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ABSTRACT 12 

The age of individuals has consequences not only for their fitness and behaviour, but also for the 13 

functioning of the groups they form. Because social behaviour often changes with age, population 14 

age structure is expected to shape the social organisation, the social environments individuals 15 

experience, and the operation of social processes within populations. Although research has 16 

explored changes in individual social behaviour with age, particularly in controlled settings, there 17 

is limited understanding of how age structure governs sociality in wild populations. Here, we 18 

synthesise previous research into age-related effects on social processes in natural populations, 19 

and discuss the links between age structure, sociality and ecology, specifically focusing on how 20 

population age structure might influence social structure and functioning. We highlight the potential 21 

for using empirical data from natural populations in combination with social network approaches 22 

to uncover pathways linking individual social ageing, population age structure and societal 23 

functioning. We discuss the broader implications of these insights for understanding the social 24 

impacts of anthropogenic effects on animal population demography, and for building a deeper 25 

understanding of societal ageing in general. 26 
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(1) Introduction 31 

Age determines many aspects of life, underpinning variation in individual-level characteristics 32 

across species [1–4]. This is summarised through the framework of life-history theory, which posits 33 

that organisms have limited resources which are invested in traits and processes at different points 34 

throughout their lifespan to maximise fitness [5]. Ageing in late-life is generally associated with 35 

senescence i.e. a decline in physiological functioning that leads to a loss of organismal function, 36 

decreased fecundity and increased probability of death [6–13]. However, ageing itself broadly 37 

reflects a temporal parameter that measures the amount of time since birth, and therefore may be 38 

accompanied by many other changes in an individual’s biology in addition to physiological 39 

senescence in late life, such as sexual maturation, the accumulation of resources and social 40 
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experience, or a changing social environment due to cohort effects and selective disappearance 41 

resulting from natural selection acting within a generation. Therefore, patterns of age-specificity in 42 

individual characteristics can be complex, but are evidenced in reproduction and survival 43 

probability [14–20], physiology and morphology [21–25], and behaviour [26–35]. Much previous 44 

research has studied ageing in laboratory settings, particularly using insects and other short-lived 45 

animals as models [9,10,36–38]. However, studies on captive animals may lead to conclusions 46 

that cannot be generalised to natural ecological contexts [39]. Therefore, the importance of 47 

studying ageing in wild populations is widely acknowledged [18,40–44]. 48 

 49 

An individual’s age can have consequences not only for its own survival and behaviour, but also 50 

for the functioning of the population of which it is part. Recent work highlights that individual social 51 

behaviour can change with age [26–35], for example in terms of how many associates an individual 52 

has. This might be driven by a number of mechanisms [34] such as age-related changes in 53 

experience [45–48], space-use [26], cognitive physiology [49–51], or phenotypic plasticity [52,53]. 54 

Much of the research that has assessed age-related differences in sociality does so through 55 

comparing individual social behaviour among different age classes, as opposed to using 56 

longitudinal studies which measure how ageing relates to changing sociality within individuals 57 

across their lifetime. Thus, age-related differences in social behaviour may not be a direct result 58 

of within-individual ageing, but also between-individual processes such as cohort effects or 59 

selective disappearance [54–56]. Crucially, where age relates to social behaviour through 60 

whichever of the discussed mechanisms, and thus variation in the number, type and strength of 61 

relationships formed, the age profile of the population as a whole might be expected to influence 62 

the overall social organisation and functioning, and the consequences that depend on this. This 63 

can be conceptualised using the perspective of social structure, which is a synthesis of all social 64 

relationships between members of a group. It is determined by social interactions among 65 

individuals, from which relationships form, and thus govern the overall social structure of a group 66 

or population [57,58]. Hence, though frequently overlooked, the age structure is thus likely to be 67 

an important driver of variation in social structure across populations. 68 

 69 
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Age structure is a demographic property that describes the distribution of age within a population, 70 

determined by variation in processes that affect how many individuals are born, die, and migrate 71 

in and out of a population. It is well established that variation in age structure plays an important 72 

role in the demographic functioning of populations. This is because individual age-specificity in 73 

survival and reproduction means that fluctuations in age structure influence population vital rates 74 

[59,60]. Additionally, age groups differ in their demographic sensitivity to density-dependence and 75 

environmental factors [61–63]. Thus, variation in age structure influences overall population growth 76 

rate, which itself will cause a change to age structure as more or fewer individuals are recruited 77 

into the population or die [64–70]. Therefore, age structure and the demographic processes that 78 

determine it are highly interrelated and exert a reciprocal influence on one another (Figure 1). As 79 

already explained, however, age structure will not only influence demographic rates but may also 80 

affect the social structure of populations and the operation of social processes within them. The 81 

interplay between age and society is of primary significance in a range of biological disciplinaries: 82 

to behavioural ecologists interested in the causes and consequences of social processes, and how 83 

this is shaped by age [31,54,71–75]; to evolutionary biologists concerned with the evolution of 84 

social behaviour and ageing, and how evolution influences social structure over generations 85 

[1,8,16,76–78]; and to gerontologists interested in ageing human societies [79–82]. However, our 86 

general understanding of how population age structure affects sociality in the wild is limited. 87 

 88 

 89 
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Figure 1 – A conceptual synthesis of how variation in demographic rates and properties, age 90 

structure, and sociality might mutually affect one another. 91 

 92 

In this paper, we assess previous research into age-related effects on social processes with the 93 

aim to better understand the link between age structure and sociality in the wild (Section 2). While 94 

it is clear that age structure, sociality and the ageing process can profoundly influence the 95 

evolutionary dynamics of each other [3,83–90], this review is primarily focussed on the ecological 96 

perspective of the link between age and sociality in wild populations. Finally, we highlight the 97 

potential for using empirical data from natural populations in concert with a social network 98 

approach to uncover the causes and consequences of the relationship between age structure and 99 

sociality, and discuss future directions for the research field (Section 3). 100 

 101 

(2) Population age structure and sociality 102 

Existing work on natural populations identifies the potential for age structure and demographic 103 

rates to be tied to one another in various ways (Figure 1). For example, for many European bird 104 

species, variation in masting events (e.g. in beech Fagus) affects juvenile survival and recruitment 105 

[91,92]. As a consequence, considerable temporal variation in age structure is generated: in great 106 

tits (Parus major), for example, the proportion of the population consisting of yearlings can vary 107 

from 27–68% [93]. Age-specificity in reproduction and response to density dependence in this 108 

species [94–99] means that such changes in age structure will affect population growth rate. What 109 

remains to be understood is the role sociality plays in the determination of age structure and 110 

demographic rates in natural populations. 111 

 112 

The role that sociality plays in affecting variation in population age structure is currently not well 113 

understood, but may be significant. This is because the patterning of social relationships, which 114 

produce overall social structure, can mediate survival and reproduction, thus influencing birth and 115 

death rates and the resulting distribution of age in wild populations. For example, foals with a 116 

higher number of associates in a feral horse (Equus caballus) population had greater survival 117 

following a catastrophic event that caused a loss of 40% of individuals [100]. Benefits to health 118 
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and survival as a result of social cohesion have also been evidenced in killer whales (Orcinus orca 119 

[101]); giraffes (Giraffa camelopardalis [102]); bighorn sheep (Ovis canadensis [103]); rock hyrax 120 

(Procavia capensis [104]), yellow-bellied marmots (Marmota flaviventris [105,106]), Barbary 121 

macaques (Macaca sylvanus [107,108]), rhesus macaques (Macaca mulatta [109–111]); baboons 122 

(Papio cynocephalus [112–114]) and humans (Homo sapiens [115–118]). Indeed, such benefits 123 

may help to explain why individuals increase their social connections after major disturbances 124 

[119–121]. Conversely, in some contexts, increased sociality may reduce survival or reproduction 125 

[122–126], for instance, when social contact increases infection risk [127–132]. In these ways, 126 

social behaviour might directly influence vital rates and generate variation in the resulting age 127 

structure of wild populations. 128 

 129 

While the social behaviour and resulting social structure of a population may influence its age 130 

structure, we can also conversely ask whether age structure might affect the social structure and 131 

functioning of social processes. Such social processes refer to behavioural interactions including 132 

two or more individuals, affected by age-specific tendencies to perform them, and the overall 133 

structure of the social network. Age-specific social behaviour has been demonstrated in many 134 

animal taxa from laboratory, domestic, and wild populations [26–35]. In some cases, changes in 135 

social behaviour with age are profound. For example, as male lions (Panthera leo) age, they move 136 

from their natal pride into coalitions with other older males [133], thus considerably altering their 137 

social associations. Therefore, age structure might be critical to the overall social structure of wild 138 

populations. Some research has considered age distribution in social networks, asking in particular 139 

whether groups exhibit assortment with respect to age. Age-assortment in social 140 

networks, whereby association between same- or similar-age individuals is stronger than that 141 

expected from chance, has been observed in birds [29,134,135], primates [136] (including humans 142 

[137]), yellow-bellied marmots [75], sea lions (Zalophus wollebaeki [138]) and potentially 143 

bottlenose dolphins [139]. Such age-assortment may interact with the influence of age on social 144 

behaviour at the individual-level to provide a mechanism whereby overall age structure influences 145 

the emergent social structure, and the operation of social processes within the social network. 146 

Despite this, the causal effect of age structure on the functioning of social processes is relatively 147 
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understudied, and few studies have explicitly considered the mechanisms through which age 148 

structure determines social behaviour and structuring in wild populations. Here, we explore this by 149 

assessing how age is known to affect the relationship that population age structure holds with four 150 

key social processes: (i) social choice; (ii) breeding behaviour; (iii) cooperation; & (iv) competition. 151 

 152 

(i) Social choice 153 

Social preferences and relationships can influence survival and life-history outcomes in social 154 

species [89–105], as the choices made in terms of who to associate with and for how long can 155 

influence success in various contexts such as mating, cooperation, competition, and social 156 

learning. It is well established that physiological characteristics can change with age, and 157 

senescence in such traits with old age is a widespread phenomenon [8,18]. The neurological and 158 

hormonal mechanisms that underpin social choice have been studied extensively in laboratory 159 

settings [140–144]. For example, the neuropeptide oxytocin is particularly important in mediating 160 

social choice in humans, such as that involved in parent-offspring bonds [145,146]. However, 161 

senescence in the physiological properties that underpin social behaviour and its relation to social 162 

changes associated with ageing in wild populations is understudied, and we lack a general cross-163 

species understanding on patterns of social senescence (see Future Directions). 164 

 165 

In the context of social choice, humans become more selective with age, as individuals invest in 166 

fewer but stronger relationships [147–150]. Evidence is now emerging for similar patterns of social 167 

selectivity with increased age in non-human animals including: chimpanzees (Pan troglodytes 168 

[33]); Java-monkeys (Macaca fascicularis [151]); macaques [32,152,153]; yellow-bellied marmots 169 

[75,154]; red deer (Cervus elaphus [26]) and killer whales [155]. In marmots, for example, fewer 170 

attempts are made to interact with old individuals, which consequently exert less social influence 171 

[154]. Observed patterns of increasing social selectivity with age might emerge from different, and 172 

potentially simpler processes, in wild populations compared to human societies, for example 173 

through increased mortality of older social partners or changes in space-use and associated social 174 

interactions. For example, in red deer, older individuals are less socially-connected which may 175 
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stem from changes in space-use, with older deer having smaller home ranges in areas of lower 176 

quality and density [26]. 177 

 178 

It is likely that these age-related changes in social choice will play a role in the relationship between 179 

population age structure and other social processes. For example, if strong mutual bonds between 180 

older individuals promote prosocial behaviour, the presence of older individuals within a population 181 

may contribute to higher average rates of cooperation. Overall, age-related changes in social 182 

choice may influence social structure through changing which, and with how many, associates an 183 

individual chooses to interact with depending on age. This therefore provides a mechanism by 184 

which variation in age structure may affect overall societal structure and functioning. 185 

 186 

(ii) Breeding behaviour 187 

Breeding behaviour is a well-studied aspect of social behaviour, and age-related changes might 188 

mean that variation in age structure will alter patterns of breeding across a population. Here, we 189 

review the implications of age-specificity for breeding processes that depend on social interactions, 190 

through mate choice and subsequent decisions of whether to form a long-term partner social bond, 191 

divorce or commit extra-pair copulations. We assess how these might affect population-level 192 

breeding behaviour given variation in age structure. 193 

 194 

The choice of mate can be an important determinant of reproductive success [156–162]. It has 195 

been demonstrated that some females adjust mating preferences based on previous experience, 196 

known as the ‘previous male effect’ [160–173]. Because refinement of mating preferences occurs 197 

in response to previous mating behaviour, as older females will have undergone more breeding 198 

attempts, they may then be expected to show more refined mating preferences than younger 199 

females. This effect captures how age relates to mate choice, since females with greater 200 

experience must have undergone more breeding attempts, and therefore older individuals may be 201 

better at choosing mates [45]. Conversely, in some cases older females might be less choosy, 202 

which may be caused by delayed mating in senescent females resulting in reduced choosiness, 203 

or decreased ability to discriminate male quality due to deterioration of sensory capacity with 204 
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senescence [177–179]. As well as previous experience, mate preferences can be learnt socially, 205 

a process known as mate copying [180–184]. In some species, younger individuals are more likely 206 

to copy the mate choice of others [185–187], and thus age structure might influence the overall 207 

levels of mate copying, which could have considerable effects on population-level breeding 208 

behaviour through affecting which males are chosen. Further, as well as influencing population-209 

level breeding behaviour through individual age-specificity, population age structure might mediate 210 

mate choice by determining which individuals of a given age mate together if the age distribution 211 

is skewed towards specific age-cohorts. For example, recent work demonstrates that in species 212 

with high mortality rates, a large proportion of the population exists in a single age-cohort, and thus 213 

fluctuations in age structure largely determine variation in levels of age-assortative mating 214 

[93,188]. 215 

 216 

In socially monogamous species, once a mate is chosen, individuals may remate with the same 217 

partner to increase breeding success [189–191]. Such remating results in pair-bonding behaviour, 218 

where a long-term relationship forms [192–195]. Pair-bonds require that partners sustain their 219 

relationship beyond a single or multiple mating attempts [192,196,197], and when individuals elect 220 

to remate based on previous success [198,199], we may expect to see a higher proportion of older 221 

individuals pair-bonded than younger ones, due to age-specific breeding success in many species 222 

where performance is lower in young breeders [15,19,200]. Age structure might therefore influence 223 

pair-bonding in populations, which may have important consequences as pair-bonding can be 224 

adaptive independent of age and reproductive experience [201], thus potentially affecting 225 

population productivity. However, this relationship is complicated by the fact that, as pairs age, 226 

there is an increasing likelihood that one partner will die between breeding attempts, leading to 227 

widowing [190,202]. Moreover, in short-lived species where mortality between breeding attempts 228 

is high, costs of waiting to remate with a partner that has died have been hypothesised to select 229 

for divorce and partner-switching [203]. The strength and direction of the relationship between 230 

individual age and pair-bonding behaviour is thus likely to be mediated by mortality and lifespan, 231 

with the prediction that population age structure should most strongly predict pair-bonding across 232 

populations in long-lived species with low extrinsic mortality. 233 
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 234 

In addition to avoiding costs associated with delayed breeding, an individual may divorce if it fails 235 

to reach optimum reproductive potential with a partner of low quality [202–205]. Within a 236 

population, the proportion of prime-age individuals (those in the age class with the highest 237 

reproductive and survival rates [61,206–208]) may affect divorce rates, as partners choose to 238 

divorce to mate with individuals of higher reproductive value. For example, divorce rates in 239 

barnacle geese (Branta leucopsis) increase when there is a greater proportion of older, more 240 

experienced individuals among unpaired birds [189,190]. In some cases, rather than divorcing their 241 

partner, individuals may seek extra-pair copulations (EPCs) [209,210]. The likelihood of performing 242 

EPCs can be influenced by age, with meta-analyses pointing to a positive correlation between 243 

male age and extra-pair paternity gained from EPCs [211,212]. Thus, population age structure is 244 

likely to influence rates of both divorce and EPCs, which may in turn have a significant influence 245 

on population-level breeding behaviour depending on the distribution of age within the population. 246 

 247 

(iii) Cooperation 248 

There is emerging evidence for a close relationship between age and cooperation across multiple 249 

ecological contexts, and in some cases, there is a clear association between age structure and 250 

population-level measures of cooperation. For example, a study of 16 populations in a small-scale 251 

horticulturalist human society has demonstrated that demographic factors influence resource-252 

sharing [213]. Age in particular had a positive effect on resource-sharing, with older individuals 253 

contributing more to the “group pot”. Further, villages with more adult sisters had higher inequality 254 

in resource distribution, suggesting an interplay between age structure, sex distribution, and 255 

kinship in explaining rates of cooperation. Some empirical evidence also demonstrates ecological 256 

links between cooperation and age in non-human animals [214–216] and bacteria [217], but the 257 

influence of variation in population age structure has not been explicitly considered. 258 

 259 

Levels of tolerance and willingness to cooperate may be expected to vary over an individual’s 260 

lifespan, related to changes in payoffs, partner-choice, competitiveness, and the learning of 261 

heuristics that allow individuals to benefit from cooperative interactions. Older individuals may have 262 
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more familiar associates and stronger bonds, allowing for more frequent cooperation with their 263 

social associates. For example, great tits are more likely to cooperate with familiar neighbours 264 

[218], and older individuals are more likely to be familiar with their neighbours [219]. Therefore, in 265 

such cases, populations with many older individuals may have higher rates of cooperation overall. 266 

Furthermore, cooperation may increase with age if individuals learn to cooperate through their 267 

experiences with other cooperators. However, as individuals age, the number of social partners 268 

may dwindle if partners are not replaced upon their death, potentially leading to lower levels of 269 

cooperation through loss of opportunity [26]. Alternatively, the number of social partners may be 270 

reduced due to the previously discussed potential increases in social selectivity with age. Even if 271 

age is not directly related to the propensity to cooperate, it is possible, for example, that if 272 

individuals of a particular age are more likely to engage in policing of cheaters, the age structure 273 

of the population may influence rates of cooperation versus defection [220]. Furthermore, if 274 

cooperation confers survival or reproductive benefits to cooperators, individuals may cooperate 275 

more as they age in order to mitigate the potential negative effects of senescence [221–223] (see 276 

Future Directions). 277 

 278 

An extreme form of cooperation seen in animals is cooperative breeding, where individuals provide 279 

care to young that are not their own (alloparental care). From an ecological perspective, 280 

cooperative breeding is considered to most commonly arise when individuals delay or forego natal 281 

dispersal and instead remain in their natal territory caring for the offspring of breeders [224]. In 282 

such systems, age-dependent plasticity in the provision of alloparental care may allow individuals 283 

to adjust their helping strategies to changes in social and environmental conditions that occur over 284 

their lifetime. Recent work shows that local relatedness to other group members can change 285 

systematically through the lifespan of an individual, known as kinship dynamics [78,216,225,226]. 286 

In cooperative breeders, relatedness between helpers and breeders commonly declines as helpers 287 

age, due to time-dependent breeder replacement and dispersal dynamics [216,227]. In these 288 

cases, individuals may reduce investment in help as they age [216,228], as lower relatedness often 289 

predicts decreased helping efforts in cooperative breeders [229–234]. In Damaraland mole-rats 290 

(Fukomys damarensis), for example, investment in alloparental care declines with age [235], 291 



 
12 

although this effect may be due to more general age-related declines in performance. Moreover, 292 

a decline in relatedness with age, and with it the indirect fitness payoffs of helping, might provoke 293 

dispersal attempts by older helpers which then seek to boost inclusive fitness through reproduction 294 

outside of the natal group [236]. In other species, however, the prospect of territory inheritance 295 

and associated reproductive benefits may favour continued philopatry. This occurs, for example in 296 

primitively eusocial hover wasps (Liostenogaster flavolineata), where females form an age-based 297 

queue in which only the oldest female reproduces [237–240]. In this and other species that queue 298 

for inheritance, individuals are observed to reduce investment in alloparental care as they ascend 299 

rank, which can be interpreted as an attempt by older and thus higher-ranking individuals to reduce 300 

the mortality risk associated with foraging off the nest in an attempt to survive to inherit the nest 301 

[241]. Such a selfish strategy therefore leads to a similar negative relationship between age and 302 

helping effort, but in this case the relationship is mediated by the prospect of direct fitness gains 303 

through future reproduction rather than the concurrent decline in relatedness and indirect fitness 304 

payoffs of help. Multiple ecological processes can shape age-specificity in cooperative breeding, 305 

which may therefore in turn generate relationships between age structure and cooperation at the 306 

population-level. 307 

 308 

(iv) Competition 309 

Competition for mates, breeding sites and food is a fundamental ecological process in wild 310 

populations [242], including in social species where individuals face local competition with group 311 

members. As with cooperative behaviours, an individual’s ability to perform, and investment in, 312 

competitive behaviours can be sensitive to age [243,244]. In some taxa, older individuals are 313 

dominant in competitive interactions [245–251], allowing them to monopolise resources [252]. Age 314 

too is observed to confer competitive dominance in species where males form reproductive 315 

alliances with the aim of monopolising access to females. In bottlenose dolphins, for example, 316 

alliances comprising old males are more successful in competition against alliances of young 317 

males, despite typically comprising fewer individuals [253]. In some social species, costs of 318 

competition among group members favour the formation of dominance hierarchies, with 319 

differences in competitive ability reinforced through ritualised threat behaviours rather than 320 
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escalated fighting [254,255]. Because competitive ability commonly increases with age, the age 321 

structure of populations can strongly influence the formation of hierarchies [256]. In Polistes wasps, 322 

for example, age structure is an important determinant of hierarchy formation due to an age-based 323 

system of queen replacement [257]. 324 

 325 

Variation in competitive ability with age will also have important consequences for density-326 

dependence in age-structured populations. The effect of age distribution on both inter- and intra-327 

specific competition has been explored through the use of density-dependence models that 328 

mathematically estimate the outcomes of competition depending on age structure [61,258–262]. 329 

The use of such models alongside empirical data gives an indication of how age structure 330 

influences density dependence by mediating levels of competition. For example, in great tits, 331 

young individuals constitute the critical age-class for density regulation, whereby the youngest 332 

birds have the strongest competitive effect on other breeding females of the same age or older 333 

[263]. Expanding these initial findings, it has been shown that including age-specific effects in 334 

density-dependence models improves the predictions of population size fluctuations by up to three 335 

times in a great and blue tit (Cyanistes caeruleus) population [264], indicating the importance of 336 

age structure in determining population-level competition. 337 

 338 

Variation in age structure will also affect the probability that certain individuals win competitive 339 

encounters and which competitive strategies are adopted. For example, the competitive 340 

environment is strengthened in mixed-age Plodia interpunctella and Ephestia cautella moth 341 

cohorts compared to uniform-aged cohorts [265]. Further, changes in age structure and the levels 342 

of competition might be mutually reinforcing, in that competition may also lead to fluctuations in 343 

age structure through its effect on death or dispersal rates. For example, it has been shown that 344 

competition for breeding patches, mediated by the presence of predators, induces changes in age 345 

structure through age-specific dispersal away from the breeding site in Audouin’s gulls 346 

(Ichthyaetus audouinii [266]). 347 

 348 

(3) Future directions 349 
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We have sought to highlight the potential for variation in age structure to govern sociality in wild 350 

populations through its impact on social behaviour. However, discussion of the effects of age 351 

structure on sociality at the population-level is largely conjectural based on predictions from age-352 

dependence in behaviour mostly at the individual-level. We argue that wild animal populations 353 

provide a unique opportunity to advance knowledge regarding the relationship between age 354 

structure and sociality as it manifests explicitly at the population-level. This is because natural 355 

populations often show considerable variation in age composition across space and time in well-356 

monitored systems; and also provide a useful setting for the fine-scale tracking of individuals over 357 

their entire lifetime, and the monitoring of their social networks (and associated social processes) 358 

over many generations. Below, we discuss future emerging directions for this area. 359 

 360 

(i) Advancing social network approaches in relation to ageing in wild populations  361 

Recent advances have established social network analysis (SNA) as an increasingly powerful tool 362 

for understanding the causes and consequences of sociality in a range of evolutionary and 363 

ecological contexts [267–271]. By using SNA, individuals are studied as ‘nodes’ in a network, that 364 

are connected by ‘edges’ defined by social interactions [58,272,273]. Through this, the diverse 365 

range of associations between individuals are quantitatively assessed, such that hypotheses on 366 

the patterning of social processes and overall social structure can be tested in a generalised 367 

manner, providing insight into population-level behaviour. This allows examination of how 368 

individuals affect social processes and the emergent sociality of a group, such as social 369 

transmission of behaviour, information, or disease. Further, including individual-level phenotypes 370 

(such as sex, size etc.) in SNA allows for the quantitative link between such phenotypes, their 371 

associated social network metrics, and group-level sociality. Although age itself is not a phenotype 372 

but rather represents a temporal parameter, it is associated with biological variance in various 373 

individual-level phenotypes and has a quantitative value which can be used in SNA. Specifically, 374 

due to the previously discussed effects of age on individual sociality, it is likely that age structure 375 

will influence interactions and relationships, thus necessarily shaping the overall social network 376 

and processes operating within it [54,274,275] (Figure 2). For example, recent work by Siracusa 377 

et al. [54] assesses how changes in social behaviour in wild rhesus macaques affect emergent 378 
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social structure using SNA on empirical data and using agent-based models. The results, based 379 

on SNA, revealed that ageing female macaques became less indirectly connected for some, but 380 

not all, network measures. Such research is encouraging in that it shows the applicability of SNA 381 

in uncovering links between age, individual social behaviour and overall social structure. 382 

 383 

 384 

Figure 2 – Social networks of hypothetical populations with different age structures following 385 

juvenile- or adult-biased removal, demonstrating the potential shifts in social structure as age 386 

structure is altered. The left column shows three initial social networks of 50 individuals with an 387 

equal (top), juvenile-biased (middle), and adult-biased (bottom) age distribution. Adults are shown 388 

in blue, subadults in green, and juveniles in yellow. In these networks, we assume that the 389 

tendency to socialise decreases with age, i.e. juveniles are about six times more likely to socialise 390 

than adults. Underneath each social network, we present the network density (the number of 391 

existing connections divided by all possible connections), which gives a measure of how well 392 

individuals are connected. The right columns illustrate the hypothetical changes in network 393 

structure following juvenile-biased (left) or adult-biased (right) removal, i.e. under the juvenile-394 

biased removal, juveniles had an 80% chance of being removed compared to adults and subadults 395 

(10% chance of removal each). In each case, 10 individuals were removed. Such effects of age 396 
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distribution on social network structure should be assessed using empirical data from wild 397 

populations (see recent work [54,275]). 398 

 399 

Here, we suggest the wider use of SNA to study how age influences societies through three main 400 

routes. Firstly, there are many detailed social networks that have been collected across numerous 401 

animal populations globally, which could be collated to test for relationships between age, social 402 

interactions, and the emergent social structure. Secondly, by combining datasets that describe life-403 

history attributes within animal populations [276] with their associated network datasets, it can be 404 

established how key demographic factors (such as birth and death rates) interact with individual 405 

ageing to affect how societies change with time. Finally, simulation modelling techniques could be 406 

applied to empirical data to assess how selection for particular age-related phenotypes, together 407 

with trans-generational processes such as inheritance and vertical transmission, shape inter-408 

generational social structure. 409 

 410 

Further, an advantage of non-human animal populations is that they present several options to 411 

experimentally manipulate individual social behaviour, the social network, or age structure to test 412 

proposed hypotheses using SNA. For instance, previous social network studies in wild great tits 413 

have used experimental removals to examine the effects of the loss conspecifics on social 414 

behaviour and network structure [120] and used automated selective feeding stations to apply 415 

individual-level treatments to manipulate social structure. This has allowed researchers to 416 

experimentally impose social segregation of groups [277], alter the pathways of social information 417 

flow [278], assign foraging locations based on individuals’ age [279], and manipulate individuals’ 418 

social centrality [280]. In the future, such manipulations could be used to specifically manipulate 419 

local age structure and examine the direct consequences for social behaviour and arising social 420 

processes, which has recently been achieved using captive populations of forked fungus beetle 421 

(Bolitotherus cornutus [275]). Conversely, manipulations could be used to alter wild populations’ 422 

social structure and assess the impact this has on group demographic rates and resulting age 423 

structure, which similarly was recently explored using experimental populations of forked fungus 424 
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beetle to evaluate multilevel selection as variation in group network structure interacts with 425 

demographic rates [281]. 426 

 427 

The use of SNA to study effects of age structure in wild populations begs the question of how best 428 

to quantify this demographic property. In the literature, age structure is often used as a qualitative 429 

term, with little emphasis on how to examine it quantitatively. This may be because it is challenging 430 

for a scalar index to convey all information contained in a vector – in this case the relative 431 

composition of individuals in every age-cohort [65]. This differs to many other demographic 432 

characteristics that can be captured in a single statistic, such as population size, growth rate or 433 

sex ratio. Typically, animal population age structure is quantified as either the mean or median age 434 

of a population [65,282–284], or as the proportion in a given age-cohort, such as prime-aged or 435 

juvenile individuals [61,65,93,206,207,266,282,285–290]. While these statistics contain 436 

information regarding the central tendency and aspects of skew, we suggest future research 437 

should re-establish quantitative definitions of age structure such that maximum information on the 438 

distribution of age can be captured, upon which hypotheses can then be tested. This could be 439 

done through greater application of research from human population ageing [80,82,291,292]. For 440 

example, the aged-child ratio is the ratio of the number of elderly persons to the number of children, 441 

thus considering both ends of the age structure simultaneously. It is represented by the formula 442 

 !
!"#

!$–&'
100 443 

where 𝑃"#$ is the proportion of over 65-year-olds in the population, and 𝑃%–'( is the proportion of 444 

children 0–14-years-old [291]. Adapting the aged-child ratio may be a useful way of quantifying 445 

animal population age structure, for example, by substituting the proportion of 65+-year-olds with 446 

the proportion of senescent individuals, and the proportion of 0–14-year-olds with the proportion 447 

of juveniles or sexually-immature individuals. 448 

 449 

In addition to suggesting the application of human ageing studies to inspire quantitative definitions 450 

of age structure, we also identify that explicit methodological studies can be used to define 451 

quantitative measures of ecological and evolutionary mechanisms or characteristics. For example, 452 

much research has been devoted to developing quantitative definitions of reproductive skew in 453 
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populations, such that it can be studied in statistical terms with greater biological relevance [293–454 

295]. We therefore suggest that future research should endeavour to determine new mathematical 455 

estimations of animal population age structure. This would improve studies of age structure and 456 

sociality by optimising the amount of information on the distribution of age across a population, 457 

allowing the incorporation of age structure in the use of statistical approaches (such as SNA) and 458 

permitting direct comparison of age structure and related processes between populations, even of 459 

different species. 460 

 461 

(ii) Social contagions in relation to age structure 462 

Age structure is expected to affect how information, behaviours, and diseases spread through 463 

populations by influencing social connections between individuals. Of these, the transmission of 464 

disease has received most attention. For example, morbidity and mortality in wild bird influenza 465 

outbreaks are age-specific, where the youngest mute swans (Cygnus olor) die 16.8 times more 466 

frequently than birds of other ages [296–298]. As a result of this age-specificity in infection, 467 

individuals of separate ages differ in their likelihood of transmitting disease [299–301]. Such effects 468 

may be exacerbated by social structure, because of age-related variation in social association 469 

[302–305]. However, age structure may also influence the transmission of information or 470 

behaviours, as well as disease. This may not be apparent if considered as a ‘simple contagion’, 471 

whereby the likelihood of learning is assumed to be determined by the total number of network 472 

connections to informed individuals [72,306–308]. However, instead, age-specificity in social 473 

learning means that behaviours may spread as ‘complex contagions’, whereby transmission is not 474 

only determined by the number of connections, but also by specific rules governed by age that 475 

affect uptake of the behaviour [72,73]. Thus, when considering complex patterns of transmission 476 

through SNA, age effects on social contagions might be detected. 477 

 478 

Such age effects exist because the age composition of dyads that make up groups influences 479 

whether an individual learns from another, and how quickly information is transmitted [309–314]. 480 

Further, the age of individuals in such dyads will affect how long behavioural change will persist 481 

[315], influencing the likelihood that a behaviour will continue to spread through a population. This 482 
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is caused by age-specific abilities to acquire, process, utilise and transmit information [74,316]. On 483 

a population-level, this means that age structure might influence if and how quickly behaviour 484 

spreads, dependent on the probability of transmission between different age-classes, or due to 485 

critical periods in development where social learning is easier [71]. For example, in troops of 486 

Japanese macaques (Macaca fuscata) with missing age-classes (and therefore an abnormal age 487 

structure), stone-handling behaviours are less likely to spread and are performed less frequently 488 

[317]. Similarly, when novel or invented behaviours are restricted to one age-class, they may be 489 

less likely to spread or be maintained within a population [318,319]. The causal effects of age on 490 

social transmission of behaviour should receive more attention and is an example of how SNA 491 

could be used to assess the effects of age structure on sociality. 492 

 493 

(iii) Human-impact on wild populations’ social ageing 494 

Generating a better understanding of the link between age structure and social behaviour is crucial 495 

because human activities are increasingly modifying wild population demographics [290,320–324]. 496 

Human-induced environmental changes are diverse, ranging from structural modifications to the 497 

physical environment, such as landscape fragmentation, pollution, and anthropogenic food 498 

subsidies [325–327], to changes of the social environment by influencing population size, 499 

composition, and social interactions [328,329]. Importantly, changes in animal sociality can be 500 

mediated by human-induced changes in population age structure. Here, we briefly review two 501 

human activities – supplemental feeding, and the selective harvesting of wild animals – and their 502 

potential impact on population age structure and sociality. 503 

 504 

Supplemental feeding, such as bird feeding stations, can affect age structure by artificially 505 

increasing survival rates in certain age-cohorts [330,331]. For example, adult tit species (Paridae) 506 

often have higher winter survival than yearlings, presumably because of more foraging experience 507 

and higher dominance [332,333]. Supplemental feeding increases survival of yearlings [332] and 508 

may thus lead to a bias in population age structure towards younger age classes. Further, food 509 

supplies can impact age structure if age-classes respond differently to anthropogenic food. For 510 

example, the provisioning of food is often used in the conservation of scavenger populations such 511 
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as the bearded vulture (Gypaetus barbatus). Contrary to expectation, anthropogenic feeding sites 512 

have been found to increase the survival of sub-adults but not adults in this species, presumably 513 

because adult birds foraged less frequently on these food types, leading to on average younger 514 

populations [334]. By increasing the survival of younger cohorts, supplemental feeding thus has 515 

the potential to drive changes in emergent social structure and functioning by promoting social 516 

processes which are performed to a greater extent in younger age cohorts. 517 

 518 

One of the best documented cases of human activities impacting wild populations’ age structure 519 

is selective harvesting. Hunting and fishing often target individuals with specific phenotypic traits 520 

[335–339]. Unsustainable trophy hunting selects individuals with the most attractive ornamental 521 

traits such as horns, antlers, plumage, and body size, which often correlates with age, thus often 522 

leading to age-specific removal of individuals [337]. For example, human hunters select on 523 

average younger female elks (6.5 years) with greater reproductive value compared to those 524 

selected by natural grey wolf (Canis lupus) predators (13.9 years). Therefore, by primarily 525 

removing prime-aged females, humans may have a strong impact on the future population viability 526 

and emergent age structure of elks [340]. Age-specific harvesting is particularly evident in fish 527 

populations, where larger and older fish which contribute disproportionately to spawning and 528 

population growth are often the same cohort which are removed the most through commercial 529 

harvesting, thus causing truncations in the age structure and damaging future resilience of 530 

populations [341–348]. Related, illegal wildlife trade can result in age-biased removal of individuals 531 

[349,350]. For instance, poaching of various parrot species (order Psittaciformes) is biased 532 

towards the extraction of fledglings because they are easier to locate and catch than adult birds 533 

[350]. Hence, in addition to decreases in population size, certain harvesting practises can alter 534 

population age structure, which may have consequences for population social structure and 535 

functioning (for example, see effects of juvenile-biased removal on network density in Figure 2). 536 

 537 

(iv) Advancing our understanding of social senescence 538 

Finally, we briefly highlight the importance to advance our understanding of social senescence. In 539 

this review, we have considered social ageing as a process of general age-related changes in 540 
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social behaviour as individuals progress through time, and have discussed patterns that are likely 541 

to emerge in population-level sociality given variation in age structure. We hope this may also 542 

provide an initial base from which further research can assess and build a cross-species 543 

understanding of social senescence specifically. 544 

 545 

Senescence is the decline in organismal functioning with old age, and thus is associated with 546 

decreased fitness as selection is weakened in late-life [6–13]. Such senescence is evidenced in 547 

wild populations, with old age-related changes in survival probability, reproduction and other, 548 

typically physiological, traits [18]. However, while physiological senescence is evident, our 549 

understanding of social senescence remains considerably less clear. Specifically, while age-550 

related changes in social behaviour occur with old age, the process behind such changes are 551 

ambiguous. Indeed, there is currently limited knowledge on whether age-related changes in social 552 

behaviour are generally as a result of senescence (i.e. declining physiological health) or other 553 

mechanisms, and whether old-age-related changes in social behaviour hold negative outcomes 554 

for the organism. For example, changes in social selectivity with age (where older individuals have 555 

fewer but stronger relationships, as discussed previously) could be generated by several different 556 

mechanisms while producing similar patterns, and may have positive or negative effects (Figure 557 

3). First, late-life-related social change might be induced by the focal individual, but this could either 558 

be associated with increasing fitness if they are adjustments in social behaviour to ameliorate the 559 

negative effects of senescence; or decreasing fitness if mediated by senescence in underlying 560 

socio-cognitive physiology. Second, old age social change may be unrelated to active changes in 561 

social behaviour but instead as a result of other processes with old age, such as changes in spatial 562 

occurrence or death of conspecifics. Finally, social traits are influenced not only by genes carried 563 

by focal individuals (direct genetic effects), but also by social partners (indirect genetic effects) as 564 

dyadic relationships are as a result of more than one individual [90,269,351–353]. Therefore, late-565 

life social change might be primarily mediated by changes in social behaviour of associates. Work 566 

has begun to assess the role of social senescence in driving late-life changes in social behaviour 567 

versus other mechanisms [34], along with the consequences of this for individuals’ fitness, but 568 
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more research is needed to gain a generalised understanding of social senescence and its role in 569 

natural populations. 570 

 571 

 572 

Figure 3 – Different mechanisms that could result in the same late-life changes in social selectivity 573 

with age. In each network, the focal individual is represented by the dark blue node. 574 

 575 

(4) Concluding remarks 576 

We have highlighted the roles that population age structure and sociality each play in influencing 577 

variation in the other. However, the relationship between these variables remains little studied in 578 

the wild. We have further highlighted the opportunities to be gained by using SNA in combination 579 

with data from natural populations, and we hope that this inspires future research that uses SNA 580 

to examine the causal links between variation in age structure and the social functioning of wild 581 

populations. Understanding the consequences of variation in age structure on population-level 582 

processes is timely, given the increasing impact of anthropogenic activity on population age 583 

structure, both indirectly as environmental change impacts the demography and emergent age 584 

structure of populations, and directly as age structure is altered through hunting and harvesting. 585 

Further, human populations are rapidly ageing for the first time in history. Through advancements 586 

in our understanding of age structure in natural populations, greater insights into whether there are 587 

fundamental rules of how societies age and the potential social implications of this across systems 588 



 
23 

may be possible. Our hope is that future research will provide new understanding of how age 589 

shapes social behaviour and emerging societal structure, the ecological and evolutionary forces 590 

that mediate these effects, and the consequences in turn of variation in age structure for 591 

fundamental social processes. 592 

  593 
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