Schliep, 2019). Any missing taxa were replaced with closely related species and branch 252	

lengths were computed using Grafen’s method (using power = 0.7, Grafen, 1989). Models fit using 253	

correlation matrices computed with different power (p) parameters (from 0.5 – 1.0) had nearly identical 254	

𝐴𝐼𝐶/. As such, we used an intermediate value of p = 0.7. We used the R packages ape and phytools (vers. 255	

2.3.0) (Revell, 2012) to prune the tree for individual analyses and calculate phylogenetic covariance (or 256	

correlation) matrices used in meta-analytic models. 257	

Multi-level Meta-Regression (MLMR) Models 258	

After quantifying levels of heterogeneity, we fit a series of multi-level meta-regression (MLMR) models to 259	

test our key questions. In all models, we included the same random effects as we used in our MLMA models. 260	

Acclimation time varied from 4 to 408 days (mean ± SD = 37.98 ± 45.19 days), and terrestrial ectotherms 261	

were acclimated for a much shorter duration (mean ± SD = 23.53 ± 15.56 days, n = 125) than freshwater 262	

(mean ± SD = 36.81 ± 28.71 days, n = 430) and marine species (mean ± SD = 46.18 ± 67.21 days, n = 263	



313). To control for these differences, acclimation time was mean-centered (mean = 0) and included in all 264	

our models, although it was not a strong predictor of effect size variation in any of our models 265	

(Supplementary Materials, Figure S3). 266	

In addition to the acclimation period, all our models corrected for possible violations of the log-linearity 267	

assumption associated with effect size calculations (Figure 1; and see Supplementary Materials Figure S2). 268	

We predicted that, if 𝑙𝑛𝑅𝑅#!" and 𝑙𝑛𝑉𝑅#!" were not strictly log-linear there would be a decrease in average 269	

effect size for studies applying higher temperature treatments, because these temperatures are expected to 270	

either converge on or cross the thermal maxima of the performance curve causing reaction rates to decelerate 271	

or decrease beyond 𝑇.0 (Michaletz & Garen, 2024). Given that our data included a wide range of species and 272	

habitats, we also included a random slope of maximum temperature that varied across species because we 273	

expected that species would vary in their thermal performance curves, which would be reflected in 274	

experimental treatments. We mean-centered the maximum temperature and included it in our models. 275	

Lastly, all models included a random slope of effect type (acute vs acclimation) to estimate the variance in 276	

the magnitude of plastic changes (acute vs acclimation) across studies. Such an analysis is similar to analyses 277	

using an effect size that is a contrast between 𝑙𝑛𝑅𝑅#!"&'()*  and 𝑙𝑛𝑅𝑅#!"&''+,-&),./
 but is more powerful 278	

because it allows studies without acute responses to be included (see Supplementary Materials). 279	

Accounting for these in our meta-regression models, we proceeded to build separate models that tested our 280	

core questions. All estimates from our models are therefore conditioned on an average acclimation time (i.e., 281	

37.98 days) and an average maximum temperature (i.e., 23°C) across the dataset.We first tested the extent to 282	

which acute and acclimation 𝑙𝑛𝑅𝑅#!" and 𝑙𝑛𝑉𝑅#!" effect sizes varied between habitat types (i.e., terrestrial, 283	

freshwater, and marine). Models included an interaction between effect type (i.e., acute or acclimation) and 284	

habitat (referred to as “Model 2”). Reduced mean 𝑙𝑛𝑅𝑅#!"&''+,-&),./
 relative to 𝑙𝑛𝑅𝑅#!"&'()*  indicates that 285	

acclimation to thermal environments results in (partial) compensation of physiological rates (i.e., phenotypic 286	

plasticity), whereas no differences between 𝑙𝑛𝑅𝑅#!"&'()*  and 𝑙𝑛𝑅𝑅#!"&''+,-&),./
 indicates that organisms did 287	

not acclimate (Havird et al., 2020; Seebacher et al., 2015). In contrast, a difference in 𝑙𝑛𝑉𝑅#!"&''+,-&),./
 288	

relative to 𝑙𝑛𝑉𝑅#!"&'()*  would show that changes in between-individual variation differ between acute 289	

responses and acclimation responses. 290	

Second, we tested whether acute and acclimation 𝑙𝑛𝑅𝑅#!" and 𝑙𝑛𝑉𝑅#!" differed between whole-organism 291	

versus biochemical traits across habitats by fitting an model with an interaction between type, habitat and 292	

trait category (referred to as “Model 3”). A more detailed trait analysis is presented in the Supplementary 293	

Materials. We expected that whole-organism traits would be more likely to maintain variation in 294	



physiological function and be less likely to acclimate because whole-organism function relies on a greater 295	

number of biochemical reactions each with different thermal sensitivities (Angilletta, 2009; Fields, 2001; 296	

Iverson, Nix, Abebe, & Havird, 2020). 297	

Third, we tested whether different life-stages were more or less likely to acclimate by fitting a model for each 298	

habitat type and including an interaction between life-stage (‘adult’ or ‘juvenile’) and effect type (referred to 299	

as “Model 4”). We predicted that acclimation responses would be more likely early in development 300	

compared to later in development as this pattern has been shown in previous studies (e.g., Moghadam, 301	

Ketola, Pertoldi, Bahrndorff, & Kristensen, 2019), but that this should depend on the habitat type given the 302	

different constraints faced by different early life stages across major habitat types. 303	

Finally, we used the ERA5 climate model (Hersbach et al., 2020) to test whether the change in 304	

𝑙𝑛𝑅𝑅#!"&''+,-&),./
 and 𝑙𝑛𝑉𝑅#!"&''+,-&),./

 were predicted by climate variability (CV) (see further details in the 305	

Supplementary Materials). We only used 𝑙𝑛𝑅𝑅#!"&''+,-&),./
 and 𝑙𝑛𝑉𝑅#!"&''+,-&),./

 for these models because 306	

our predictions were specifically focused on acclimation responses. We fit models that included an 307	

interaction between habitat type and thermal coefficient of variability (CV) as moderators (referred to as 308	

“Model 5”). We also explored whether environmental predictability explained capacity for acclimation; we 309	

estimated predictability as the correlation of temperatures across months at a given location. However, such 310	

analyses are challenging to interpret because the temporal scale that is biologically relevant to different 311	

organisms will be different making the choice of lag to estimate the correlation difficult to apply across taxa. 312	

As such, we report a simple analysis in the Supplementary Materials but note that it does not differ from our 313	

CV analysis. 314	

Modelling how climate change can impact variance in physiological rates 315	

To explore the potential consequences of the impacts that human-induced climate change may have on 316	

variance in physiological rates we fit a model that included a non-linear smoother between latitude and 317	

longitude and an interaction between effect type and habitat type while correcting for acclimation time and 318	

maximum temperature (referred to as “Model 6”). We used non-linear tensors for latitude and longitude as 319	

any response could be complicated by local factors (e.g., altitude). Our model included random effects of 320	

species, trait, phylogeny and study. We predicted the expected change in 𝑙𝑛𝑉𝑅#!" for each wild population in 321	

our dataset at its specific populations latitude and longitude. We first converted the predicted 𝑙𝑛𝑉𝑅#!" to a 322	

1°C change as opposed to 10°C to better map to relevant changes in temperature coinciding with climate 323	

change: 324	



𝑙𝑛𝑉𝑅#! =
𝑙𝑛𝑉𝑅#!"
10

  (5) 325	

We then multiplied this predicted change by the change in air and sea surface temperatures at the locations of 326	

each population (and species) that is expected under high emissions scenarios in 2080. 327	

Identifying patterns of among-individual variance in performance curves contributing to 328	

variance increases 329	

Changes in 𝑙𝑛𝑉𝑅#!" are expected to depend on differences in the among-individual variation in the thermal 330	

performance curves across species (Angilletta, 2009). In other words, we expect performance curves to vary 331	

among individuals within a population and this variation is expected to co-vary with habitats (Angilletta, 332	

2009). To understand how differences in thermal performance curve variation correlate with the empirical 333	

patterns of variance change we observe, we conducted a simple simulation as a sensitivity analysis to better 334	

understand the characteristics of performance curves that could lead to our observed changes in variance 335	

across temperatures and habitats. The simulation varied among-individual variation in performance curves to 336	

identify the parameters that could produce the results we observed. To simulate performance curves, we used 337	

an asymmetrical Gaussian function (Angilletta, 2009): 338	

𝑃1 = 2𝜖2
(124)0
$60 𝛷 )𝛼

𝑇 − 𝛿
𝜎

*  (6) 339	

where 𝑇 is temperature, 𝛿 is the optimal temperature (the temperature where performance is maximized), 𝜎 340	

the performance breadth, and 𝛼 the skewness of the curve (see Figure S18 in Supplementary Materials for 341	

example curves). We simulated n = 1000 individual performance curves by varying the amount of between 342	

individual variance on each of the key parameters (𝛿, 𝜎) in all possible combinations from 0.01 to 2. We also 343	

varied 𝛼, but this did not impact our conclusions and so we kept among-individual variation fixed for each 344	

simulation (at 0.01). From the population of performance curves, we took the standard deviation at two 345	

temperatures (18 and 28°C) to calculate 𝑙𝑛𝑉𝑅#!" and identify potential parameter spaces that could produce 346	

observed patterns in our empirical data. 347	

Results 348	

Data Summary 349	

The final dataset included a total of 91 freshwater (fishes = 48, molluscs = 4, amphibians = 19, reptiles = 8, 350	

arthropods = 10, and a single crustacean and nematode species), 90 marine (fishes = 47, annelids = 2, 351	

molluscs = 21, echinoderms = 7, reptiles = 1, arthropods = 10, and a single crustacean and cnidarian species), 352	



and 45 terrestrial species (annelids = 1, molluscs = 5, arthropods = 14, reptiles = 12 and amphibians = 12 353	

along with a single tardigrade species) (Figure 2). We had more data on acute thermal responses (n = 1115) 354	

compared to acclimation responses (n = 798) because acute responses were reported for each of the two 355	

acclimation temperatures (Figure 2). 356	

Most of the effect size estimates came from measurements of metabolic rates (both resting and maximal – 357	

𝑁708/987 = 190, 𝑁8::8/+7 = 1023), metabolic enzyme rates (𝑁708/987 = 61, 𝑁8::8/+7 = 798) and whole-358	

organism performance traits (i.e., measures of locomotor speed and endurance – 𝑁708/987 = 73, 𝑁8::8/+7 = 359	

321). 360	

 

Figure 2- Phylogenetic distribution of acute and acclimation 𝑙𝑛𝑅𝑅#!" and 𝑙𝑛𝑉𝑅#!" estimates across major 

habitats. The total number of acute and acclimation 𝑙𝑛𝑅𝑅#!" and 𝑙𝑛𝑉𝑅#!" effect sizes are indicated by the 

coloured bars, and the colouring at the tips of the phylogeny indicates marine, freshwater, and terrestrial 

habitats. Silhouettes are only representative taxa of major clades within the tree. 



Terrestrial and aquatic ectotherms differ in their capacity to acclimate but acclimation 361	

does not depend on life-history stage 362	

Results from “Model 1” (see “Meta-Analysis” above) show that effect heterogeneity was high (only 2.85% 363	

of the variance was the result of sampling variability, 95% CI: 2.38 to 3.32%), and most variance was 364	

explained by the specific study and type of trait (Study: 29.41% , 95% CI: 20.78 to 38.49%; Trait Type: 365	

29.35% , 95% CI: 19.97 to 39.53%). Evolutionary relationships among taxa and species ecology (i.e., species 366	

random effect) explained little variation in acute and acclimation responses (Species: 2.39%, 95% CI: 0.01 to 367	

8.1%; Phylogeny: 2.89% , 95% CI: 0 to 12.94%). These patterns were similar for 𝑙𝑛𝑉𝑅#!" (see 368	

Supplementary Materials, Figure S15). 369	

Physiological rates increased more with temperature in terrestrial ectotherms (𝜇 = 0.63, 95% CI: 0.5 to 0.75) 370	

compared to marine (𝜇 = 0.52, 95% CI: 0.41 to 0.64) and freshwater ectotherms (𝜇 = 0.56, 95% CI: 0.45 to 371	

0.65), but did not differ significantly between aquatic and terrestrial habitats (differences between average 372	

𝑙𝑛𝑅𝑅#!"; Terrestrial - Marine: 𝛽 = 0.11, 95% CI: -0.02 to 0.24, 𝑝;<;< = 0.1; Terrestrial - Freshwater: 𝛽 = 373	

0.07, 95% CI: -0.03 to 0.18, 𝑝;<;< = 0.19) (“Model 2”). However, capacity for acclimation depended on the 374	

habitat. Ectotherms in marine and freshwater environments showed partial compensation of physiological 375	

rates (Figure 3A) amounting to reduced 𝑙𝑛𝑅𝑅#!"&''+,-&),./
 of 19.59% (95% CI: -28.97 to -10.18) in 376	

freshwater and 15.23% (95% CI: -29.26 to 0.21) in marine environments. In contrast, terrestrial ectotherms 377	

showed no acclimation with a 5.64% increase in 𝑙𝑛𝑅𝑅#!"&''+,-&),./
 (95% CI: -10.46 to 23.6, Figure 3A). 378	

Acclimation capacity did not vary consistently by life-history stage with no differences in 𝑙𝑛𝑅𝑅#!"&''+,-&),./
 379	

and 𝑙𝑛𝑅𝑅#!"&'()*  between adult and juveniles (overall contrast: -0.04 95% CI: -0.22 to 0.32, 𝑝;<;< = 0.58). 380	

Averaging over acute and acclimation effects there were also no differences between adults and juveniles 381	

within habitats (Adult-Juvenile: Terrestrial: -0.07, 95% CI: -0.39 to 0.2, 𝑝;<;< = 0.7; Marine: 0, 95% CI: -382	

0.21 to 0.22, 𝑝;<;< = 0.97; Freshwater: 0, 95% CI: -0.12 to 0.12, 𝑝;<;< = 0.95; “Model 4”; Figure 4A-C). 383	



 

Figure 3- Meta-analysis results for different habitats. In both panels, thick bars are 95% confidence 

intervals (CI) and thin bars 95% prediction intervals (PI). 𝛽 values are the contrasts between acute and 

acclimation means within each habitat. 𝜇 values are the overall meta-analytic means averaged across acute 

and acclimation types within each habitat type. In both cases, their 95% CI’s are indicated within square 

brackets and raw effects are weighted by their precision (inverse sampling variance). 𝑝;<;< values are the 

posterior probability of the contrast or overall meta-analytic mean being different from zero. (A) Mean 

acute and acclimation 𝑙𝑛𝑅𝑅#!" across ectotherms in marine, freshwater, and terrestrial habitats. Overall 

mean physiological rates (𝜇) across the habitats are provided in the results for simplicity and only contrasts 

between acute and acclimation 𝑙𝑛𝑅𝑅#!" are shown. Percentages refer to the percentage change in 

physiological rates between acclimation and acute 𝑙𝑛𝑅𝑅#!" (B) Mean acute and acclimation 𝑙𝑛𝑉𝑅#!" 

across ectotherms in marine, freshwater and terrestrial habitats. Percentages refer to the percentage change 

in physiological rate variance for a 10°C temperature change. For both plots, k = total number of effect size 

estimates while the numbers in brackets indicate the number of species. Sample sizes are the same for 

panel A and B. For ease of visualisation, all the raw data plotted for both acute and acclimation type effect 

sizes are presented as circles. 



 

Figure 4- Meta-analysis results for different life stages. Estimated mean acclimation and acute 𝑙𝑛𝑅𝑅#!" (A-

C) and 𝑙𝑛𝑉𝑅#!" (D-F) for adult and juvenile life-history stages for terrestrial (A & D), marine (B & E) and 

freshwater (C & F) ectotherms. Across all plots, thick bars indicate 95% confidence intervals and thin bars 

indicate 95% prediction intervals. Raw effects are weighted by their precision (inverse sampling variance). 

k = total number of effect size estimates while the numbers in brackets indicate the number of species. For 

ease of visualisation, raw data for both adult and juvenile life-history stages are presented but points are 

not distinguished by different symbols. 𝛽 values are the contrasts between acute and acclimation means 

within each life stage. 𝑝;<;< values are the posterior probability of the contrast being different from zero. 

Variation in physiological rates increases but to a greater extent in aquatic compared 384	

terrestrial ectotherms 385	

Variance in physiological rates (𝑙𝑛𝑉𝑅#!") showed an increase with increasing temperature across all habitat 386	

types (Figure 3B). Overall, there was a 36.27% (95% CI: 7.51 to 73.59, 𝑝;<;< = 0.01) increase in 387	

physiological rate variance for terrestrial ectotherms, a 51.28% (95% CI:21 to 89.48, 𝑝;<;< = < 0.01) 388	

increase in variation for marine ectotherms and a 60.93% (95% CI: 34.05 to 97.92, 𝑝;<;< = < 0.0001) 389	

increase in variance for freshwater ectotherms across 10°C (Figure 3; results from “Model 2”). 390	

Physiological rate variance increased significantly more in freshwater compared to terrestrial ectotherms for 391	

acute responses (𝛽 = 0.21, 95% CI: 0 to 0.41, 𝑝;<;< = 0.05), but not for acclimation responses because 392	

increases in rates were dampened by acclimation resulting in smaller increases in variance (𝛽 = 0.11, 95% 393	



CI: -0.12 to 0.34, 𝑝;<;< = 0.35). While marine ectotherms had larger increases in variance compared to 394	

terrestrial ectotherms these were not significant (Acute: 𝛽 = 0.18, 95% CI: -0.07 to 0.41, 𝑝;<;< = 0.14; 395	

Acclimation: 𝛽 = 0.01, 95% CI: -0.25 to 0.27, 𝑝;<;< = 0.91)(Figure 3B). Marine and freshwater habitats did 396	

not differ in the extent of variance increases at higher temperatures (Acute: 𝛽 = 0.03, 95% CI: -0.17 to 0.23, 397	

𝑝;<;< = 0.76; Acclimation: 𝛽 = 0.1, 95% CI: -0.1 to 0.29, 𝑝;<;< = 0.34). There were no differences 398	

between 𝑙𝑛𝑉𝑅#!"&'()*  and 𝑙𝑛𝑉𝑅#!"&''+,-&),./
 within any habitat (Figure 3B). 399	

𝑙𝑛𝑉𝑅#!" values from our simulations matched our empirical results in particular areas of parameter space 400	

(Figure 5). For a given among-individual variance in thermal breadth, terrestrial ectotherms are predicted to 401	

have lower among-individual variance in thermal maxima compared to marine and freshwater ectotherms 402	

(Figure 5). In contrast, terrestrial ectotherms are expected to have higher levels of among-individual variance 403	

in thermal breadth when controlling for among-individual variance in thermal maxima (Figure 5). 404	

 

Figure 5- Performance curve simulations for the expected 𝑙𝑛𝑉𝑅#!" when varying among-individual 

variance in thermal breadth (𝜎4 = {0.01, 2}) and thermal maxima (𝜎6 = {0.01, 2}) while fixing the rate 

variance constant (𝜎= = 0.01). In all simulations, population parameters were 𝛿 = 35, 𝜎 = 9, 𝛼 = -15, and n 

= 1000 individuals were simulated for each combination of 𝜎4 and 𝜎6. The parameter space that matches 



the observed mean 𝑙𝑛𝑉𝑅#!" from our meta-analysis for terrestrial (green), marine (orange) and freshwater 

(blue) ectotherms is labelled and highlighted. Dashed lines indicate the relative differences between the 

three habitat types when holding one variance parameter constant. 

Each life-history stage exhibited the same pattern of variance change in each of the habitats (Adult-Juvenile 405	

contrasts: Marine: 𝛽 = 0, 95% CI: -0.37 to 0.38, 𝑝;<;< = 0.98; Freshwater: 𝛽 = 0.03, 95% CI: -0.16 to 0.23, 406	

𝑝;<;< = 0.72; Terrestrial: 𝛽 = -0.03, 95% CI: -0.52 to 0.42, 𝑝;<;< = 0.93, overall across habitats: 𝛽 = 0, 407	

95% CI: -0.45 to 0.38, 𝑝;<;< = 0.92), with no differences between acute and acclimation effect types 408	

(“Model 4”; Figure 4). 409	

Past climate does not influence acclimation capacity or expected change in variance 410	

Thermal variability (i.e., 𝐶𝑉) experienced by a population in the past did not explain acclimation capacity 411	

(Figure 6A–C) or changes in physiological rate variance (Figure 6D–F) among terrestrial, marine or 412	

freshwater populations (“Model 5”). 413	

 

Figure 6- Past climate variability did not predict acclimation responses. Predicted mean acclimation (thick 

black line) 𝑙𝑛𝑅𝑅#!"&''+,-  (A-C) and 𝑙𝑛𝑉𝑅#!"&''+,-  (E-G) as a function of the Thermal Coefficient of 

Variation (CV) for wild populations across marine, freshwater and terrestrial habitats. Dashed lines 

indicate 95% confidence intervals and dotted lines indicate 95% prediction intervals. Raw effects are 



weighted by their precision (inverse sampling variance). Model slope (𝛽) along with the 95% CI and 

𝑝;<;< values for the slopes are shown for each habitat. 

Changes in physiological rate variance under climate change 414	

Measurements of acute and acclimation responses from wild ectotherms were much less common than from 415	

captive populations (𝑁708/987 = 134, from 188 wild populations). Globally, there was a clear bias towards 416	

species in the Northern Hemisphere (Figure 7A-C). Projected changes in physiological rate variance were 417	

highly variable across the globe, however, variance was predicted to increase at all locations. Latitude and 418	

longitude explained variation in these responses with models containing smoothers being supported over 419	

models with just main effects of latitude and longitude (DwAIC = 2.9). 420	

Using the ERA5 climate model, predictions of current global changes in physiological rate variance were 421	

generally conservative with our model explaining ~ 46% of the variation in the observed data (𝑅$ = 0.43, 422	

95% CI: 0.33 to 0.51). Climate change is predicted to result, on average, in a 28.75% increase in variance for 423	

freshwater systems (95% CI: 15.35 to 47.62%, 𝑝;<;< = < 0.0001), a 15.67% increase in marine systems 424	

(95% CI: 0.62 to 30.31%, 𝑝;<;< = < 0.0001), and a 13.01% increase in terrestrial systems (95% CI: 7.11 to 425	

19.47%, 𝑝;<;< = < 0.0001) under a RCP8.5 climate scenario (Figure 7D). All results are taken from “Model 426	

6”. 427	



 

Figure 7- Potential effects of climate change on trait variance. Model predictions for the expected change 

in 𝑙𝑛𝑉𝑅#!" across the globe for terrestrial, marine and freshwater ecthotherms. Predicted change in 

physiological rate variance for each population based on current temperatures (average from 2018-2022; 

A-C) as well as the expected change from current temperatures based on future temperature predictions 

(average from 2096-2100, D). Future climate predictions are the increase in variance expected under a 

RCP8.5 climate scenario relative to current climate conditions (% change). 



Discussion 428	

Understanding acclimation capacity and how variation in physiological rates change across populations and 429	

species is important for predicting the ecological and evolutionary consequences of climate change (Bolnick 430	

et al., 2011; Bush et al., 2016; Chevin & Hoffmann, 2017; Chevin et al., 2010; Sanderson et al., 2023; 431	

Seebacher et al., 2023; Urban et al., 2023). While most of our data are from vertebrates and fish, we show 432	

that both acclimation responses (𝑙𝑛𝑅𝑅#!") and increases in physiological rate variance at warmer 433	

temperatures (𝑙𝑛𝑉𝑅#!") of ectotherms varied across habitats. Our results uncover an hitherto unrecognised 434	

dynamic where the benefits of partial acclimation are paralleled by increases in trait variance that depend on 435	

habitat in ways that may have impacts on how ectotherm populations will be able to adapt to increased 436	

temperatures. 437	

Acclimation capacities vary among habitats but are often still limited 438	

We show that the capacity for acclimation of physiological rates differs across habitats. Our findings confirm 439	

previous results that quantify the different capacity of terrestrial, marine and freshwater ectotherms to 440	

acclimate (Gunderson & Stillman, 2015; Morley et al., 2019; Seebacher et al., 2015). Our analysis confirms 441	

findings by Seebacher et al. (2015), Gunderson & Stillman (2015) and Morley et al. (2019) that all show a 442	

general inability of terrestrial ectotherms to physiologically acclimate. These consistent results are interesting 443	

given the different physiological traits measured in these meta-analyses (e.g., thermal limits versus 444	

physiological rates). 445	

The change in acclimation 𝑄!" we found in our expanded dataset was similar to Seebacher et al. (2015) for 446	

freshwater organisms (~17%), but higher in marine ectotherms (decrease of 16% versus ~10% in Seebacher 447	

et al., 2015), and lower in terrestrial ectotherms (increase of ~6% compared to an ~8% decrease in Seebacher 448	

et al., 2015). The difference observed in terrestrial ectotherms between studies may be due to additional data 449	

from terrestrial species added in our analysis, and to the use of newly derived 𝑄!" effect sizes that allowed us 450	

to control for sampling variance. Greater capacity for acclimation in aquatic organisms may be the result of 451	

fewer opportunities for behavioural thermoregulation in aquatic environments making physiological 452	

remodeling important for maintaining homeostasis (Gunderson & Stillman, 2015; Morley et al., 2019). 453	

Importantly, even though marine and freshwater ectotherms were capable of partial acclimation, on average, 454	

the effect size was small (amounting to 𝑄!" dropping from ~1.8 to 1.6), suggesting that acclimation provides 455	

limited scope for aquatic ectotherms to adjust their physiology to higher temperatures. 456	



Increased variability in physiological rates across habitats: adaptive potential of 457	

physiological processes in the face of climate change? 458	

Contrary to acclimation capacity, variance in physiological rates increased across habitats with effect sizes 459	

being 3-5 times larger than those observed for acclimation of mean trait values. Mechanistically, it is unclear 460	

what exactly is contributing to the increased variation in physiological rates at higher temperatures, but it is 461	

likely the result of increased among-individual variability in how biochemical, cellular and physiological 462	

processes function at higher temperatures to maintain homeostasis (Angilletta, 2009; Fields, 2001; Schulte et 463	

al., 2011; Somero, 1995; Tattersall et al., 2012). Higher temperatures increase membrane fluidity affecting 464	

electrochemical gradients and impacting protein structure and function (Fields, 2001; Somero, 1995; 465	

Tattersall et al., 2012). Such challenges (among others) may expose among-individual variation within a 466	

population. Indeed, there is considerable variation in acclimation capacity among individuals which would 467	

increase variance in thermal performance curves within populations (Loughland & Seebacher, 2020; Schulte 468	

et al., 2011). 469	

Importantly, increased variance in physiological rates was not equal among terrestrial, marine and freshwater 470	

ectotherms, with increases in variance being higher in freshwater ectotherms (~60% increase / 10°C) 471	

compared to terrestrial ectotherms (~36% increase / 10°C). One possible hypothesis for the differences in 472	

variability we observed across habitats could be that among-individual variation in key parameters affecting 473	

the shape of thermal performance curves differ between habitats (Angilletta, 2009; Huey & Kingsolver, 474	

1989; Rezende & Bozinovic, 2019; Tattersall et al., 2012). Our simulations suggest that theoretical and 475	

observed 𝑙𝑛𝑉𝑅#!" match when thermal performance curves have different among-individual variance in 476	

thermal maxima and breadth across habitats making this hypothesis plausible. Such patterns across habitats 477	

are expected given that terrestrial ectotherms should be adapted to more extreme and variable thermal 478	

environments. Theoretical models also suggest that populations with greater temporal environmental 479	

variability exhibit greater thermal breadth (Lynch & Gabriel, 1987). However, we did not find support that 480	

thermal variation co-varied with 𝑙𝑛𝑉𝑅#!" (see below), as would be expected. The relevance of analyses of 481	

thermal variability will depend on temporal variation in temperature that is biologically relevant – a 482	

challenging feat across diverse taxa, but worthy of future investigation. 483	

Our results further highlight the potential vulnerability of terrestrial ectotherms to climate change. Assuming 484	

that changes in variation in physiological rates are underpinned by genetic variation, and that there is a 485	

genetic correlation with fitness, smaller increases in physiological variance could limit adaptation in 486	

terrestrial habitats more than aquatic habitats in the future (Hoffmann & Sgrò, 2011; Urban et al., 2023). For 487	

example, under climate change we expect an increase in variance in physiological rates of only ~13% in 488	



terrestrial habitats whereas for freshwater habitats we expect variation in physiological rates to increase by 489	

~30%. Importantly, responses to selection will also depend on the magnitude and direction of genetic 490	

covariances with other traits, which need consideration. There will obviously be limits to variance increases, 491	

and we predict that organisms closer to their upper thermal limits (𝐶𝑇>-?) will have lower 𝑙𝑛𝑉𝑅#!" values 492	

compared to those farther away from 𝐶𝑇>-?. Some evidence points to possible differences across habitats in 493	

upper thermal limits already (Gunderson & Stillman, 2015; Pinsky, Eikeset, McCauley, Payne, & Sunday, 494	

2019), making this a fruitful future question to explore. 495	

Plasticity and variance in physiological rates do not differ between life stages 496	

Acclimation capacities are expected to differ between life-stages because of distinct patterns of dispersal, 497	

habitat use and behaviour that force earlier life stages to cope with more variable environmental conditions 498	

which can also lead to developmental constraints on how physiological systems respond later in life 499	

(Angilletta, 2009; Martin, 2015; Noble, Stenhouse, & Schwanz, 2018; O’Dea, Lagisz, Hendry, & Nakagawa, 500	

2019; Pottier et al., 2022; Sinclair et al., 2016; Stearns, 1976). In addition, plastic responses are also expected 501	

to be costly (Angilletta, 2009; Dewitt et al., 1998), such costs can be magnified in later life reducing the 502	

capacity for plasticity (e.g., Rossi et al., 2019). These processes can also result in changes to intrapopulation 503	

variation in physiological rates at higher temperatures but the direction of change between early and adult life 504	

stages is likely to depend on the costs of adjusting physiological processes, energy reserves at different life 505	

stages, and the extent to which early life experiences constrain plasticity. 506	

Despite these expectations, our analysis does not show any significant differences between early and late life 507	

acclimation capacities and little change in the variance in physiological rates across habitats. This may not be 508	

too surprising given that such responses are likely context or trait-dependent (Carter & Sheldon, 2020; 509	

Moghadam et al., 2019). The lack of differences we observed may be because both juvenile and adult 510	

animals occupy similar thermal niches, disperse to a similar extent and exhibit comparable thermoregulatory 511	

behaviors making physiological responses to temperature similar. A focus on collecting more detailed 512	

information on behaviour, dispersal and thermal environments experienced by different life stages is likely to 513	

provide a more complete picture on when plasticity differs. We would also encourage more empirical focus 514	

on this question and its potential ecological and evolutionary implications. 515	

Past climate does not influence capacity for physiological acclimation or changes in 516	

variance 517	

Theoretical models predict that plasticity should evolve in populations experiencing greater environmental 518	

variability (spatial or temporal), particularly when fluctuations are predictable over time to make 519	



environmental cues reliable (Chevin & Hoffmann, 2017; Chevin et al., 2010; Lande, 2009; Murren et al., 520	

2015; Reed et al., 2010). Higher spatial and temporal heterogeneity in terrestrial habitats (Steele et al., 2019) 521	

therefore suggest that plasticity is more likely to evolve in terrestrial environments. However, if thermal 522	

variability is too high and unpredictable, the rates of acclimation decrease and there are increased costs 523	

associated with re-modelling physiological processes (Angilletta, 2009) it would instead be expected that 524	

phenotypes are canalised during development (Angilletta, 2009; Leung, Grulois, Quadrana, & Chevin, 2023; 525	

Leung, Rescan, Grulois, & Chevin, 2020; Loughland & Seebacher, 2020; Rescan, Leurs, Grulois, & Chevin, 526	

2022; Seebacher et al., 2015). The lack of acclimation in terrestrial ectotherms we observed is consistent with 527	

the latter hypothesis, and is supported by other meta-analyses of heat tolerance (Barley et al., 2021; 528	

Gunderson & Stillman, 2015) suggesting that there are costs to being plastic or that the environmental signals 529	

are insufficient to trigger endocrine and epigenetic mechanisms that lead to plasticity when environments are 530	

not predictable (Leung et al., 2020). 531	

Whether population capacity for acclimation is related to the thermal variability (or predictability) it 532	

experiences is equivocal. We show no relationship between acclimation capacity and thermal variability in 533	

marine, freshwater and terrestrial habitats. Our results are consistent with Gunderson & Stillman (2015) who 534	

show no relationship between plasticity in heat tolerance and latitude or thermal seasonality. However, other 535	

analyses on heat tolerance limits have found relationships between latitude (a proxy for seasonality) (Morley 536	

et al., 2019) or even direct measures of thermal variability (Verberk, Henry, Leiva, Barbarossa, & Schipper, 537	

2024). Seebacher et al. (2015) also found that acclimation capacity was related to a populations thermal 538	

variability, however, relationships depended on the habitat and traits in question, and tropical animals 539	

showed greater acclimation capacity. Discrepancies across studies could be related to the taxa included in 540	

analyses (e.g., Morley et al., 2019), different traits or possibly the fact that different climate 541	

projections/models are being used to quantify thermal variability. Latitude covaries with a diversity of 542	

different ecological attributes aside from temperature (Louthan, DeMarche, & Shoemaker, 2021), which 543	

means it may be capturing other aspects of the environment that affect acclimation capacity. In addition, 544	

modelling realistic microenvironments across such diverse taxa is also challenging because it is unclear what 545	

the most appropriate spatial and temporal scale might be that is of evolutionary relevance. Historical 546	

temperature time series’ may not be representative of the selective environment a population has experienced 547	

making relationships between capacity for acclimation and temperature variability (or predictability) difficult 548	

to pin down. 549	



Conclusions and future directions 550	

Enhanced knowledge of how variation in physiological rates vary across populations and species, and the 551	

degree to which they can be adjusted in response to the environment leads to more informed predictions 552	

about the ecological and evolutionary dynamics of natural populations (Cooke et al., 2021; Forsman, 2015; 553	

Sanderson et al., 2023; Seebacher et al., 2023). We show general patterns across taxa and habitats that 554	

provide a foundation to understand the relationship between plasticity and trait variance, as well as particular 555	

trade-offs that could impact the benefits (or lack thereof) of acclimation. It is important to recognise, 556	

however, that these patterns do not necessarily apply to all populations. Substantial variation in acclimation 557	

responses and changes in variance exist among populations and traits, as evidenced by wide prediction 558	

intervals and substantial study- and trait-level variance estimates, which is consistent with our understanding 559	

of factors influencing variation in performance curves across taxa (Rezende & Bozinovic, 2019; Tattersall et 560	

al., 2012). Conservation efforts are often targeted at particular populations or species, and taxonomic 561	

differences are important in this context. Regardless, quantitative measures of the changes in variance in 562	

physiological rates could be better incorporated into physiological and ecological models to provide more 563	

nuanced, and possibly more realistic, predictions about the impacts of climate change on natural populations. 564	

While we do not yet understand the relative contribution of environmental and genetic factors to variance 565	

changes, models could better decouple how different levels of heritability and total variance impact 566	

evolutionary and ecological predictions. Our meta-analysis now provides the opportunity to parameterise 567	

such models, and ensure they are better aligned with empirical findings. 568	

Many fascinating questions remain unanswered that will require greater focus on the consequences of 569	

changes in variance (rather than just the mean). Particularly interesting questions include: How do 570	

differences in physiological rate variance change energy flow across trophic levels within communities? 571	

What are the biochemical, cellular, and physiological mechanisms that underlie differences in physiological 572	

rate variance across habitats? Are changes in variance in one trait associated with changes in other traits, or 573	

do some traits increase while others decrease? Are changes in physiological rate variance correlated with 574	

changes in genetic variation? Answers to these questions will require integrative approaches that combine 575	

empirical and theoretical work across multiple levels of biological organisation but will likely provide useful 576	

advances in understanding the full consequences that climate change will have on ectotherms across major 577	

ecosystems globally. 578	
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 836	

Supplemental Materials 837	

Literature Search Protocol and PRISMA flow diagram 838	

We performed a literature search using the Web of Science database for articles or proceedings papers 839	

published in English from 2013 to 2017 (the date after (Seebacher et al., 2015) searches were conducted) 840	

using the following topic search string: “(acclimat AND (therm* OR temp) NOT (plant OR tree* OR forest* 841	

OR fung* OR mammal* OR marsup* OR bird* OR human OR exercis* OR train* OR hypoxi))“. We 842	

further limited to the following research areas: Anatomy Morphology; Biodiversity Conservation; Biology; 843	

Ecology; Endocrinology Metabolism; Entomology; Evolutionary Biology; Marine Freshwater Biology; 844	

Physiology; Respiratory System, Reproductive Biology, Zoology. 845	

Our search resulted in 1,321 papers for screening in Rayyan (Ouzzani, Hammady, Fedorowicz, & 846	

Elmagarmid, 2016). We also cross-checked papers we found in our searches with a recent paper by Havird et 847	

al. (2020), which also updates the dataset of Seebacher et al. (2015)’s. We included any papers that were 848	

missed between our searches and those of Havird et al. (2020). Although the goals and search queries 849	

differed between Havird et al. (2020) and our meta-analysis both meta-analyses make use of data for 850	

metabolic rate using similar experimental designs. Havird et al. (2020) added 7 new studies (mainly because 851	

they were focused on metabolic rates), and our searches differed from theirs by only a single paper (i.e., 852	

Bulgarella, Trewick, Godfrey, Sinclair, & Morgan-Richards, 2015). Given the physiological traits we 853	

included were broader than Havird et al. (2020), we had a substantial increase in additional papers that we 854	

added to Seebacher et al. (2015)’s dataset. More specifically, in addition to the 191 papers we included from 855	

the Seebacher et al. (2015) dataset, we extracted data from an extra 65 papers (with a total of 238 effects; a 856	

34.03% increase in the number of published articles). Note that Seebacher et al. (2015) included a total of 857	

205 publications, however, not all these contained the necessary statistics we needed to derive effect sizes 858	

and associated sampling variances (see below). While we may have missed papers, our goal was to obtain a 859	

large representative (and unbiased) sample of acclimation research rather than a comprehensive dataset. As 860	



such, our database represents the most up-to-date dataset used since Seebacher et al. (2015) to answer 861	

questions on physiological rates across ectotherms. 862	

We split the screening of titles and abstracts for the 1,321 papers found in our search among DWAN, FK, FS, 863	

and SN evenly. To ensure consistency among authors in title and abstract inclusion, relevant authors went 864	

through a randomly selected set of papers together before the formal screening to calibrate selection of 865	

papers based on our inclusion criteria (see below). In cases of disagreement regarding inclusion, we 866	

conservatively included the paper for full text screening and discussed uncertain papers among authors to 867	

come to a decision. After title and abstract screening, there was a total of 149 papers for full text screening. 868	

Papers were included only if they: 1) measured a physiological rate at two temperatures on a sample of 869	

animals chronically exposed to the same two temperatures for at least 1 week. Studies had to measure, 870	

following acclimation, physiological rates at acute temperatures that at least matched acclimation 871	

temperatures, but often measurements were fully factorial allowing for both acclimated and acute 872	

measurements to be extracted; and 2) where physiological rates measured were burst and sustained 873	

locomotion, metabolic rates (standard, resting, routine and maximal), heart rates, and/or enzyme activities. 874	

Importantly, as in Seebacher et al. (2015), we only included studies that manipulated temperatures within 875	

normal thermal ranges for the species because we expected stressful temperatures would impact 876	

physiological rates. We determined which temperatures coincided with normal thermal ranges using 877	

information within the study (i.e., self-reported) or, when not provided, information from the internet on 878	

typical activity temperatures (e.g., Wikipedia or Google searches). This criterion meant that we often only 879	

had a single data set (1 acclimated and 2 acute measurements) for each paper. 880	



 

Figure S1- PRISMA flow diagram of the literature search and screening process. 

Climate data 881	

To understand how climate is related to a species’ physiological acclimation abilities and changes in variance 882	

we used the coordinates reported by each study to extract temperature data from terrestrial and aquatic 883	

environments. It was unclear whether climate at the locations of captive reared organisms would be 884	

representative of a population’s climate history - particularly for species reared under captive condition for 885	

many generations. Given that we were interested in understanding climate driven effects on acclimation 886	

capacity we only used studies on wild populations for climate analyses. 887	

Monthly average temperature data were extracted from the ERA5 climate model, available from the 888	

Copernicus climate data store (Hersbach et al., 2020). For each population and species in the dataset we 889	

extracted a 72-year period (1950-2022) of either surface air temperature (0.01° resolution) for both terrestrial 890	

and freshwater taxa, or sea surface temperature for the marine taxa (at 0.25° resolution) using the ncdf4 R 891	

package (vers. 1.23, Pierce, 2021). We chose surface temperature because we believed that it was more likely 892	

to reflect the micro-thermal environment experienced by terrestrial and freshwater ectotherms at those 893	

locations. 894	



Using the thermal time-series data for each location we calculated metrics of thermal variability across 895	

months and years as well as estimates of thermal predictability (i.e., autocorrelation). To estimate thermal 896	

variability, we calculated the coefficient of variation (@A
;

, where SD = standard deviation in temperature and 897	

M = the mean temperature for each year). We also estimated thermal predictability, by calculating the auto-898	

regressive time lag across months (i.e., a measure of how correlated temperatures were between months), 899	

however, identifying biologically relevant lags for such diverse taxa is challenging. As such, we present a 900	

coarse analysis using this metric of thermal predictability in the Supplemental Materials below. 901	

Lastly, to illustrate the effects that climate warming could have on physiological rate variance we also 902	

extracted climate projections into the future. We used the CanESM2 climate model (2005-2100) [vers. 1.2.0; 903	

Hufkens, Stauffer, & Campitelli (2019)] under a high emissions scenario (RCP8.5). 904	

Further discussions on the assumptions of 𝑙𝑛𝑅𝑅#!", 𝑙𝑛𝑉𝑅#!" and 𝑙𝑛𝐶𝑉𝑅#!" estimates 905	

𝑙𝑛𝑅𝑅#!", 𝑙𝑛𝐶𝑉𝑅#!" and 𝑙𝑛𝑉𝑅#!", as with 𝑄!" more generally, all assume that the effect of temperature on 906	

physiological rates (or changes in relative variance) is log-linear. While this is likely in our data given that 907	

we restricted our analysis of 𝑄!" to standard operating temperatures for a given species, it may not always be 908	

satisfied given the diversity of species in our dataset. 𝑄!" (Hoff, 1884) has been used extensively in the 909	

physiological literature to successfully address a multitude of questions (e.g., Havird et al., 2020; Seebacher 910	

et al., 2015). However, there is a preference for using a Boltzmann – Arrhenius (BA) relationship (or its 911	

extension, the Sharpe-Schoolfield model (Michaletz & Garen, 2024; Molnár, Sckrabulis, Altman, & Raffel, 912	

2017)) to model thermal effects on physiological rates (Gillooly, Brown, West, Savage, & Charnov, 2001; 913	

Michaletz & Garen, 2024). While debate still exists over the utility of 𝑄!" when modelling temperature-914	

dependence it is important to recognise that both BA and 𝑄!" can exhibit curvilinearity as temperatures 915	

increase (as discussed in (Michaletz & Garen, 2024)). White, Frappell, & Chown (2012) also showed that the 916	

BA model may not always perform better. For example, in eukaryotes, modelling thermal dependence using 917	

𝑄!" provided a 5.8-fold better fit to metabolic rate data than the BA relationship (White et al., 2012). Given 918	

that studies included in our analysis never measured full performance curves at acute and acclimation 919	

temperatures it was not possible for us to compare different models of thermal dependence. Nonetheless, 920	

𝑄!"-based effect sizes remain the most practical effect-size for comparing thermal dependence when using 921	

existing empircial data, with the benefit that these effects having convenient properties that make them 922	

suitable for meta-analysis. Nonetheless, we control for possible violations of the log-linearity assumption in 923	

our analyses. 924	



Exploring the impact of maximum treatment temperature on 𝑙𝑛𝑅𝑅#!" 925	

As predicted, we did find evidence that 𝑙𝑛𝑅𝑅#!" was impacted by the maximum temperature used within a 926	

study, but this effect was small (Slope from “Model 2”: -0.01, 95% CI: -0.02 to 0, 𝑝;<;< = 0, Figure S2). 927	

Regardless, we control for maximum temperature in all our models. 928	

 

Figure S2- Bubble plot of the relationship between 𝑙𝑛𝑅𝑅#!" and maximum temperature used in treatments 

within a study. Raw effects are weighted by their precision (inverse sampling variance). 

How acclimation time is related to 𝑙𝑛𝑅𝑅#!" 929	

While we control for acclimation time in all our models, it did not impact 𝑙𝑛𝑅𝑅#!" (Slope from “Model 2”: 0, 930	

95% CI: 0 to 0, 𝑝;<;< = 0.37, Figure S3) 931	



 

Figure S3- Bubble plot of the relationship between 𝑙𝑛𝑅𝑅#!" and acclimation time for terrestrial (green), 

marine (orange) and freshwater (blue) habitats. Acclimation time is centered around the mean acclimation 

time (37.5 days) in the data. Not all studies reported acclimation time hence the total number of effects, k, 

was 1767. Raw effects are weighted by their precision (inverse sampling variance). 

Comparing cool and warm acclimated acute responses 932	

The two acute 𝑙𝑛𝑅𝑅#!" effect sizes (Figure 1A) differed significantly from each other (𝛽 = 0.08, 95% CI: 933	

0.03 to 0.14, 𝑝;<;< = < 0.01) with animals acclimated to high temperatures having slightly higher average 934	

𝑙𝑛𝑅𝑅#!" (𝜇 = 0.62, 95% CI: 95% CI: 0.51 to 0.73, 𝑝;<;< = < 0.0001, 𝑄!" = 1.86) compared to animals at 935	

lower temperatures (𝜇 = 0.54, 95% CI: 95% CI: 0.43 to 0.65, 𝑝;<;< = < 0.0001, 𝑄!" = 1.71) (Figure S4). 936	

However, on average they were in the same direction and only differed by ~10%. Hence, we averaged the 937	

two acute 𝑙𝑛𝑅𝑅#!" effect sizes in all our analyses. 938	



 

Figure S4- Mean acute 𝑙𝑛𝑅𝑅#!" for cool (blue) and warm (red) acclimated populations for terrestrial 

(diamonds), marine (square) and freshwater (circle) habitats. Note that points in each category show the 

full distribution of data irrespective of habitat for simplicity. k = total number of effect size estimates while 

the numbers in brackets indicate the number of species. Thick bars indicate 95% confidence intervals and 

thin bars indicate 95% prediction intervals. Raw effects are weighted by their precision (inverse sampling 

variance). Note that means for all three habitats are displayed but there is weak evidence that the means 

differ between habitats given models with and without an interaction with habitat are equally supported. 

Note that x-axis is truncated for ease of visualisation. Sample sizes for each habitat for acute warm and 

cold are: marine [warm = (131, 38, 29), cold = (136, 41, 32)], freshwater [warm = (294, 76, 61), cold = 

(293, 77, 63)], terrestrial [warm = (83, 31, 35), cold = (84, 31, 35)]. Numbers within brackets are number 

of effects, number of studies and number of species. 

Interaction-based effect sizes to compare acute and acclimation 𝑙𝑛𝑅𝑅#!" within studies 939	

When measuring plasticity, what is relevant is the difference between 𝑙𝑛𝑅𝑅#!"&'()*  and 𝑙𝑛𝑅𝑅#!"&''+,-&),./
 940	

because this captures the degree to which organisms plastically adjust (or acclimate). Variation in the 941	



magnitude of plasticity across studies is captured in our random slope models and is more powerful given 942	

that even studies without acute responses measured can be included. We can then estimate the mean 943	

difference between acute and acclimation in our meta-regression models while accounting for variation in 944	

responses within studies with our random slope. This analysis is the same as if we were to model the 945	

difference in acute and acclimation effect sizes within studies instead of each separately. 946	

We can validate that our main analysis is similar to an analysis that only includes studies with both acute and 947	

acclimation responses. To achieve this, we need to derive a new effect size that contrasts the difference 948	

between acute and acclimation responses within a given study and trait using the following equation: 949	

𝛥𝑙𝑛𝑅𝑅#!" = 𝑙𝑛𝑅𝑅#!"&'()* − 𝑙𝑛𝑅𝑅#!"&''+,-&),./
  (7) 950	

where, 𝑙𝑛𝑅𝑅#!"&'()*  and 𝑙𝑛𝑅𝑅#!"&''+,-&),./
 are defined as in Equation 1 in the main manuscript. We can 951	

calculate the combined sampling variance of the difference in effect sizes using the following equation: 952	

𝑠B&'((#!" = 𝑠&'((#!"&'()* + 𝑠&'((#!"&''+,-&),./
  (8) 953	

where, 𝑠&'((#!"&'()*  and 𝑠&'((#!"&''+,-&),./
 is the sampling variance for the acute and acclimation effect sizes, 954	

respectively (note that we assume the independence of ‘acute’ and ‘acclimation’ groups). Again, all notation 955	

is defined in Equation 2 in the main manuscript. 956	

It is noteworthy here that our analysis using Equation 7 as our main effect size means that we are now 957	

interested in the overall meta-analytic mean estimates, not the difference between 𝑙𝑛𝑅𝑅#!"&'()*  and 958	

𝑙𝑛𝑅𝑅#!"&''+,-&),./
 as in our main analyses. Positive 𝛥𝑙𝑛𝑅𝑅#!" values indicate that acute responses are higher 959	

than acclimated responses, while negative values indicate the opposite. Positive values indicate that 960	

organisms can plastically adjust their physiological rates to acute temperature changes, while negative values 961	

indicate that organisms are not able to plastically adjust their physiological rates. 962	

Using 𝛥𝑙𝑛𝑅𝑅#!" for each trait within a study we fit a model that estimated the meta-anlaytic mean effect size 963	

for each habitat (freshwater, marine and terrestrial) accounting for acclimation time and maximum 964	

temperature as in our main analysis, along with random effects of study, species, phylogeny, and trait. Our 965	

analyses give quantitatively and qualitatively similar results to our main analysis (Figure S5). Acclimation 966	

time did not explain variation in 𝛥𝑙𝑛𝑅𝑅#!" (slope = 0, 95% CI: 0, 0, p = 0.88) and there was weak evidence 967	

that maximum temperature explained variation in 𝛥𝑙𝑛𝑅𝑅#!" (slope = 0, 95% CI: -0.01, 0.01, p = 0.72). 968	

Like our analysis with 𝑙𝑛𝑅𝑅#!"&''+,-&),./
, 𝛥𝑙𝑛𝑅𝑅#!" was also not related to climate variability that a given 969	

population experienced Figure S6. 970	



 

Figure S5- Meta-analysis results for 𝛥𝑙𝑛𝑅𝑅#!" across different habitats. Thick bars are 95% confidence 

intervals (CI) and thin bars 95% prediction intervals (PI). 𝜇 values are the overall meta-analytic means 

averaged across acute and acclimation types within each habitat type. 95% CI’s are indicated within square 

brackets and raw effects are weighted by their precision (inverse sampling variance). 𝑝;<;< values are the 

posterior probability of the contrast or overall meta-analytic mean being different from zero. k = total 

number of effect size estimates, while the numbers in brackets indicate the number of species. For ease of 

visualisation, all the raw data plotted for both acute and acclimation-type effect sizes are presented as 

circles. Raw effects are weighted by their precision (inverse sampling variance). 



 

Figure S6- Past climate variability did not predict acclimation responses as measured by 𝛥𝑙𝑛𝑅𝑅#!". 

Predicted mean acclimation (thick black line) 𝛥𝑙𝑛𝑅𝑅#!" as a function of the Thermal Coefficient of 

Variation (CV) for wild populations across marine, freshwater and terrestrial habitats. Dashed lines 

indicate 95% confidence intervals and dotted lines indicate 95% prediction intervals. Raw effects are 

weighted by their precision (inverse sampling variance). Model slope (𝛽) along with the 95% CI and 

𝑝;<;< values for the slopes are shown for each habitat. 

Comparing relative variance changes: the lnCVR ratio 971	

As discussed by Nakagawa et al. (2015) there is often a strong mean-variance relationship. As such, the 972	

coefficient of variation is often used because it permits standardization of changes in variance as mean trait 973	

values change: 974	

𝑙𝑛𝐶𝑉𝑅#!" = 𝑙𝑛 )
CV$

CV!
* )	

10∘𝐶
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*  (9) 975	
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  (10) 976	

where 𝐶𝑉 is the coefficient of variation defined as 𝑆𝐷/𝑅. We refer to 𝑙𝑛𝐶𝑉𝑅#!" as relative variance because 977	

variance changes are relative to the mean. While we analyse 𝑙𝑛𝐶𝑉𝑅#!" it does make the assumption that SD 978	



is directly proportional to the mean, and given that we are analysing the mean alongside the variance we 979	

present results on 𝑙𝑛𝐶𝑉𝑅#!" in the supplement. 980	

Mean-variance relationships to understand patterns in 𝑙𝑛𝐶𝑉𝑅#!" 981	

We explored mean-variance relationships for the acute and acclimation responses across all traits and 982	

habitats. We estimated the scaling relationship between log standard deviation in physiological rates 983	

[log(SD)] and log mean physiological rates [log(mean)], accounting for non-independence resulting from 984	

effects coming from the same species, study and traits (i.e., random effects of species, study and trait) as 985	

done in our main analyses. We also included an interaction between log(mean) and habitat type to better 986	

understand how the scaling relationship between log(SD) and log(mean) varies across habitats. 987	

Overall, we found that the relationship between log(mean) and log(SD) of the acute and acclimation 988	

responses was generally linear (Figure S7). Overall, the scaling relationship between log(SD) and log(mean) 989	

was sub-linear across all habitats (Table S1), however, ectotherms from terrestrial habitats had much 990	

shallower slopes than marine and freshwater ectotherms, particularly at higher treatment temperatures, 991	

indicating increased mean physiological rates generally do not result in higher between individual variance in 992	

physiological rates (Table S1). Interestingly, in marine ectotherms the slope was highest at cooler 993	

temperatures, whereas the slope was suppressed when acclimated and/or measured at higher temperatures 994	

(i.e., r.1. compared to r1.2, r2.1, r2.2) (Table S1). In freshwater ectotherms, there were some differences in 995	

scaling relationships but they were all fairly comparable no matter what acclimation and test temperature 996	

(Table S1). 997	



 

Figure S7- Mean-standard deviation relationships for the acute and acclimation responses across all 

habitats. Relationships are depicted for the low temperature treatment of the study (A) and high 

temperature treatment (B). 

Table S1- Slopes and 95% credible intervals (lower = 2.5% and upper = 97.5%) of log transformed 

standard deviation (log(SD)) and log transformed mean (log(mean)) for each of the four treatment types 

(r1.1, r1.2, r2.1, r2.2). Note that r1.1 and r2.2 represent measurements of physiological rates of acclimated 



animals and measured at their respective acclimation temperature. In contrast, r1.2 and r2.1 are acute 

measurements. See Figure 1 in main manuscript for full details on treatments. 

Type Treatment Habitat Slope 2.5% 97.5% 

Acclimation r1.1 Freshwater 0.92 0.89 0.96 

Acute r1.2 Freshwater 0.95 0.91 0.98 

Acute r2.1 Freshwater 0.94 0.91 0.97 

Acclimation r2.2 Freshwater 0.98 0.94 1.01 

Acclimation r1.1 Marine 0.99 0.93 1.03 

Acute r1.2 Marine 0.90 0.84 0.95 

Acute r2.1 Marine 0.91 0.86 0.96 

Acclimation r2.2 Marine 0.90 0.85 0.95 

Acclimation r1.1 Terrestrial 0.83 0.75 0.90 

Acute r1.2 Terrestrial 0.82 0.75 0.90 

Acute r2.1 Terrestrial 0.75 0.67 0.82 

Acclimation r2.2 Terrestrial 0.73 0.66 0.81 
 

Comparing relative variance changes using 𝑙𝑛𝐶𝑉𝑅#!" 998	

Analysis of 𝑙𝑛𝐶𝑉𝑅#!", which accounts for changes in mean physiological rates, also showed that the relative 999	

variance for terrestrial ectotherms decreased compared to marine and freshwater ectotherms, suggesting that 1000	

increases in variance are less than expected for ectotherms occupying terrestrial habitats (Figure S8). 1001	

Generally, these results are consistent with those using 𝑙𝑛𝑉𝑅#!". 1002	

Overall, analysis of 𝑙𝑛𝐶𝑉𝑅#!" suggested that relative variance decreased with higher temperatures across all 1003	

habitat types, with terrestrial ectotherms having the largest decrease in relative variance (Figure S8). There 1004	

were also no major differences in the relative differences among broad trait categories (Figure S9) or life-1005	

history stages (Figure S10). 1006	



 

Figure S8- Estimated mean acute and acclimation 𝑙𝑛𝐶𝑉𝑅#!" for marine, freshwater and terrestrial habitats. 

The percentage change in variance is also back calculated. Note that these are raw variances and do not 

account for changes in mean physiological rates. k = total number of effect size estimates while the 

numbers in brackets indicate the number of species. Thick bars are 95% confidence intervals (CI) and thin 

bars 95% prediction intervals (PI). Raw effects are weighted by their precision (inverse sampling 

variance). 𝛽 values are the contrasts between acute and acclimation means within each habitat with ‘NS’ 

signifiying no significant differences. 𝜇 values are the overall meta-analytic means averaged across acute 

and acclimation types within each habitat type. In both cases, their 95% CI’s are indicated within square 

brackets. 𝑝;<;< values are the posterior probability of the contrast or overall meta-analytic mean being 

different from zero. For ease of visualisation, all the raw data plotted for both acute and acclimation type 

effect sizes are presented as circles. 



 

Figure S9- Estimated mean acclimation and acute 𝑙𝑛𝐶𝑉𝑅#!" for tissue/whole-orgamism traits and 

biochemical traits across terrestrial (A), marine (B) and freshwater (C) habitats. Across all plots, thick bars 

indicate 95% confidence intervals and thin bars indicate 95% prediction intervals. Raw effects are 

weighted by their precision (inverse sampling variance). k = total number of effect size estimates while the 

numbers in brackets indicate the number of species. For ease of visualisation, raw data for both trait 

categories are presented but points are not distinguished by different symbols. 𝛽 values are the contrasts 

between acute and acclimation means within each life stage. 𝑝;<;< values are the posterior probability of 

the contrast being different from zero. 

 

Figure S10- Estimated mean acclimation and acute 𝑙𝑛𝐶𝑉𝑅#!" for adult (a) and juvenile (j) life-history 

stages for terrestrial (A), marine (B) and freshwater (C) ectotherms. Across all plots, thick bars indicate 

95% confidence intervals and thin bars indicate 95% prediction intervals. k = total number of effect size 

estimates while the numbers in brackets indicate the number of species. For ease of visualisation, raw data 

for both adult and juvenile life-history stages are presented but points are not distinguished by different 

symbols. 𝛽 values are the contrasts between acute and acclimation means within each life stage. 𝑝;<;< 

values are the posterior probability of the contrast being different from zero. 



Acute and acclimation for trait categories across marine, freshwater and terrestrial taxa 1007	

Across habitats, the extent to which whole-organism versus biochemical traits acclimated varied (“Model 3”; 1008	

Figure S11A-C). Overall, there was no difference between the capacity for biochemical and tissue/whole-1009	

organism traits to plastically adjust (overall difference between acclimation and acute 𝑙𝑛𝑅𝑅#!" across 1010	

habitats: -0.08, 95% CI: -0.27 to 0.15, 𝑝;<;< = 0.47). Biochemical traits acclimated to a greater extent 1011	

compared to whole-organism traits in marine habitats (Figure S11B), whereas both whole-organism and 1012	

biochemical traits acclimated similarly in freshwater ectotherms (Figure S11C). Neither trait category 1013	

acclimated in terrestrial ectotherms (Figure S11A). However, there were no biochemical traits measured for 1014	

juveniles in terrestrial species confounding life stage and trat category – though there were no differences 1015	

between adult and juveniles in any case (see results in main manuscript). 1016	

Across habitats biochemical processes tended to result in greater increases in variance at higher temperatures, 1017	

but not significantly so (overall contrast: 0.22, 95% CI:-0.2 to 0.68, 𝑝;<;< = 0.28). However, within habitats 1018	

there was a significant trend for marine ectotherms (biochemical/whole-organism contrasts: Marine: 𝛽 = 1019	

0.36, 95% CI: 0.02 to 0.71, 𝑝;<;< = 0.04; Freshwater: 𝛽 = 0.11, 95% CI: -0.11 to 0.33, 𝑝;<;< = 0.32; 1020	

Terrestrial: 𝛽 = 0.19, 95% CI: -0.34 to 0.72, 𝑝;<;< = 0.48) (Figure S11D-F; “Model 3”). Variance increases 1021	

for biochemical traits was reduced during acclimation in marine ectotherms (Figure S11E). 1022	

 

Figure S11- Meta-analysis results for organismal and biochemical trait categories. Estimated mean 

acclimation and acute 𝑙𝑛𝑅𝑅#!" (A-C) and 𝑙𝑛𝑉𝑅#!" (D-F) effect sizes for tissue/whole-orgamism traits and 



biochemical traits across terrestrial (A & D), marine (B & E) and freshwater (C & F) ectotherms. Across 

all plots, thick bars indicate 95% confidence intervals and thin bars indicate 95% prediction intervals. k = 

total number of effect size estimates while the numbers in brackets indicate the number of species. For ease 

of visualisation, raw data for both trait categories are presented but points are not distinguished by different 

symbols. 

In addition to the broader trait categories we fit models to understand how acute and acclimation effect sizes 1023	

varied across more detailed trait categories. To achieve this, we categorized each effect size into one of 12 1024	

trait categories. These categories included measures of whole organism performance measures including 1025	

cardiac (i.e., ‘cardiac’) and muscle (‘muscle’) function, sprint speed (‘sprint’) and endurance (‘endurance’) 1026	

and metabolic rates (i.e., maximal and resting metabolic rate; max MR’, ‘rest MR’, respectively). Studies 1027	

also quantified various enzymatic reaction rates, including enzymes involved in general metabolic responses 1028	

(categorized as ‘metabolic enzyme’), various parts of the electron transport chain, including ATPase activity 1029	

(‘ATPase’), mitochondrial leak (‘Proton Leak’) and oxidation (‘OXPHOS’, short for Oxidative 1030	

Phosphorylation), as well as antioxidant enzymes (‘antiox’). All other traits not falling within these 1031	

categories were placed into ‘other’. 1032	

Acclimation capacity varied across trait categories and habitat with measures of resting metabolic rate, 1033	

including associated biochemical reactions like oxidative phosphorylation (OXPHOS) and ATPase activity, 1034	

acclimating in marine and freshwater ectotherms (Figure S12). Whether variation in physiological rates 1035	

changes also depended on trait type, with freshwater ectotherms generally maintaining variance in 1036	

physiological rates better than marine and freshwater ectotherms (Figure S13 & Figure S14). We note though 1037	

that some traits have very small sample sizes on their own and should be interpreted with caution. 1038	



 

Figure S12- Acute and Acclimation 𝑙𝑛𝑅𝑅#!" across detailed trait categories for A) marine, B) freshwater 

and C) terrestrial systems. k = total number of effect size estimates while the numbers in brackets indicate 

the number of species. Thick bars indicate 95% confidence intervals and thin bars indicate 95% prediction 

intervals. Raw effects are weighted by their precision (inverse sampling variance). The x-axis is truncated 



for ease of visualisation. See methods section “Moderator Variables” for a full description of the trait 

categories. 

 



Figure S13- Acute and acclimation 𝑙𝑛𝑉𝑅#!" across traits for A) marine, B) freshwater and C) terrestrial 

systems. k = total number of effect size estimates while the numbers in brackets indicate the number of 

species. Thick bars indicate 95% confidence intervals and thin bars indicate 95% prediction intervals. Raw 

effects are weighted by their precision (inverse sampling variance). The x-axis is truncated for ease of 

visualisation. See methods section “Moderator Variables” for a full description of the trait categories. 



 

Figure S14- Acute and acclimation 𝑙𝑛𝐶𝑉𝑅#!" across traits for A) marine, B) freshwater and C) terrestrial 

systems. k = total number of effect size estimates while the numbers in brackets indicate the number of 

species. Thick bars indicate 95% confidence intervals and thin bars indicate 95% prediction intervals. Raw 



effects are weighted by their precision (inverse sampling variance). The x-axis is truncated for ease of 

visualisation. See methods section “Moderator Variables” for a full description of the trait categories. 

Plots of 𝐼$ for multilevel models 1039	

 

Figure S15- 𝐼$ estimates. A) 𝑙𝑛𝑅𝑅#!" B) 𝑙𝑛𝐶𝑉𝑅#!" and C) 𝑙𝑛𝑉𝑅#!". 

Environmental predictability 1040	

Theoretical models highlight the importance of environmental predictability in selecting for plastic 1041	

responses. However, capturing environmental predictability is challenging given that it is unclear which 1042	

timescale one should select. For example, is it more important to look at correlation between temperatures 1043	

monthly or seasonally. In addition, such temporal resolution will likely depend on the species in question 1044	

given that for some species fine-grained thermal predictability maybe more important compared to others. 1045	

With these limitations in mind, we used our temperature time series to calculate auto regressive correlation in 1046	

temperature across the entire time series. We then modeled how this measure of thermal predictability was 1047	

related to plasticity. We found no relationship between our estimate of environmental predictability and 1048	

effect sizes (Figure S16). 1049	



 

Figure S16- Predicted mean acclimation (thick black line) 𝑙𝑛𝑅𝑅#!"&''+,-  (A) and 𝑙𝑛𝐶𝑉𝑅#!"&''+,-  (B) as a 

function of the thermal predictability for wild populations across marine, freshwater and terrestrial 

habitats. Dashed lines indicate 95% confidence intervals and dotted lines indicate 95% prediction intervals. 

Raw effects are weighted by their precision (inverse sampling variance). Model slope (𝛽) along with the 

95% CI and 𝑝;<;< values for the slopes are shown for each habitat. 

Publication bias analysis 1050	

We explored the possibility for publication bias graphically using funnel plots, and more formally by 1051	

including the square root of the inverse effective sample size (\1/𝑛𝑒) in our meta-regression models 1052	

(Nakagawa et al., 2022). Funnel plot asymmetry indicates a form of publication bias called the ‘file-drawer’ 1053	

effect whereby low-powered studies are less likely to be published. However, graphical approaches do not 1054	

account for sources of non-independence and high heterogeneity which can drive apparent funnel asymmetry 1055	

(Nakagawa et al., 2022). As such, we included \1/𝑛𝑒 as a moderator in a multilevel meta-regression model 1056	

that accounted for all the random (i.e, study, species, trait) and fixed effects (acclimation time, type of effect, 1057	

habitat, trait category and the interaction between habitat type and trait category). There was no evidence for 1058	

publication bias, and results are presented in the Supplementary Materials (see Figure S17). 1059	



 

Figure S17- Funnel plot of precision (1/sampling standard error) against effect size for A) log response 

ratio 𝑄!" (𝑙𝑛𝑅𝑅#!"), B) log coefficient of variance ratio 𝑄!" (𝑙𝑛𝐶𝑉𝑅#!") and C) log variance ratio 𝑄!" 

(𝑙𝑛𝑉𝑅#!"). Both acute (‘black’) and acclimation (‘grey’) effect sizes are plotted. 

Funnel plots did not show any noticeable deviation from the typical funnel shape for any of the effect size 1060	

estimates (Figure S17). Meta-regression models including sampling standard error as a moderator also 1061	

suggested no relationship with effect size for 𝑙𝑛𝑅𝑅#!" (𝛽 = -0.06, 95% CI: -0.31 to 0.2, 𝑝;<;< = 0.67), 1062	

𝑙𝑛𝐶𝑉𝑅#!" (𝛽 = 0.04, 95% CI: -0.4 to 0.49, 𝑝;<;< = 0.87) or 𝑙𝑛𝑉𝑅#!" (𝛽 = -0.06, 95% CI: -0.56 to 0.46, 1063	

𝑝;<;< = 0.83) was not significant indicating little evidence for publication bias. 1064	

Performance curve simulations 1065	

To better understand the characteristics of the performance curves in a sample that would lead to observed 1066	

changes in variance (and relative variance) across temperature we conducted a simple simulation. To 1067	

simulate performance curves, we used a asymmetrical Gaussian function (Equation 11): 1068	

𝑃1 = 2𝜖2
(124)0
$60 𝛷 )𝛼

𝑇 − 𝛿
𝜎

*  (11) 1069	

where 𝑇 is the temperature gradient, 𝛿 is the optimal temperature (the temperature where performance is 1070	

maximized), 𝜎 is the performance breadth, and 𝛼 is the skewness of the performance function or rate 1071	

variation. To understand how each parameter impacts the shape of performance curves, we simulated 40 1072	

individuals with varying amounts of between individual variation in performance breadth, optima and rate 1073	

variation. We then calculated the relative variance in performance across the temperature gradient as the 1074	

variance in performance at each temperature divided by the maximum performance at that temperature. This 1075	



simple analysis identified thermal maxima and breath as being the major factors likely leading to the 1076	

observed patterns in 𝑙𝑛𝑉𝑅#!" we identify in our meta-analysis. 1077	

 

Figure S18- Simulated performance curves for n = 40 individuals in four hypothetical scenarios with 

varying performance breadth (𝜎), optima (𝛿) and skewness (𝛼). Individual performance curves are 

different colours. 𝑙𝑛𝐶𝑉𝑅#!" is calculated as the log transformed ratio of the coefficient of variance (CV) in 

performance at the higher temperature divided by the CV in performance at that temperature at each point 

along the curve. 𝑙𝑛𝑉𝑅#!" is calculated as the log transformed ratio of the standard deviation in 

performance at the higher temperature divided by the standard deviation in performance at that 

temperature. The dashed red line indicates the higher temperature (28°C) and the dashed blue line indicates 

the lower temperature (18°C). Note that the mean (𝜇) and standard deviation (𝜎) of physiological rates are 



shown for each temperature. In all simulations, 𝛿 = 35, 𝜎 = 9 and 𝛼 = -15, while between individual 

variation for 𝜎4 = 1, 𝜎6 = 0.5 and 𝜎= = 0.5. 
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