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Introduction

Using a robust data management plan is a cornerstone of modern data stewardship [1]. Thinking

of research data as living objects that are inextricably tied to the researchers that collect them, can

grow over time, and be re-used by others has the dual advantage of establishing a higher standard

of care for data and facilitating their use and adoption by the community [2,3]. Surprisingly, we

have not always applied the same analysis to the models into which we feed these data. Although

there is a wealth of literature suggesting best practices for the use and development of predictive

models, they focus on checking the model correctness [4], establishing the correct mathematical

approaches [5], adopting good simulation work��ows [6], properly storing and manipulating data

[7,8], or ensuring that our work with data, and anything downstream of this work, is ethical [9].

All of these considerations are extremely important! But a gap remains in the literature that guides

people towards good practices in modelling: just like data, models have their own life cycle. By

recognizing how one’s model ��ts within the life cycle of the data (or at least, ensuring that the

model life cycle is understood), we can identify opportunities to foster new collaborations,

encourage better practices in data analysis [10], and ultimately accelerate research. In this

manuscript, we introduce the Model Life Cycle (Figure 1) and develop a series of ten simple rules

aimed at facilitating collaborations between data collectors, curators, users, and modellers, as well

as maximizing the potential for re-use of models. We explore the idea of a Model Life Cycle,

starting from the assumption that it will address machine learning (ML) models, i.e.models that

can be trained and deployed iteratively, and whose focus is on prediction of quanti��able

phenomena. Speci��cally, we are interested in clarifying the use of models in large,
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interdisciplinary groups, where the actual modelling exercise may involve only a subset of the

group (e.g., with others collecting and standardizing data). Nevertheless, we have written the

recommendations to broadly apply to varied practices of modelling in the life sciences.

Data are most often collected by those who need to use those data; these end uses, as de��ned by

the data collectors, de��ne the requirements for what metadata are collected and the research

methods applied to data collection. Therefore, the data collected are inherently tied to the use

case. By contrast, the developers of models are very commonly not the users of those models,

particularly not as model development often requires many developers, including machine

learning operations (MLOps), infrastructure engineering, data engineering, parameterization and

testing, and user interface development focused on surfacing models for end users. This

disconnect can mask the in��uence of decisions made deep in the stack by developers who have

not been communicated a full picture of the downstream end users or use cases for the model. For

example, decisions made about the use of speci��c types of di�ferential privacy or other privacy

enhancing technologies in a model used to evaluate survey data may prevent the use of the model

for time-series analyses, in which changes over time for speci��c individuals are required to assess

the impact of interventions, yet di�ferential privacy decouples the parameters from the speci��c

populations to which the interventions were tied.

Data are not goods that arrive at a modeller’s doorstep. That is, the work of the modeller cannot

be decoupled from the process by which those data were collected. In this manuscript, by building

on the existing formalism of a life cycle for scienti��c research data, we outline a way to integrate

the model development as a core component of the research process, divide the labour of model
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production and deployment among di�ferent groups, and o�fer concrete recommendations for best

practices in ensuring that data collection and model development proceed together.

Rule 1: remember that models are stepping stones

Models are a step between the research question and solution [11], but we need to establish that

modelling involves di�ferent skills from the research itself. In the ��eld of biodiversity conservation,

for example, models involving ML can intervene to mediate typically disconnected remote sensing

and participatory approaches [12]. Of course, not all contributors to the research process will

interact directly with models, which is particularly true when models become more complex

(which is to say, when training and deploying these models requires speci��c technical skills that

are not those involved in the research process itself). For this reason, it is expected that the process

of establishing a good model will have to branch from the data life cycle, to include contributors

with expertise in domains that are tied to the conception, production, and operationalization of

predictive models. In Figure 1, we have outlined a potential branching and merging process for the

model life cycle. This schematic is meant to be a guiding principle that must be adapted to each

speci��c research context.

Rule 2: re-use (other’s) data before you use (your own) data

Applying the rules in this manuscript should lead research groups to a robust modelling strategy

all while the data are being generated. But there are ways to kick-start the learning process even in

the absence of the actual data to which the ��nal model will be applied. Broadly speaking, this can

take the shape of transfer learning [13], i.e. the training of a model on an initial situation, to
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minimize the cost it would take to re-train it on a new (but similar) problem. This approach hinges

on the fact that some systems are inherently close to one another [14] and can therefore be well

approximated by the same initial model. This does not remove the need for speci��cally re-training

the model to the actual dataset, but it can help establish a reasonable working model early in the

process.

In some situations where the generated data will follow the same structure as already available

data, these existing datasets can be used to establish benchmarks; for example, before applying a

predictive model to data for North America, Strydom et al. [15] con��rmed the lack of over-��tting

and the high predictive accuracy of their model on similar data from Europe. Although this

approach is reliant on the availability of data with the same structure (and ideally a similar

collection process or underlying assumptions, which cannot be determined by the modellers alone

and must involve data producers), when possible, it allows establishing most of the predictive

pipeline before data collection starts.

Rule 3: design models before using models

All models require data. De��ning the relationship between the data you are using, and the model,

is a critical ��rst step when establishing the role of modelling in your research design. Is the goal of

your modelling to capture the variance of the data, to test a modelled process using new data, to

validate a model using a new dataset, or training a model on a subset of the data and validating the

model with the remaining data? Once you can determine the role of the data in your modelling

adventure, then you can begin to assess what kinds of modelling methods and model performance
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measures will be meaningful. It should be the exception, rather than the rule, that a problem

requires the creation of an entirely new model to be solved. De��ning the research question at

hand, and describing the processes involved and what outcomes (i.e. the data) are needed, is Step 0

in the formulation of any model [16].

In most cases, the actual process of re��ning a model implies identifying an algorithm based on the

type of problem (e.g. classi��cation, regression, unsupervised learning) and then outlining a

strategy to oversee the training and validation of this model, including using these outcomes to

de��ne the data sources for the modelling. Remarkably, much of this work can be done without

even having seen the data on which the model will be applied. For example, theMLJ library in

Julia [17] enables the user to establish the speci��cation of the features and labels and returns a list

of algorithms that support this combination of types. By identifying the data types and sources

needed and preparing the most basic metadata needed downstream, colleagues in charge of the

modelling step can start making substantial progress during data collection. Ideally, most of the

boilerplate code can be written (or adapted from prior projects), and validation/visualization

solutions agreed upon, well in advance of the application of the model to the data. For more

advanced cases, synthetic datasets [18], where realistic-looking datasets are reconstructed from

published sources or simulated from similar data [19], can be used. Importantly, building the

model in advance protects against the temptation to adapt the model to the desired results: by

reasoning about the best way to handle (future) data, teams can avoid decisions that are biased by

pre-existing knowledge of the results when elaborating the models alongside the data analysis.
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Rule 4: re-using models is fine

In addition to the availability of data, the repertoire of already published models to solve a speci��c

family of biological questions can be leveraged to develop novel predictive pipelines and insights.

For example, Becker et al. [20] re-used multiple models from community ecology to predict

potential bat hosts of betacoronaviruses, at a time when observational and experimental validation

of some of these host species was ongoing. By using not only the existing code for these models,

but also the previous discussion of their caveats and advantages, the research e�fort shifted from

model production to model integration and analysis, accelerating the entire process considerably.

Most predictive tasks do not require much in terms of methodological development, and by

drawing on previous e�forts for related problems, research groups can more tightly integrate their

results with the existing literature. This facilitates the assessment of the relevance and validity of

the approach and, when (with rule 9) it identi��es inadequacies in the previous models, provides a

strong statement of need for future methodological work.

Rule 5: consider data architecture and access

Ask yourself: what will all the data the model will be exposed to look like? If they are

measurements, what was the measurement process, and how will your model account (or not) for

observation processes and errors? If they exist as ��at (i.e., static) ��les, or will be pulled from

(possibly relational) databases, what properties will be important to your modelling adventure?

Information about data storage will be a necessary plan of the Data Life Cycle, in ways that will

span the entire research group, starting with the management of experimental and observational
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data [21]. The shape of the data will not only determine what models are appropriate, but also

help the researchers anticipate the runtime requirements of the model; ��le-system based vs.

relational database vs. graph database storage can lead to profound di�ferences in the system

requirements to run a model. Data transformation and reshaping steps can be extremely taxing,

notably when they incur many input/output (writing to and reading from disk) operations; by

engaging in a discussion about the data representation requirements, modellers ensure they

design models that will be able to accept the empirical data, while data producers ensure that they

can provide data in a way that minimizes the computational costs.

Such conversations can also assist with reconciling di�ferent datasets into a common model, like

matching di�ferent host–pathogen association data to a common host and pathogen taxonomic

backbone [22]. Clear group-wide agreement about the architecture of data also helps when the

data are expected to be regularly updated [23]; if the data collection is part of an ongoing process

(either through sampling or through the contribution to community data sharing platforms), clear

expectations about data structure and handling will ensure the long-term viability of the models

and their application.

Finally, conducting a painstaking inventory of the data provenance will also help establish

intellectual property and/or research credit, as is appropriate for the data in question. Although

intellectual property is important for potential commercial applications, it is also morally

indispensable in many applied scienti��c cases, such as when considerations around the data

involve Indigenous data sovereignty [24,25] or when the privacy of data collectors can be

compromised [26,27].

Page 8 of 20

https://paperpile.com/c/6J6vt2/bhYn
https://paperpile.com/c/6J6vt2/jtnJ
https://paperpile.com/c/6J6vt2/t4at
https://paperpile.com/c/6J6vt2/BnF8+CT3Y
https://paperpile.com/c/6J6vt2/oCDM+D85u


Rule 6: sharing the code is good

Verbal descriptions of the model often fail to communicate the full nuance of an analysis. As

models are primarily computational artifacts, sharing the code through which the model is trained

and its predictions made boosts the potential for not only auditing, but also re-use. In ecology and

evolution, code sharing (across all practices of research that generate code) is associated with

higher citations [28], an e�fect that persists even when controlling for the journal in which the

articles are published. Empowering the community to re-use one’s work is a way to build a

scienti��c reputation. Low sharing of code is also preventing scienti��c progress: it is the main

obstacle to the reproducibility of computational studies [29]. Importantly, adding an Open Source

license will allow future modellers to re-use one’s work appropriately [30].

There are still strong barriers to code sharing [31]. Nevertheless, they should be less severe for

most ML-based models: this code is typically written by relying on high-level wrappers around ML

packages (MLJ, Keras Core, PyTorch, etc.), which involves chaining together functions rather than

the development of genuinely new functionalities. We should expect to see the practice of code

sharing increase in the near future. Indeed, the FAIR principles of data sharing and re-use [32]

have recently been adapted to the speci��c challenges of research software [33].

Rule 7: sharing more than the code is better

Code sharing enables the re-use of models, and we expect this will increase through journal

mandates [34] and funding agency recommendations [35], thereby facilitating the application of

rules 2, 4, and 6. But models are more than their code. Parameterized (trained) models can be
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serialized to an object that can have a well-documented data format, such as t��ite or binary JSON

[36]. These models can then be loaded in a language-agnostic way, thereby providing access to the

actualmodel, as opposed to the potentialmodel (represented by the code to specify and train it).

Ultimately, this approach enables researchers using a di�ferent ML software stack to re-use already

trained models. In practice, the sharing of trained models is already happening for deep-learning

based approaches, like e.g. BirdNet [37] or re-trained ResNet50 for fauna detection [38].

For models that are likely to have far-reaching usability, advanced model sharing platforms like

Hugging Face are becoming the de facto standard in Natural Language Processing [39]. The

practice of model sharing on these platforms is now mature enough that there are published

recommendations [40]. An interesting recent example is the release of BioCLIP [41], a computer

vision model that matches images to taxonomic names, with additional constraints on species

pool, taxonomic rank, etc.. A model of this scope is likely useful to all biodiversity scientists relying

on automated image analysis, but it requires resources for training that would make its adoption

di���cult otherwise.

In addition, complex models with multiple data streams rely on equally complex software

environments that are best reproduced via containers, to avoid software version and/or operating

system incompatibilities. Others have written extensively about the necessity of containerization

for the reproducibility of these software environments [42], but learning how to fully containerize

models takes time and e�fort, which is drastically underappreciated and undervalued in the

publication-based reward systems of research. Despite these challenges, without these key tools,

many analysis pipelines become essentially unusable to others. Docker stacks (and other
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container-based software) are near-ubiquitous in commercial ML pipelines, and have proved

essential for forecasting tasks and competitions [43,44] as well as real-life forecasts that inform

management decisions [45]. Containerizing parts of or all of one’s forecast will inevitably make it

much easier for others to a) examine the work e�fectively, and b) implement valuable re-use

strategies such as in rules 2 and 6.

Rule 8: consider data ontologies

Some communities of practice may have developed speci��c data or metadata representations. In

ecology, for example, the Darwin core [46] and the Humboldt core [47] provide, respectively,

standardized data representations for taxonomic and occurrence data. Metadata is also sometimes

released in a format set by the Ecological Metadata Language [48], which provides a nomenclature

for the description of ecological studies; recently, the Ecological Forecasting Initiative introduced a

new superset of the Ecological Metadata Language to describe iterative forecasts [49]. These

attempts at standardizing the communication of data formats and vocabularies are useful, as they

remove ambiguities around the content of the dataset, and therefore facilitate cross-team and

cross-��eld collaborations. Recent research emphasizes that adhering to ontologies can make

textual information easier to parse, which will enable better data extraction and reuse by

systematic reviews or text mining projects, or even potentially the productive use of Large

Language Models trained on domain-speci��c tasks [50].

In some cases, and particularly, when working on large and/or interdisciplinary modelling

projects, it cannot be assumed that researchers will organize their data around a shared ontology
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or taxonomy. For example, when referring to geography, a researcher studying pathogen spillover

from wildlife may rely heavily on polygon representations of species distributions. If assessing risk

from this spillover event on relevant human populations, these populations will be de��ned by

geopolitical boundaries. Identifying a shared or minimum standard shared unit (e.g., latitude and

longitude) can be e�fective when moving between these datasets as an alternative to assigning or

mandating a shared ontology. In some cases, knowledge graphs or other methods of integration

based on semantic rules can be useful.

Rule 9: decide on acceptable performance before you start

Once you have determined the goal(s) of the model, check that you decide on the acceptable

practices for assessing performance to align with the goal(s). In some speci��c modelling contexts,

we can de��ne a priori acceptable performance. Take the example of a model predicting the

presence, or absence, of a species in a location. Depending on how this information will be used,

classi��ers with the same overall measure of performance may not be as informative to their

end-users (this, notably, calls for a careful and exhaustive description of the validation and testing

strategy, and a plain language summary of how and why performance was assessed). For an

invasive species, where the environmental cost of a false omission is high, prioritizing models with

good negative predictive values will make more sense. In contrast, for a threatened species, where

preserving a patch of unsuitable habitat leads to ine���cient allocation of resources and e�fort, it

would make sense to instead prioritize a classi��er with a good positive predictive value. Finally, to

think about the distribution of a species in a way that is more detached from speci��c interventions
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(e.g., for macroecological research), reaching a balance between these two types of error may be

the most desirable outcome.

Picking the model that is the ��ttest for downstream, targeted purpose is a decision that must

account for both the model and the purpose. By engaging in a re��ection about what makes a

model useful for a speci��c task, which can be done before talking about the speci��cs of the model,

research groups will ensure they will be able to decide on the suitability of the model when it is

��nally trained. In addition, some ��elds may have their own state-of-the-art benchmarks; for

example, the Therapeutics Data Commons initiative [51,52] publishes a benchmark that will let

modellers know whether their current best e�fort quali��es as “good enough”.

Rule 10: retire your models

Models are built to answer a speci��c question, which is framed by a rich context: data availability;

data quality; expected type of answer; spatial, phylogenetic, or temporal resolution; and domain

knowledge about the phenomenon to be modelled. As these elements change, we expect that

models will lose relevance, which introduces the question of when models should be maintained

and when they should be retired. Changes in the quantity of data can often be solved with

re-training; for example, if a model recommends potential hosts of a family of viruses, the model

can incorporate de novo sampling, which serves both as post-hoc validation and as an augmented

training set [20]. But changes in the type of data (e.g., quantifying tree growth from visual

inventories and then from remotely sensed data) may require an entirely new type of model. The

emergence of new modelling paradigms can also (over a longer time-course) replace previous
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generations of models: for example, the recent GraphCast weather forecast model [53], through

the use of innovative deep learning techniques, outperforms current state-of-the-art weather

forecasting models.

Models are fundamentally encapsulating our best attempt at representing reality. Our

understanding of the structure that a model purports to describe evolves with time (e.g., we can

re��ne mechanisms of pathogen transmission cycles to include more components as we learn how

to measure them [54], or the parameterization of components takes di�ferent shapes (e.g.,

transitioning from linear descriptions of systems to non-linear). Building on models allows them

to evolve, perhaps even displacing ‘older’ formulations in favor of improved descriptions of

mechanistic processes. In this scenario, the model lifespan has a natural arc. Sometimes models

such as this can be maintained as baseline models to demonstrate improvements (of ��t, of form, of

internal or external validation) as models evolve.

Conclusion

Tackling the most pressing scienti��c challenges requires the best data and the best models, and we

are far past the point where it is reasonable to assume that a single researcher (or indeed a single

team) will be able to deliver on both. The optimal way forward is to develop templates for healthy,

productive collaborations between data-centric and model-centric work��ows. Because the Data

Life Cycle has a proven track record of systematizing the way we think about the changing shape

of data throughout a project, here we propose that we can overlay a Model Life Cycle on top of it.

Much like the Krebs pathway is a component of the pentose phosphate pathway, resulting in
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healthy glucose metabolism, we hope that the overlaying of these two cycles can generate higher

impact, more reproducible, and strifeless research collaborations. The illustration of the Model

Life Cycle we present in Figure 1 is a template that must be tweaked to respect the speci��c

considerations and contingencies of various research groups; nevertheless, it indicates how we can

be a little more systematic in our approach to bridging data and models.
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Figure 1: The Model Life Cycle. The Data Life Cycle (the “Analyze” to “Plan” feedback has been

omitted for clarity) is split into two parts, with data collection–specific tasks (top row, grey) and shared

data collection/analysis parts (middle row, green); the Model Life Cycle (bottom box) is integrated into

the Data Life Cycle, with model development–specific tasks (left, yellow), and model application– and

model interpretation–specific tasks (right, purple). This division of steps also outlines broad divisions

of effort in the team (grey: experimental work; yellow: research software engineering; purple: data

science and MLOps; green, collective effort).
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