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Abstract  19 

Benthic macroinvertebrates are a frequently used indicator group for biomonitoring and biological 20 

assessment of river ecosystems. However, their taxonomic identification is laborious and requires 21 

special expertise. In this study, we aimed to assess the capability of a vision transformer (ViT) model for 22 

family-level identification of mayflies (order Ephemeroptera). Specifically, we focused on evaluating 23 

the model’s capacity to classify three commonly found mayfly families (Baetidae, Ephemerellidae, and 24 

Heptageniidae) as well as other families that were grouped together. For the modeling, we originally 25 

constructed two different image datasets containing a total of 1,110 images of mayflies, which were split 26 

into training and validation datasets, and a test dataset was prepared from two different online photo 27 

galleries. The developed ViT model achieved reasonable accuracy, reaching 94.2% and 82.9% for the 28 

validation and test datasets, respectively. Given the use of a relatively small number of images in the 29 

training process, as well as some variations in the visual styles of the test dataset compared to the training 30 

dataset, we consider the level of accuracy to be high. Our results are encouraging toward the use of 31 

computer vision for taxonomic identification of macroinvertebrates, although there is still a need to 32 

develop specific designs and plans for this purpose, which can vary depending on regional differences 33 

in biodiversity as well as sampling and survey methods. 34 
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 37 

Introduction 38 

Freshwater covers less than 1% of the Earth’s surface (Garcia-Moreno et al. 2014) and accounts for only 39 

2.5% of the Earth’s water resources (Garcia-Moreno et al. 2014; Oki &Kanae 2006). Despite their 40 

relatively small size, freshwater ecosystems support approximately 10% of all known species (Román-41 

Palacios et al. 2022) and provide vital material, non-material, and regulating services for humans (Lynch 42 

et al. 2023). However, the marked degradation of freshwater ecosystems and loss of freshwater 43 

biodiversity highlight the importance of their conservation (Loh et al. 2005; Poff et al. 2007; Reid et al. 44 

2019; Tickner et al. 2020). To assess the biological/ecological status of freshwaters such as streams and 45 

rivers, biomonitoring using algae, macroinvertebrates, fish, and other species is essential. Among these 46 

groups, river benthic macroinvertebrates are most frequently used as a bioindicator group worldwide 47 

(Birk et al. 2012; Buss et al. 2015; Eriksen et al. 2021; Namba et al. 2020). 48 

 Benthic macroinvertebrates have many characteristics that make them useful for biomonitoring, 49 

such as their relatively sedentary nature, ease of sampling, and diverse sensitivities to stressors (Buss et 50 

al. 2015; Eriksen et al. 2021; Rosenberg et al. 2008), but sorting and taxonomic identification of benthic 51 

macroinvertebrate samples are laborious tasks that require the expertise of specialists (Ärje et al. 2020b). 52 

Particularly when a single family can be represented by multiple genera and species, species or genus-53 

level identifications usually require the examination of morphological characteristics under a 54 
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microscope because they are unlikely to be visible in whole-body photographs of individuals. In contrast, 55 

family-level identification can often be accomplished with the naked eye. The level of identification 56 

required for environmental assessments has been a topic of discussion (Buss et al. 2015; Jones 2008), 57 

but many macroinvertebrate indices based on family-level identifications, such as the Biological 58 

Monitoring Working Party (BMWP) system (Armitage et al. 1983), are used globally (Buss et al. 2015). 59 

Therefore, particularly in cases where a single family comprises multiple genera and species, 60 

endeavoring family-level identification through image recognition represents a feasible and pragmatic 61 

goal. 62 

Image recognition is one of the most successful advancements in machine learning technology. 63 

Thanks to the development of convolution neural networks (CNNs) and their derivative techniques, the 64 

recognition performance of computer vision is now as good as human recognition in some cases (He et 65 

al. 2016; Russakovsky et al. 2015). Although transformers were originally developed for natural 66 

language processing, the vision transformer (ViT) has emerged as a useful technique for image 67 

recognition in the field of computer vision. The recognition performance of ViT-based models 68 

outperforms that of CNN-based models in some aspects (Dosovitskiy et al. 2021). However, to our 69 

knowledge, the use of ViT-based models for the species identification of river macroinvertebrates has 70 

not been explored. 71 

While several previous studies have implemented automated species identification for river 72 
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benthic macroinvertebrates using machine learning techniques through image recognition (Ärje et al. 73 

2020b; Joutsijoki et al. 2014; Larios et al. 2011; Lytle et al. 2010; Milosavljević et al. 2021; Raitoharju 74 

et al. 2018), many of these studies used datasets with a limited number of species within a single family 75 

(but see Larios et al. 2011; Milosavljević et al. 2021). In this study, our objective was to assess the 76 

capability of a ViT model for family-level identification of mayflies (order Ephemeroptera), considering 77 

the presence of multiple taxa (i.e., genus/species) within a single family. Specifically, our focus was to 78 

evaluate the capacity for classifying the three mayfly families (Baetidae, Ephemerellidae, and 79 

Heptageniidae) found commonly in Japanese rivers, as well as another group that contained several other 80 

families within the order Ephemeroptera. These three families have varied sensitivities to organic and 81 

metal pollution. For example, ephemerellid and heptageniid mayflies are highly responsive to metal and 82 

organic pollution in the environment, whereas baetid mayflies are often found in metal- and organic-83 

contaminated rivers (Armitage et al. 1983; Iwasaki et al. 2018a; Iwasaki et al. 2018b). Recently, an 84 

attempt was made to assess the levels of ecological impacts in metal-contaminated rivers mainly on the 85 

basis of changes in the abundances or presence/absence of these three families (Iwasaki et al. 2023), 86 

indicating their importance as indicators for environmental impact assessments. 87 

 88 

Materials and Methods 89 

Dataset construction 90 
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The image datasets used in this study were originally created by two individuals—A. Tamada (T-dataset) 91 

and M. Monma (M-dataset)—who independently collected and identified mayflies, along with other 92 

insects, from rivers in Japan for their own personal interests. Although the mayflies were identified 93 

generally to genus or species level, we used the family-level results in this study. The images of mayflies 94 

were captured either directly with a digital camera or using a digital camera attached to stereo 95 

microscope, manually labeled, and saved in JPG format. Both datasets consisted of close-up photos of 96 

insects captured mostly from an overhead perspective, either against a black background (T-dataset, Fig. 97 

1a) or with a ruler in the background (M-dataset, Fig. 1b). Both datasets contained images of 8 aquatic 98 

insect families in the order Ephemeroptera: Baetidae, Ephemerellidae, Heptageniidae, Ameletidae, 99 

Ephemeridae, Leptophlebiidae, Oligoneuriidae, and Siphlonuridae. Because both datasets had more 100 

images of the former three families than of the latter four families, the latter families were combined 101 

into one class (D, other mayflies; Table 1). The T- and M-datasets included 5 and 12 taxa (unique species 102 

or genus) in Baetidae, 17 and 13 taxa in Ephemerellidae, and 13 and 14 taxa in Heptageniidae, 103 

respectively.  104 

 The images were randomly divided: 80% into a training dataset and 20% into a validation 105 

dataset for each class in each dataset. The respective training and validation datasets were then combined 106 

(Table 1). The total number of images in the training dataset (Ntrain) was 885, and the total in the 107 

validation dataset (Nval) was 225. To examine the potential impact of dataset composition, five train/val 108 
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datasets with different configurations were prepared by randomly selecting images for training and 109 

validation splits. 110 

 We also prepared a test dataset consisting of images collected from two different online photo 111 

galleries (Table 2). The styles of the images in these galleries differed from those of the images used for 112 

training; for instance, the background was white/gray or blue. As above, the “other mayflies” group 113 

included five families (Ameletidae, Ephemeridae, Leptophlebiidae, Oligoneuriidae, and Siphlonuridae).  114 

 115 

Mayfly classification model 116 

To develop a recognition model for classifying mayfly families, we adopted the fine-tuning technique, 117 

which additionally trains the “classifier” of the pre-trained model and is an effective way to build a 118 

recognition model of a specific dataset that is difficult to scale up (Brigato et al. 2022). A schematic 119 

illustration of the three steps used to construct the mayfly classification model is shown in Fig. 2. Here, 120 

we used the pre-trained ViT model provided by Kataoka et al. (2022), which was constructed in two 121 

steps (Fig. 2). In the first step, a model was trained from scratch with a fractal database created by using 122 

mathematical information of fractal images. In the second step, the model was fine-tuned with ImageNet, 123 

which is a large-scale real image dataset. In these steps, the model gains the ability to recognize real 124 

images. In the third step, the pre-trained ViT model was further fine-tuned with our mayfly dataset. The 125 

latter fine-tuning step was performed using the training codes provided by Kataoka et al. (2022) 126 
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(available at https://github.com/masora1030/CVPR2022-Pretrained-ViT-PyTorch), with the default 127 

settings, except for the number of classes and the method used to calculate accuracy. The training code 128 

was modified to calculate the “top-1” accuracy of 4-class classification task. The top-1 accuracy was 129 

calculated as the ratio of the number of images predicted correctly by the class with the highest 130 

confidence score to the total number of validation images (Nval). Similar to CNN-based image 131 

recognition, ViT-based models output a confidence score for each class. This score indicates the 132 

probability that the image belongs to a particular class. The class with the highest confidence score was 133 

assigned as the predicted class. In the default settings of the training code, the images input into the pre-134 

trained model are resized to 224 × 224 × 3 RGB images. During training, additional data argumentation 135 

methods were applied to the resized images. They were randomly cropped after they had been randomly 136 

converted with different aspect ratios, and then the brightness, contrast, and saturation of color (i.e., 137 

color jitter) were also randomly changed. During validation, the resized images were directly input to 138 

the model without data argumentation. The recognition task with the test dataset was performed by using 139 

the timm library (Wightman 2019). 140 

 141 

Results and Discussion 142 

Mayfly classification model 143 

Results obtained from one of the five randomly prepared train/val datasets are shown in Fig. 3; similar 144 
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results were obtained from the other datasets (accuracy: 91.7–94.3%). The learning curves of loss 145 

function for training and validation converged to a low value (Fig. 3a), indicating that the fine tuning 146 

was successful. The confusion matrix (Fig. 3b) shows the number of images predicted for individual 147 

classes. For example, in class A, 54 images were placed correctly, and 1 was placed incorrectly in each 148 

class C and class D. The top-1 accuracy was 94.2%. The confidence score and the predicted class of all 149 

images in the validation dataset are summarized in Fig. 3c. In classes with true labels A (Baetidae) and 150 

C (Heptageniidae), 83% and 87% of the images, respectively, had confidence scores above 80%, and 151 

they all were classified correctly. In the case of true label B (Ephemerellidae), 77% of the images had 152 

confidence scores above 80%, but a few images with high confidence scores (>80%) were misclassified. 153 

In the case of true label D (other mayflies), only 54% of the images had high confidence scores. Of all 154 

the misclassified images, 69% had confidence scores below 70%. 155 

Example images of classes A, B, and C in the validation dataset are shown in Fig. 4. The 156 

distinctions between correctly classified and misclassified images were not readily apparent. Some 157 

misclassified images notably lacked the head portion of the mayflies (IDs 73, 91, 134, and 141) due to 158 

the resizing of the original images in the default setting of the training code. In all cases, the original 159 

image in the dataset included the entire body of the mayflies, and these resized images were also used 160 

for fine-tuning. Despite using a relatively small number of images in the training process and employing 161 

the default setting (i.e., both the fine-tuning and validation were performed with the resized images, 162 
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including ones missing body parts), a high recognition rate was attained. This is likely an advantage of 163 

using a well pre-trained ViT model on a large natural image dataset such as ImageNet. 164 

To evaluate the recognition performance on entirely new images that the model had not been 165 

exposed to during training, we used the test dataset, and the results of the classification are shown in Fig. 166 

5. Despite some variations in the visual styles between the test and training datasets, the classification 167 

accuracy remained high (82.9%). The overall decrease in accuracy was attributed to that in classifying 168 

class D because the accuracies for classes A–C were almost identical to those achieved on the validation 169 

dataset. Thus, we conclude that the model we built can provide a reasonable level of accuracy for 170 

classifying three common mayfly families. 171 

 172 

Future Directions  173 

This is the first study to develop a ViT model for the identification of Japanese mayfly families. Despite 174 

the reasonable level of model accuracy attained, there are issues that need to be addressed for practical 175 

implementation. First, to assess biological conditions on the basis of family-level macroinvertebrate 176 

identification (Paisley et al. 2014; Torii et al. 2023; Wright 2000) using the ViT model, it is necessary to 177 

include other families within mayflies (Ephemeroptera), as well as other orders (e.g., Plecoptera, 178 

Trichoptera, and Diptera), which are commonly found in river macroinvertebrate surveys. Second, 179 

although biological assessments based on the family-level identification of macroinvertebrates can 180 
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provide the appropriate amount of information for a given purpose (Jones 2008; Wright & Ryan 2016), 181 

more detailed assessments may require identifications to the genus and species levels. As previously 182 

noted (Joutsijoki et al. 2014; Raitoharju et al. 2018), a critical barrier to address these two issues is the 183 

lack of appropriate images for model development. To this end, the original images used in this study 184 

have been made available (see the GitHub website at 185 

https://github.com/yuichiwsk/images_mayfly_families). Species- and genus-level identifications also 186 

require checking smaller and more detailed morphological characteristics (see, e.g., Merrit et al. 2019), 187 

many of which are not visible in the overhead-perspective images used in this study. Thus, such 188 

identifications using computer vision and acquiring relevant images become even more challenging. 189 

Finally, since the mayfly images used in this study were manually captured from fixed directions, the 190 

implementation of semi- or fully-automated imaging and identification poses a further challenge for 191 

integrating computer vision into biological assessments based on macroinvertebrates (but see Ärje et al. 192 

2020a; Jaballah et al. 2023; Raitoharju et al. 2018). Developing specific designs and plans about how to 193 

use computer vision in macroinvertebrate identification, which may vary depending on diverse regional 194 

differences in inherent biodiversity as well as sampling and survey methods, is a fundamental challenge 195 

that needs to be addressed in future studies. 196 

 197 

Data availability 198 
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All the original image data used for developing the vision transformer model (i.e., training and validation 199 

datasets) are available on the GitHub website (https://github.com/yuichiwsk/images_mayfly_families). 200 
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Table 1. Number of images in each class in the T- and M-datasets. 329 

Class T-dataset  M-dataset Total (train/val) 

A: Baetidae 56 219 275 (219/56) 

B: Ephemerellidae 130 182 312 (249/63) 

C: Heptageniidae 137 212 349 (278/71) 

D: Other mayflies 100 74 174 (139/35) 

Classes were assigned in this study. The images were randomly divided in an 80 (for training, train) to 330 

20 (for validation, val) split for each class in each dataset. 331 

  332 
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Table 2. Number of images for the test dataset. 333 

Class Gallery 1 Gallery 2 Total 

A: Baetidae 12 6 18 

B: Ephemerellidae 12 19 31 

C: Heptageniidae 19 20 39 

D: Other mayflies 15 17 29 

The images were collected from two online photo galleries (Gallery 1: 334 

http://museinfo.hitohaku.jp/kawamushi/zukan/kagerou.html; Gallery 2: 335 

https://www.eonet.ne.jp/~suiseikontyu/). 336 

 337 

  338 
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Figure captions 339 

Fig. 1. Example images from the (a) T-dataset and (b) M-dataset.  340 

 341 

Fig. 2. Schematic illustration of the steps to construct a mayfly classification model. 342 

 343 

Fig. 3. (a) Loss function learning curves for training (red) and validation (blue) datasets. (b) Confusion 344 

matrix of the 4-class classification in the validation dataset. The numbers denote the number of images 345 

belonging to the predicted class, and blue indicates a correct classification. (c) Summary of inferences 346 

for the validation dataset. Colored regions indicate the true labels for each image: class A (ID 1–56), 347 

class B (ID 57–119), class C (ID 120–190), and class D (ID 191–225). The point data are the predicted 348 

labels, as defined in the legend. 349 

 350 

Fig. 4. Example images from classes A–C in the validation dataset. ID numbers are in white; underline 351 

indicates misclassification. The incorrectly predicted class and confidence score are shown below each 352 

misclassified image. 353 

 354 

Fig. 5. Confusion matrix for the classification task in the test dataset. Top-1 accuracy was 82.9%. 355 

 356 
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