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Abstract 14	

Climate change is expected to result in warmer and more variable thermal environments globally. Greater 15	
thermal variability is expected to result in strong selection pressures leading to genetic adaptation and/or the 16	
evolution of adaptive phenotypic plasticity. Such responses depend on genetic and phenotypic variability. 17	
However, most work has focused on changes in mean phenotypic responses to climate warming ignoring 18	
how temperature may also change phenotypic variability. Phenotypic variability may be particularly 19	
important at extreme, high temperatures, which would facilitate selection of resistant individuals or promote 20	
plasticity (acclimation) and thereby increase resilience to heat waves. Using newly developed effect size 21	
estimates and meta-analysis (>1900 effects from 226 species), we show that across habitats relative variance 22	
in physiological rates decreased at higher temperatures. Freshwater ectotherms are capable of acclimating 23	
and have the smallest reductions in relative variance. Marine organisms also showed a capacity to acclimate 24	
to higher temperatures, but capacity for plasticity traded-off with a reduction in relative variance in 25	
physiological rates at higher temperatures. Relative variance reductions were particularly pronounced for 26	
terrestrial ectotherms, and this coincided with a lack of capacity for acclimation, highlighting the 27	
vulnerability of terrestrial ectotherms to climate change. Neither life-history stage nor past climate explained 28	
effect variability. Our results show that beneficial acclimation responses may trade-off with reductions in 29	
physiological rate variance. This trade-off could constrain evolutionary responses to climate change and 30	
reduce the potential benefits of portfolio effects. These findings have important evolutionary and ecological 31	
ramifications that affect our understanding of how climate change will impact populations now and in the 32	
future. 33	

Introduction 34	

Climate change is expected to result in warmer but also more variable thermal environments globally 35	
(Easterling et al. 2000; Ummenhofer & Meehl 2017; Suarez-Gutierrez et al. 2023). Greater thermal 36	
variability in the past should result in strong selection pressures that lead to genetic adaptation and/or the 37	
evolution of adaptive phenotypic plasticity – both of which are considered important for population resilience 38	
to contemporary human-induced climate change (Chevin et al. 2010; Merila & Hendry 2014; Chevin & 39	
Lande 2015; Seebacher et al. 2015, 2023; Nunney 2016; Chevin & Hoffmann 2017; Cooke et al. 2021). 40	
Without plasticity or adaptation, high extinction rates are predicted unless organisms can migrate to track 41	



suitable habitats (Cahill et al. 2012; Nunney 2016). Phenotypic plasticity is expected to be the ‘first line of 42	
defence’ against changing climates, thereby buying time for genetic adaptation to take place (i.e., the 43	
‘plasticity first hypothesis’)(West-Eberhard 2003; Lande 2009). Phenotypic plasticity is predicted to evolve 44	
when environmental variability is high but predictable and the costs of plasticity are low (Dewitt et al. 1998; 45	
Reed et al. 2010; Nunney 2016; Chevin & Hoffmann 2017; Scheiner et al. 2020). Despite this theoretical 46	
expectation, empirical support is scant (but see (Leung et al. 2020)), likely because many organisms can 47	
behaviorally adjust micro-habitat selection to offset thermal stress, the costs of plasticity are high (Dewitt et 48	
al. 1998; Chevin & Lande 2015), or the prediction is only supported for specific life-history stages. 49	

Reversible phenotypic plasticity, such as acclimation, is expected to provide greater potential to buffer 50	
populations from climate impacts as responses are relatively rapid and can therefore be fine-tuned to 51	
proximate environmental conditions (assuming the costs of plasticity are low) (Dewitt et al. 1998; Scheiner 52	
et al. 2020). Acclimation is driven by endocrine and epigenetic processes that change the underlying 53	
physiology to facilitate a rapid response to the environment (Little et al. 2013; Taff & Vitousek 2016; 54	
Seebacher & Simmonds 2019). However, the focus up to now has been primarily on mean physiological 55	
responses. For example, mean thermal tolerances or acclimation capacities in a population are likely to shift 56	
in response to thermal environments (Gunderson & Stillman 2015; Seebacher et al. 2015; Havird et al. 2020; 57	
Pottier et al. 2022). However, it is possible that intrapopulation variability might also be impacted in addition 58	
to the mean. Understanding how variability in physiological rates – traits thought to be closely linked to 59	
fitness – are affected by climate change is important because lack of physiological variation can limit 60	
responses to selection (i.e., the ‘opportunity for selection on a trait’) (Pelletier & Coulson 2012). Higher 61	
physiological variance in a population may also indicate greater niche breadth which can buffer populations 62	
against environmental change (i.e., the portfolio effect) (Schindler et al. 2010; Bolnick et al. 2011; Slatyer et 63	
al. 2013; Sanderson et al. 2023; Zheng et al. 2023). Decreases in phenotypic variance also suggests strong 64	
stabilising selection or reflects constraints on performance (Dewitt et al. 1998; Scheiner et al. 2020). 65	
Changes in physiological trait variation may also have important ecological consequences by promoting 66	
population productivity and stability (Kooijman et al. 1989; Agashe 2009), species coexistence and 67	
ecosystem processes (Imura et al. 2003; Bolnick et al. 2011; Hart et al. 2016; Sanderson et al. 2023). The 68	
implications of changes in variance could, therefore, have wide-reaching consequences for understanding the 69	
capacity of populations to persist in and adapt to novel environments but to date there are few data testing the 70	
importance of variances in this context (Scheiner et al. 2020). 71	

Periods of past climatic change have had disproportionate impacts on some ecosystems over others raising 72	
the question of which ecosystems will be most vulnerable to contemporary climate change. Species 73	
occupying terrestrial ecosystems are thought to be particularly vulnerable given their weak acclimation 74	
abilities and greater probability of experiencing thermal extremes that overwhelm physiological homeostasis 75	
(Hoffmann et al. 2013; Gunderson & Stillman 2015; Seebacher et al. 2015). However, this conclusion has 76	
been questioned given that marine ectotherms have recently been shown to be closer to their upper thermal 77	
limits compared to terrestrial species (Pinsky et al. 2019). Marine and freshwater ecosystems appear to have 78	
greater physiological acclimation capacity (e.g., Seebacher et al. 2015; Pottier et al. 2022). However, it is 79	
unclear if the magnitude of physiological adjustment is sufficient to compensate for potentially negative 80	
environmental effects, particularly when temperature interacts with other abiotic changes. Low oxygen 81	
availability may be a major factor influencing the vulnerability of aquatic ecosystems, whereas remaining 82	
close to thermal limits and greater water loss is expected to be a stronger constraint on physiological 83	
processes in terrestrial ectotherms (Verberk et al. 2016). Given that terrestrial ectotherms are expected to be 84	
closer to their thermal limits, an increase in temperature may have a stronger impact on variation in 85	
physiological rates within populations compared to aquatic ectotherms which may have important cascading 86	
effects on energy transfer and productivity across different ecosystems (Barneche et al. 2021; Seebacher et 87	
al. 2023). 88	

Here, we use meta-analysis to re-evaluate the degree to which aquatic and terrestrial ectotherms are capable 89	
of physiological plasticity. We then developed new effect sizes effect sizes to quantify how variance in 90	



physiological rates change with temperature to ask the following questions: 1) How much is variance in 91	
physiological rates expected to change, if at all, as temperatures rise? 2) Are temperature effects on plastic 92	
adjustments in physiological rates larger than changes in variance across aquatic and terrestrial ectotherms? 93	
3) Are changes in plasticity or variance in physiological rates impacted by past climate history? 4) How are 94	
means and variances in physiological rates expected to change under climate change? 95	

Materials and Methods 96	

Literature collection 97	

We compiled literature on ectothermic animals that measured physiological rates (e.g., metabolic rate) at two 98	
or more temperatures after having been acclimated (or acclimatized) at these temperatures. We used data 99	
from a previous meta-analysis (Seebacher et al. 2015) and updated Seebacher et al. (2015)’s data by 100	
extracting data from suitable studies from our own searches that followed the same search protocol. More 101	
specifically, we performed a literature search using the Web of Science database for articles or proceedings 102	
papers published in English from 2013 to 2017 (the date after Seebacher et al. 2015 searches were 103	
conducted) using the following topic search string: “(acclimat AND (therm* OR temp) NOT (plant OR tree* 104	
OR forest* OR fung* OR mammal* OR marsup* OR bird* OR human OR exercis* OR train* OR 105	
hypoxi))“. We further limited to the following research areas: Anatomy Morphology; Biodiversity 106	
Conservation; Biology; Ecology; Endocrinology Metabolism; Entomology; Evolutionary Biology; Marine 107	
Freshwater Biology; Physiology; Respiratory System, Reproductive Biology, Zoology. 108	

Our search resulted in 1,321 papers for screening in Rayyan (Ouzzani et al. 2016). We also cross-checked 109	
papers we found in our searches with a recent paper by Havird et al. (2020), which also updates the dataset of 110	
Seebacher et al. (2015)’s. We included any papers that were missed between our searches and those of 111	
Havird et al. (2020). Havird et al. (2020) added 7 new studies (mainly because they were focused on 112	
metabolic rates), and our searches differed from theirs by only a single paper (i.e., Bulgarella et al. 2015). 113	
Given the physiological traits we included were broader, we had a substantial increase in additional papers 114	
that we added to Seebacher et al. (2015)’s dataset. More specifically, in addition to the 191 papers we 115	
included from the Seebacher et al. (2015) dataset, we extracted data from an extra 65 papers (with a total of 116	
238 effects; a 34.03% increase in the number of published articles). Note that Seebacher et al. (2015) 117	
included a total of 205 publications, however, not all these contained the necessary statistics we needed to 118	
derive effect sizes and associated sampling variances (see below). While we may have missed papers, our 119	
goal was to obtain a large representative (and unbiased) sample of acclimation research rather than a 120	
comprehensive dataset. As such, our database represents the most up-to-date dataset used by Seebacher et al. 121	
(2015) to answer questions on physiological rates across ectotherms. 122	

We split the screening of titles and abstracts for the 1,321 papers found in our search among DWAN, FK, FS, 123	
and SN evenly. To ensure consistency among authors in title and abstract inclusion, relevant authors went 124	
through a randomly selected set of papers together before the formal screening to calibrate selection of 125	
papers based on our inclusion criteria (see below). In cases of disagreement regarding inclusion, we 126	
conservatively included the paper for full text screening and discussed uncertain papers among authors to 127	
come to a decision. After title and abstract screening, there was a total of 149 papers for full text screening. 128	
Papers were included only if they: 1) measured a physiological rate acutely at two temperatures on a sample 129	
of animals chronically exposed to the same two temperatures for at least 1 week; and 2) where physiological 130	
rates measured were burst and sustained locomotion, metabolic rates (standard, resting, routine and 131	
maximal), heart rates, and/or enzyme activities. We provide a PRISMA flow diagram of our extraction 132	
process in the Supplement (see Figure S1). 133	



Data Compilation 134	

We extracted means, standard deviations, and sample sizes for physiological rates at the two test 135	
temperatures. If there were more than two test temperatures, we chose only the test temperatures that fell 136	
within the most likely natural range of temperatures experienced by the species in question. We extracted 137	
these data from text, tables or figures of a given paper. Data were extracted from figures using the R package 138	
metaDigitise (Pick et al. 2019). We also recorded the phylum, class, order, genus and species, and the 139	
latitude and longitude from where the experimental animals were sourced. For studies that did not provide 140	
latitude and longitude for the population, we searched for similar studies by the same lab group to identify 141	
where the population was likely to have been sourced. If the experimental animals were derived from the 142	
wild, we recorded the nearest latitude and longitude of the field collection site. If the animals were sourced 143	
from a commercial supplier, we took the latitude and longitude of the supplier. When it was not possible to 144	
find latitude and longitude using these methods, we looked up the distribution of the species in question and 145	
took the latitude and longitude of the centroid of the species’ distributional range. 146	

𝑸𝟏𝟎 Based Effect Sizes and Sampling Variances for Means and Variances 147	

Following Noble et al. (2022) we calculated a series of temperature-corrected effect sizes that compared 148	
mean physiological rates (𝑙𝑛𝑅𝑅!!") as well as the variability in physiological rates (𝑙𝑛𝑉𝑅!!" and 𝑙𝑛𝐶𝑉𝑅!!"). 149	
These effect sizes are similar to the traditional temperature coefficient (𝑄"#), but with formal analytical 150	
approximations of their sampling variances. Sampling variances for effect sizes allowed us to make use of 151	
traditional meta-analytic modelling approaches. 152	

Comparing changes in mean physiological rates 153	

To compare mean physiological rates, we calculated the log 𝑄"# response ratio, 𝑙𝑛𝑅𝑅!!" (Noble et al. 2022) 154	
as follows: 155	

𝑙𝑛𝑅𝑅!!" = 𝑙𝑛 *
𝑅$
𝑅"
+ *	

10∘𝐶
𝑇$ − 𝑇"

+  (1) 156	

Where, 𝑅" and 𝑅$ are mean physiological rates and 𝑇" and 𝑇$ are the temperatures at which these rates are 157	
measured. Log transformation of this ratio makes the effect size normally distributed. Equation 1 is 158	
essentially a temperature corrected equivalent to the log response ratio (lnRR) (Hedges et al. 1999; 159	
Lajeunesse 2011) when the numerator and denominator are measured at different temperatures. This allows 160	
comparisons of the means from two temperature treatments directly regardless of the absolute measurement 161	
temperatures. The sampling variance for Equation 1 can be computed as follows (as described in Noble et al. 162	
(2022)): 163	
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+
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: *	
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+
$

  (2) 164	

Here, 𝑆𝐷"$ and 𝑆𝐷$$ are the standard deviations and 𝑁" and 𝑁$ are the sample sizes in group 1 and 2, 165	
respectively. 166	

Comparing variance in physiological rates 167	

Nakagawa et al. (2015) proposed analogous effect size estimates to lnRR that allow for comparisons of 168	
changes in variance between two groups, the log variance ratio (lnVR) and the log coefficient of variation 169	
(lnCVR). lnVR and lnCVR are ratios that describe the relative difference in trait variability between two 170	
groups. We refer readers to Nakagawa et al. (2015) for the equations describing lnVR and lnCVR, but these 171	
can easily be extended to their 𝑄"# analogues (and associated sampling variance) as follows: 172	



𝑙𝑛𝑉𝑅!!" = 𝑙𝑛 *
𝑆𝐷$
𝑆𝐷"

+ *	
10∘𝐶
𝑇$ − 𝑇"

+  (3) 173	

𝑠&')(#!" = *
1

2(𝑁$ − 1)
+

1
2(𝑁" − 1)

+ *	
10∘𝐶
𝑇$ − 𝑇"

+
$

  (4) 174	

Equation 3 and Equation 4 describe the change in physiological rate variance (Equation 3) across a 10°C 175	
temperature change along with its sampling variance (Equation 4). While this is a useful metric, as discussed 176	
by Nakagawa et al. (2015) there is often a strong mean-variance relationship that needs to be accounted for in 177	
analysing changes in variance. As such, we calculated the coefficient of variation, which standardizes 178	
changes in variance for changes in means as follows: 179	

𝑙𝑛𝐶𝑉𝑅!!" = 𝑙𝑛 *
CV$
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where 𝐶𝑉 is the coefficient of variation defined as 𝑆𝐷/𝑅. We refer to 𝑙𝑛𝐶𝑉𝑅!!" as relative variance because 182	
variance changes are relative to the mean. 183	

Calculating acute and acclimation 𝒍𝒏𝑹𝑹𝑸𝟏𝟎, 𝒍𝒏𝑽𝑹𝑸𝟏𝟎 and 𝒍𝒏𝑪𝑽𝑹𝑸𝟏𝟎 estimates 184	

Using the mean, standard deviation, and sample size for all acute and acclimation treatments of studies in our 185	
databases we derived acute and acclimation 𝑙𝑛𝑅𝑅!!", 𝑙𝑛𝑉𝑅!!" and 𝑙𝑛𝐶𝑉𝑅!!" estimates. For all effect sizes 186	
the higher acute or acclimation temperature was in the numerator and the lower of the two temperatures in 187	
the denominator. As such, positive effect sizes suggest that the mean or variance is larger at the higher of the 188	
two temperatures, standardized to 10°C. 189	

Moderator Variables 190	

We recorded or derived a series of moderator variables from each study that are expected to have an impact 191	
on our effect size estimates. These included the duration of acclimation in days and acclimation type 192	
(“acclimation” or “acclimatization”) given that acclimation responses are expected to depend on how long 193	
chronic temperature exposure occurs (longer exposure = better acclimation response) (Seebacher et al. 2015). 194	
We also recorded if the sample of animals were derived from captive or wild stocks, the life-history stage of 195	
the animals used (“adult” or “juvenile”) and the habitat type (“freshwater”, “marine” or “terrestrial”) given 196	
that Seebacher et al. Seebacher et al. (2015) show that these factors can impact 𝑄"# estimates. Physiological 197	
rate measures varied widely across the studies but could generally be grouped into discrete trait categories 198	
(Seebacher et al. 2015). As such, using the detailed information on the trait type, and its associated units 199	
from a given study, we categorized each effect size into one of 12 trait categories. These categories included 200	
measures of whole organism performance measures including cardiac (i.e., ‘cardiac’) and muscle (‘muscle’) 201	
function, sprint speed (‘sprint’) and endurance (‘endurance’) and metabolic rates (i.e., maximal and resting 202	
metabolic rate; max MR’, ‘rest MR’, respectively). Studies also quantified various enzymatic reaction rates, 203	
including enzymes involved in general metabolic responses (categorized as ‘metabolic enzyme’), various 204	
parts of the electron transport chain, including ATPase activity (‘ATPase’), mitochondrial leak (‘mito_leak’) 205	
and oxidation (‘mito_oxidation’) as well as antioxidant enzymes (‘antiox’). All other traits not falling within 206	
these categories were placed into ‘other’. 207	

Climate Data 208	

To understand how climate has impacted species’ physiological acclimation abilities we used the coordinates 209	
reported by each study to extract temperature data from terrestrial and aquatic environments. It was unclear 210	



whether climate at the locations of captive reared organisms would be representative of a population’s 211	
climate history - particularly for species reared under captive condition for many generations. Given that we 212	
were interested in understanding climate driven effects on acclimation capacity we only used studies on wild 213	
populations for climate analyses. 214	

Monthly average temperature data were extracted from the ERA5 climate model, available from the 215	
Copernicus climate data store (Hersbach et al. 2020). For each population and species in the dataset we 216	
extracted a 72-year period (1950-2022) of either surface air temperature (0.01° resolution) for both terrestrial 217	
and freshwater taxa, or sea surface temperature for the marine taxa (at 0.25° resolution) using the ncdf4 R 218	
package (vers. 1.22, Pierce 2021). We chose surface temperature because we believed that it was more likely 219	
to reflect the micro-thermal environment experienced by terrestrial and freshwater ectotherms at those 220	
locations. For terrestrial species we estimated soil temperatures as this maybe more representative of 221	
microhabitat choice compared to air temperature. We fit models using both air and soil temperature and 222	
found that the results were qualitatively similar. We therefore only present results for air temperature. 223	

Using the thermal time-series data for each location we calculated metrics of thermal variability across 224	
months and years as well as estimates of thermal predictability (i.e., autocorrelation). To estimate thermal 225	
variability, we calculated the coefficient of variation (,-

.
, where SD = standard deviation in temperature and 226	

M = the mean temperature for each year). To estimate thermal predictability, we calculated the auto-227	
regressive time lag across the entire dataset. Theoretical and empirical studies of plasticity evolution have 228	
emphasised the importance of both climate variability and predictability in plasticity evolution. 229	

Lastly, to illustrate the effects that climate warming could have on physiological rate variance we also 230	
extracted climate projections and calculated thermal variability and predictability for the future. We used the 231	
CanESM2 climate model (2005-2100) under a high emissions scenario (RCP8.5). 232	

Meta-Analysis 233	

We analysed our data using multilevel meta-analytic (MLMA) and meta-regression (MLMR) models in R 234	
(vers. 4.3.1) using brms (vers. 2.20.4 Bürkner 2017, 2018; “Stan development team. RStan” 2021) and 235	
metafor (vers. 4.4.0 Viechtbauer 2010). We fit both Bayesian and frequentist approaches to ensure that our 236	
results were consistent, and to create orchard plots more easily (vers. 2.0, Nakagawa et al. 2021a, n.d.). In 237	
addition, Bayesian methods better protect against type I errors in the presence of complex sources of non-238	
independence (Noble et al. 2017; Nakagawa et al. 2021b; Song et al. 2021). For our Bayesian models, we ran 239	
4 MCMC chains, each with a warm-up of 1000 followed by 4000 sampling iterations keeping every 5 240	
iterations for a total of 3200 samples from the posterior distribution. We used flat Gaussian priors for ‘fixed’ 241	
effects (i.e., 𝑁(0,10)) and a student t-distribution for ‘random’ effects (i.e., 𝑠𝑡𝑢𝑑𝑒𝑛𝑡/(3,0,10)). We checked 242	
that all MCMC chains were mixing and had converged (i.e., 𝑅01/ = 1). We compared any competing models 243	
using Akaike’s Information Criteria (AIC) (if frequentist) or Wantabe Information Criteria (WIC) (if 244	
Bayesian). We deemed models with the lowest IC value to be best supported if there was a 𝛥𝐼𝐶 between the 245	
competing models of 2 or more. If two models were within 2 𝛥𝐼𝐶 units we went with the most parsimonious 246	
model. 247	

Multi-level Meta-analysis (MLMA) Models 248	

We first fit multi-level meta-analysis (MLMA) models (i.e., intercept-only models) for both 𝑙𝑛𝑅𝑅!!" and 249	
𝑙𝑛𝐶𝑉𝑅!!", that included study, species, and phylogeny as random effects to account for non-independence. 250	
We also included trait as a random effect to account for trait variation within the data. Our MLMA models 251	
allowed us to partition the variation in 𝑙𝑛𝑅𝑅!!" and 𝑙𝑛𝐶𝑉𝑅!!" among these key sources while accounting for 252	
total sampling variance in each. This allowed us to calculate the proportion of total heterogeneity [i.e., 𝐼/2/1&$ ; 253	
sensu Nakagawa & Santos (2012); Noble et al. (2022)] along with various 𝐼$ metrics describing the 254	
proportion of variance explained by each random effect level (Nakagawa & Santos 2012). We also present 255	



95% prediction intervals which describe the expected distribution of effects from future studies (Nakagawa et 256	
al. 2021a; Noble et al. 2022). 257	

A phylogeny was derived using the Open Tree of Life (OTL) with the rotl package in R (vers. 3.1.0) 258	
(Michonneau et al. 2016), and plotted using ggtree (vers. 3.9.0) (Yu et al. 2017). We resolved all polytomies 259	
in the tree. Any missing taxa were replaced with closely related species and branch lengths were computed 260	
using Grafen’s method (using power = 0.7, Grafen 1989). We used the R packages ape (vers. 5.7.1) (Paradis 261	
& Schliep 2019) and phytools (vers. 1.9.16) (Revell 2012) to prune the tree for individual analyses and 262	
calculate phylogenetic covariance (or correlation) matrices used in meta-analytic models. 263	

Multi-level Meta-regression (MLMR) Models 264	

After quantifying levels of heterogeneity, we fit a series of multi-level meta-regression (MLMR) models to 265	
test our key questions. In all models, we included the same random effects as we used in our MLMA models. 266	
Acclimation time varied from 4 to 408 days (mean (SD) = 37.98 ± 45.19 days), and terrestrial ectotherms 267	
were acclimated for a much shorter duration (mean (SD) = 23.53 ± 15.56, n = 125) than both freshwater 268	
(mean (SD) = 36.81 ± 28.71, n = 430) and marine species (mean (SD) = 46.18 ± 67.21, n = 313). Rates of 269	
acclimation have been shown to be faster for many terrestrial groups compared to aquatic organisms [e.g., 270	
amphibians and reptiles have faster rates of acclimation than fishes; See Einum & Burton (2023)], which 271	
would make it more likely that terrestrial ectotherms would show lower post acclimation 𝑙𝑛𝑅𝑅!!". To control 272	
for these possible differences, acclimation time was mean-centered (mean = 0) and included in all our 273	
models. As such, all estimates can be interpreted as values for an average level of acclimation time (i.e., 274	
37.98 days). 275	

We first tested the degree to which acute and acclimation 𝑙𝑛𝑅𝑅!!" and 𝑙𝑛𝐶𝑉𝑅!!" effects varied by habitat 276	
type (i.e., terrestrial, freshwater, and marine ecosystems). Models included an interaction between effect type 277	
(i.e., acute or acclimation) and habitat. Reduced mean 𝑙𝑛𝑅𝑅!!"&''()*&+),-

 relative to 𝑙𝑛𝑅𝑅!!"&'.+/  indicates 278	
that acclimation to thermal environments results in partial compensation of physiological rates (i.e., 279	
phenotypic plasticity), whereas no differences between 𝑙𝑛𝑅𝑅!!"&'.+/  and 𝑙𝑛𝑅𝑅!!"&''()*&+),-

 suggests 280	
organisms are not capable of physiological plasticity (Seebacher et al. 2015; Havird et al. 2020). In contrast, 281	
a difference in 𝑙𝑛𝐶𝑉𝑅!!"&''()*&+),-

 relative to 𝑙𝑛𝐶𝑉𝑅!!"&'.+/  would imply that changes in between individual 282	
variation in physiological rates across 10°C differ depending on whether acute or acclimation responses are 283	
measured. If the interaction between effect type and habitat was not supported, then we fit a model that only 284	
contained additive effects of effect type and habitat. Following on from these models, we subset each habitat 285	
type and explored how mean 𝑙𝑛𝑅𝑅!!" changed across traits. Within each habitat (marine, freshwater, and 286	
terrestrial) we fit a series of models that included an interaction between effect type (acute / acclimation) and 287	
trait category (as defined above). Variance in effects within trait categories appeared to vary depending on 288	
the trait type in question. Comparison of a model with and without heteroscedastic residual variance favored 289	
a model with heteroscedastic residual variance across trait categories (𝛥𝐴𝐼𝐶3; marine = 58, freshwater = 120, 290	
and terrestrial = 12). To ensure models converged we limited to trait categories for each habitat with six or 291	
more effect sizes. 292	

Second, we tested whether different life-stages are more or less likely to acclimate by fitting a model for each 293	
habitat type and including an interaction between life-stage (‘adult’ or ‘juvenile’) and effect type. We 294	
predicted that acclimation responses would be more likely early in development compared to later in 295	
development as this pattern has been shown in previous studies (e.g., Moghadam et al. 2019), but that this 296	
should depend on the habitat type given the different constraints faced by different early life stages across 297	
major habitat types. 298	



Modelling how climate change will impact on opportunity for selection 299	

To understand the consequences of human-induced climate change on the potential to impact the opportunity 300	
for selection on physiological traits we fit a model that included an interaction between acclimation type, 301	
habitat type, latitude and longitude. We assumed that any change in 𝑙𝑛𝐶𝑉𝑅!!" across latitude and longitude 302	
could vary by habitat type (i.e., an interaction between habitat). We used non-linear tensors for latitude and 303	
longitude as any response could be complicated by local factors (e.g., altitude). Our model included random 304	
effects of species, trait, phylogeny and study. We predicted the expected change in 𝑙𝑛𝐶𝑉𝑅!!" for each wild 305	
population in our dataset at the specific populations latitude and longitude. To do this, we first converted the 306	
predicted 𝑙𝑛𝐶𝑉𝑅!!" to a 1°C change as opoosed to 10°C as follows: 307	

𝑙𝑛𝐶𝑉𝑅!! =
𝑙𝑛𝐶𝑉𝑅!!"

10   (7) 308	

Equation 7 turned the expected change across 10°C to 1°C. We then multiplied this predicted change by the 309	
change in air and sea surface temperatures at the locations of each population (and species) that is expected 310	
under high emissions scenerios in 2080. 311	

Publication Bias 312	

We explored the possibility for publication bias graphically, using funnel plots, and more formally by 313	
including in our meta-regression models sampling variance (or sampling standard error) (Nakagawa et al. 314	
2022). Funnel plot asymmetry may suggest a form of publication bias called the ‘file-drawer’ effect whereby 315	
low-powered studies are less likely to be published. To test whether sampling variance covaried with effect 316	
size we included it in a multi-level meta-regression model that accounted for all the random effects (study, 317	
species, trait) and fixed effects (acclimation time, type of effect, habitat, trait category and the interaction 318	
between habitat type and trait category). 319	

Results 320	

The final dataset included a total of 91 freshwater (fishes = 48, molluscs = 4, amphibians = 19, reptiles = 8, 321	
arthropods = 10, and a single crustacean and nematode species), 90 marine (fishes = 47, annelids = 2, 322	
molluscs = 21, echinoderms = 7, reptiles = 1, arthropods = 10, and a single crustacean and cnidarian species), 323	
and 45 terrestrial species (annelids = 1, molluscs = 5, arthropods = 14, reptiles = 12 and amphibians = 12 324	
along with a single tardigrade species) (Figure 1 A). We had more data on acute thermal responses (n = 325	
1115) compared to thermal responses after an acclimation period (n = 798) because acute responses were 326	
reported for each of the two acclimation temperatures (Figure 1). The two acute 𝑙𝑛𝑅𝑅!!" effect sizes differed 327	
significantly from each other (acute responses were greater for animals acclimated to high temperatures – 𝛽 = 328	
0.07, 95% CI: 0.04 to 0.1, 𝑝.*.*  = < 0.0001), but on average they were in the same direction and only 329	
differed by ~10%. As such, we averaged the two acute 𝑙𝑛𝑅𝑅!!" effect sizes in subsequent analyses. 330	

Most of the effect size estimates came from measurements of metabolic rates (both resting and maximal – 331	
𝑁4563764 = 190, 𝑁68863/4 = 1023, considering acute and acclimation effects together), metabolic enzyme rates 332	
(𝑁4563764 = 61, 𝑁68863/4 = 798) and whole-organism performance traits (i.e., measures of speed and 333	
endurance – 𝑁4563764 = 73, 𝑁68863/4 = 321). 334	

Terrestrial and aquatic ectotherms differ in their capacity to acclimate but acclimation 335	
does not depend on life-history stage 336	

Overall, 𝑙𝑛𝑅𝑅!!"&''()*&+),-
 was 8.72% lower than 𝑙𝑛𝑅𝑅!!"&'.+/  across all habitats (95%CI: -15.14 to -2.45%). 337	

Ectotherms in marine and freshwater environments showed partial compensation of physiological rates 338	



(Figure 1B) amounting to reduced 𝑙𝑛𝑅𝑅!!"&''()*&+),-
 of 17.08% (95% CI: -24.32 to -10.19) in freshwater and 339	

15.7% (95% CI: -25.96 to -4.79) in marine environments. In contrast, terrestrial ectotherms showed no 340	
acclimation (possibly even inverse acclimation) – showing a 6.6% increase in 𝑙𝑛𝑅𝑅!!"&''()*&+),-

 (95% CI: -341	
6.56 to 21.19, Figure 1B). 342	

Nonetheless, effect heterogeneity was high (only 2.85% of the variance was the result of sampling 343	
variability, 95% CI: 2.38 to 3.32%), and most variance was explained by the specific study and type of trait 344	
(Study: 29.41% , 95% CI: 20.78 to 38.49%; Trait Type: 29.35% , 95% CI: 19.97 to 39.53%). Evolutionary 345	
relationships among taxa and species ecology (i.e., species random effect) explained little variation in acute 346	
and acclimation responses (Species: 2.39% , 95% CI: 0.01 to 8.1%; Phylogeny: 2.89% , 95% CI: 0 to 347	
12.94%). 348	

Different trait categories showed different acclimation responses across habitat types, however, they mirrored 349	
overall patterns (see Supplement; Figure S2). Acclimation capacity also did not vary by life-history stage and 350	
there were no differences between 𝑙𝑛𝑅𝑅!!"&''()*&+),-

 and 𝑙𝑛𝑅𝑅!!"&'.+/  between adult and juveniles (Figure 2 351	
A-C) (Adult-Juvenile (Acute): 0, 95% CI: -0.21 to 0.2, 𝑝.*.*  = 0.96; Adult-Juvenile (Acclimation): 0.05, 352	
95% CI: -0.16 to 0.38, 𝑝.*.*  = 0.83). 353	



 354	

355	



 356	

Figure 1- Taxonomic distribution of acute and acclimation 𝑄"# estimates across major habitats. A) 
Phylogenetic distribution of taxa contained within the data. The total number of acute and acclimation Q10 
effect sizes are highlighted as well as whether the taxa are marine, freshwater or terrestrial. Silhouettes are 
representative taxa of major clades within the tree. B) Mean acute and acclimation 𝑙𝑛𝑅𝑅!!" across marine, 
freshwater, and terrestrial systems. C) Mean 𝑙𝑛𝐶𝑉𝑅!!" across traits for marine, freshwater and terrestrial 
systems. Note there were no differences between acute and acclimation 𝑄"# types. k = total number of 
effect size estimates while the numbers in brackets indicate the number of species. Thick bars are 95% 
confidence intervals (CI) and thin bars 95% prediction intervals (PI). 

Reduced variation in physiological rates in terrestrial and marine ectotherms 357	

Relative variance in physiological rates (𝑙𝑛𝐶𝑉𝑅!!") showed a decrease with increasing temperature across all 358	
habitat types, which was especially pronounced in terrestrial and marine ectotherms. Overall, there was a 359	
27.87% (95% CI: 10.77 to 40.91, 𝑝.*.*  = 0.01) reduction in relative physiological rate variance for 360	
terrestrial ectotherms and a 14.94% (95% CI: 1.87 to 29.97, 𝑝.*.*  = 0.07) reduction in relative variation for 361	
marine ectotherms when temperatures increased by 10∘C. In contrast, freshwater ectotherms exhibited a 362	
smaller reduction in relative physiological rate variance at high temperatures (8.62%, 95% CI: 0.41 to 21.78, 363	
𝑝.*.*  = 0.33). 364	

The total proportion of heterogeneity in 𝑙𝑛𝐶𝑉𝑅!!" was lower compared to 𝑙𝑛𝑅𝑅!!" (𝐼49$  = 23.96, 95% CI: 365	
20.36 to 27.27), with most variation being driven by between-study and trait differences (see Supplement; 366	
Figure S5). Each life-history stage exhibited the same pattern of variance change in each of the habitats 367	
(Figure 2). Reduced relative variance was particularly prominent for resting metabolic rates and sprint speed 368	
although traits differed in whether they exhibited a reduction in variation in physiological rates at high 369	
temperatures (Figure S3).370	
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 372	

Figure 2- Estimated mean acclimation and acute 𝑙𝑛𝑅𝑅!!" (A-C) and 𝑙𝑛𝐶𝑉𝑅!!" (D-F) for adult and juvenile 
life-history stages for Marine (A & D), Freshwater (B & E) and Terrestrial (C & F) ectotherms. k = total 
number of effect size estimates while the numbers in brackets indicate the number of species. Thick bars 
indicate 95% confidence intervals and thin bars indicate 95% prediction intervals. Raw data for both adult 
and juvenile life-history stages also presented but points are not distinguished by different symbols for ease 
of presentation. 

Past climate does not influence acclimation capacity or expected change in variance 373	

Thermal variability (i.e., 𝐶𝑉) and predictability experienced by a population in the past did not explain 374	
acclimation capacity or changes in physiological rate variance among terrestrial, marine or freshwater 375	
populations (Figure 3; Figure 4). 376	

	

Figure 3- Predicted mean (thick black line) 𝑙𝑛𝑅𝑅!!" as a function of the Thermal Coefficient of Variation 
(CV) (A) and thermal predictability (B) for wild populations across marine, freshwater and terrestrial 
habitats. Dashed lines indicate 95% confidence intervals and dotted lines indicate 95% prediction intervals. 
Model slope (𝛽) along with the 95% CI and 𝑝.*.*  value is shown for each habitat. 

  377	



	

Figure 4- Predicted mean (thick black line) 𝑙𝑛𝐶𝑉𝑅!!" as a function of the Thermal Coefficient of Variation 
(CV) (A) and thermal predictability (B) for wild populations across marine, freshwater and terrestrial 
habitats. Dashed lines indicate 95% confidence intervals and dotted lines indicate 95% prediction intervals. 
Model slope (𝛽) along with the 95% CI and 𝑝.*.*  value is shown for each habitat. 

Changes in physiological rate variance under climate change 378	

Measurements of acute and acclimation responses from wild ectotherms were much less common than from 379	
captive populations (𝑁4563764 = 134, from 188 wild populations). Globally, there was a clear bias towards 380	
species in the Northern Hemisphere (Figure 5 A-C). Projected changes in physiological rate variance were 381	
highly variable across the globe, with some regions showing a decrease in physiological rate variance, while 382	
others showing an increase (Figure 5 D). However, out of the 188 populations, relative variance was 383	
predicted to decrease in 98.94% of the locations. 384	

Using the ERA5 climate model, predictions of current global changes in physiological rate variance were 385	
generally conservative with our model explaining ~ 50% of the variation in the observed data (𝑅$ = 0.48, 386	
95% CI: 0.31 to 0.6). Across habitat types climate change is predicted to result in a 0.33% change in relative 387	
variance for freshwater systems (95% CI: -6.2 to 6.48%, 𝑝.*.*  = 0.89), a 2.87% reduction in relative 388	
variance for marine systems (95% CI: -6.34 to 1.23%, 𝑝.*.*  = 0.37), and a 12.17% reduction in relative 389	
variance for terrestrial systems (95% CI: -19.45 to -6.13%, 𝑝.*.*  = < 0.0001) under a RCP8.5 climate 390	
scenerio. 391	



	

Figure 5- Model predictions for the expected change in acclimation 𝑙𝑛𝐶𝑉𝑅!!" across the globe for 
terrestrial, marine and freshwater ecthotherms. Predictions consider the uncertainty in random effects (i.e., 
species, phylogeny, study). Predicted change in physiological rate variance (relative variance) for each 
population based on current temperatures (average from 2018-2022; A-C) as well as the expected change 
from current temperatures based on future temperature predictions (average from 2096-2100, D). Future 
climate predictions are the reduction in relative variance expected under a RCP8.5 climate scenario relative 
to current climate conditions (% change). 

Discussion 392	

Understanding acclimation capacity and how variation in physiological rates changes across populations and 393	
species is important for predicting the ecological and evolutionary consequences of climate change (Chevin 394	
et al. 2010; Bolnick et al. 2011; Bush et al. 2016; Chevin & Hoffmann 2017; Sanderson et al. 2023; 395	



Seebacher et al. 2023). Here, we show that the relative variance (𝑙𝑛𝐶𝑉𝑅!!") in physiological rates of 396	
ectotherms decreased across terrestrial, marine and freshwater ecosystems as temperatures increase, with the 397	
decrease being particularly pronouced in terrestrial ectotherms (~28%). These effects are expected to result in 398	
a decrease in the variability in physiological rates for marine and terrestrial ectotherms between ~4-13% 399	
under future climate change projections. Our results uncover an hitherto unrecognised dynamic where the 400	
benefits of acclimation may be counteracted by a decrease in trait variance. 401	

Consequences of reduced plasticity and variance in physiological rates across ectotherms 402	

Understanding the interplay between plasticity and genetic adaptation has important implications for 403	
predicting population resilience to climate change (Chevin et al. 2010; Hoffmann & Sgrò 2011; Merilä & 404	
Hendry 2014; Bush et al. 2016; Cooke et al. 2021; Seebacher et al. 2023; Urban et al. 2023). For example, 405	
incorporating phenotypic plasticity and adaptation into species distribution models dampens the predicted 406	
contraction of distributions in the face of climate change (e.g., Bush et al. 2016). In addition, it may be 407	
expected that reductions in variance impact the ‘opportunity for selection’ by reducing the strength of 408	
selection and/or the genetic variance exposed to selection, thereby reducing the capacity to evolve under 409	
climate change (Hoffmann & Sgrò 2011; Urban et al. 2023). Quantifying the degree of plasticity and 410	
genetic/phenotypic variation in key physiological responses is therefore recognised as being critical to 411	
informing projections for organisms threatened by climate change (Cooke et al. 2021). 412	

We show that acclimation of physiological rates and changes relative variance differ across habitats. In 413	
freshwater habitats, acclimation responses will likely be beneficial and this coincides with relatively little 414	
reduction in the relative variance thereby maintaining the raw material for selection to operate. In contrast, 415	
acclimation responses of marine organisms are associated with a nearly equal reduction in relative variance 416	
so that the beneficial effects of acclimation trade-off against reduced potential for selection at high 417	
temperatures. In terrestrial ectotherms, relative variance reductions are particularly pronounced, and this 418	
coincides with a general inability to acclimate. Terrestrial ectotherms are therefore most vulnerable to climate 419	
because both compensations for potentially negative effect of temperature via acclimation, and adaptation to 420	
novel conditions are relatively ineffective. However, terrestrial species have greater opportunity for 421	
behavioural microhabitat selection which will decrease the impacts of climate change at least in complex, 422	
thermally heterogeneous environments (Huey et al. 2012). 423	

Our findings highlight the potential vulnerability of terrestrial and marine ectotherms to climate change. Our 424	
meta-analytic results provide percentage changes of relative variances and acclimation responses that can be 425	
used to parameterise models (e.g., species distribution models) (Bush et al. 2016; DeMarche et al. 2019) to 426	
predict species distributions or assess population resilience in the face of climate warming. Our results also 427	
define the range of biological responses observed across diverse taxa (e.g., through prediction intervals) 428	
providing opportunities to incorporate realistic biological variation into the modelling process. 429	

Plasticity and variance in physiological rates do not differ between life-stages 430	

Life-history stages often occupy different ecological niches and exhibit different physiological responses, 431	
levels of plasticity, and patterns of mortality in response to temperature. As such, it is becoming increasingly 432	
important to understand how climate change will impact different life-history stages (Petitgas et al. 2013; 433	
Levy et al. 2015). Greater plasticity in early life-stages of development is expected to be important to 434	
increase resilience to the effects of climate change because early life-stages are often particularly vulnerable 435	
periods in development (Stearns 1976; Martin 2015). We show that there were generally similar patterns 436	
between early and late life stages across a diversity of taxa, both in terms of variance changes and the 437	
capacity for plasticity. On average, our results show that early life stages are not more vulnerable to the 438	
impacts of climate change. However, our general meta-analytic findings do not imply that early life stages 439	
are not always less plastic, but that such responses are likely context or trait depedent (Moghadam et al. 440	
2019; Carter & Sheldon 2020). For example, Moghadam et al. (2019) showed that larval Drosophila were 441	



more plastic in their heat hardening responses compared to adults. In contrast, Carter & Sheldon (2020) 442	
showed greater thermal plasticity in metabolism for adults but little in pupae of Onthophagus taurus. Despite 443	
variation in the literature, very few studies measure multiple life-history stages within the same population. 444	
In future research, there needs to be more studies that explicitly compare differences in plasticity among life 445	
stages across multiple traits within the same population. 446	

Ecological consequences of reduced variation in physiological rates 447	

Variance reductions in metabolism and performance (e.g., sprint speed) were most strongly impacted by 448	
increased temperature. Changes in variability of traits governing energy demand could have important 449	
consequences on the flow of energy within and between populations, communities, and ecosystems (Hendry 450	
2016; Barneche et al. 2021; Sanderson et al. 2023; Seebacher et al. 2023). More variable populations, 451	
genetically and/or phenotypically, are predicted to be associated with broader niches, reduced intraspecific 452	
competition, increased growth rate, decreased vulnerability to environmental change and lower extinction 453	
risk (Bolnick et al. 2011; Forsman 2014, 2015; Hart et al. 2016; Hendry 2016). Maintaining intrapopulation 454	
variability in physiological rates in a warmer world may therefore be important for population resilience to 455	
climate change. For example, Kooijman et al. (1989) integrated individual variation in dynamic energy 456	
budget (DEB) models developed for Daphnia magna. They showed that greater between-individual variation 457	
in DEB parameters led to less extreme population fluctuations compared to scenarios with no variation 458	
(Kooijman et al. 1989). Our results suggest that terrestrial ectotherms will likely face greater challenges to 459	
adapting to climate change (Hoffmann et al. 2013; Gunderson & Stillman 2015; Pottier et al. 2022), leading 460	
to greater rates of extinction and reduced productivity in terrestrial ecosystems. However, data testing the 461	
impacts of changes in variance on populations are limited to very few taxa. Future experimentation across a 462	
broader range of taxa should manipulate levels of variance to understand its ecological outcomes. 463	

No signature of past climate on capacity for physiological plasticity 464	

Theoretical evolutionary models predict that plasticity should evolve in populations experiencing greater 465	
environmental variability (spatial or temporal), particularly when oscillations are predictable over time to 466	
make environmental cues more reliable (Lande 2009; Chevin et al. 2010; Reed et al. 2010; Murren et al. 467	
2015; Hendry 2016; Nunney 2016; Chevin & Hoffmann 2017). Higher spatial and temporal heterogeneity in 468	
terrestrial ecosystems (Steele et al. 2019) suggests that plasticity should be more likely to evolve in terrestrial 469	
environments. However, we did not find evidence to this effect. Our finding is consistent with other meta-470	
analyses (Gunderson & Stillman 2015; Barley et al. 2021) with thermal tolerance (which we did not consider 471	
here). Modelling correct microenvironments for over 200 species across such diverse habitats is challenging. 472	
The lack of a relationship between physiological plasticity and environmental variability and predictability 473	
could be due the fact that ectotherms simply seek out microhabitats that make their environment quite stable 474	
(Huey et al. 2012). Therefore, it is possible that more fine-scale resolution of the habitats that organisms 475	
occupy will elucidate expected patterns. Randomly fluctuating environments have been suggested to select 476	
for reduced plasticity, particularly if plastic responses are costly and this has been demonstrated by a number 477	
of empirical studies (Leung et al. 2020, 2023; Rescan et al. 2022). For example, using seed beetles 478	
(Callosobruchus maculatus), Hallsson & Björklund (2012) showed that experimentally evolving populations 479	
under randomly fluctuating thermal conditions did not show any increase in plasticity, but had reduced 480	
plasticity. Leung et al. (2020) also showed reduced plasticity in morphological traits of experimentally 481	
evolving algae populations (Dunaliella salina) when environments were less predictable (see also Leung et 482	
al. 2023). While it is unclear how these findings relate directly to acclimation because they integrate multiple 483	
forms of plasticity, they do suggest that there are costs to being plastic or that the environmental signals are 484	
insufficient to trigger endocrine and epigenetic mechanisms that lead to plasticity when environments are not 485	
predictable (Hendry 2016; Leung et al. 2020). The fact that aquatic ectotherms did show a capacity to 486	
acclimate suggests that environmental predictability, which is expected to be higher in aquatic environments, 487	
may be more important than environmental variability in driving the evolution of plasticity. 488	



Conclusions and future directions 489	

Enhanced knowledge of how variation in physiological rates vary across populations and species and the 490	
degree to which they can be adjusted in response to the environment may lead to more informed predictions 491	
about the ecological and evolutionary dynamics of natural populations (Forsman 2015; Cooke et al. 2021; 492	
Sanderson et al. 2023; Seebacher et al. 2023). While we show general patterns across taxa and habitats it is 493	
important to recognise that this does not mean such patterns apply to all populations. Substantial variation in 494	
acclimation responses and changes in variance exist among populations as evidenced by wide prediction 495	
intervals. Nonetheless, changes in the relative variance in physiological rates could be better incorporated 496	
into physiological and ecological models to provide more nuanced and possibly more realistic predictions 497	
about the impacts of climate change on natural populations. While we do not yet understand the relative 498	
contribution of environmental and genetic factors to variances changes, models could better decouple how 499	
different levels of heritability with different total variance impact evolutionary and ecological predictions. 500	
Our meta-analysis now provides the opportunity to parameterise models and ensure they are better aligned 501	
with empirical findings. Nonetheless, many fascinating questions remain unanswered that will require greater 502	
focus on the consequences of changes in variance (rather than just the mean). Particularly interesting 503	
questions include: How does a reduction in physiological rate variance change energy flow across tropic 504	
levels within communities? What are the biochemical, cellular, and physiological mechanisms that underly 505	
reduced variance in physiological rates? Are reductions in variance in one trait associated with reductions in 506	
correlated traits, or do some traits increase while others decrease? How much of the reduction in variance is 507	
driven by lower levels of genetic variance? Answers to these questions will require integrative approaches 508	
that combine empirical and theoretical work across multiple levels of biological organisation but will likely 509	
provide useful advances in understanding the full consequences that climate change will have on ectotherms 510	
across all major ecosystems. 511	
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 722	

Supplemental Results and Figures 723	

PRISMA Flow Diagram 724	

	

Figure S1- PRISMA flow diagram of the literature search and screening process. 



Acute and acclimation 𝒍𝒏𝑹𝑹𝑸𝟏𝟎 for different trait categories across marine, freshwater and terrestrial 725	
taxa 726	

	

Figure S2- Acute and Acclimation 𝑙𝑛𝑅𝑅!!" across traits for A) marine, B) freshwater and C) terrestrial 
systems. k = total number of effect size estimates while the numbers in brackets indicate the number of 
species. Thick bars indicate 95% confidence intervals and thin bars indicate 95% prediction intervals. The 
x-axis is truncated for ease of visualisation. 
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Figure S3- Acute and Acclimation 𝑙𝑛𝐶𝑉𝑅!!" across traits for A) marine, B) freshwater and C) terrestrial 
systems. k = total number of effect size estimates while the numbers in brackets indicate the number of 
species. Thick bars indicate 95% confidence intervals and thin bars indicate 95% prediction intervals. The 
x-axis is truncated for ease of visualisation. 



Comparing raw variance changes using 𝒍𝒏𝑽𝑹𝑸𝟏𝟎 728	

Analysis of 𝑙𝑛𝑉𝑅!!" suggested that variance increases with higher temperatures across all habitat types, with 729	
terrestrial ectotherms having the smallest increase in variance (Figure S4; Table S1). 730	

	

Figure S4- Estimated mean 𝑙𝑛𝑉𝑅!!" for marine, freshwater and terrestrial systems. Note there were no 
differences between acute and acclimation 𝑄"# types so they were averaged. Thick black bars are 95% 
confidence intervals (CI’s) and thin bars 95% prediction intervals (PI’s). The percentage change in 
variance is also back calculated. Note that these are raw variances and do not account for changes in mean 
physiological rates. k = total number of effect size estimates while the numbers in brackets indicate the 
number of species. 

 

Table S1 – Model estimates, standard error, and 95% credible intervals comparing changes in acute and 
acclimation 𝑙𝑛𝑉𝑅!!" across habitat types. Model estimates are based off 1,253 effect sizes from 139 
studies. 

Parameter	 Estimate	 Est.Error	 l-95% CI	 u-95% CI	

Fixed Effects	

Intercept	 0.4932	 0.10684	 0.2984	 0.7281	

Acclimation Time (z scaled)	 -0.0001	 0.00071	 -0.0015	 0.0013	



Parameter	 Estimate	 Est.Error	 l-95% CI	 u-95% CI	

Acclimation Effect	 -0.0247	 0.04247	 -0.1097	 0.0593	

Habitat (Marine)	 -0.0024	 0.09890	 -0.1957	 0.1968	

Habitat (Terrestrial)	 -0.2032	 0.10196	 -0.3956	 -0.0049	

Acclimation*Marine	 -0.0857	 0.07817	 -0.2389	 0.0700	

Random Effects	 	 	 	 	

Study	 0.3647	 0.03944	 0.2910	 0.4434	

Phylogeny	 0.1194	 0.09729	 0.0043	 0.3630	

Species	 0.0821	 0.05471	 0.0041	 0.2017	

Trait	 0.3134	 0.04159	 0.2386	 0.3975	

Plots of 𝑰𝟐 for multi-level models 731	

	

Figure S5- 𝐼$ estimates. A) 𝑙𝑛𝑅𝑅!!" B) 𝑙𝑛𝐶𝑉𝑅!!" and C) 𝑙𝑛𝑉𝑅!!". 

Publication Bias Analysis 732	

Funnel plots did not show any noticeable deviation from the typical funnel shape for any of the effect size 733	
estimates (Figure S6). 734	



	

Figure S6- Funnel plot of precision (1/sampling standard error) against effect size for A) log response ratio 
𝑄"# (𝑙𝑛𝑅𝑅!!"), B)log coefficient of variance ratio 𝑄"# (𝑙𝑛𝐶𝑉𝑅!!") and C) log variance ratio 𝑄"# 
(𝑙𝑛𝑉𝑅!!"). Both acute (‘green’) and acclimation (‘orange’) effect sizes are plotted. 
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