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Abstract 13	

Climate change is expected to result in warmer and more variable thermal environments globally. Greater 14	
thermal variability is expected to result in strong selection pressures leading to genetic adaptation and/or the 15	
evolution of adaptive phenotypic plasticity. Such responses depend on genetic and phenotypic variability. 16	
However, most work has focused on changes in mean phenotypic responses to climate warming ignoring 17	
how temperature may also change phenotypic variability. Phenotypic variability may be particularly 18	
important at extreme, high temperatures, which would facilitate selection of resistant individuals or promote 19	
plasticity (acclimation) and thereby increase resilience to heat waves. Using newly developed effect size 20	
estimates and meta-analysis (>1900 effects from 226 species), we show that across habitats relative variance 21	
in physiological rates decreased at higher temperatures. Freshwater ectotherms are capable of acclimating 22	
and have the smallest reductions in relative variance. Marine organisms also showed a capacity to acclimate 23	
to higher temperatures, but capacity for plasticity traded-off with a reduction in relative variance in 24	
physiological rates at higher temperatures. Relative variance reductions were particularly pronounced for 25	
terrestrial ectotherms, and this coincided with a lack of capacity for acclimation, highlighting the 26	
vulnerability of terrestrial ectotherms to climate change. Neither life-history stage nor past climate explained 27	
effect variability. Our results show that beneficial acclimation responses may trade-off with reductions in 28	
physiological rate variance. This trade-off could constrain evolutionary responses to climate change and 29	
reduce the potential benefits of portfolio effects. These findings have important evolutionary and ecological 30	
ramifications that affect our understanding of how climate change will impact populations now and in the 31	
future. 32	

Main 33	

Climate change is expected to result in warmer but also more variable thermal environments globally1–3. 34	
Greater thermal variability in the past should result in strong selection pressures that lead to genetic 35	
adaptation and/or the evolution of adaptive phenotypic plasticity – both of which are considered important 36	
for population resilience to contemporary human-induced climate change4–11. Without plasticity or 37	
adaptation, high extinction rates are predicted unless organisms can migrate to track suitable habitats9,12. 38	
Phenotypic plasticity is expected to be the ‘first line of defence’ against changing climates, thereby buying 39	
time for genetic adaptation to take place (i.e., the ‘plasticity first hypothesis’)13,14. Phenotypic plasticity is 40	
predicted to evolve when environmental variability is high but predictable and the costs of plasticity are 41	
low7,9,15–17. Despite this theoretical expectation, empirical support is scant (but see18), likely because many 42	



organisms can behaviorally adjust micro-habitat selection to offset thermal stress, the costs of plasticity are 43	
high6,16, or the prediction is only supported for specific life-history stages. 44	

Reversible phenotypic plasticity, such as acclimation, is expected to provide greater potential to buffer 45	
populations from climate impacts as responses are relatively rapid and can therefore be fine-tuned to 46	
proximate environmental conditions (assuming the costs of plasticity are low)15,16. Acclimation is driven by 47	
endocrine and epigenetic processes that change the underlying physiology to facilitate a rapid response to the 48	
environment19–21. However, the focus up to now has been primarily on mean physiological responses. For 49	
example, mean thermal tolerances or acclimation capacities in a population are likely to shift in response to 50	
thermal environments4,22–24. However, it is possible that intrapopulation variability might also be impacted in 51	
addition to the mean. Understanding how variability in physiological rates – traits thought to be closely 52	
linked to fitness – are affected by climate change is important because lack of physiological variation can 53	
limit responses to selection (i.e., the ‘opportunity for selection on a trait’)25. Higher physiological variance in 54	
a population may also indicate greater niche breadth which can buffer populations against environmental 55	
change (i.e., the portfolio effect)26–29. Decreases in phenotypic variance also suggests strong stabilising 56	
selection or reflects constraints on performance15,16. Changes in physiological trait variation may also have 57	
important ecological consequences by promoting population productivity and stability30,31, species 58	
coexistence and ecosystem processes26,32,33. The implications of changes in variance could, therefore, have 59	
wide-reaching consequences for understanding the capacity of populations to persist in and adapt to novel 60	
environments but to date there are few data testing the importance of variances in this context15. 61	

Periods of past climatic change have had disproportionate impacts on some ecosystems over others raising 62	
the question of which ecosystems will be most vulnerable to contemporary climate change. Species 63	
occupying terrestrial ecosystems are thought to be particularly vulnerable given their weak acclimation 64	
abilities and greater probability of experiencing thermal extremes that overwhelm physiological 65	
homeostasis4,22,34. However, this conclusion has been questioned given that marine ectotherms have recently 66	
been shown to be closer to their upper thermal limits compared to terrestrial species35. Marine and freshwater 67	
ecosystems appear to have greater physiological acclimation capacitye.g., 4,24. However, it is unclear if the 68	
magnitude of physiological adjustment is sufficient to compensate for potentially negative environmental 69	
effects, particularly when temperature interacts with other abiotic changes. Low oxygen availability may be a 70	
major factor influencing the vulnerability of aquatic ecosystems, whereas remaining close to thermal limits 71	
and greater water loss is expected to be a stronger constraint on physiological processes in terrestrial 72	
ectotherms36. Given that terrestrial ectotherms are expected to be closer to their thermal limits, an increase in 73	
temperature may have a stronger impact on variation in physiological rates within populations compared to 74	
aquatic ectotherms which may have important cascading effects on energy transfer and productivity across 75	
different ecosystems10,37. 76	

Here, we use meta-analysis to re-evaluate the degree to which aquatic and terrestrial ectotherms are capable 77	
of physiological plasticity. We then developed new effect sizes effect sizes to quantify how variance in 78	
physiological rates change with temperature to ask the following questions: 1) How much is variance in 79	
physiological rates expected to change, if at all, as temperatures rise? 2) Are temperature effects on plastic 80	
adjustments in physiological rates larger than changes in variance across aquatic and terrestrial ectotherms? 81	
3) Are changes in plasticity or variance in physiological rates impacted by past climate history? 4) How are 82	
means and variances in physiological rates expected to change under climate change? 83	

Results 84	

Using a large database on physiological rates4 for marine, freshwater and terrestrial ectotherms we apply new 85	
effect size estimates38 that capture changes in mean physiological rates (𝑙𝑛𝑅𝑅!!"), and changes in their 86	
relative variance (𝑙𝑛𝐶𝑉𝑅!!"), standardised to a 10°C temperature difference. These standardised effects sizes 87	
can be converted to percentage differences to permit comparisons between the relative magnitudes of rate 88	
changes resulting from acclimation and relative variance changes at high temperatures. Acclimation 89	



responses can be determined by comparing acclimation 𝑙𝑛𝑅𝑅!!" (𝑙𝑛𝑅𝑅!!"#$$%&'#(&)*
) to acute 𝑙𝑛𝑅𝑅!!" 90	

(𝑙𝑛𝑅𝑅!!"#$+(,) from ectotherms acclimated to different temperatures. The difference in 𝑙𝑛𝑅𝑅!!"#$$%&'#(&)*
 91	

compared to 𝑙𝑛𝑅𝑅!!"#$+(,  measures the extent of acclimation (i.e., plasticity). 92	

The final dataset included a total of 91 freshwater (fishes = 48, molluscs = 4, amphibians = 19, reptiles = 8, 93	
arthropods = 10, and a single crustacean and nematode species), 90 marine (fishes = 47, annelids = 2, 94	
molluscs = 21, echinoderms = 7, reptiles = 1, arthropods = 10, and a single crustacean and cnidarian species), 95	
and 45 terrestrial species (annelids = 1, molluscs = 5, arthropods = 14, reptiles = 12 and amphibians = 12 96	
along with a single tardigrade species) (Figure 1 A). We had more data on acute thermal responses (n = 97	
1115) compared to thermal responses after an acclimation period (n = 798) because acute responses were 98	
reported for each of the two acclimation temperatures (Figure 1). The two acute 𝑙𝑛𝑅𝑅!!" effect sizes differed 99	
significantly from each other (acute responses were greater for animals acclimated to high temperatures – 𝛽 = 100	
0.07, 95% CI: 0.04 to 0.1, 𝑝"#"#  = < 0.0001), but on average they were in the same direction and only 101	
differed by ~10%. As such, we averaged the two acute 𝑙𝑛𝑅𝑅!!" effect sizes in subsequent analyses. 102	

Most of the effect size estimates came from measurements of metabolic rates (both resting and maximal – 103	
𝑁$%&'(&$ = 190, 𝑁&))&'*$ = 1023, considering acute and acclimation effects together), metabolic enzyme rates 104	
(𝑁$%&'(&$ = 61, 𝑁&))&'*$ = 798) and whole-organism performance traits (i.e., measures of speed and 105	
endurance – 𝑁$%&'(&$ = 73, 𝑁&))&'*$ = 32). 106	

Terrestrial and aquatic ectotherms differ in their capacity to acclimate but acclimation 107	
does not depend on life-history stage 108	

Overall, 𝑙𝑛𝑅𝑅!!"#$$%&'#(&)*
 was 8.72% lower than 𝑙𝑛𝑅𝑅!!"#$+(,  across all habitats (95%CI: -15.14 to -2.45%). 109	

Ectotherms in marine and freshwater environments showed partial compensation of physiological rates 110	
(Figure 1B) amounting to reduced 𝑙𝑛𝑅𝑅!!"#$$%&'#(&)*

 of 17.08% (95% CI: -24.32 to -10.19) in freshwater and 111	
15.7% (95% CI: -25.96 to -4.79) in marine environments. In contrast, terrestrial ectotherms showed no 112	
acclimation (possibly even inverse acclimation) – showing a 6.6% increase in 𝑙𝑛𝑅𝑅!!"#$$%&'#(&)*

 (95% CI: -113	
6.56 to 21.19, Figure 1B). 114	

Nonetheless, effect heterogeneity was high (only 2.85% of the variance was the result of sampling 115	
variability, 95% CI: 2.38 to 3.32%), and most variance was explained by the specific study and type of trait 116	
(Study: 29.41% , 95% CI: 20.78 to 38.49%; Trait Type: 29.35% , 95% CI: 19.97 to 39.53%). Evolutionary 117	
relationships among taxa and species ecology (i.e., species random effect) explained little variation in acute 118	
and acclimation responses (Species: 2.39% , 95% CI: 0.01 to 8.1%; Phylogeny: 2.89% , 95% CI: 0 to 119	
12.94%). 120	

Different trait categories showed different acclimation responses across habitat types, however, they mirrored 121	
overall patterns (see Supplement; Figure S2). Acclimation capacity also did not vary by life-history stage and 122	
there were no differences between 𝑙𝑛𝑅𝑅!!"#$$%&'#(&)*

 and 𝑙𝑛𝑅𝑅!!"#$+(,  between adult and juveniles (Figure 2 123	
A-C) (Adult-Juvenile (Acute): 0, 95% CI: -0.21 to 0.2, 𝑝"#"#  = 0.96; Adult-Juvenile (Acclimation): 0.05, 124	
95% CI: -0.16 to 0.38, 𝑝"#"#  = 0.83).125	



	126	

	127	



	

Figure 1- Taxonomic distribution of acute and acclimation 𝑄+, estimates across major habitats. A) 
Phylogenetic distribution of taxa contained within the data. The total number of acute and acclimation Q10 
effect sizes are highlighted as well as whether the taxa are marine, freshwater or terrestrial. Silhouettes are 
representative taxa of major clades within the tree. B) Mean acute and acclimation 𝑙𝑛𝑅𝑅!!" across marine, 
freshwater, and terrestrial systems. C) Mean 𝑙𝑛𝐶𝑉𝑅!!" across traits for marine, freshwater and terrestrial 
systems. Note there were no differences between acute and acclimation 𝑄+, types. k = total number of 
effect size estimates while the numbers in brackets indicate the number of species. Thick bars are 95% 
confidence intervals (CI) and thin bars 95% prediction intervals (PI). 

Reduced variation in physiological rates in terrestrial and marine ectotherms 128	

Relative variance in physiological rates (𝑙𝑛𝐶𝑉𝑅!!") showed a decrease with increasing temperature across all 129	
habitat types, which was especially pronounced in terrestrial and marine ectotherms. Overall, there was a 130	
27.87% (95% CI: 10.77 to 40.91, 𝑝"#"#  = 0.01) reduction in relative physiological rate variance for 131	
terrestrial ectotherms and a 14.94% (95% CI: 1.87 to 29.97, 𝑝"#"#  = 0.07) reduction in relative variation for 132	
marine ectotherms when temperatures increased by 10°C. In contrast, freshwater ectotherms exhibited a 133	
smaller reduction in relative physiological rate variance at high temperatures (8.62%, 95% CI: 0.41 to 21.78, 134	
𝑝"#"#  = 0.33). 135	

The total proportion of heterogeneity in 𝑙𝑛𝐶𝑉𝑅!!" was lower compared to 𝑙𝑛𝑅𝑅!!" (𝐼$-.  = 23.96, 95% CI: 136	
20.36 to 27.27), with most variation being driven by between-study and trait differences (see Supplement; 137	
Figure S5). Each life-history stage exhibited the same pattern of variance change in each of the habitats 138	
(Figure 2). Reduced relative variance was particularly prominent for resting metabolic rates and sprint speed 139	
although traits differed in whether they exhibited a reduction in variation in physiological rates at high 140	
temperatures (Figure S3).141	
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Figure 2- Estimated mean acclimation and acute 𝑙𝑛𝑅𝑅!!" (A-C) and 𝑙𝑛𝐶𝑉𝑅!!" (D-F) for adult and juvenile 
life-history stages for Marine (A & D), Freshwater (B & E) and Terrestrial (C & F) ectotherms. k = total 
number of effect size estimates while the numbers in brackets indicate the number of species. Thick bars 
indicate 95% confidence intervals and thin bars indicate 95% prediction intervals. Raw data for both adult 
and juvenile life-history stages also presented but points are not distinguished by different symbols for ease 
of presentation. 

Past climate does not influence acclimation capacity or expected change in variance 144	

Using the ERA5 climate model, we extracted a 72-year period (1950-2022) of either surface air temperature 145	
(0.01°resolution) for both terrestrial and freshwater taxa, or sea surface temperature for the marine taxa (at 146	
0.25°resolution). We used the historical temperature data for each geographical location to calculate a 147	
measure of thermal variability and predcitability (see Methods). Thermal variability (i.e., 𝐶𝑉) and 148	
predictability experienced by a population in the past did not explain acclimation capacity or changes in 149	
physiological rate variance among terrestrial, marine or freshwater populations (Figure 3; Figure 4). 150	

	



Figure 3- Predicted mean (thick black line) 𝑙𝑛𝑅𝑅!!" as a function of the Thermal Coefficient of Variation 
(CV) (A) and thermal predictability (B) for wild populations across marine, freshwater and terrestrial 
habitats. Dashed lines indicate 95% confidence intervals and dotted lines indicate 95% prediction intervals. 
Model slope (𝛽) along with the 95% CI and 𝑝"#"#  value is shown for each habitat. 
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Figure 4- Predicted mean (thick black line) 𝑙𝑛𝐶𝑉𝑅!!" as a function of the Thermal Coefficient of Variation 
(CV) (A) and thermal predictability (B) for wild populations across marine, freshwater and terrestrial 
habitats. Dashed lines indicate 95% confidence intervals and dotted lines indicate 95% prediction intervals. 
Model slope (𝛽) along with the 95% CI and 𝑝"#"#  value is shown for each habitat. 

Changes in physiological rate variance under climate change 152	

Measurements of acute and acclimation responses from wild ectotherms were much less common than from 153	
captive populations (𝑁$%&'(&$ = 134, from 188 wild populations). Globally, there was a clear bias towards 154	
species in the Northern Hemisphere (Figure 5 A-C). Projected changes in physiological rate variance were 155	
highly variable across the globe, with some regions showing a decrease in physiological rate variance, while 156	
others showing an increase (Figure 5 D). However, out of the 188 populations, relative variance was 157	
predicted to decrease in 97.87% of the locations. 158	



Using the ERA5 climate model, predictions of current global changes in physiological rate variance were 159	
generally conservative with our model explaining ~ 50% of the variation in the observed data (𝑅. = 0.48, 160	
95% CI: 0.31 to 0.6). Across habitat types climate change is predicted to result in a 1.02% change in relative 161	
variance for freshwater systems (95% CI: -5.49 to 7.1%, 𝑝"#"#  = 0.65), a 2.71% reduction in relative 162	
variance for marine systems (95% CI: -6.1 to 1.4%, 𝑝"#"#  = 0.37), and a 11.88% reduction in relative 163	
variance for terrestrial systems (95% CI: -18.95 to -5.98%, 𝑝"#"#  = < 0.0001) under a RCP8.5 climate 164	
scenerio. 165	

	

Figure 5- Model predictions for the expected change in acclimation 𝑙𝑛𝐶𝑉𝑅!!" across the globe for 
terrestrial, marine and freshwater ecthotherms. Predictions consider the uncertainty in random effects (i.e., 
species, phylogeny, study). Predicted change in physiological rate variance (relative variance) for each 



population based on current temperatures (average from 2018-2022; A-C) as well as the expected change 
from current temperatures based on future temperature predictions (average from 2096-2100, D). Future 
climate predictions are the reduction in relative variance expected under a RCP8.5 climate scenario relative 
to current climate conditions (% change). 

Discussion 166	

Understanding acclimation capacity and how variation in physiological rates changes across populations and 167	
species is important for predicting the ecological and evolutionary consequences of climate change7,8,10,26,39. 168	
Here, we show that the relative variance (𝑙𝑛𝐶𝑉𝑅!!") in physiological rates of ectotherms decreased across 169	
terrestrial, marine and freshwater ecosystems as temperatures increase, with the decrease being particularly 170	
pronouced in terrestrial ectotherms (~28%). These effects are expected to result in a decrease in the 171	
variability in physiological rates for marine and terrestrial ectotherms between ~4-13% under future climate 172	
change projections. Our results uncover an hitherto unrecognised dynamic where the benefits of acclimation 173	
may be counteracted by a decrease in trait variance. 174	

Potential consequences of reduced plasticity and variance in physiological rates across 175	
ectotherms 176	

Understanding the interplay between plasticity and genetic adaptation has important implications for 177	
predicting population resilience to climate change8,10,11,39–42. For example, incorporating phenotypic plasticity 178	
and adaptation into species distribution models dampens the predicted contraction of distributions in the face 179	
of climate changee.g., 39. In addition, it may be expected that reductions in variance impact the ‘opportunity for 180	
selection’ by reducing the strength of selection and/or the genetic variance exposed to selection, thereby 181	
reducing the capacity to evolve under climate change40,41. Quantifying the degree of plasticity and 182	
genetic/phenotypic variation in key physiological responses is therefore recognised as being critical to 183	
informing projections for organisms threatened by climate change11. 184	

We show that acclimation of physiological rates and changes relative variance differ across habitats. In 185	
freshwater habitats, acclimation responses will likely be beneficial and this coincides with relatively little 186	
reduction in the relative variance thereby maintaining the raw material for selection to operate. In contrast, 187	
acclimation responses of marine organisms are associated with a nearly equal reduction in relative variance 188	
so that the beneficial effects of acclimation trade-off against reduced potential for selection at high 189	
temperatures. In terrestrial ectotherms, relative variance reductions are particularly pronounced, and this 190	
coincides with a general inability to acclimate. Terrestrial ectotherms are therefore most vulnerable to climate 191	
because both compensations for potentially negative effect of temperature via acclimation, and adaptation to 192	
novel conditions are relatively ineffective. However, terrestrial species have greater opportunity for 193	
behavioural microhabitat selection which will decrease the impacts of climate change at least in complex, 194	
thermally heterogeneous environments43. 195	

Our findings highlight the potential vulnerability of terrestrial and marine ectotherms to climate change. Our 196	
meta-analytic results provide percentage changes of relative variances and acclimation responses that can be 197	
used to parameterise models (e.g., species distribution models)39,44 to predict species distributions or assess 198	
population resilience in the face of climate warming. Our results also define the range of biological responses 199	
observed across diverse taxa (e.g., through prediction intervals) providing opportunities to incorporate 200	
realistic biological variation into the modelling process. 201	

Plasticity and variance in physiological rates do not differ between life-stages 202	

Life-history stages often occupy different ecological niches and exhibit different physiological responses, 203	
levels of plasticity, and patterns of mortality in response to temperature. As such, it is becoming increasingly 204	
important to understand how climate change will impact different life-history stages45,46. Greater plasticity in 205	



early life-stages of development is expected to be important to increase resilience to the effects of climate 206	
change because early life-stages are often particularly vulnerable periods in development47,48. We show that 207	
there were generally similar patterns between early and late life stages across a diversity of taxa, both in 208	
terms of variance changes and the capacity for plasticity. On average, our results show that early life stages 209	
are not more vulnerable to the impacts of climate change. However, our general meta-analytic findings do 210	
not imply that early life stages are not always less plastic, but that such responses are likely context or trait 211	
depedent49,50. For example, Moghadam et al.50 showed that larval Drosophila were more plastic in their heat 212	
hardening responses compared to adults. In contrast, Carter et al.49 showed greater thermal plasticity in 213	
metabolism for adults but little in pupae of Onthophagus taurus. Despite variation in the literature, very few 214	
studies measure multiple life-history stages within the same population. In future research, there needs to be 215	
more studies that explicitly compare differences in plasticity among life stages across multiple traits within 216	
the same population. 217	

Ecological consequences of reduced variation in physiological rates 218	

Variance reductions in metabolism and performance (e.g., sprint speed) were most strongly impacted by 219	
increased temperature. Changes in variability of traits governing energy demand could have important 220	
consequences on the flow of energy within and between populations, communities, and ecosystems10,37,51. 221	
More variable populations, genetically and/or phenotypically, are predicted to be associated with broader 222	
niches, reduced intraspecific competition, increased growth rate, decreased vulnerability to environmental 223	
change and lower extinction risk26,33,51–53. Maintaining intrapopulation variability in physiological rates in a 224	
warmer world may therefore be important for population resilience to climate change. For example, 225	
Kooijman et al.31 integrated individual variation in dynamic energy budget (DEB) models developed for 226	
Daphnia magna. They showed that greater between-individual variation in DEB parameters led to less 227	
extreme population fluctuations compared to scenarios with no variation31. Our results suggest that terrestrial 228	
ectotherms will likely face greater challenges to adapting to climate change22,24,34, leading to greater rates of 229	
extinction and reduced productivity in terrestrial ecosystems. However, data testing the impacts of changes in 230	
variance on populations are limited to very few taxa. Future experimentation across a broader range of taxa 231	
should manipulate levels of variance to understand its ecological outcomes. 232	

No signature of past climate on capacity for physiological plasticity 233	

Theoretical evolutionary models predict that plasticity should evolve in populations experiencing greater 234	
environmental variability (spatial or temporal), particularly when oscillations are predictable over time to 235	
make environmental cues more reliable7–9,14,17,51,54. Higher spatial and temporal heterogeneity in terrestrial 236	
ecosystems55 suggests that plasticity should be more likely to evolve in terrestrial environments. However, 237	
we did not find evidence to this effect. Our finding is consistent with other meta-analyses22,56 with thermal 238	
tolerance (which we did not consider here). Modelling correct microenvironments for over 200 species across 239	
such diverse habitats is challenging. The lack of a relationship between physiological plasticity and 240	
environmental variability and predictability could be due the fact that ectotherms simply seek out 241	
microhabitats that make their environment quite stable43. Therefore, it is possible that more fine-scale 242	
resolution of the habitats that organisms occupy will elucidate expected patterns. Randomly fluctuating 243	
environments have been suggested to select for reduced plasticity, particularly if plastic responses are costly 244	
and this has been demonstrated by a number of empirical studies18,57,58. For example, using seed beetles 245	
(Callosobruchus maculatus), Hallsson et al.59 showed that experimentally evolving populations under 246	
randomly fluctuating thermal conditions did not show any increase in plasticity, but had reduced plasticity. 247	
Leung et al.18 also showed reduced plasticity in morphological traits of experimentally evolving algae 248	
populations (Dunaliella salina) when environments were less predictablesee also 58. While it is unclear how 249	
these findings relate directly to acclimation because they integrate multiple forms of plasticity, they do 250	
suggest that there are costs to being plastic or that the environmental signals are insufficient to trigger 251	
endocrine and epigenetic mechanisms that lead to plasticity when environments are not predictable18,51. The 252	
fact that aquatic ectotherms did show a capacity to acclimate suggests that environmental predictability, 253	



which is expected to be higher in aquatic environments, may be more important than environmental 254	
variability in driving the evolution of plasticity. 255	

Conclusions and future directions 256	

Enhanced knowledge of how variation in physiological rates vary across populations and species and the 257	
degree to which they can be adjusted in response to the environment may lead to more informed predictions 258	
about the ecological and evolutionary dynamics of natural populations10,11,52. While we show general patterns 259	
across taxa and habitats it is important to recognise that this does not mean such patterns apply to all 260	
populations. Substantial variation in acclimation responses and changes in variance exist among populations 261	
as evidenced by wide prediction intervals. Nonetheless, changes in the relative variance in physiological rates 262	
could be better incorporated into physiological and ecological models to provide more nuanced and possibly 263	
more realistic predictions about the impacts of climate change on natural populations. While we do not yet 264	
understand the relative contribution of environmental and genetic factors to variances changes, models could 265	
better decouple how different levels of heritability with different total variance impact evolutionary and 266	
ecological predictions. Our meta-analysis now provides the opportunity to parameterise models and ensure 267	
they are better aligned with empirical findings. Nonetheless, many fascinating questions remain unanswered 268	
that will require greater focus on the consequences of changes in variance (rather than just the mean). 269	
Particularly interesting questions include: How does a reduction in physiological rate variance change energy 270	
flow across tropic levels within communities? What are the biochemical, cellular, and physiological 271	
mechanisms that underly reduced variance in physiological rates? Are reductions in variance in one trait 272	
associated with reductions in correlated traits, or do some traits increase while others decrease? How much of 273	
the reduction in variance is driven by lower levels of genetic variance? Answers to these questions will 274	
require integrative approaches that combine empirical and theoretical work across multiple levels of 275	
biological organisation but will likely provide useful advances in understanding the full consequences that 276	
climate change will have on ectotherms across all major ecosystems. 277	

Methods & Protocols 278	

Literature collection 279	

We compiled literature on ectothermic animals that measured physiological rates (e.g., metabolic rate) at two 280	
or more temperatures after having been acclimated (or acclimatized) at these temperatures. We used data 281	
from a previous meta-analysis4 and updated4’s data by extracting data from suitable studies from our own 282	
searches that followed the same search protocol. More specifically, we performed a literature search using 283	
the Web of Science database for articles or proceedings papers published in English from 2013 to 2017 the 284	
date after 4 searches were conducted using the following topic search string: “(acclimat AND (therm* OR 285	
temp) NOT (plant OR tree* OR forest* OR fung* OR mammal* OR marsup* OR bird* OR human OR 286	
exercis* OR train* OR hypoxi))“. We further limited to the following research areas: Anatomy Morphology; 287	
Biodiversity Conservation; Biology; Ecology; Endocrinology Metabolism; Entomology; Evolutionary 288	
Biology; Marine Freshwater Biology; Physiology; Respiratory System, Reproductive Biology, Zoology. 289	

Our search resulted in 1,321 papers for screening in Rayyan60. We also cross-checked papers we found in our 290	
searches with a recent paper by23, which also updates the dataset of4’s. We included any papers that were 291	
missed between our searches and those of23.23 added 7 new studies (mainly because they were focused on 292	
metabolic rates), and our searches differed from theirs by only a single paperi.e., 61. Given the physiological 293	
traits we included were broader, we had a substantial increase in additional papers that we added to4’s 294	
dataset. More specifically, in addition to the 191 papers we included from the4 dataset, we extracted data 295	
from an extra 65 papers (with a total of 238 effects; a 34.03% increase in the number of published articles). 296	
Note that4 included a total of 205 publications, however, not all these contained the necessary statistics we 297	
needed to derive effect sizes and associated sampling variances (see below). While we may have missed 298	
papers, our goal was to obtain a large representative (and unbiased) sample of acclimation research rather 299	



than a comprehensive dataset. As such, our database represents the most up-to-date dataset used by4 to 300	
answer questions on physiological rates across ectotherms. 301	

We split the screening of titles and abstracts for the 1,321 papers found in our search among DWAN, FK, FS, 302	
and SN evenly. To ensure consistency among authors in title and abstract inclusion, relevant authors went 303	
through a randomly selected set of papers together before the formal screening to calibrate selection of 304	
papers based on our inclusion criteria (see below). In cases of disagreement regarding inclusion, we 305	
conservatively included the paper for full text screening and discussed uncertain papers among authors to 306	
come to a decision. After title and abstract screening, there was a total of 149 papers for full text screening. 307	
Papers were included only if they: 1) measured a physiological rate acutely at two temperatures on a sample 308	
of animals chronically exposed to the same two temperatures for at least 1 week; and 2) where physiological 309	
rates measured were burst and sustained locomotion, metabolic rates (standard, resting, routine and 310	
maximal), heart rates, and/or enzyme activities. We provide a PRISMA flow diagram of our extraction 311	
process in the Supplement (see Figure S1). 312	

Data Compilation 313	

We extracted means, standard deviations, and sample sizes for physiological rates at the two test 314	
temperatures. If there were more than two test temperatures, we chose only the test temperatures that fell 315	
within the most likely natural range of temperatures experienced by the species in question. We extracted 316	
these data from text, tables or figures of a given paper. Data were extracted from figures using the R package 317	
metaDigitise62. We also recorded the phylum, class, order, genus and species, and the latitude and longitude 318	
from where the experimental animals were sourced. For studies that did not provide latitude and longitude for 319	
the population, we searched for similar studies by the same lab group to identify where the population was 320	
likely to have been sourced. If the experimental animals were derived from the wild, we recorded the nearest 321	
latitude and longitude of the field collection site. If the animals were sourced from a commercial supplier, we 322	
took the latitude and longitude of the supplier. When it was not possible to find latitude and longitude using 323	
these methods, we looked up the distribution of the species in question and took the latitude and longitude of 324	
the centroid of the species’ distributional range. 325	

𝑸𝟏𝟎 Based Effect Sizes and Sampling Variances for Means and Variances 326	

Following38 we calculated a series of temperature-corrected effect sizes that compared mean physiological 327	
rates (𝑙𝑛𝑅𝑅!!") as well as the variability in physiological rates (𝑙𝑛𝑉𝑅!!" and 𝑙𝑛𝐶𝑉𝑅!!"). These effect sizes 328	
are similar to the traditional temperature coefficient (𝑄+,), but with formal analytical approximations of their 329	
sampling variances. Sampling variances for effect sizes allowed us to make use of traditional meta-analytic 330	
modelling approaches. 331	

Comparing changes in mean physiological rates 332	

To compare mean physiological rates, we calculated the log 𝑄+, response ratio, 𝑙𝑛𝑅𝑅!!"
38 as follows: 333	

𝑙𝑛𝑅𝑅!!" = 𝑙𝑛 /
𝑅.
𝑅+
0 /	

10∘𝐶
𝑇. − 𝑇+

0  (1) 334	

Where, 𝑅+ and 𝑅. are mean physiological rates and 𝑇+ and 𝑇. are the temperatures at which these rates are 335	
measured. Log transformation of this ratio makes the effect size normally distributed. Equation 1 is 336	
essentially a temperature corrected equivalent to the log response ratio (lnRR)63,64 when the numerator and 337	
denominator are measured at different temperatures. This allows comparisons of the means from two 338	
temperature treatments directly regardless of the absolute measurement temperatures. The sampling variance 339	
for Equation 1 can be computed as follows (as described in38): 340	



𝑠0122-!" = :
𝑆𝐷..

𝑅..𝑁.
+
𝑆𝐷+.

𝑅+.𝑁+
> /	

10∘𝐶
𝑇. − 𝑇+

0
.

  (2) 341	

Here, 𝑆𝐷+. and 𝑆𝐷.. are the standard deviations and 𝑁+ and 𝑁. are the sample sizes in group 1 and 2, 342	
respectively. 343	

Comparing variance in physiological rates 344	
65 proposed analogous effect size estimates to lnRR that allow for comparisons of changes in variance 345	
between two groups, the log variance ratio (lnVR) and the log coefficient of variation (lnCVR). lnVR and 346	
lnCVR are ratios that describe the relative difference in trait variability between two groups. We refer readers 347	
to65 for the equations describing lnVR and lnCVR, but these can easily be extended to their 𝑄+, analogues 348	
(and associated sampling variance) as follows: 349	

𝑙𝑛𝑉𝑅!!" = 𝑙𝑛 /
𝑆𝐷.
𝑆𝐷+

0 /	
10∘𝐶
𝑇. − 𝑇+

0  (3) 350	
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2(𝑁. − 1)
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1
2(𝑁+ − 1)

0 /	
10∘𝐶
𝑇. − 𝑇+

0
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  (4) 351	

Equation 3 and Equation 4 describe the change in physiological rate variance (Equation 3) across a 10°C 352	
temperature change along with its sampling variance (Equation 4). While this is a useful metric, as discussed 353	
by65 there is often a strong mean-variance relationship that needs to be accounted for in analysing changes in 354	
variance. As such, we calculated the coefficient of variation, which standardizes changes in variance for 355	
changes in means as follows: 356	

𝑙𝑛𝐶𝑉𝑅!!" = 𝑙𝑛 /
CV.

CV+
0 /	

10∘𝐶
𝑇. − 𝑇+

0  (5) 357	
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0
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  (6) 358	

where 𝐶𝑉 is the coefficient of variation defined as 𝑆𝐷/𝑅. We refer to 𝑙𝑛𝐶𝑉𝑅!!" as relative variance because 359	
variance changes are relative to the mean. 360	

Calculating acute and acclimation 𝒍𝒏𝑹𝑹𝑸𝟏𝟎, 𝒍𝒏𝑽𝑹𝑸𝟏𝟎 and 𝒍𝒏𝑪𝑽𝑹𝑸𝟏𝟎 estimates 361	

Using the mean, standard deviation, and sample size for all acute and acclimation treatments of studies in our 362	
databases we derived acute and acclimation 𝑙𝑛𝑅𝑅!!", 𝑙𝑛𝑉𝑅!!" and 𝑙𝑛𝐶𝑉𝑅!!" estimates. For all effect sizes 363	
the higher acute or acclimation temperature was in the numerator and the lower of the two temperatures in 364	
the denominator. As such, positive effect sizes suggest that the mean or variance is larger at the higher of the 365	
two temperatures, standardized to 10°C. 366	

Moderator Variables 367	

We recorded or derived a series of moderator variables from each study that are expected to have an impact 368	
on our effect size estimates. These included the duration of acclimation in days and acclimation type 369	
(“acclimation” or “acclimatization”) given that acclimation responses are expected to depend on how long 370	
chronic temperature exposure occurs (longer exposure = better acclimation response)4. We also recorded if 371	
the sample of animals were derived from captive or wild stocks, the life-history stage of the animals used 372	
(“adult” or “juvenile”) and the habitat type (“freshwater”, “marine” or “terrestrial”) given that4 show that 373	
these factors can impact 𝑄+, estimates. Physiological rate measures varied widely across the studies but 374	
could generally be grouped into discrete trait categories4. As such, using the detailed information on the trait 375	



type, and its associated units from a given study, we categorized each effect size into one of 12 trait 376	
categories. These categories included measures of whole organism performance measures including cardiac 377	
(i.e., ‘cardiac’) and muscle (‘muscle’) function, sprint speed (‘sprint’) and endurance (‘endurance’) and 378	
metabolic rates (i.e., maximal and resting metabolic rate; max MR’, ‘rest MR’, respectively). Studies also 379	
quantified various enzymatic reaction rates, including enzymes involved in general metabolic responses 380	
(categorized as ‘metabolic enzyme’), various parts of the electron transport chain, including ATPase activity 381	
(‘ATPase’), mitochondrial leak (‘mito_leak’) and oxidation (‘mito_oxidation’) as well as antioxidant 382	
enzymes (‘antiox’). All other traits not falling within these categories were placed into ‘other’. 383	

Climate Data 384	

To understand how climate has impacted species’ physiological acclimation abilities we used the coordinates 385	
reported by each study to extract temperature data from terrestrial and aquatic environments. It was unclear 386	
whether climate at the locations of captive reared organisms would be representative of a population’s 387	
climate history - particularly for species reared under captive condition for many generations. Given that we 388	
were interested in understanding climate driven effects on acclimation capacity we only used studies on wild 389	
populations for climate analyses. 390	

Monthly average temperature data were extracted from the ERA5 climate model, available from the 391	
Copernicus climate data store66. For each population and species in the dataset we extracted a 72-year period 392	
(1950-2022) of either surface air temperature (0.01°resolution) for both terrestrial and freshwater taxa, or sea 393	
surface temperature for the marine taxa (at 0.25°resolution) using the ncdf4 R packagevers. 1.22, 67. We chose 394	
surface temperature because we believed that it was more likely to reflect the micro-thermal environment 395	
experienced by terrestrial and freshwater ectotherms at those locations. For terrestrial species we estimated 396	
soil temperatures as this maybe more representative of microhabitat choice compared to air temperature. We 397	
fit models using both air and soil temperature and found that the results were qualitatively similar. We 398	
therefore only present results for air temperature. 399	

Using the thermal time-series data for each location we calculated metrics of thermal variability across 400	
months and years as well as estimates of thermal predictability (i.e., autocorrelation). To estimate thermal 401	
variability, we calculated the coefficient of variation (56

"
, where SD = standard deviation in temperature and 402	

M = the mean temperature for each year). To estimate thermal predictability, we calculated the auto-403	
regressive time lag across the entire dataset. Theoretical and empirical studies of plasticity evolution have 404	
emphasised the importance of both climate variability and predictability in plasticity evolution. 405	

Lastly, to illustrate the effects that climate warming could have on physiological rate variance we also 406	
extracted climate projections and calculated thermal variability and predictability for the future. We used the 407	
CanESM2 climate model (2005-2100) under a high emissions scenario (RCP8.5). 408	

Meta-Analysis 409	

We analysed our data using multilevel meta-analytic (MLMA) and meta-regression (MLMR) models in R 410	
(vers. 4.3.1) using brmsvers. 2.20.4 68,69,70 and metaforvers. 4.4.0 71. We fit both Bayesian and frequentist approaches 411	
to ensure that our results were consistent, and to create orchard plots more easilyvers. 2.0, 72,73. In addition, 412	
Bayesian methods better protect against type I errors in the presence of complex sources of non-413	
independence74–76. For our Bayesian models, we ran 4 MCMC chains, each with a warm-up of 1000 followed 414	
by 4000 sampling iterations keeping every 5 iterations for a total of 3200 samples from the posterior 415	
distribution. We used flat Gaussian priors for ‘fixed’ effects (i.e., 𝑁(0,10)) and a student t-distribution for 416	
‘random’ effects (i.e., 𝑠𝑡𝑢𝑑𝑒𝑛𝑡*(3,0,10)). We checked that all MCMC chains were mixing and had 417	
converged (i.e., 𝑅78* = 1). We compared any competing models using Akaike’s Information Criteria (AIC) 418	
(if frequentist) or Wantabe Information Criteria (WIC) (if Bayesian). We deemed models with the lowest IC 419	



value to be best supported if there was a 𝛥𝐼𝐶 between the competing models of 2 or more. If two models 420	
were within 2 𝛥𝐼𝐶 units we went with the most parsimonious model. 421	

Multi-level Meta-analysis (MLMA) Models 422	

We first fit multi-level meta-analysis (MLMA) models (i.e., intercept-only models) for both 𝑙𝑛𝑅𝑅!!" and 423	
𝑙𝑛𝐶𝑉𝑅!!", that included study, species, and phylogeny as random effects to account for non-independence. 424	
We also included trait as a random effect to account for trait variation within the data. Our MLMA models 425	
allowed us to partition the variation in 𝑙𝑛𝑅𝑅!!" and 𝑙𝑛𝐶𝑉𝑅!!" among these key sources while accounting for 426	
total sampling variance in each. This allowed us to calculate the proportion of total heterogeneity [i.e., 𝐼*9*80. ; 427	
sensu77;38] along with various 𝐼. metrics describing the proportion of variance explained by each random 428	
effect level77. We also present 95% prediction intervals which describe the expected distribution of effects 429	
from future studies38,72. 430	

A phylogeny was derived using the Open Tree of Life (OTL) with the rotl package in R (vers. 3.1.0) 78, and 431	
plotted using ggtree (vers. 3.9.0) 79. We resolved all polytomies in the tree. Any missing taxa were replaced 432	
with closely related species and branch lengths were computed using Grafen’s method (using power = 0.7) 80. 433	
We used the R packages ape (vers. 5.7.1) 81 and phytools (vers. 1.9.16) 82 to prune the tree for individual 434	
analyses and calculate phylogenetic covariance (or correlation) matrices used in meta-analytic models. 435	

Multi-level Meta-regression (MLMR) Models 436	

After quantifying levels of heterogeneity, we fit a series of multi-level meta-regression (MLMR) models to 437	
test our key questions. In all models, we included the same random effects as we used in our MLMA models. 438	
Acclimation time varied from 4 to 408 days (mean (SD) = 37.98 ± 45.19 days), and terrestrial ectotherms 439	
were acclimated for a much shorter duration (mean (SD) = 23.53 ± 15.56, n = 125) than both freshwater 440	
(mean (SD) = 36.81 ± 28.71, n = 430) and marine species (mean (SD) = 46.18 ± 67.21, n = 313). Rates of 441	
acclimation have been shown to be faster for many terrestrial groups compared to aquatic organisms [e.g., 442	
amphibians and reptiles have faster rates of acclimation than fishes; See83], which would make it more likely 443	
that terrestrial ectotherms would show lower post acclimation 𝑙𝑛𝑅𝑅!!". To control for these possible 444	
differences, acclimation time was mean-centered (mean = 0) and included in all our models. As such, all 445	
estimates can be interpreted as values for an average level of acclimation time (i.e., 37.98 days). 446	

We first tested the degree to which acute and acclimation 𝑙𝑛𝑅𝑅!!" and 𝑙𝑛𝐶𝑉𝑅!!" effects varied by habitat 447	
type (i.e., terrestrial, freshwater, and marine ecosystems). Models included an interaction between effect type 448	
(i.e., acute or acclimation) and habitat. Reduced mean 𝑙𝑛𝑅𝑅!!"#$$%&'#(&)*

 relative to 𝑙𝑛𝑅𝑅!!"#$+(,  indicates 449	
that acclimation to thermal environments results in partial compensation of physiological rates (i.e., 450	
phenotypic plasticity), whereas no differences between 𝑙𝑛𝑅𝑅!!"#$+(,  and 𝑙𝑛𝑅𝑅!!"#$$%&'#(&)*

 suggests 451	
organisms are not capable of physiological plasticity4,23. In contrast, a difference in 𝑙𝑛𝐶𝑉𝑅!!"#$$%&'#(&)*

 452	
relative to 𝑙𝑛𝐶𝑉𝑅!!"#$+(,  would imply that changes in between individual variation in physiological rates 453	
across 10°C differ depending on whether acute or acclimation responses are measured. If the interaction 454	
between effect type and habitat was not supported, then we fit a model that only contained additive effects of 455	
effect type and habitat. Following on from these models, we subset each habitat type and explored how mean 456	
𝑙𝑛𝑅𝑅!!" changed across traits. Within each habitat (marine, freshwater, and terrestrial) we fit a series of 457	
models that included an interaction between effect type (acute / acclimation) and trait category (as defined 458	
above). Variance in effects within trait categories appeared to vary depending on the trait type in question. 459	
Comparison of a model with and without heteroscedastic residual variance favored a model with 460	
heteroscedastic residual variance across trait categories (𝛥𝐴𝐼𝐶'; marine = 58, freshwater = 120, and 461	
terrestrial = 12). To ensure models converged we limited to trait categories for each habitat with six or more 462	
effect sizes. 463	



Second, we tested whether different life-stages are more or less likely to acclimate by fitting a model for each 464	
habitat type and including an interaction between life-stage (‘adult’ or ‘juvenile’) and effect type. We 465	
predicted that acclimation responses would be more likely early in development compared to later in 466	
development as this pattern has been shown in previous studiese.g., 50, but that this should depend on the 467	
habitat type given the different constraints faced by different early life stages across major habitat types. 468	

Modelling how climate change will impact on opportunity for selection 469	

To understand the consequences of human-induced climate change on the potential to impact the opportunity 470	
for selection on physiological traits we fit a model that included an interaction between acclimation type, 471	
habitat type, latitude and longitude. We assumed that any change in 𝑙𝑛𝐶𝑉𝑅!!" across latitude and longitude 472	
could vary by habitat type (i.e., an interaction between habitat). We used non-linear tensors for latitude and 473	
longitude as any response could be complicated by local factors (e.g., altitude). Our model included random 474	
effects of species, trait, phylogeny and study. We predicted the expected change in 𝑙𝑛𝐶𝑉𝑅!!" for each wild 475	
population in our dataset at the specific populations latitude and longitude. To do this, we first converted the 476	
predicted 𝑙𝑛𝐶𝑉𝑅!!" to a 1°C change as opoosed to 10°C as follows: 477	

𝑙𝑛𝐶𝑉𝑅!! =
𝑙𝑛𝐶𝑉𝑅!!"

10   (7) 478	

Equation 7 turned the expected change across 10°C to 1°C. We then multiplied this predicted change by the 479	
change in air and sea surface temperatures at the locations of each population (and species) that is expected 480	
under high emissions scenerios in 2080. 481	

Publication Bias 482	

We explored the possibility for publication bias graphically, using funnel plots, and more formally by 483	
including in our meta-regression models sampling variance (or sampling standard error)84. Funnel plot 484	
asymmetry may suggest a form of publication bias called the ‘file-drawer’ effect whereby low-powered 485	
studies are less likely to be published. To test whether sampling variance covaried with effect size we 486	
included it in a multi-level meta-regression model that accounted for all the random effects (study, species, 487	
trait) and fixed effects (acclimation time, type of effect, habitat, trait category and the interaction between 488	
habitat type and trait category). 489	
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Supplemental Results and Figures 684	

PRISMA Flow Diagram 685	

	

Figure S1- PRISMA flow diagram of the literature search and screening process. 



Acute and acclimation 𝒍𝒏𝑹𝑹𝑸𝟏𝟎 for different trait categories across marine, freshwater and terrestrial 686	
taxa 687	

	

Figure S2- Acute and Acclimation 𝑙𝑛𝑅𝑅!!" across traits for A) marine, B) freshwater and C) terrestrial 
systems. k = total number of effect size estimates while the numbers in brackets indicate the number of 
species. Thick bars indicate 95% confidence intervals and thin bars indicate 95% prediction intervals. The 
x-axis is truncated for ease of visualisation. 
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Figure S3- Acute and Acclimation 𝑙𝑛𝐶𝑉𝑅!!" across traits for A) marine, B) freshwater and C) terrestrial 
systems. k = total number of effect size estimates while the numbers in brackets indicate the number of 
species. Thick bars indicate 95% confidence intervals and thin bars indicate 95% prediction intervals. The 
x-axis is truncated for ease of visualisation. 

Comparing raw variance changes using 𝒍𝒏𝑽𝑹𝑸𝟏𝟎 689	

Analysis of 𝑙𝑛𝑉𝑅!!" suggested that variance increases with higher temperatures across all habitat types, with 690	
terrestrial ectotherms having the smallest increase in variance (Figure S4; Table S1). 691	



	

Figure S4- Estimated mean 𝑙𝑛𝑉𝑅!!" for marine, freshwater and terrestrial systems. Note there were no 
differences between acute and acclimation 𝑄+, types so they were averaged. Thick black bars are 95% 
confidence intervals (CI’s) and thin bars 95% prediction intervals (PI’s). The percentage change in 
variance is also back calculated. Note that these are raw variances and do not account for changes in mean 
physiological rates. k = total number of effect size estimates while the numbers in brackets indicate the 
number of species. 

 

Table S1 – Model estimates, standard error, and 95% credible intervals comparing changes in acute and 
acclimation 𝑙𝑛𝑉𝑅!!" across habitat types. Model estimates are based off 1,253 effect sizes from 139 
studies. 

 

Parameter	 Estimate	 Est.Error	 l-95% CI	 u-95% CI	

Fixed Effects	

Intercept	 0.4932	 0.10684	 0.2984	 0.7281	

Acclimation Time (z scaled)	 -0.0001	 0.00071	 -0.0015	 0.0013	

Acclimation Effect	 -0.0247	 0.04247	 -0.1097	 0.0593	



Parameter	 Estimate	 Est.Error	 l-95% CI	 u-95% CI	

Habitat (Marine)	 -0.0024	 0.09890	 -0.1957	 0.1968	

Habitat (Terrestrial)	 -0.2032	 0.10196	 -0.3956	 -0.0049	

Acclimation*Marine	 -0.0857	 0.07817	 -0.2389	 0.0700	

Random Effects	 	 	 	 	

Study	 0.3647	 0.03944	 0.2910	 0.4434	

Phylogeny	 0.1194	 0.09729	 0.0043	 0.3630	

Species	 0.0821	 0.05471	 0.0041	 0.2017	

Trait	 0.3134	 0.04159	 0.2386	 0.3975	

Plots of 𝑰𝟐 for multi-level models 692	

	

Figure S5- 𝐼. estimates. A) 𝑙𝑛𝑅𝑅!!" B) 𝑙𝑛𝐶𝑉𝑅!!" and C) 𝑙𝑛𝑉𝑅!!". 

Publication Bias Analysis 693	

Funnel plots did not show any noticeable deviation from the typical funnel shape for any of the effect size 694	
estimates (Figure S6). 695	



	

Figure S6- Funnel plot of precision (1/sampling standard error) against effect size for A) log response ratio 
𝑄+, (𝑙𝑛𝑅𝑅!!"), B)log coefficient of variance ratio 𝑄+, (𝑙𝑛𝐶𝑉𝑅!!") and C) log variance ratio 𝑄+, 
(𝑙𝑛𝑉𝑅!!"). Both acute (‘green’) and acclimation (‘orange’) effect sizes are plotted. 
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