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Abstract 
Climate change causes warmer and more variable temperatures globally, impacting physiological rates and 
function in ectothermic animals. Acclimation of physiological rates can help maintain function. However, it 
is unresolved how variance in physiological rates changes with temperature despite its potential ecological 
and evolutionary importance. We tested whether thermal variation affects physiological traits in ectotherms 
by conducting a meta-analysis (>1900 effects from 226 species), and applying new effect sizes that quantify 
how trait mean and variance change as temperature increases. We show that variance in physiological rates 
increases at higher temperatures, but that the magnitude of change depends on habitat. Freshwater and marine 
ectotherms are capable of acclimation and have the greatest increase in variance. In contrast, terrestrial 
ectotherms lack the capacity for acclimation and have smaller increases in variance. Simulations suggest that 
these patterns may result from differences in among-individual variation in thermal breadth and optima of 
performance curves across habitats. Our results highlight the greater vulnerability of terrestrial ectotherms to 
climate change because limited increases in variance may provide less raw material for evolutionary 
adaptation. Considering both acclimation capacity and variance in physiological rates side-by-side is 
therefore important for understanding how climate change will impact populations. 

Introduction 
Climate change is expected to result in warmer and more variable thermal environments globally (Easterling 
et al. 2000; Ummenhofer & Meehl 2017; Suarez-Gutierrez et al. 2023). Greater thermal variability is 
predicted to pose strong selection pressure that leads to genetic adaptation and/or the evolution of adaptive 
phenotypic plasticity – both of which are considered important for population resilience to human-induced 
climate change (Chevin et al. 2010; Merila & Hendry 2014; Chevin & Lande 2015; Seebacher et al. 2015, 
2023; Nunney 2016; Chevin & Hoffmann 2017; Cooke et al. 2021). Without plasticity or adaptation, high 
extinction rates are expected unless organisms can migrate to track suitable habitats (Cahill et al. 2012; 
Nunney 2016). 
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Reversible phenotypic plasticity, such as physiological acclimation, is relatively rapid and can be fine-tuned 
to environmental conditions making it the first ‘line-of-defense’ against environmental change (Dewitt et al. 
1998; Scheiner et al. 2020). For example, physiological rates are known to speed up as temperature increases 
because of the thermodynamic effects on chemical reaction rates – so called ‘acute’ temperature responses 
(Figure 1). However, longer-lasting (days-weeks) temperature increases that move environmental conditions 
away from thermal optima of physiological rate functions (i.e., thermal performance curves) can be mitigated 
by acclimation, which adjust reaction rates (Seebacher et al. 2015; Havird et al. 2020). Physiological 
acclimation is driven by endocrine and epigenetic processes that change the underlying physiology to allow 
organisms to maintain physiological performance around a fitness optimum despite changes in the 
environment (Little et al. 2013; Taff & Vitousek 2016; Seebacher & Simmonds 2019). Acclimation therefore 
alters acute thermal sensitivity to offset the potentially negative effects of acute temperature changes (e.g., 
higher energetic demands). Acclimation, however, does not necessarily result in complete compensation in 
response to environmental change (sensu Huey et al. 1999). Rather, increased physiological rates are often 
only partially compensated (Huey et al. 1999; Havird et al. 2020). 

Acclimation is expected to evolve in populations experiencing high but predictable environmental variability, 
and when the costs of plasticity are low (Dewitt et al. 1998; Reed et al. 2010; Nunney 2016; Chevin & 
Hoffmann 2017; Scheiner et al. 2020). Thermal variation and predictability differ across habitats (terrestrial, 
marine and freshwater) (Steele et al. 2019), and it may be expected that organisms within these habitats vary 
in their capacity for acclimation. Rohr et al. (2018) show relationships between acclimation capacity, latitude 
and body size suggesting climate could be an important driver of acclimation responses. In addition, species 
occupying terrestrial habitats exhibit weaker acclimation capacities and, therefore may be particularly 
vulnerable to climate change given their greater probability of experiencing thermal extremes that overwhelm 
physiological homeostasis (Hoffmann et al. 2013; Gunderson & Stillman 2015; Seebacher et al. 2015; 
Morley et al. 2019). In contrast, marine and freshwater organisms appear to have greater physiological 
acclimation capacity (e.g., Seebacher et al. 2015; Pottier et al. 2022). However, the focus of research up to 
now has been primarily on mean physiological responses neglecting how variability in physiological 
processes might also be impacted by higher temperatures. 

As mean physiological rates increase with temperature it is likely that intrapopulation variability will also be 
impacted. Positive mean-variance relationships are common across biology suggesting that, as physiological 
rates increase with temperature, so too should variability [i.e., Taylor’s Law; Giometto et al. (2015)]. 
Differences in the shape of thermal performance curves (thermal breadth, maximal performance and thermal 
optima) can reflect among-individual variability at higher temperatures, which can also differ between 
different levels of biological organisation, environmental conditions, and acclimation responses (Angilletta 
2009; Schulte et al. 2011; Tattersall et al. 2012; Rezende & Bozinovic 2019). Presumably, increases in 
variation in physiological rates reflects environment-mediated changes to underlying regulatory networks, 
which can lead to an increased variation in phenotypic outcomes (Costanzo et al. 2021; Matthey-Doret et al. 
2020). Quantifying levels of among-individual variation in thermal performance curves is important to 
understand their capacity to evolve, as well as the resilience of populations to environmental change (Careau 
et al. 2014). 

Importantly, changes in physiological rate variability are expected to have consequences for the flow of 
energy within and between populations, communities, and ecosystems (Bolnick et al. 2011; Hendry 2016; 
Barneche et al. 2021; Sanderson et al. 2023; Seebacher et al. 2023). Generally, more variable populations are 
predicted to be associated with broader niches, have increased growth rates, and decreased vulnerability to 
environmental change, lowering extinction risk (i.e., “portfolio effects” sensu Schindler et al. 2010, and see 
also Bolnick et al. 2011; Forsman 2014; Forsman 2015; Hart et al. 2016; Hendry 2016; Pörtner 2021). In 
addition, if phenotypic and genetic variation in physiological rates are correlated and linked to fitness, 
reduced phenotypic variation may limit responses to selection and reduce the capacity of populations to 
evolve (Hoffmann & Sgrò 2011; Pelletier & Coulson 2012). Therefore, maintaining intrapopulation 
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variability in physiological rates in a warmer world may be important for population resilience to climate 
change. 

Here, we use meta-analysis to establish the current state-of-knowledge of the extent to which aquatic and 
terrestrial ectotherms are capable of physiological plasticity. We then developed new effect sizes to quantify 
how variance in physiological rates changes with temperature to ask the following questions regarding 
acclimation-induced changes in trait means and variances: 1) Does variance in physiological rates change as 
temperatures rise? 2) Are temperature effects on means of physiological rates greater than changes in 
variance across aquatic and terrestrial ectotherms? 3) How do changes in trait mean and variance relate to 
different life-stages, traits, and habitats? 4) Are changes in mean and variance of physiological rates impacted 
by past climate history? 5) How are variances in physiological rates expected to change under climate 
change? 

Materials and Methods 
Literature collection 

We compiled literature on ectothermic animals that measured physiological rates (e.g., metabolic rate) at two 
or more temperatures after having been acclimated (or acclimatized) at these temperatures. We used data 
from a previous meta-analysis (Seebacher et al. 2015) and updated Seebacher et al. (2015)’s data by 
extracting data from suitable studies from our own searches that followed the same search protocol. We 
extracted data from an extra 65 papers (with a total of 238 effects; a 34.03% increase in the number of 
published articles). For full details on the search protocol, see the Supplementary Materials, where we also 
provide a PRISMA flow diagram of our extraction process (Figure S1). 

Data Compilation 

We extracted means, standard deviations, and sample sizes for physiological rates measured at the two test 
temperatures that coincided with acclimation temperatures (Figure 1A). If there were more than two 
temperatures, we chose only the temperatures that fell within the most likely natural range of temperatures 
experienced by the species in question (Figure 1). We extracted these data from text, tables or figures of a 
given paper. Data were extracted from figures using the R package metaDigitise (Pick et al. 2019). We also 
recorded the phylum, class, order, genus and species, and the latitude and longitude from where the 
experimental animals were sourced. For studies that did not provide latitude and longitude for the population, 
we searched for similar studies by the same lab group to identify where the population was likely to have 
been sourced. If the experimental animals were derived from the wild, we recorded the nearest latitude and 
longitude of the field collection site. If the animals were sourced from a commercial supplier, we took the 
latitude and longitude of the supplier. When it was not possible to find latitude and longitude using these 
methods, we looked up the distribution of the species in question and took the latitude and longitude of the 
centroid of the species’ distributional range. 

𝑸𝟏𝟎 Based Effect Sizes and Sampling Variances for Means and Variances 

Following Noble et al. (2022) we calculated a series of temperature-corrected effect sizes that compared 
mean physiological rates (𝑙𝑛𝑅𝑅!!") as well as the variability in physiological rates (𝑙𝑛𝑉𝑅!!" and 𝑙𝑛𝐶𝑉𝑅!!") 
(Figure 1). These effect sizes are similar to the traditional temperature coefficient (𝑄"#), but with formal 
analytical approximations of their sampling variances. Sampling variances for effect sizes allowed us to 
make use of traditional meta-analytic modelling approaches. 
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Figure 1- Calculations of acute and acclimation 𝑙𝑛𝑉𝑅!!" and 𝑙𝑛𝑅𝑅!!". (A) Two idealised thermal 
performance curves for animals held at ‘cold’ (‘blue’) temperatures and warm (‘red’) temperatures. Shaded 
blue and red areas are the thermal optima of the performance curves. Physiological rates are measured for a 
sample of ectotherms at two different temperatures along the thermal performance curves (𝑇" = 20°C and 
𝑇$ = 30°C) for both curves. At each temperature a mean physiological rate (R) (points) and its standard 
deviation (SD) (error bars above and below mean) are estimated. R1.1 and R1.2 are the rates and 
associated SD (subscripted) for the cold acclimated animals at temperature 1 and 2, respectively. R2.1 and 
R2.2 are the rates and associated SD (subscripted) for the warm acclimated animals at temperature 1 and 2, 
respectively. An example of how acute and acclimation 𝑙𝑛𝑉𝑅!!" and 𝑙𝑛𝑅𝑅!!" are calculated from the 
treatments within the study is provided on the right-hand side of the figure with reference to each of the 
four possible groups. Two acute effect sizes can be calculated, one for the cold acclimated animals and one 
for the warm acclimated animals. (B) Species are expected, a priori, to vary in their thermal performance 
curves (thin lines) around an average (thick black line). We restricted our data to areas of each species’ 
performance curve that fell within the natural thermal range of the species (thick lines on each species-
level curve). However, given it was not possible to measure the full performance curve for each species 
some test temperatures within studies may have converged on or moved past the thermal optima. In such 
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cases, we expected our 𝑄"# effect sizes to be smaller as indicated by comparing the black dashed lines to 
grey dashed lines. 

Comparing changes in mean physiological rates 

To compare mean physiological rates, we calculated the log 𝑄"# response ratio, 𝑙𝑛𝑅𝑅!!" (Noble et al. 2022) 
as follows: 

𝑙𝑛𝑅𝑅!!" = 𝑙𝑛 +
𝑅$
𝑅"
, +	

10∘𝐶
𝑇$ − 𝑇"

,  (1) 

Where, 𝑅" and 𝑅$ are mean physiological rates at temperatures 𝑇" and 𝑇$, respectively. Log transformation 
of this ratio makes the effect size normally distributed. Equation 1 is essentially a temperature corrected 
equivalent to the log response ratio (lnRR) (Hedges et al. 1999; Lajeunesse 2011) when the numerator and 
denominator are measured at different temperatures. This allows comparisons of the means from two 
temperature treatments directly regardless of the absolute measurement temperatures. The sampling variance 
for Equation 1 can be computed as follows (as described in Noble et al. 2022): 

𝑠&'((#!" = 5
𝑆𝐷$$

𝑅$$𝑁$
+
𝑆𝐷"$

𝑅"$𝑁"
: +	

10∘𝐶
𝑇$ − 𝑇"

,
$

  (2) 

Here, 𝑆𝐷"$ and 𝑆𝐷$$ are the standard deviations, and 𝑁" and 𝑁$ are the sample sizes of the groups measured at 
𝑇" and 𝑇$, respectively (Figure 1A). 

Comparing variance in physiological rates 

Nakagawa et al. (2015) proposed analogous effect size estimates to lnRR that allow for comparisons of 
changes in variance between two groups, the log variance ratio (lnVR) and the log coefficient of variation 
(lnCVR). lnVR and lnCVR are ratios that describe the relative difference in trait variability between two 
groups. We refer readers to Nakagawa et al. (2015) for the equations describing lnVR and lnCVR, but these 
can easily be extended to their 𝑄"# analogues (and associated sampling variance) as follows: 

𝑙𝑛𝑉𝑅!!" = 𝑙𝑛 +
𝑆𝐷$
𝑆𝐷"
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where parameters are defined above. Equation 3 and Equation 4 describe the change in physiological rate 
variance (Equation 3) normalised to a 10°C temperature change along with its sampling variance 
(Equation 4). As discussed by Nakagawa et al. (2015) there is often a strong mean-variance relationship. As 
such, the coefficient of variation is often used because it permits standardisation of changes in variance as 
mean trait values change: 

𝑙𝑛𝐶𝑉𝑅!!" = 𝑙𝑛 +
CV$

CV"
, +	
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where 𝐶𝑉 is the coefficient of variation defined as 𝑆𝐷/𝑅. We refer to 𝑙𝑛𝐶𝑉𝑅!!" as relative variance because 
variance changes are relative to the mean. While we analyse 𝑙𝑛𝐶𝑉𝑅!!" it does make the assumption that SD 
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is directly proportional to the mean, and given that we are analysing the mean alongside the variance we 
present results on 𝑙𝑛𝐶𝑉𝑅!!" in the supplement. 

Calculating acute and acclimation 𝒍𝒏𝑹𝑹𝑸𝟏𝟎, 𝒍𝒏𝑽𝑹𝑸𝟏𝟎 and 𝒍𝒏𝑪𝑽𝑹𝑸𝟏𝟎 estimates 

𝑅", 𝑅$, 𝑆𝐷"$ and 𝑆𝐷$$ can all be taken from samples of organisms measured acutely at two temperatures or 
after having been acclimated these same temperatures (Figure 1A). For studies that measure acute and 
acclimated responses we used the mean, standard deviation, and sample size to derive both acute and 
acclimation 𝑙𝑛𝑅𝑅!!", 𝑙𝑛𝑉𝑅!!" and 𝑙𝑛𝐶𝑉𝑅!!" estimates. For studies that only measured 𝑅", 𝑅$, 𝑆𝐷"$ and 𝑆𝐷$$ 
acutely we could only calculate acute versions of these effect size estimates. For all effect sizes the higher 
temperature was in the numerator and the lower of the two temperatures in the denominator. As such, 
positive effect sizes indicate that the mean (i.e., 𝑙𝑛𝑅𝑅!!"), variance (𝑙𝑛𝑉𝑅!!") or relative variance (i.e., 
𝑙𝑛𝐶𝑉𝑅!!") is larger at the higher of the two temperatures (numerator) when standardized to 10°C. 
Importantly, our effect sizes, as with 𝑄"# more generally, all assume that the effect of temperature on 
physiological rates (or changes in variance) is log-linear (see Figure 1B & Supplementary Materials for 
further discussion). We test and control for any violations of these assumptions in our analysis (see below). 

Moderator Variables 

We recorded or derived a series of moderator variables from each study that are expected to have an impact 
on our effect size estimates. This included the duration of acclimation in days given that acclimation 
responses may depend on how long chronic temperature exposure occurs. We also recorded if the sample of 
animals were derived from captive or wild stocks, the life-history stage of the animals used (“adult” or 
“juvenile”) and the habitat type (“freshwater”, “marine” or “terrestrial”) given that Seebacher et al. (2015) 
show that these factors can impact 𝑄"# estimates. Physiological rate measures varied widely across the 
studies but could generally be grouped into two broad categories that included whole-organism measures, 
which all integrate a diversity of physiological and biochemical processes, and biochemical processes (e.g., 
enzyme reaction rates, proton leak) (Seebacher et al. 2015; Rezende & Bozinovic 2019). We explore 
differences across more detailed trait categories in Supplemental Materials, but note sample sizes are limited 
for many traits. Traits that could not be categorised into these two we classified as ‘Other’. 

Meta-Analysis 

We analysed our data using multilevel meta-analytic (MLMA) and meta-regression (MLMR) models in R 
(vers. 4.2.1) using brms (vers. 2.19.0 Bürkner 2017, 2018; “Stan development team. RStan” 2021) and 
metafor (vers. 4.6.0 Viechtbauer 2010). We fit both Bayesian and frequentist approaches to ensure that our 
results were consistent, and to create orchard plots more easily (vers. 2.0, Nakagawa et al. 2021a, 2023). In 
addition, Bayesian methods better protect against type I errors in the presence of complex sources of non-
independence (Noble et al. 2017; Nakagawa et al. 2021b; Song et al. 2021). In all cases, frequentist and 
Bayesian models resulted in the same conclusions. For our Bayesian models, we ran 4 MCMC chains, each 
with a warm-up of 1000 followed by 4000 sampling iterations keeping every 5 iterations for a minimum of 
3200 samples from the posterior distribution. We used flat Gaussian priors for ‘fixed’ effects (i.e.,𝑁(0,10)) 
and a student t-distribution for ‘random’ effects (i.e., 𝑠𝑡𝑢𝑑𝑒𝑛𝑡,(3,0,10)). We checked that all MCMC chains 
were mixing and had converged (i.e., 𝑅-., = 1). 

Multi-level Meta-analysis (MLMA) Models 

We first fit multi-level meta-analysis (MLMA) models (i.e., intercept-only models) for both 𝑙𝑛𝑅𝑅!!" and 
𝑙𝑛𝑉𝑅!!", that included study, species, trait type, and phylogeny as random effects to account for non-
independence and identify sources of variability. We refer to this model structure as “Model 1” in the results. 
Our MLMA models allowed us to partition the variation in 𝑙𝑛𝑅𝑅!!" and 𝑙𝑛𝑉𝑅!!" among these key sources 
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while accounting for total sampling variance in each. This allowed us to calculate the proportion of total 
heterogeneity [i.e., 𝐼,/,.&$ ; sensu Nakagawa & Santos (2012); Noble et al. (2022)] along with various 𝐼$ 
metrics describing the proportion of variance explained by each random effect level (Nakagawa & Santos 
2012). We also present 95% prediction intervals which describe the expected distribution of effects for future 
studies (Nakagawa et al. 2021a; Noble et al. 2022). 

A phylogeny was derived using the Open Tree of Life (OTL) with the rotl package in R (vers. 3.0.14) 
(Michonneau et al. 2016), and plotted using ggtree (vers. 3.6.2) (Yu et al. 2017). We resolved all polytomies 
in the tree. Any missing taxa were replaced with closely related species and branch lengths were computed 
using Grafen’s method (using power = 0.7, Grafen 1989). Models fit using correlation matrices computed 
with different power (p) parameters (from 0.5 – 1.0) had nearly identical 𝐴𝐼𝐶0. As such, we used an 
intermediate value of p = 0.7. We used the R packages ape (vers. 5.7.1) (Paradis & Schliep 2019) and 
phytools (vers. 1.5.1) (Revell 2012) to prune the tree for individual analyses and calculate phylogenetic 
covariance (or correlation) matrices used in meta-analytic models. 

Multi-level Meta-regression (MLMR) Models 

After quantifying levels of heterogeneity, we fit a series of multi-level meta-regression (MLMR) models to 
test our key questions. In all models, we included the same random effects as we used in our MLMA models. 
Acclimation time varied from 4 to 408 days (mean ± SD = 37.98 ± 45.19 days), and terrestrial ectotherms 
were acclimated for a much shorter duration (mean ± SD = 23.53 ± 15.56 days, n = 125) than freshwater 
(mean ± SD = 36.81 ± 28.71 days, n = 430) and marine species (mean ± SD = 46.18 ± 67.21 days, n = 
313). To control for these differences, acclimation time was mean-centered (mean = 0) and included in all 
our models, although it was not a strong predictor of effect size variation in any of our models 
(Supplementary Materials, Figure S3). 

In addition to the acclimation period, all our models corrected for possible violations of the log-linearity 
assumption associated with effect size calculations (Figure 1; and see Supplementary Materials Figure S2). 
We predicted that, if 𝑙𝑛𝑅𝑅!!" and 𝑙𝑛𝑉𝑅!!" were not strictly log-linear there would be a decrease in average 
effect size for studies applying higher temperature treatments, because these temperatures are expected to 
either converge on or cross the thermal optima of the performance curve causing reaction rates to decelerate 
or decrease beyond 𝑇/1 (Michaletz & Garen 2024). The benefit of this approach is that we could still use 𝑄"# 
as an effect size while statistically correcting for the potential non-linearity that would be expected in the data 
at high treatment temperatures. Given that our data included a wide range of species and habitats, we also 
included a random slope of maximum temperature that varied across species because we expected that 
species would vary in their thermal performance curves, which would be reflected in experimental 
treatments. We mean-centered the maximum temperature and included it in our models. 

With acclimation time and maximum temperature as moderators in all our models we proceeded to build 
separate models that tested our core questions. All estimates from our models are therefore conditioned on an 
average acclimation time (i.e., 37.98 days) and an average maximum temperature (i.e., 23°C) across the 
dataset. 

We first tested the extent to which acute and acclimation 𝑙𝑛𝑅𝑅!!" and 𝑙𝑛𝑉𝑅!!" effect sizes varied between 
habitat types (i.e., terrestrial, freshwater, and marine). Models included an interaction between effect type 
(i.e., acute or acclimation) and habitat (referred to as “Model 2”). Reduced mean 𝑙𝑛𝑅𝑅!!"&''()*&+),-

 relative 
to 𝑙𝑛𝑅𝑅!!"&'.+/  indicates that acclimation to thermal environments results in (partial) compensation of 
physiological rates (i.e., phenotypic plasticity), whereas no differences between 𝑙𝑛𝑅𝑅!!"&'.+/  and 
𝑙𝑛𝑅𝑅!!"&''()*&+),-

 indicates that organisms did not acclimate (Seebacher et al. 2015; Havird et al. 2020). In 
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contrast, a difference in 𝑙𝑛𝑉𝑅!!"&''()*&+),-
 relative to 𝑙𝑛𝑉𝑅!!"&'.+/  would show that changes in between-

individual variation differ between acute responses and acclimation responses. 

Second, we tested whether acute and acclimation 𝑙𝑛𝑅𝑅!!" and 𝑙𝑛𝑉𝑅!!" differed between whole-organism 
versus biochemical traits across habitats by fitting an model with an interaction between type, habitat and 
trait category (referred to as “Model 3”). We expected that whole-organism traits would be more likely to 
maintain variation in physiological function and be less likely to acclimate because whole-organism function 
relies on a greater number of biochemical reactions each with different thermal sensitivities (Fields 2001; 
Angilletta 2009). 

Third, we tested whether different life-stages were more or less likely to acclimate by fitting a model for each 
habitat type and including an interaction between life-stage (‘adult’ or ‘juvenile’) and effect type (referred to 
as “Model 4”). We predicted that acclimation responses would be more likely early in development 
compared to later in development as this pattern has been shown in previous studies (e.g., Moghadam et al. 
2019), but that this should depend on the habitat type given the different constraints faced by different early 
life stages across major habitat types. 

Finally, we tested whether the change in 𝑙𝑛𝑅𝑅!!"&''()*&+),-
 and 𝑙𝑛𝑉𝑅!!" were predicted by climate variability 

(CV) (details on climate data can be found in the Supplementary Materials). We only used 𝑙𝑛𝑅𝑅!!"&''()*&+),-
 

𝑙𝑛𝑉𝑅!!"&''()*&+),-
 for these models because our predictions were specifically focused on acclimation 

responses; though there were no differences between 𝑙𝑛𝑉𝑅!!"&''()*&+),-
 and 𝑙𝑛𝑉𝑅!!"&'.+/ . We fit models that 

included an interaction between habitat type and thermal coefficient of variability (CV) as moderators 
(referred to as “Model 5”). We also explored whether environmental predictability explained capacity for 
acclimation; we estimated predictability as the correlation of temperatures across months at a given location. 
However, such analyses are challenging to interpret because the temporal scale that is biologically relevant to 
different organisms will be different making the choice of lag to estimate the correlation difficult to apply 
across taxa. As such, we report a simple analysis in the Supplementary Materials but note that it does not 
differ from our CV analysis. 

Modelling how climate change can impact relative variance in physiological rates 

To explore the potential consequences of the impacts that human-induced climate change may have on 
variance in physiological rates we fit a model that included an interaction between acclimation type, habitat 
type, latitude and longitude (referred to as “Model 6”). We assumed that any change in 𝑙𝑛𝑉𝑅!!" across 
latitude and longitude could vary by habitat type (i.e., an interaction between habitat). We used non-linear 
tensors for latitude and longitude as any response could be complicated by local factors (e.g., altitude). Our 
model included random effects of species, trait, phylogeny and study. We predicted the expected change in 
𝑙𝑛𝑉𝑅!!" for each wild population in our dataset at its specific populations latitude and longitude. We first 
converted the predicted 𝑙𝑛𝑉𝑅!!" to a 1°C change as opposed to 10°C: 

𝑙𝑛𝑉𝑅!! =
𝑙𝑛𝑉𝑅!!"
10   (7) 

We then multiplied this predicted change by the change in air and sea surface temperatures at the locations of 
each population (and species) that is expected under high emissions scenarios in 2080. 

Publication Bias 

We explored the possibility for publication bias graphically using funnel plots, and more formally by 
including the square root of the inverse effective sample size (Q1/𝑛𝑒) in our meta-regression models 
(Nakagawa et al. 2022). Funnel plot asymmetry indicates a form of publication bias called the ‘file-drawer’ 
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effect whereby low-powered studies are less likely to be published. However, graphical approaches do not 
account for sources of non-independence and high heterogeneity which can drive apparent funnel asymmetry 
(Nakagawa et al. 2022). As such, we included Q1/𝑛𝑒 as a moderator in a multilevel meta-regression model 
that accounted for all the random (i.e, study, species, trait) and fixed effects (acclimation time, type of effect, 
habitat, trait category and the interaction between habitat type and trait category). There was no evidence for 
publication bias, and results are presented in the Supplementary Materials (see Figure S14). 

Identifying patterns of among-individual variance in performance curves contributing to 
variance increases 

We conducted a simple simulation as a sensitivity analysis to better understand the characteristics of 
performance curves that could lead to our observed changes in variance across temperatures and habitats. 
The simulation varied among-individual variation in performance curves to identify the parameters that could 
produce the results we observed. To simulate performance curves, we used an asymmetrical Gaussian 
function (Angilletta 2009): 

𝑃2 = 2𝜖3
(235)0
$70 𝛷 +𝛼

𝑇 − 𝛿
𝜎 ,  (8) 

where 𝑇 is temperature, 𝛿 is the optimal temperature (the temperature where performance is maximized), 𝜎 
the performance breadth, and 𝛼 the skewness of the curve (see Figure S15 in Supplementary Materials for 
example curves). We simulated n = 1000 individual performance curves by varying the amount of between 
individual variance on each of the key parameters (𝛿, 𝜎) in all possible combinations from 0.01 to 2. We also 
varied 𝛼, but this did not impact our conclusions and so we kept among-individual variation fixed for each 
simulation (at 0.01). From the population of performance curves, we took the standard deviation at two 
temperatures (18 and 28°C) to calculate 𝑙𝑛𝑉𝑅!!" and identify potential parameter spaces that could produce 
observed patterns in our empirical data. 

Results 
Data Summary 

The final dataset included a total of 91 freshwater (fishes = 48, molluscs = 4, amphibians = 19, reptiles = 8, 
arthropods = 10, and a single crustacean and nematode species), 90 marine (fishes = 47, annelids = 2, 
molluscs = 21, echinoderms = 7, reptiles = 1, arthropods = 10, and a single crustacean and cnidarian species), 
and 45 terrestrial species (annelids = 1, molluscs = 5, arthropods = 14, reptiles = 12 and amphibians = 12 
along with a single tardigrade species) (Figure 2). We had more data on acute thermal responses (n = 1115) 
compared to acclimation responses (n = 798) because acute responses were reported for each of the two 
acclimation temperatures (Figure 2). The two acute 𝑙𝑛𝑅𝑅!!" effect sizes (Figure 1A) differed significantly 
from each other (𝛽 = 0.07, 95% CI: 0.03 to 0.1, 𝑝8*8*  = < 0.0001) with animals acclimated to high 
temperatures having slightly higher average 𝑙𝑛𝑅𝑅!!" (𝜇 = 0.62, 95% CI: 95% CI: 0.51 to 0.72, 𝑝8*8*  = < 
0.0001, 𝑄"# = 1.85) compared to animals at lower temperatures (𝜇 = 0.55, 95% CI: 95% CI: 0.44 to 0.66, 
𝑝8*8*  = < 0.0001, 𝑄"# = 1.73) (Figure S4). However, on average they were in the same direction and only 
differed by ~10%. Hence, we averaged the two acute 𝑙𝑛𝑅𝑅!!" effect sizes in subsequent analyses. 

Most of the effect size estimates came from measurements of metabolic rates (both resting and maximal – 
𝑁91:0;:9 = 190, 𝑁:<<:0,9 = 1023), metabolic enzyme rates (𝑁91:0;:9 = 61, 𝑁:<<:0,9 = 798) and whole-
organism performance traits (i.e., measures of locomotor speed and endurance – 𝑁91:0;:9 = 73, 𝑁:<<:0,9 = 
321). 
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Figure 2- Phylogenetic distribution of acute and acclimation 𝑙𝑛𝑅𝑅!!" and 𝑙𝑛𝑉𝑅!!" estimates across major 
habitats. The total number of acute and acclimation 𝑙𝑛𝑅𝑅!!" and 𝑙𝑛𝑉𝑅!!" effect sizes are indicated by the 
coloured bars, and the colouring at the tips of the phylogeny indicates marine, freshwater, and terrestrial 
habitats. Silhouettes are only representative taxa of major clades within the tree. 

Terrestrial and aquatic ectotherms differ in their capacity to acclimate but acclimation 
does not depend on life-history stage 

Results from “Model 1” (see “Meta-Analysis” above) show that effect heterogeneity was high (only 2.85% 
of the variance was the result of sampling variability, 95% CI: 2.38 to 3.32%), and most variance was 
explained by the specific study and type of trait (Study: 29.41% , 95% CI: 20.78 to 38.49%; Trait Type: 
29.35% , 95% CI: 19.97 to 39.53%). Evolutionary relationships among taxa and species ecology (i.e., species 
random effect) explained little variation in acute and acclimation responses (Species: 2.39%, 95% CI: 0.01 to 
8.1%; Phylogeny: 2.89% , 95% CI: 0 to 12.94%). These patterns were similar for 𝑙𝑛𝑉𝑅!!" (see 
Supplementary Materials, Figure S12). 

Physiological rates increased more in terrestrial ectotherms (𝜇 = 0.62, 95% CI: 0.49 to 0.75) compared to 
marine (𝜇 = 0.52, 95% CI: 0.41 to 0.64) and freshwater ectotherms (𝜇 = 0.56, 95% CI: 0.46 to 0.67), but did 
not differ significantly betweem aquatic and terrestrial habiatats (Terrestrial - Marine: 𝛽 = 0.1, 95% CI: -0.03 
to 0.23, 𝑝8*8*  = 0.14; Terrestrial - Freshwater: 𝛽 = 0.06, 95% CI: -0.04 to 0.17, 𝑝8*8*  = 0.24) (“Model 2”). 
However, capacity for acclimation depended on the habitat. Ectotherms in marine and freshwater 
environments showed partial compensation of physiological rates (Figure 3A) amounting to reduced 
𝑙𝑛𝑅𝑅!!"&''()*&+),-

 of 17.11% (95% CI: -24.2 to -10.61) in freshwater and 16.05% (95% CI: -26.92 to -4.67) 
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in marine environments. In contrast, terrestrial ectotherms showed no acclimation with a 6.52% increase in 
𝑙𝑛𝑅𝑅!!"&''()*&+),-

 (95% CI: -5.94 to 20.47, Figure 3A). 

Across habitats, the extent to which whole-organism versus biochemical traits acclimated varied (“Model 3”; 
Figure 4A-C). Biochemical traits acclimated to a greater extent compared to whole-organism traits in marine 
habitats (Figure 4B), whereas both whole-organism and biochemical traits acclimated similarly in freshwater 
ectotherms (Figure 4C). Neither trait category acclimated in terrestrial ectotherms (Figure 4A). 

Acclimation capacity did not vary consistently by life-history stage with no differences in 𝑙𝑛𝑅𝑅!!"&''()*&+),-
 

and 𝑙𝑛𝑅𝑅!!"&'.+/  between adult and juveniles, except for marine habitats where adults acclimated to a greater 
extent (“Model 4”; Figure 5A-C). Averaging over acute and acclimation effects there were also no 
differences between adults and juveniles within habitats (Adult-Juvenile: Terrestrial: -0.07, 95% CI: -0.39 to 
0.22, 𝑝8*8*  = 0.67; Marine: 0, 95% CI: -0.21 to 0.22, 𝑝8*8*  = 0.98; Freshwater: 0, 95% CI: -0.12 to 0.11, 
𝑝8*8*  = 0.94).
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Figure 3- Meta-analysis results for different habitats. In both panels, thick bars are 95% confidence intervals (CI) and thin bars 95% prediction 
intervals (PI). 𝛽 values are the contrasts between acute and acclimation means within each habitat. 𝜇 values are the overall meta-analytic means 
averaged across acute and acclimation types within each habitat type. In both cases, their 95% CI’s are indicated within square brackets. 𝑝8*8*  
values are the posterior probability of the contrast or overall meta-analytic mean being different from zero. (A) Mean acute and acclimation 
𝑙𝑛𝑅𝑅!!" across ectotherms in marine, freshwater, and terrestrial habitats. Overall mean physiological rates (𝜇) across the habitats are provided in 
the results for simplicity and only contrasts between acute and acclimation 𝑙𝑛𝑅𝑅!!" are shown (B) Mean acute and acclimation 𝑙𝑛𝑉𝑅!!" across 
ectotherms in marine, freshwater and terrestrial habitats. For both plots, k = total number of effect size estimates while the numbers in brackets 
indicate the number of species. Sample sizes are the same for panel A and B. For ease of visualisation, all the raw data plotted for both acute and 
acclimation type effect sizes are presented as circles. 
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Figure 4- Meta-analysis results for organismal and biochemical trait categories. Estimated mean acclimation and acute 𝑙𝑛𝑅𝑅!!" (A-C) and 
𝑙𝑛𝑉𝑅!!" (D-F) effect sizes for tissue/whole-orgamism traits and biochemical traits across terrestrial (A & D), marine (B & E) and freshwater (C & 
F) ectotherms. Across all plots, thick bars indicate 95% confidence intervals and thin bars indicate 95% prediction intervals. k = total number of 
effect size estimates while the numbers in brackets indicate the number of species. For ease of visualisation, raw data for both trait categories are 
presented but points are not distinguished by different symbols. 
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Figure 5- Meta-analysis results for different life stages. Estimated mean acclimation and acute 𝑙𝑛𝑅𝑅!!" (A-C) and 𝑙𝑛𝑉𝑅!!" (D-F) for adult (a) and 
juvenile (j) life-history stages for terrestrial (A & D), marine (B & E) and freshwater (C & F) ectotherms. Across all plots, thick bars indicate 95% 
confidence intervals and thin bars indicate 95% prediction intervals. k = total number of effect size estimates while the numbers in brackets 
indicate the number of species. For ease of visualisation, raw data for both adult and juvenile life-history stages are presented but points are not 
distinguished by different symbols. 𝛽 values are the contrasts between acute and acclimation means within each life stage. 𝑝8*8*  values are the 
posterior probability of the contrast being different from zero. 
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Variation in physiological rates increases but to a greater extent in aquatic compared 
terrestrial ectotherms 

Variance in physiological rates (𝑙𝑛𝑉𝑅!!") showed an increase with increasing temperature across all habitat 
types (Figure 3B). Overall, there was a 36.76% (95% CI: 8.43 to 74.52, 𝑝8*8*  = 0.01) increase in 
physiological rate variance for terrestrial ectotherms, a 51.67% (95% CI:21.95 to 89.49, 𝑝8*8*  = < 0.01) 
increase in variation for marine ectotherms and a 61.59% (95% CI: 33.8 to 99.58, 𝑝8*8*  = < 0.0001) 
increase in variance for freshwater ectotherms across 10°C (Figure 3; results from “Model 2”). Analysis of 
𝑙𝑛𝐶𝑉𝑅!!", which accounts for changes in mean physiological rates, also showed that the relative variance for 
terrestrial ectotherms decreased compared to marine and freshwater ectotherms, suggesting that increases in 
variance are less than expected for ectotherms occupying terrestrial habitats (See Supplementary Materials, 
Figure S6). 

Physiological rate variance increased significantly more in freshwater compared to terrestrial ectotherms for 
acute responses (𝛽 = 0.2, 95% CI: 0 to 0.4, 𝑝8*8*  = 0.05), but not for acclimation responses because 
increases in rates were dampened by acclimation resulting in smaller increases in variance (𝛽 = 0.12, 95% 
CI: -0.1 to 0.34, 𝑝8*8*  = 0.3). While marine ectotherms had larger increases in variance compared to 
terrestrial ectotherms these were not significant (Acute: 𝛽 = 0.18, 95% CI: -0.07 to 0.43, 𝑝8*8*  = 0.15; 
Acclimation: 𝛽 = 0.01, 95% CI: -0.25 to 0.26, 𝑝8*8*  = 0.9)(Figure 3B). Marine and freshwater habitats did 
not differ in the extent of variance increases at higher temperatures (Acute: 𝛽 = 0.03, 95% CI: -0.18 to 0.23, 
𝑝8*8*  = 0.79; Acclimation: 𝛽 = 0.1, 95% CI: -0.09 to 0.3, 𝑝8*8*  = 0.3). There were no differences between 
𝑙𝑛𝑉𝑅!!"&'.+/  and 𝑙𝑛𝑉𝑅!!"&''()*&+),-

 within any habitat (Figure 3B). Differences in variance between habitats 
were driven by different scaling relationships between mean and variance with slopes varying across habitat 
types (see Supplementary Materials scaling analyses, Table S1 & Figure S5). 

𝑙𝑛𝑉𝑅!!" values from our simulations matched our empirical results in particular areas of parameter space 
(Figure 6). For a given among-individual variance in thermal breadth, terrestrial ectotherms are predicted to 
have lower among-individual variance in thermal optima compared to marine and freshwater ectotherms 
(Figure 6). In contrast, terrestrial ectotherms are expected to have higher levels of among-individual variance 
in thermal breadth when controlling for among-individual variance in thermal optima (Figure 6). 
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Figure 6- Results from sensitivity analysis. Expected 𝑙𝑛𝑉𝑅!!" from simulated performance curves when 
varying among-individual variance in thermal breadth (𝜎5 = {0.01, 2}) and thermal optima (𝜎7 = {0.01, 
2}) while fixing the rate variance constant (𝜎= = 0.01). In all simulations, population parameters were 𝛿 = 
35, 𝜎 = 9, 𝛼 = -15, and n = 1000 individuals were simulated for each combination of 𝜎5 and 𝜎7. The 
parameter space that matches the observed mean 𝑙𝑛𝑉𝑅!!" for terrestrial (green), marine (orange) and 
freshwater (blue) ectotherms is highlighted. Dashed lines indicate the relative differences between the three 
habitat types when holding one variance parameter constant. 

Across habitats biochemical processes tended to result in greater increases in variance at higher temperatures, 
but this was only significant for marine ectotherms (biochemical/whole-organism contrasts: Marine: 𝛽 = 
0.36, 95% CI: 0.02 to 0.71, 𝑝8*8*  = 0.04; Freshwater: 𝛽 = 0.11, 95% CI: -0.11 to 0.33, 𝑝8*8*  = 0.32; 
Terrestrial: 𝛽 = 0.19, 95% CI: -0.34 to 0.72, 𝑝8*8*  = 0.48) (Figure 4D-F; “Model 3”). Variance increases for 
biochemical traits was reduced during acclimation in marine ectotherms (Figure 4E). 

Each life-history stage exhibited the same pattern of variance change in each of the habitats (Adult-Juvenile 
contrasts: Marine: 𝛽 = 0.15, 95% CI: -0.19 to 0.53, 𝑝8*8*  = 0.41; Freshwater: 𝛽 = 0.02, 95% CI: -0.16 to 
0.2, 𝑝8*8*  = 0.8; Terrestrial: 𝛽 = 0.02, 95% CI: -0.36 to 0.4, 𝑝8*8*  = 0.92), with no differences between 
acute and acclimation effect types (“Model 4”; Figure 5). 

Past climate does not influence acclimation capacity or expected change in variance 

Thermal variability (i.e., 𝐶𝑉) experienced by a population in the past did not explain acclimation capacity 
(Figure 7A–C) or changes in physiological rate variance (Figure 7D–F) among terrestrial, marine or 
freshwater populations (“Model 5”). 
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Figure 7- Past climate variability did not predict acclimation responses. Predicted mean acclimation (thick 
black line) 𝑙𝑛𝑅𝑅!!"&''()*  (A-C) and 𝑙𝑛𝑉𝑅!!"&''()*  (E-G) as a function of the Thermal Coefficient of 
Variation (CV) for wild populations across marine, freshwater and terrestrial habitats. Dashed lines 
indicate 95% confidence intervals and dotted lines indicate 95% prediction intervals. Model slope (𝛽) 
along with the 95% CI and 𝑝8*8*  values for the slopes are shown for each habitat. 

Changes in physiological rate variance under climate change 

Measurements of acute and acclimation responses from wild ectotherms were much less common than from 
captive populations (𝑁91:0;:9 = 134, from 188 wild populations). Globally, there was a clear bias towards 
species in the Northern Hemisphere (Figure 8A-C). Projected changes in physiological rate variance were 
highly variable across the globe, however, variance was predicted to increase at all locations. 

Using the ERA5 climate model, predictions of current global changes in physiological rate variance were 
generally conservative with our model explained ~ 43% of the variation in the observed data (𝑅$ = 0.43, 95% 
CI: 0.33 to 0.51). Climate change is predicted to result, on average, in a 28.67% increase in variance for 
freshwater systems (95% CI: 15.43 to 47.16%, 𝑝8*8*  = < 0.0001), a 15.63% increase in marine systems 
(95% CI: 0.59 to 30.41%, 𝑝8*8*  = < 0.0001), and a 13.03% increase in terrestrial systems (95% CI: 7.13 to 
19.4%, 𝑝8*8*  = < 0.0001) under a RCP8.5 climate scenario (Figure 8D). All results are taken from “Model 
6”. 



	 18	

 

Figure 8- Potential effects of climate change on trait variance. Model predictions for the expected change 
in 𝑙𝑛𝑉𝑅!!" across the globe for terrestrial, marine and freshwater ecthotherms. Predicted change in 
physiological rate variance for each population based on current temperatures (average from 2018-2022; 
A-C) as well as the expected change from current temperatures based on future temperature predictions 
(average from 2096-2100, D). Future climate predictions are the increase in variance expected under a 
RCP8.5 climate scenario relative to current climate conditions (% change). 
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Discussion 
Understanding acclimation capacity and how variation in physiological rates change across populations and 
species is important for predicting the ecological and evolutionary consequences of climate change (Chevin 
et al. 2010; Bolnick et al. 2011; Bush et al. 2016; Chevin & Hoffmann 2017; Sanderson et al. 2023; 
Seebacher et al. 2023; Urban et al. 2023). Here we show that both acclimation responses (𝑙𝑛𝑅𝑅!!") and 
increases in physiological rate variance (𝑙𝑛𝑉𝑅!!") of ectotherms varied across habitats. Our results uncover 
an hitherto unrecognised dynamic where the benefits of partial acclimation are paralleled by increases in trait 
variance that depend on habitat in ways that may have impacts on how ectotherm populations will be able to 
adapt to increased temperatures. 

Acclimation capacities vary among habitats but are often still limited 

We show that the capacity for acclimation of physiological rates differs across habitats. Our findings confirm 
previous results that quantify the different capacity of terrestrial, marine and freshwater ectotherms to 
acclimate (Gunderson & Stillman 2015; Seebacher et al. 2015; Morley et al. 2019). Our analysis confirms 
findings by Seebacher et al. (2015), Gunderson & Stillman (2015) and Morley et al. (2019) that all show a 
general inability of terrestrial ectotherms to physiologically acclimate. These consistent results are interesting 
given the different physiological traits measured in these meta-analyses (i.e., thermal limits versus 
physiological rates). 

The change in acclimation 𝑄"# we found in our expanded dataset was similar to Seebacher et al. (2015) for 
freshwater organisms (~17%), but higher in marine ectotherms (decrease of 16% versus ~10% in Seebacher 
et al. 2015), and opposite in terrestrial ectotherms (increase of ~6% compared to an ~8% decrease in 
Seebacher et al. 2015). The difference observed in terrestrial ectotherms between studies may be due to 
additional data from terrestrial species added in our analysis, and to the use of newly derived 𝑄"# effect sizes 
that allowed us to control for sampling variance. Greater capacity for acclimation in aquatic organisms may 
be the result of fewer opportunities for behavioural thermoregulation in aquatic environments making 
physiological remodeling important for maintaining homeostasis (Gunderson & Stillman 2015; Morley et al. 
2019). Importantly, even though marine and freshwater ectotherms were capable of partial acclimation, on 
average, the effect size was small (amounting to 𝑄"# dropping from ~1.8 to 1.6), suggesting that acclimation 
provides limited scope for aquatic ectotherms to adjust their physiology to higher temperatures. 

Biochemical traits (e.g., enzyme activities) were more likely to acclimate compared to whole-organism traits 
as predicted, but only for marine ectotherms, presumably because of the less complicated physiological 
networks that underlie specific biochemical processes (Schulte et al. 2011). However, whole-organism and 
biochemical traits acclimated to the same extent in freshwater ectotherms. Differences between marine and 
freshwater ectotherms do not appear to be related to the types of traits measured across the habitats but rather 
that the traits responded differently. However, it is important to note that whole-organism traits in marine 
ectotherms did respond in the same direction and of a similar magnitude to freshwater ectotherms, so it is 
possible the difference in marine habitats is simply a sampling artefact. 

Increased variability in physiological rates across habitats: adaptive potential of 
physiological processes in the face of climate change? 

Contrary to acclimation capacity variance in physiological rates increased across habitats with effect sizes 
being 3-5 times larger than those observed for acclimation of mean trait values. Mechanistically, it is unclear 
what exactly is contributing to the increased variation in physiological rates at higher temperatures, but it is 
likely the result of increased among-individual variability in how biochemical, cellular and physiological 
processes function at higher temperatures to maintain homeostasis (Somero 1995; Fields 2001; Angilletta 
2009; Schulte et al. 2011; Tattersall et al. 2012). Higher temperatures increase membrane fluidity affecting 
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electrochemical gradients and impacting protein structure and function (Somero 1995; Fields 2001; Tattersall 
et al. 2012). Such challenges (among others) may expose among-individual variation within a population. 
Indeed, there is considerable variation in acclimation capacity among individuals which would increase 
variance in thermal performance curves within populations (Schulte et al. 2011; Loughland & Seebacher 
2020). 

Importantly, increased variance in physiological rates was not equal among terrestrial, marine and freshwater 
ectotherms, with increases in variance being higher in freshwater ectotherms (~60% increase / 10°C) 
compared to terrestrial ectotherms (~36% increase / 10°C). One possible hypothesis for the differences in 
variability we observed across habitats could be that among-individual variation in key parameters affecting 
the shape of thermal performance curves differ between habitats (Huey & Kingsolver 1989; Angilletta 2009; 
Tattersall et al. 2012; Rezende & Bozinovic 2019). Our simulations suggest that theoretical and observed 
𝑙𝑛𝑉𝑅!!" match when thermal performance curves have different among-individual variance in thermal 
optima and breadth across habitats making this hypothesis plausible. Such patterns across habitats are 
expected given that terrestrial ectotherms should be adapted to more extreme and variable thermal 
environments. Theoretical models also suggest that populations with greater temporal environmental 
variability exhibit greater thermal breadth (Lynch & Gabriel 1987). However, we did not find support that 
thermal variation co-varied with 𝑙𝑛𝑉𝑅!!" (see below), as would be expected. The relevance of analyses of 
thermal variability will depend on temporal variation in temperature that is biologically relevant – a 
challenging feat across diverse taxa, but worthy of future investigation. 

Our results further highlight the potential vulnerability of terrestrial ectotherms to climate change. Assuming 
that changes in variation in physiological rates are underpinned by genetic variation, and that there is a 
genetic correlation with fitness, smaller increases in physiological variance could limit adaptation in 
terrestrial habitats more than aquatic habitats in the future (Hoffmann & Sgrò 2011; Urban et al. 2023). For 
example, under climate change we expect an increase in variance in physiological rates of only ~13% in 
terrestrial habitats whereas for freshwater habitats we expect variation in physiological rates to increase by 
~30%. Importantly, responses to selection will also depend on the magnitude and direction of genetic 
covariances with other traits, which need consideration. There will obviously be limits to variance increases, 
and we predict that organisms closer to their upper thermal limits (𝐶𝑇>.?) will have lower 𝑙𝑛𝑉𝑅!!" values 
compared to those farther away from 𝐶𝑇>.?. Some evidence points to possible differences across habitats in 
upper thermal limits already (Gunderson & Stillman 2015; Pinsky et al. 2019), making this a fruitful future 
question to explore. 

Plasticity and variance in physiological rates do not differ between life stages 

Acclimation capacities are expected to differ between life-stages because of distinct patterns of dispersal, 
habitat use and behaviour that force earlier life stages to cope with more variable environmental conditions 
which can also lead to developmental constraints on how physiological systems respond later in life (Stearns 
1976; Angilletta 2009; Martin 2015; Sinclair et al. 2016; Noble et al. 2018; O’Dea et al. 2019; Pottier et al. 
2022). In addition, plastic responses are also expected to be costly (Dewitt et al. 1998; Angilletta 2009), such 
costs can be magnified in later life reducing the capacity for plasticity (e.g., Rossi et al. 2019). These 
processes can also result in changes to intrapopulation variation in physiological rates at higher temperatures 
but the direction of change between early and adult life stages is likely to depend on the costs of adjusting 
physiological processes, energy reserves at different life stages, and the extent to which early life experiences 
constrain plasticity. 

Despite these expectations, our analysis does not show any significant differences between early and late life 
acclimation capacities and little change in the variance in physiological rates across habitats. This may not be 
too surprising given that such responses are likely context or trait-dependent (Moghadam et al. 2019; Carter 
& Sheldon 2020). The lack of differences we observed may be because both juvenile and adult animals 
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occupy similar thermal niches, disperse to a similar extent and exhibit comparable thermoregulatory 
behaviors making physiological responses to temperature similar. A focus on collecting more detailed 
information on behaviour, dispersal and thermal environments experienced by different life stages is likely to 
provide a more complete picture on when plasticity differs. We would also encourage more empirical focus 
on this question and its potential ecological and evolutionary implications. 

Past climate does not influence capacity for physiological acclimation or changes in 
variance 

Theoretical models predict that plasticity should evolve in populations experiencing greater environmental 
variability (spatial or temporal), particularly when fluctuations are predictable over time to make 
environmental cues reliable (Lande 2009; Chevin et al. 2010; Reed et al. 2010; Murren et al. 2015; Hendry 
2016; Nunney 2016; Chevin & Hoffmann 2017). Higher spatial and temporal heterogeneity in terrestrial 
habitats (Steele et al. 2019) therefore suggest that plasticity is more likely to evolve in terrestrial 
environments. However, if thermal variability is too high and unpredictable, the rates of acclimation decrease 
and there are increased costs associated with re-modelling physiological processes (Angilletta 2009) it would 
instead be expected that phenotypes are canalised during development (Angilletta 2009; Seebacher et al. 
2015; Leung et al. 2020, 2023; Loughland & Seebacher 2020; Rescan et al. 2022). The lack of acclimation in 
terrestrial ectotherms we observed is consistent with the latter hypothesis, and is supported by other meta-
analyses of heat tolerance (Gunderson & Stillman 2015; Barley et al. 2021) suggesting that there are costs to 
being plastic or that the environmental signals are insufficient to trigger endocrine and epigenetic 
mechanisms that lead to plasticity when environments are not predictable (Hendry 2016; Leung et al. 2020). 

Whether population capacity for acclimation is related to the thermal variability (or predictability) it 
experiences is equivocal. We show no relationship between acclimation capacity and thermal variability in 
marine, freshwater and terrestrial habitats. Our results are consistent with Gunderson & Stillman (2015) who 
show no relationship between plasticity in heat tolerance and latitude or thermal seasonality. However, other 
analyses on heat tolerance limits have found relationships between latitude (a proxy for seasonality) (Morley 
et al. 2019) or even direct measures of thermal variability (Verberk et al. 2024). Seebacher et al. (2015) also 
found that acclimation capacity was related to a populations thermal variability, however, relationships 
depended on the habitat and traits in question, and tropical animals showed greater acclimation capacity. 
Discrepancies across studies could be related to the taxa included in analyses (e.g., Morley et al. 2019), 
different traits or possibly the fact that different climate projections/models are being used to quantify 
thermal variability. Latitude covaries with a diversity of different ecological attributes aside from 
temperature (Louthan et al. 2021), which means it may be capturing other aspects of the environment that 
affect acclimation capacity. In addition, modelling realistic microenvironments across such diverse taxa is 
also challenging because it is unclear what the most appropriate spatial and temporal scale might be that is of 
evolutionary relevance. Historical temperature time series’ may not be representative of the selective 
environment a population has experienced making relationships between capacity for acclimation and 
temperature variability (or predictability) difficult to pin down. 

Conclusions and future directions 

Enhanced knowledge of how variation in physiological rates vary across populations and species, and the 
degree to which they can be adjusted in response to the environment leads to more informed predictions 
about the ecological and evolutionary dynamics of natural populations (Forsman 2015; Cooke et al. 2021; 
Sanderson et al. 2023; Seebacher et al. 2023). We show general patterns across taxa and habitats that provide 
a foundation to understand the relationship between plasticity and trait variance, as well as particular trade-
offs that could impact the benefits (or lack thereof) of acclimation. It is important to recognise, however, that 
these patterns do not necessarily apply to all populations. Substantial variation in acclimation responses and 
changes in variance exist among populations and traits, as evidenced by wide prediction intervals and 
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substantial study- and trait-level variance estimates, which is consistent with our understanding of factors 
influencing variation in performance curves across taxa (Tattersall et al. 2012; Rezende & Bozinovic 2019). 
Conservation efforts are often targeted at particular populations or species, and taxonomic differences are 
important in this context. Regardless, quantitative measures of the changes in variance in physiological rates 
could be better incorporated into physiological and ecological models to provide more nuanced, and possibly 
more realistic, predictions about the impacts of climate change on natural populations. While we do not yet 
understand the relative contribution of environmental and genetic factors to variance changes, models could 
better decouple how different levels of heritability and total variance impact evolutionary and ecological 
predictions. Our meta-analysis now provides the opportunity to parameterise such models, and ensure they 
are better aligned with empirical findings. 

Many fascinating questions remain unanswered that will require greater focus on the consequences of 
changes in variance (rather than just the mean). Particularly interesting questions include: How do 
differences in physiological rate variance change energy flow across trophic levels within communities? 
What are the biochemical, cellular, and physiological mechanisms that underlie differences in physiological 
rate variance across habitats? Are changes in variance in one trait associated with changes in other traits, or 
do some traits increase while others decrease? Are changes in physiological rate variance correlated with 
changes in genetic variation? Answers to these questions will require integrative approaches that combine 
empirical and theoretical work across multiple levels of biological organisation but will likely provide useful 
advances in understanding the full consequences that climate change will have on ectotherms across major 
ecosystems globally. 
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Supplemental Materials 
Literature Search Protocol and PRISMA flow diagram 

We performed a literature search using the Web of Science database for articles or proceedings papers 
published in English from 2013 to 2017 (the date after (Seebacher et al. 2015) searches were conducted) 
using the following topic search string: “(acclimat AND (therm* OR temp) NOT (plant OR tree* OR forest* 
OR fung* OR mammal* OR marsup* OR bird* OR human OR exercis* OR train* OR hypoxi))“. We 
further limited to the following research areas: Anatomy Morphology; Biodiversity Conservation; Biology; 
Ecology; Endocrinology Metabolism; Entomology; Evolutionary Biology; Marine Freshwater Biology; 
Physiology; Respiratory System, Reproductive Biology, Zoology. 

Our search resulted in 1,321 papers for screening in Rayyan (Ouzzani et al. 2016). We also cross-checked 
papers we found in our searches with a recent paper by Havird et al. (2020), which also updates the dataset of 
Seebacher et al. (2015)’s. We included any papers that were missed between our searches and those of 
Havird et al. (2020). Havird et al. (2020) added 7 new studies (mainly because they were focused on 
metabolic rates), and our searches differed from theirs by only a single paper (i.e., Bulgarella et al. 2015). 
Given the physiological traits we included were broader than Havird et al. (2020), we had a substantial 
increase in additional papers that we added to Seebacher et al. (2015)’s dataset. More specifically, in addition 
to the 191 papers we included from the Seebacher et al. (2015) dataset, we extracted data from an extra 65 
papers (with a total of 238 effects; a 34.03% increase in the number of published articles). Note that 
Seebacher et al. (2015) included a total of 205 publications, however, not all these contained the necessary 
statistics we needed to derive effect sizes and associated sampling variances (see below). While we may have 
missed papers, our goal was to obtain a large representative (and unbiased) sample of acclimation research 
rather than a comprehensive dataset. As such, our database represents the most up-to-date dataset used since 
Seebacher et al. (2015) to answer questions on physiological rates across ectotherms. 

We split the screening of titles and abstracts for the 1,321 papers found in our search among DWAN, FK, FS, 
and SN evenly. To ensure consistency among authors in title and abstract inclusion, relevant authors went 
through a randomly selected set of papers together before the formal screening to calibrate selection of 
papers based on our inclusion criteria (see below). In cases of disagreement regarding inclusion, we 
conservatively included the paper for full text screening and discussed uncertain papers among authors to 
come to a decision. After title and abstract screening, there was a total of 149 papers for full text screening. 
Papers were included only if they: 1) measured a physiological rate acutely at two temperatures on a sample 
of animals chronically exposed to the same two temperatures for at least 1 week; and 2) where physiological 
rates measured were burst and sustained locomotion, metabolic rates (standard, resting, routine and 
maximal), heart rates, and/or enzyme activities. Importantly, as in Seebacher et al. (2015), we only included 
studies that manipulated temperatures within normal thermal ranges for the species. 
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Figure S1- PRISMA flow diagram of the literature search and screening process. 

Further discussions on the assumptions of 𝒍𝒏𝑹𝑹𝑸𝟏𝟎, 𝒍𝒏𝑽𝑹𝑸𝟏𝟎 and 𝒍𝒏𝑪𝑽𝑹𝑸𝟏𝟎 estimates 

𝑙𝑛𝑅𝑅!!", 𝑙𝑛𝐶𝑉𝑅!!" and 𝑙𝑛𝑉𝑅!!", as with 𝑄"# more generally, all assume that the effect of temperature on 
physiological rates (or changes in relative variance) is log-linear. While this is likely in our data given that 
we restricted our analysis of 𝑄"# to standard operating temperatures for a given species, it may not always be 
satisfied given the diversity of species in our dataset. 𝑄"# (Hoff 1884) has been used extensively in the 
physiological literature to successfully address a multitude of questions (Seebacher et al. 2015; e.g., Havird 
et al. 2020). However, there is a preference for using a Boltzmann – Arrhenius (BA) relationship (or its 
extension, the Sharpe-Schoolfield model (Molnár et al. 2017; Michaletz & Garen 2024)) to model thermal 
effects on physiological rates (Gillooly et al. 2001; Michaletz & Garen 2024). While debate still exists over 
the utility of 𝑄"# when modelling temperature-dependence it is important to recognise that both BA and 𝑄"# 
can exhibit curvilinearity as temperatures increase (as discussed in (Michaletz & Garen 2024)). White et al. 
(2012) also showed that the BA model may not always perform better. For example, in eukaryotes, modelling 
thermal dependence using 𝑄"# provided a 5.8-fold better fit to metabolic rate data than the BA relationship 
(White et al. 2012). Given that studies included in our analysis never measured full performance curves at 
acute and acclimation temperatures it was not possible for us to compare different models of thermal 
dependence. Nonetheless, 𝑄"#-based effect sizes remain the most practical effect-size for comparing thermal 
dependence when using existing empircial data, with the benefit that these effects having convenient 
properties that make them suitable for meta-analysis. Nonetheless, we control for possible violations of the 
log-linearity assumption in our analyses. 
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Exploring the impact of maximum treatment temperature on 𝒍𝒏𝑹𝑹𝑸𝟏𝟎 

 

Figure S2- Bubble plot of the relationship between 𝑙𝑛𝑅𝑅!!" and maximum temperature used in treatments 
within a study. 
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How acclimation time is related to 𝒍𝒏𝑹𝑹𝑸𝟏𝟎 

 

Figure S3- Bubble plot of the relationship between 𝑙𝑛𝑅𝑅!!" and acclimation time for terrestrial (green), 
marine (orange) and freshwater (blue) habitats. Acclimation time is centered around the mean acclimation 
time (37.5 days) in the data. Not all studies reported acclimation time hence the total number of effects, k, 
was 1767. 
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Comparing cool and warm acclimated acute responses 

 

Figure S4- Mean acute 𝑙𝑛𝑅𝑅!!" for cool (blue) and warm (red) acclimated populations for terrestrial 
(diamonds), marine (square) and freshwater (circle) habitats. Note that points in each category show the 
full distribution of data irrespective of habitat for simplicity. k = total number of effect size estimates while 
the numbers in brackets indicate the number of species. Thick bars indicate 95% confidence intervals and 
thin bars indicate 95% prediction intervals. Note that means for all three habitats are displayed but there is 
weak evidence that the means differ between habitats given models with and without an interaction with 
habitat are equally supported. Note that x-axis is truncated for ease of visualisation. Sample sizes for each 
habitat for acute warm and cold are: marine [warm = (131, 38, 29), cold = (136, 41, 32)], freshwater [warm 
= (294, 76, 61), cold = (293, 77, 63)], terrestrial [warm = (83, 31, 35), cold = (84, 31, 35)]. Numbers within 
brackets are number of effects, number of studies and number of species. 

Climate data 

To understand how climate is related to a species’ physiological acclimation abilities and changes in variance 
we used the coordinates reported by each study to extract temperature data from terrestrial and aquatic 
environments. It was unclear whether climate at the locations of captive reared organisms would be 
representative of a population’s climate history - particularly for species reared under captive condition for 
many generations. Given that we were interested in understanding climate driven effects on acclimation 
capacity we only used studies on wild populations for climate analyses. 

Monthly average temperature data were extracted from the ERA5 climate model, available from the 
Copernicus climate data store (Hersbach et al. 2020). For each population and species in the dataset we 
extracted a 72-year period (1950-2022) of either surface air temperature (0.01° resolution) for both terrestrial 
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and freshwater taxa, or sea surface temperature for the marine taxa (at 0.25° resolution) using the ncdf4 R 
package (vers. 1.21, Pierce 2021). We chose surface temperature because we believed that it was more likely 
to reflect the micro-thermal environment experienced by terrestrial and freshwater ectotherms at those 
locations. 

Using the thermal time-series data for each location we calculated metrics of thermal variability across 
months and years as well as estimates of thermal predictability (i.e., autocorrelation). To estimate thermal 
variability, we calculated the coefficient of variation (@A

8
, where SD = standard deviation in temperature and 

M = the mean temperature for each year). We also estimated thermal predictability, by calculating the auto-
regressive time lag across months (i.e., a measure of how correlated temperatures were between months), 
however, identifying biologically relevant lags for such diverse taxa is challenging. As such, we present a 
coarse analysis using this metric of thermal predictability in the Supplemental Materials below. 

Lastly, to illustrate the effects that climate warming could have on physiological rate variance we also 
extracted climate projections into the future. We used the CanESM2 climate model (2005-2100) [vers. 1.2.0; 
Hufkens et al. (2019)] under a high emissions scenario (RCP8.5). 

Mean-variance relationships to understand patterns in 𝒍𝒏𝑪𝑽𝑹𝑸𝟏𝟎 

We explored mean-variance relationships for the acute and acclimation responses across all traits and 
habitats. We estimated the scaling relationship between log standard deviation in physiological rates 
[log(SD)] and log mean physiological rates [log(mean)], accounting for non-independence resulting from 
effects coming from the same species, study and traits (i.e., random effects of species, study and trait) as 
done in our main analyses. We also included an interaction between log(mean) and habitat type to better 
understand how the scaling relationship between log(SD) and log(mean) varies across habitats. 

Overall, we found that the relationship between log(mean) and log(SD) of the acute and acclimation 
responses was generally linear (Figure S5). Overall, the scaling relationship between log(SD) and log(mean) 
was sub-linear across all habitats (Table S1), however, ectotherms from terrestrial habitats had much 
shallower slopes than marine and freshwater ectotherms, particularly at higher treatment temperatures, 
indicating increased mean physiological rates generally do not result in higher between individual variance in 
physiological rates (Table S1). Interestingly, in marine ectotherms the slope was highest at cooler 
temperatures, whereas the slope was suppressed when acclimated and/or measured at higher temperatures 
(i.e., r.1. compared to r1.2, r2.1, r2.2) (Table S1). In freshwater ectotherms, there we some differences in 
scaling relationships but they were all fairly comparable no matter what acclimation and test temperature 
(Table S1). 
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Figure S5- Mean-standard deviation relationships for the acute and acclimation responses across all 
habitats. Relationships are depicted for the low temperature treatment of the study (A) and high 
temperature treatment (B). 
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Table S1: Slopes and 95% credible intervals (lower = 2.5% and upper = 97.5%) of log transformed 
standard deviation (log(SD)) and log transformed mean (log(mean)) for each of the four treatment types 

(r1.1, r1.2, r2.1, r2.2). Note that r1.1 and r2.2 represent measurements of physiological rates of acclimated 
animals and measured at their respective acclimation temperature. In contrast, r1.2 and r2.1 are acute 

measurements. See Figure 1 in main manuscript for full details on treatments. 

Type Treatment Habitat Slope 2.5% 97.5% 

Acclimation r1.1 Freshwater 0.92 0.89 0.96 

Acute r1.2 Freshwater 0.95 0.91 0.98 

Acute r2.1 Freshwater 0.94 0.91 0.97 

Acclimation r2.2 Freshwater 0.98 0.94 1.01 

Acclimation r1.1 Marine 0.99 0.93 1.03 

Acute r1.2 Marine 0.90 0.84 0.95 

Acute r2.1 Marine 0.91 0.86 0.96 

Acclimation r2.2 Marine 0.90 0.85 0.95 

Acclimation r1.1 Terrestrial 0.83 0.75 0.90 

Acute r1.2 Terrestrial 0.82 0.75 0.90 

Acute r2.1 Terrestrial 0.75 0.67 0.82 

Acclimation r2.2 Terrestrial 0.73 0.66 0.81 
	

Comparing relative variance changes using 𝒍𝒏𝑪𝑽𝑹𝑸𝟏𝟎 

Overall, analyses with 𝑙𝑛𝐶𝑉𝑅!!" showed similar patterns to those with 𝑙𝑛𝑉𝑅!!", except that, because of rates 
being taken into consideration and there being strong mean-variance relationships, the patterns were 
generally opposite in direction. Either way, the relative differences are quite similar. Overall, analysis of 
𝑙𝑛𝐶𝑉𝑅!!" suggested that relative variance decreased with higher temperatures across all habitat types, with 
terrestrial ectotherms having the largest decrease in relative variance (Figure S6). There were also no major 
differences in the relative differences among broad trait categories (Figure S7) or life-history stages (Figure 
S8). 



	 37	

 

Figure S6- Estimated mean acute and acclimation 𝑙𝑛𝐶𝑉𝑅!!" for marine, freshwater and terrestrial habitats. 
The percentage change in variance is also back calculated. Note that these are raw variances and do not 
account for changes in mean physiological rates. k = total number of effect size estimates while the 
numbers in brackets indicate the number of species. Thick bars are 95% confidence intervals (CI) and thin 
bars 95% prediction intervals (PI). 𝛽 values are the contrasts between acute and acclimation means within 
each habitat with ‘NS’ signifiying no significant differences. 𝜇 values are the overall meta-analytic means 
averaged across acute and acclimation types within each habitat type. In both cases, their 95% CI’s are 
indicated within square brackets. 𝑝8*8*  values are the posterior probability of the contrast or overall meta-
analytic mean being different from zero. For ease of visualisation, all the raw data plotted for both acute 
and acclimation type effect sizes are presented as circles. 

 

Figure S7- Estimated mean acclimation and acute 𝑙𝑛𝐶𝑉𝑅!!" for tissue/whole-orgamism traits and 
biochemical traits across terrestrial (A), marine (B) and freshwater (C) habitats. Across all plots, thick bars 
indicate 95% confidence intervals and thin bars indicate 95% prediction intervals. k = total number of 
effect size estimates while the numbers in brackets indicate the number of species. For ease of 
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visualisation, raw data for both trait categories are presented but points are not distinguished by different 
symbols. 𝛽 values are the contrasts between acute and acclimation means within each life stage. 𝑝8*8*  
values are the posterior probability of the contrast being different from zero. 

 

Figure S8- Estimated mean acclimation and acute 𝑙𝑛𝐶𝑉𝑅!!" for adult (a) and juvenile (j) life-history stages 
for terrestrial (A), marine (B) and freshwater (C) ectotherms. Across all plots, thick bars indicate 95% 
confidence intervals and thin bars indicate 95% prediction intervals. k = total number of effect size 
estimates while the numbers in brackets indicate the number of species. For ease of visualisation, raw data 
for both adult and juvenile life-history stages are presented but points are not distinguished by different 
symbols. 𝛽 values are the contrasts between acute and acclimation means within each life stage. 𝑝8*8*  
values are the posterior probability of the contrast being different from zero. 

Acute and acclimation for detailed trait categories across marine, freshwater and terrestrial taxa 

In addition to the broader trait categories we fit models to understand how acute and acclimation effect sizes 
varied across more detailed trait categories. To achieve this, we categorized each effect size into one of 12 
trait categories. These categories included measures of whole organism performance measures including 
cardiac (i.e., ‘cardiac’) and muscle (‘muscle’) function, sprint speed (‘sprint’) and endurance (‘endurance’) 
and metabolic rates (i.e., maximal and resting metabolic rate; max MR’, ‘rest MR’, respectively). Studies 
also quantified various enzymatic reaction rates, including enzymes involved in general metabolic responses 
(categorized as ‘metabolic enzyme’), various parts of the electron transport chain, including ATPase activity 
(‘ATPase’), mitochondrial leak (‘Proton Leak’) and oxidation (‘OXPHOS’, short for Oxidative 
Phosphorylation), as well as antioxidant enzymes (‘antiox’). All other traits not falling within these 
categories were placed into ‘other’. 

Acclimation capacity varied across trait categories and habitat with measures of resting metabolic rate, 
including associated biochemical reactions like oxidative phosphorylation (OXPHOS) and ATPase activity, 
acclimating in marine and freshwater ectotherms (Figure S9). Whether variation in physiological rates 
changes also depended on trait type, with freshwater ectotherms generally maintaining variance in 
physiological rates better than marine and freshwater ectotherms (Figure S10 & Figure S11). We note though 
that some traits have very small sample sizes on their own and should be interpreted with caution. 
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Figure S9- Acute and Acclimation 𝑙𝑛𝑅𝑅!!" across detailed trait categories for A) marine, B) freshwater 
and C) terrestrial systems. k = total number of effect size estimates while the numbers in brackets indicate 
the number of species. Thick bars indicate 95% confidence intervals and thin bars indicate 95% prediction 
intervals. The x-axis is truncated for ease of visualisation. See methods section “Moderator Variables” for 
a full description of the trait categories. 
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Figure S10- Acute and acclimation 𝑙𝑛𝑉𝑅!!" across traits for A) marine, B) freshwater and C) terrestrial 
systems. k = total number of effect size estimates while the numbers in brackets indicate the number of 
species. Thick bars indicate 95% confidence intervals and thin bars indicate 95% prediction intervals. The 
x-axis is truncated for ease of visualisation. See methods section “Moderator Variables” for a full 
description of the trait categories. 
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Figure S11- Acute and acclimation 𝑙𝑛𝐶𝑉𝑅!!" across traits for A) marine, B) freshwater and C) terrestrial 
systems. k = total number of effect size estimates while the numbers in brackets indicate the number of 
species. Thick bars indicate 95% confidence intervals and thin bars indicate 95% prediction intervals. The 
x-axis is truncated for ease of visualisation. See methods section “Moderator Variables” for a full 
description of the trait categories. 
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Plots of 𝑰𝟐 for multilevel models 

 

Figure S12- 𝐼$ estimates. A) 𝑙𝑛𝑅𝑅!!" B) 𝑙𝑛𝐶𝑉𝑅!!" and C) 𝑙𝑛𝑉𝑅!!". 

Environmental predictability 

Theoretical models highlight the importance of environmental predictability in selecting for plastic 
responses. However, capturing environmental predictability is challenging given that it is unclear which 
timescale one should select. For example, is it more important to look at correlation between temperatures 
monthly or seasonally. In addition, such temporal resolution will likely depend on the species in question 
given that for some species fine-grained thermal predictability maybe more important compared to others. 

With these limitations in mind, we used our temperature time series to calculate auto regressive correlation in 
temperature across the entire time series. We then modeled how this measure of thermal predictability was 
related to plasticity. We found no relationship between our estimate of environmental predictability and 
effect sizes (Figure S13). 
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Figure S13- Predicted mean acclimation (thick black line) 𝑙𝑛𝑅𝑅!!"&''()*  (A) and 𝑙𝑛𝐶𝑉𝑅!!"&''()*  (B) as a 
function of the thermal predictability for wild populations across marine, freshwater and terrestrial 
habitats. Dashed lines indicate 95% confidence intervals and dotted lines indicate 95% prediction intervals. 
Model slope (𝛽) along with the 95% CI and 𝑝8*8*  values for the slopes are shown for each habitat. 

Publication bias analysis 

 

Figure S14- Funnel plot of precision (1/sampling standard error) against effect size for A) log response 
ratio 𝑄"# (𝑙𝑛𝑅𝑅!!"), B) log coefficient of variance ratio 𝑄"# (𝑙𝑛𝐶𝑉𝑅!!") and C) log variance ratio 𝑄"# 
(𝑙𝑛𝑉𝑅!!"). Both acute (‘black’) and acclimation (‘grey’) effect sizes are plotted. 

Funnel plots did not show any noticeable deviation from the typical funnel shape for any of the effect size 
estimates (Figure S14). Meta-regression models including sampling standard error as a moderator also 
suggested no relationship with effect size for 𝑙𝑛𝑅𝑅!!" (𝛽 = -0.09, 95% CI: -0.35 to 0.17, 𝑝8*8*  = 0.48), 
𝑙𝑛𝐶𝑉𝑅!!" (𝛽 = 0.04, 95% CI: -0.41 to 0.49, 𝑝8*8*  = 0.85) or 𝑙𝑛𝑉𝑅!!" (𝛽 = -0.07, 95% CI: -0.57 to 0.44, 
𝑝8*8*  = 0.79) was not significant indicating little evidence for publication bias. 

Performance Curve Simulations 

To better understand the characteristics of the performance curves in a sample that would lead to observed 
changes in variance (and relative variance) across temperature we conducted a simple simulation. To 
simulate performance curves, we used an asymmetrical Gaussian function (Equation 9): 

𝑃2 = 2𝜖3
(235)0
$70 𝛷 +𝛼

𝑇 − 𝛿
𝜎 ,  (9) 

where 𝑇 is the temperature gradient, 𝛿 is the optimal temperature (the temperature where performance is 
maximized), 𝜎 is the performance breadth, and 𝛼 is the skewness of the performance function or rate 
variation. To understand how each parameter impacts the shape of performance curves, we simulated 40 
individuals with varying amounts of between individual variation in performance breadth, optima and rate 
variation. We then calculated the relative variance in performance across the temperature gradient as the 
variance in performance at each temperature divided by the maximum performance at that temperature. This 
simple analysis identified thermal optima and breath as being the major factors likely leading to the observed 
patterns in 𝑙𝑛𝑉𝑅!!" we identify in our meta-analysis. 
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Figure S15- Simulated performance curves for n = 40 individuals in four hypothetical scenerios with 
varying performance breadth (𝜎), optima (𝛿) and skewness (𝛼). Individual performance curves are 
different colours. 𝑙𝑛𝐶𝑉𝑅!!" is calculated as the log transformed ratio of the coefficient of variance (CV) in 
performance at the higher temperature divided by the CV in performance at that temperature at each point 
along the curve. 𝑙𝑛𝑉𝑅!!" is calculated as the log transformed ratio of the standard deviation in 
performance at the higher temperature divided by the standard deviation in performance at that 
temperature. The dashed red line indicates the higher temperature (28°C) and the dashed blue line indicates 
the lower temperature (18°C). Note that the mean (𝜇) and standard deviation (𝜎) of physiological rates are 
shown for each temperature. In all simulations, 𝛿 = 35, 𝜎 = 9 and 𝛼 = -15, while between individual 
variation for 𝜎5 = 1, 𝜎7 = 0.5 and 𝜎= = 0.5. 
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