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Abstract 54 

The Arctic is warming four times faster than the rest of the world, threatening the persistence 55 

of Arctic species. It is uncertain if Arctic wildlife will have sufficient time to adapt to such 56 

rapidly warming environments. We used genetic forecasting to measure the risk of maladaptation 57 

to warming temperatures and sea ice loss in polar bears (Ursus maritimus) sampled across the 58 

Canadian Arctic. We found evidence for local adaptation to sea ice condition and 59 

temperature. Forecasting of genome-environment mismatches for predicted climate scenarios 60 

suggested that polar bears in the high Arctic had the greatest risk of becoming maladapted to 61 

climate warming. While bears in the high Canadian Arctic may be most likely to become 62 

maladapted, all polar bears face potentially negative outcomes to climate change. Given the 63 

importance of the sea ice habitat to polar bears, we expect that the increased risk of 64 

maladaptation to future warming is already widespread. 65 

 66 

  67 



   

 

   

 

Introduction 68 

Climate change is a major contributor to the biodiversity crisis, with many species threatened 69 

with extinction due to habitat loss (IPCC 2023). The vulnerability of species to climate change is 70 

determined by multiple interacting factors, including population size, dispersal capabilities, 71 

genetic background, and adaptive capacity (Thomas et al. 2004; Pacifici et al. 2015). Adaptive 72 

capacity can help species cope with climate change; however, the pace of environmental change 73 

may prove to be too rapid for some species to adapt (Berteaux et al. 2004). Spatial variation in 74 

environments adds an additional layer of complexity to species responses to climate change. 75 

Identifying the spatial and environmental drivers of local adaptation supports assessments of a 76 

species’ potential for maladaptation to future environments under climate change.   77 

  The Arctic is warming at 2-4x the global average (Cohen et al. 2014; Previdi et al. 2021; 78 

Rantanen et al. 2022). Increased temperatures have led to significant changes in sea ice 79 

conditions. Annual sea ice forms later and melts earlier in the year compared to previous 80 

decades, creating sea ice with reduced thickness and less spatial coverage (Comiso et al. 2008; 81 

Screen and Simmonds 2010; Stroeve et al. 2014; Kwok 2018; Laidre et al. 2018). Even under 82 

moderate emission scenarios, the Arctic could become ice-free in the summer as early as the 83 

mid-2030s (Docquier and Koenigk 2021; Kim et al. 2023; Shen et al. 2023). The high Arctic 84 

(>68 °N) is predicted to experience some of the largest environmental changes associated with 85 

climate change, as warming temperatures have reduced the extent of multiyear sea ice (i.e., ice 86 

that has survived at least two years of summer melt) by more than 90% (Kwok 2018; Stroeve 87 

and Notz 2018). The loss of sea ice has significant implications for the Arctic ecosystem, 88 

particularly for species that depend on sea ice for survival.  89 



   

 

   

 

Climate-mediated reductions in the extent of sea ice habitat represents the single greatest 90 

threat to the persistence of Arctic species (Amstrup et al. 2008; Marcot et al. 2023). Polar bears 91 

(Ursus maritimus) are ice-adapted predators that rely on sea ice for hunting, migration, and 92 

mating (Regehr et al. 2016; Stern and Laidre 2016). Polar bears forage intensively on sea ice, 93 

hunting ringed (Pusa hispida) and bearded seals (Erignathus barbatus) as their primary food 94 

source (Stirling and Archibald 1977; Wiig et al. 2008). Sea ice loss due to climate warming 95 

influences habitat use and connectivity among polar bears (Durner et al. 2009; Laidre et al.2018). 96 

When seasonal sea ice melts in southern regions of the Arctic, polar bears are restricted to land 97 

and typically fast until the sea ice returns. Accelerating sea ice loss increases the time polar bears 98 

spend on land (Rode et al. 2015; Atwood et al. 2016; Lunn et al. 2016; Laidre et al. 2018), 99 

elevating their exposure to disease pathogens (Pilfold et al. 2021) and anthropogenic food 100 

sources (Smith et al. 2023; Stimmelmayr et al. 2023), and exacerbating human-bear conflict 101 

(Wilder et al. 2017; Heemskerk et al. 2020). Extended fasting periods lead to declines in body 102 

condition, reproductive output, and survival of polar bears (Regehr et al. 2007; Stirling and 103 

Derocher 2012; Lunn et al. 2016). As the ice-free period continues to increase, polar bears may 104 

face local extirpation as they are pushed beyond their physiological fasting limits (Molnár et al. 105 

2020).  106 

Despite extensive knowledge of the effects of sea ice loss on polar bear ecology, there are 107 

relatively few studies on the evolutionary responses of polar bears to climate change. Modern 108 

polar bears have lower levels of genetic diversity than their nearest relatives, grizzly bears 109 

(Miller et al. 2012; Liu et al. 2014, Lan et al. 2022). Some polar bears have experienced 110 

additional genetic diversity losses and increased genetic isolation associated with recent sea ice 111 

loss (Maduna et al. 2021). These findings suggest that changes in ice availability may alter 112 



   

 

   

 

patterns of gene flow and genetic drift (Laidre et al. 2022), potentially limiting the ability of 113 

polar bears to adapt to climate change. However, the adaptive capacity of polar bears to warming 114 

climates in the Arctic remains unknown. 115 

Genetic forecasting is a tool that can be used to inform predictions of whether polar bears 116 

can adapt to a warming Arctic. These predictive models can be used to assess if mismatches exist 117 

between current population allele frequencies and the future environments those populations are 118 

likely to experience (Capblancq et al. 2020). Populations with a higher degree of mismatch 119 

(genetic offsets sensu Fitzpatrick and Keller 2015) are at risk of maladaptation to climate change, 120 

particularly if they are genetically isolated or have low fitness (Láruson et al. 2022). Quantifying 121 

genetic offsets at the population level allows us to assess potential vulnerability to climate 122 

change across polar bear management-designated populations, known as subpopulations.  123 

 We assessed the risk of maladaptation to climate change in polar bears across the 124 

Canadian Arctic. We asked 1) how does standing genetic variation and population structure vary 125 

among subpopulations?; 2) do sea ice loss and warming air temperatures affect allele turnover in 126 

polar bears?; and 3) are genetic offsets to future environments variable among subpopulations? 127 

We predicted that polar bear subpopulations that face the greatest amount of environmental 128 

change (i.e., those in the high Arctic) will have the greatest genetic offsets to future 129 

environments, leading to an increased risk of maladaptation. 130 

 131 

Materials and methods 132 

Study system and genotype processing 133 

Polar bears are distributed across the Arctic in 19 subpopulations recognized by the International 134 

Union for the Conservation of Nature (IUCN; Obbard et al. 2010). Subpopulation boundaries 135 



   

 

   

 

were determined by satellite telemetry data, ecological and genetic differences among bears, and 136 

regional differences in management policy (Obbard et al. 2010). There are 14 polar bear 137 

subpopulations within Canada’s borders (Figure 1A), some of which are shared with Greenland 138 

and the USA. These subpopulations range in abundance from 160-2800 individuals (Table 1; 139 

IUCN/SSC 2021). We categorized the Canadian subpopulations included in our study as high 140 

Arctic (>68 °N), low Arctic (55-68 °N), and sub-Arctic (<55 °N) following the Arctic 141 

Biodiversity Assessment Arctic Zones guideline (Table 1; Meltofte et al., 2013). 142 

Two single nucleotide polymorphism (SNP) arrays have been developed for polar bears 143 

and used to assess population structure, heritability, and hybridization (Malenfant et al. 2015, 144 

2018; Miller et al. in review at Conservation Genetic Resources, inlcuded in supporting 145 

information). A total of 1,450 polar bears were genotyped on the Ursus maritimus V1 SNP chip, 146 

a 9K Illumina Infinium Bead Chip containing a combination of transcriptome-derived and RAD-147 

derived SNPs (Malenfant et al. 2015). Bears genotyped on the Ursus maritimus V1 SNP chip 148 

primarily originated from the Hudson Bay and were sampled between 1985-2012. Another 628 149 

polar bears were genotyped on the Ursus maritimus V2 SNP chip, an 8K Illumina Infinium Bead 150 

Chip containing loci from the V1 SNP chip augmented to include species diagnostic loci (Miller 151 

et al. in review). Bears genotyped on this chip originated from the circumpolar Arctic and were 152 

sampled between 1975-2015. Additional sampling and harvesting details can be found in 153 

Malenfant et al. (2015) and Miller et al. (in review). Bears that were genotyped on both chips 154 

have a 99% genotyping concordance (Miller et al. in review), and thus we are confident in the 155 

genotypes of individuals from both chips.  156 

We used the genotype files generated by Miller et al. (in review) for our analyses. We 157 

selected SNPs present on both SNP chips (N = 4,723 SNPs) and removed individuals that were 158 



   

 

   

 

not georeferenced. To avoid uneven sample sizes and improve the performance and speed of the 159 

genetic offset models, we selected a maximum of 50 bears per subpopulation. For 160 

subpopulations which contained more than 50 sampled bears, we preferentially selected bears 161 

with a complete set of environmental data points and with no missing genotype calls. We also 162 

removed the single individual that was sampled from the Arctic Basin subpopulation. We quality 163 

filtered on our final sample set using PLINK v1.90 (Chang et al. 2015) to remove SNPs with a 164 

genotyping rate below 90% (--geno 0.1), a minor allele frequency below 1% (--maf 0.01), and 165 

that were in linkage disequilibrium (--indep-pairwise 10 1 0.1). For the genetic diversity and 166 

differentiation analyses, we also removed SNPs that were out of Hardy-Weinberg equilibrium 167 

(HWE; --hwe 0.001 midp).  168 

Genetic diversity and differentiation 169 

We assessed standing genetic variation and differentiation among polar bear subpopulations. We 170 

used the --het call in PLINK to calculate individual per-locus level estimates of observed 171 

heterozygosity (HO), and inbreeding (F), then averaged values across subpopulations. We used 172 

the pi function from the R v4.3.0 (R Core Team 2023) package radiator v1.2.8 (Gosselin et al. 173 

2020) to calculate nucleotide diversity () for each subpopulation (Nei and Li 1979). The 174 

transcriptomic loci on the SNP chips were ascertained using the Western Hudson Bay (WH) 175 

subpopulation which can inflate estimates of genetic diversity for WH relative to other 176 

subpopulations. To account for this inflation, we repeated the calculations if HO and  on the 177 

transcriptomic-derived (N = 1,381 SNPs) and RAD-derived loci (N = 2,304 SNPs) separately.  178 

We calculated pairwise FST among subpopulations using the stammpFst function in the 179 

StaMMP v1.6.3 R package (Pembleton et al. 2013). We bootstrapped across loci 100 times to 180 

generate 95% confidence intervals for each pairwise FST value to determine if subpopulations 181 



   

 

   

 

were significantly differentiated from one another. Lastly, we calculated the number of private 182 

alleles per subpopulation using the gl.report.pa function from the R package dartR v2.9.5 183 

(Gruber et al. 2018). 184 

Population structure analyses 185 

Given that polar bears have been grouped into subpopulations for management purposes, we 186 

were interested in determining if the genetic structure of individuals corresponded to their 187 

subpopulation designation. We used two complementary methods to assess population structure. 188 

First, we estimated individual ancestry coefficients using sparse non-negative matrix 189 

factorization (sNMF; Frichot et al. 2014), implemented with the snmf function from the R 190 

package LEA v3.12.2 (Frichot and François 2015). sNMF takes an unsupervised approach to 191 

estimate individual admixture coefficients from multilocus genotype data comparable to those 192 

from STRUCTURE and ADMIXTURE (Frichot et al. 2014). We identified the optimal number 193 

of clusters by comparing the fit of each model with K = 1-13 clusters. We ran each model 10 194 

times and selected the value of K with the lowest cross-entropy score. We generated admixture 195 

plots to visualize how individuals formed clusters, and then mapped the results on to each 196 

subpopulation location. Lastly, we extracted the cluster assignment for each bear for later use in 197 

the genetic offset analysis. We assigned an individual to a cluster if it had an ancestry proportion 198 

greater than 0.75 to any single cluster. If ancestry to any cluster was lower than 0.75, the 199 

individual was assigned as admixed. 200 

We conducted a spatial principal component analysis (sPCA) to identify spatial patterns in 201 

genetic variation among individuals. sPCA uses an ordination-based approach to maximize the 202 

variation between allele frequency and spatial autocorrelation estimated with Moran’s I (Jombart 203 

and Ahmed 2011). The eigenvectors generated by the sPCA are mapped onto geographic 204 



   

 

   

 

coordinates, allowing for clines in genetic structure to be evaluated (Jombart and Ahmed 2011). 205 

We used the function chooseCN from the adegenet v2.1.10 package (Jombart and Ahmed 2011) 206 

to create a Delauney’s triangulation connection network and account for continuously distributed 207 

individuals across the range (Jombart et al. 2008). We first ran a sPCA model that included all 208 

axes using the spca function from adegenet. We ran permutation tests with 999 permutations to 209 

identify if a significant effect of global structure existed in the data. We retained the first five 210 

positive (global) eigenvalues which contributed most strongly to variance in the final model. We 211 

visualized genetic similarity among individuals using the colorplot function from adegenet to 212 

plot the lagged principal component (PC) scores on a map.  213 

Environmental variable selection   214 

We quantified present and future conditions for sea ice and air temperature across the Canadian 215 

Arctic. We extracted mean annual ice thickness (m) and ice cover (%) from the Bio-ORACLE 216 

v2.0 database (Assis et al. 2018). Annual sea ice thickness is a measure of how thick the ice is at 217 

a given sampling area averaged across the year, whereas annual sea ice cover is a measure of 218 

how much of the sampling area is covered by ice throughout the year. Bio-ORACLE marine 219 

layers are available as monthly and annual averages for present conditions (2000–2014) at a 220 

spatial scale of 9.2 km at the equator (5 arcmin; Assis et al. 2018). We used the R package 221 

sdmpredictors v0.2.14 (Bosch and Fernandez 2021) to extract values at each sampling location 222 

with a 50 km2 buffer surrounding each site to account for bear movement. We also extracted ice 223 

thickness values from future (2040-2050 and 2090-2100) conditions that were forecasted under 224 

RCP8.5 (IPCC 2014). Forecasted ice thickness was sourced from three coupled Atmosphere–225 

Ocean General Circulation Models (AOGCM) provided by Coupled Model Intercomparison 226 

Project Phase 5 (CMIP5; Assis et al. 2018). We selected RCP8.5 because this level of climate 227 



   

 

   

 

warming is predicted to occur if no mitigation practices are put into place (Brown et al. 2020). 228 

Ice concentration has not yet been included in the future climate scenarios dataset in Bio-229 

ORACLE, so we did not include this predictor in our future environment dataset.  230 

We followed a similar approach to extract near-surface air temperature averaged from 231 

2000-2014 from each sampling location. We used the StableClim database (Brown et al. 2020) to 232 

extract mean annual temperature surrounding 50 km2 from each sampling location. Air 233 

temperature under RCP8.5 was sourced from all 19 AOCMs from CMIP5 (Brown et al. 2020). 234 

StableClim has at a spatial scale of 278 km at the equator (150 arcmin, so we used the R package 235 

raster v3.6-20 (Hijmans 2023) to match the extent of the temperature layer to the ice condition 236 

layers. We extracted values under the same timelines (present and future) and climate scenario as 237 

the ice condition layers.  238 

Gradient Forest predictions of maladaptation 239 

We assessed the risk of genetic maladaptation to climate warming using Gradient Forests (GF), a 240 

nonparametric machine learning approach that can be used to assess changes in allele 241 

frequencies across environmental and spatial gradients (Fitzpatrick and Keller 2015). GF builds 242 

regression trees using Random Forests (Breiman 2001) and creates turnover functions that 243 

determine how well environmental change along the gradients explains changes in individual 244 

allele frequencies. A goodness-of-fit measure (R2) is generated from each regression tree and 245 

used to weight predictors in proportion to their accuracy and importance in explaining allele 246 

turnover (Ellis et al. 2012). Importantly, the relative importance of predictors on allele turnover 247 

can be interpreted even when R2 are small.  248 

Turnover functions can be aggregated across alleles to generate a cumulative importance 249 

curve for the entire genome (Láruson et al. 2022). The slope of the importance curve describes 250 



   

 

   

 

the rate of change in allele frequency across the environmental gradient; steeper curves indicate 251 

greater allele turnover. The underlying assumption of this method is that populations are locally 252 

adapted to their current environment; any shift in allele frequency along the environmental 253 

gradient is presumed to be maladaptive. Maladaptation can be quantified with genetic offset 254 

scores, which are the Euclidean distance between current and future allele frequencies under 255 

current and future environmental gradients (Ellis et al. 2012). The greater the distance, the 256 

greater the mismatch between current allele frequencies and future environments, and the greater 257 

the risk of maladaptation. 258 

We implemented the GF with the gradientForest v0.1-34 package in R (Smith and Ellis 259 

2013) using the sea ice and air temperature as environmental predictors. We ran separate models 260 

for sea ice thickness and cover because these variables were highly correlated (r = 0.82). Both 261 

models included temperature as a co-factor. We imputed missing SNPs with the impute function 262 

from the LEA package using the most likely genotype value computed from the genotype matrix. 263 

To account for spatial variation in population abundances and genetic structure, including 264 

isolation-by-distance (IBD), we included a matrix of uncorrelated spatial variables in the models 265 

(Láruson et al. 2022). We calculated distance-based Moran’s eigenvector maps (PCNMs) with 266 

the pcnm function in the R package vegan v2.6-4 (Oksanen 2015). We retained the first half of 267 

the positive PCNMs (N = 62) in the model, which represent broad-scale spatial autocorrelation 268 

patterns (Fitzpatrick and Keller 2015). We set the number of trees to 500 (ntree = 500) with 201 269 

bins to compact splits (nbin = 201) and a predictor correlation threshold above 0.5 270 

(corr.threshold = 0.5). We assigned the maximum number of splits using the default settings for 271 

gradientForest (Smith and Ellis 2013). We visualized the environmental change in our study area 272 

with PCA biplots and mapped the compositional distribution of alleles across the area. 273 



   

 

   

 

We used the GF model output to calculate genetic offset scores for each polar bear under 274 

ice thickness and temperature conditions in 2050 and 2100. We created raster maps of the offset 275 

score for each pixel, then extracted offset score for each sampling location. We ran a generalized 276 

linear model with a quasi-binomial distribution to test for differences in individual genetic offsets 277 

among polar bears. We included location in the Arctic (high, low, and sub-Arctic), genetic cluster 278 

(Clusters 1-5, or admixed), subpopulation abundance, and climate projection year (2050 or 2100) 279 

as predictor variables. We assessed the assumptions of the model by plotting residuals and 280 

examining collinearity between predictors. We tested the significance of predictors using the 281 

anova.glm function from the R stats v4.3.0 package (R Core Team 2023).  282 

 283 

Results 284 

Population genetic diversity 285 

The HWE-filtered dataset contained 3,685 SNPs from 411 bears sampled from 13 286 

subpopulations in Canada between 1985-2016. Subpopulations contained an average of 32 287 

individuals (range: 10-50; Table 1). Across all SNPs, mean HO was 0.263 and mean F was 0.037 288 

(Table 1, Figure S1). Norwegian Bay (NW) had the lowest heterozygosity and highest inbreeding 289 

values (HO = 0.240, F = 0.121), whereas Kane Basin (KB) had the highest heterozygosity and 290 

lowest inbreeding values (HO = 0.271, F = 0.017). Nucleotide diversity for the entire population 291 

was 0.137 (Table 1). As with HO, nucleotide diversity was lowest in NW ( = 0.118) but was 292 

greatest ( = 0.133) in Foxe Basin (FB), Davis Straight (DS), and Western Hudson Bay (WH). 293 

Genetic diversity was ~50% higher in transcriptomic-derived SNPs relative to RAD-derived 294 

SNPs as expected (Table S1) but was lowest in NW for both sets of SNPs, consistent with 295 

observations from the HWE-filtered dataset.   296 



   

 

   

 

Global FST was 0.035. Pairwise FST ranged from 0.001 to 0.089 (Table S2) and were 297 

significantly differentiated from one another (p < 0.05) except for Kane Basin and Baffin Bay (p 298 

= 0.29). Lastly, we identified a mean of 420 private alleles per subpopulation (Table 1), with the 299 

greatest number being found in NW (N = 747 alleles). 300 

Population genetic structure  301 

We identified K = 5 genetic clusters of polar bears as the best fitting model with a cross-entropy 302 

score of 0.648 (range 0.671-0.648; Figure S2). The Norwegian Bay (NW) subpopulation formed 303 

a unique genetic cluster (Cluster 3; Figure 1). The Hudson Bay subpopulations formed a single 304 

cluster (Cluster 5), which included Western Hudson Bay (WH), Southern Hudson Bay (SH), and 305 

Foxe Basin (FB), as did the Southern and Northern Beaufort Sea (SB and NB, respectively) 306 

subpopulations (Cluster 4). Viscount Melville Sound (VM) and M'Clintock Channel (MC) 307 

formed a cluster (Cluster 1), while the remaining subpopulations shared ancestry (Cluster 2) with 308 

some degree of admixture. 309 

Polar bears were most likely to share genetic variation with those in closest proximity to 310 

them, suggesting that IBD contributes to genetic structure across the Canadian Arctic. The 311 

permutation test from the sPCA analysis identified a significant effect of global structure (p-312 

value < 0.01), indicating that genetic structure is best explained by the positive spatial 313 

autocorrelation among individuals. Visualization of the lagged PC scores confirmed patterns of 314 

IBD, where genetic similarity gradually declined with distance (Figure S3). 315 

Gradient Forest model of allele turnover 316 

Ice thickness and near surface air temperature were among the top five most important predictors 317 

of allele turnover (N = 3,830 linkage-pruned SNPs) across all samples. Mean weighted R2 of the 318 

GF model was 0.0018. The top ranked predictor variables were two spatial variables that 319 



   

 

   

 

accounted for turnover in alleles associated with latitude, population abundance, and genetic 320 

structure (PCNM-2: R2 = 0.014; PCNM4: R2 = 0.008; Figure S4). Ice thickness was the third 321 

ranked predictor (R2 = 0.008). The largest turnovers in allele frequency along the ice thickness 322 

gradient occurred between 2-3 m of ice depth (Figure 2a). Temperature was the fifth ranked 323 

predictor (R2 = 0.004), with the largest turnover in alleles occurring at -5 °C (Figure 2a). We 324 

found similar results for the model with ice cover and temperature, with the largest turnover in 325 

alleles occurring at 60% ice cover (Fig. S5; Supplementary Results). 326 

PC scores generated from the environmental variables mapped into geographic space 327 

demonstrate a split in genetic composition between high Arctic polar bears and the rest of the 328 

population (Figure 2b). The PCA biplot indicates that ice thickness and temperature were 329 

uncorrelated but had similar loading magnitudes, suggesting that while they both contribute to 330 

the genetic similarity among bears, the predictors explain different components of the variation 331 

(Figure 2b inset). Changes in ice thickness explained variation between the Beaufort Sea and the 332 

rest of the bears, whereas changes in temperature contributed to variation across the entire 333 

sampled range.  334 

Genetic offsets 335 

Genetic offsets were predicted to be highest in the high Canadian Arctic (Figures 3 and S6). We 336 

found that offset scores differed between location (F2,796 = 64.01, p < 0.001), genetic cluster 337 

(F5,796 = 20.11, p < 0.001), and abundance (F1,796 = 33.17, p < 0.001). Offset scores were greatest 338 

in bears in the high Arctic (Figure 3a, c), particularly Viscount Melville Sound (VM) and 339 

Norwegian Bay (NW). Polar bears from the Hudson Bay and Davis Strait (DS) had the lowest 340 

offset scores. Genetic offsets declined as subpopulation abundance increased (b = -1.96 x 10-4, 341 

Figure 3b). Offset scores were greater under the climate projections for 2100 compared to 2050 342 



   

 

   

 

(F1,796 = 74.74, p < 0.001), but the effect of location and population size remained consistent 343 

between projection years. 344 

 345 

Discussion 346 

We examined genetic offset scores under projected climate warming to assess the potential for 347 

maladaptation to climate change in polar bears in Canada. We identified turnover in allele 348 

frequencies that corresponded to changes in sea ice and temperature gradients. Polar bear 349 

subpopulations in the Canadian high Arctic and those with low population abundances had the 350 

highest genetic offset scores, suggesting that these subpopulations may be the most vulnerable to 351 

climate change. We also found that the Norwegian Bay (NW) subpopulation in the high Arctic 352 

had the lowest levels of standing genetic variation and was genetically isolated from other 353 

subpopulations. Our findings can help inform science-based conservation and harvesting 354 

strategies with the capacity to target specific subpopulations (Peacock et al. 2011) and shed light 355 

on the difficulties ice-adapted Arctic species will have in response to climate warming.  356 

We identified points along the ice and temperature gradients associated with large turnover 357 

in allele frequencies. Allele frequency turnover peaked at approximately 2 m of ice thickness, 358 

60% ice cover, and at -5 °C. Allele turnover points at 2 m thickness are consistent with those 359 

found in the high Arctic, whereas 60% ice cover and -5 °C temperatures occur more frequently in 360 

the low and sub-Arctic. Ice condition was the strongest environmental driver of allelic turnover, 361 

likely reflecting differences in regions of the Arctic with thick multiyear sea ice versus thin 362 

seasonal sea ice. Consequently, our analysis may be capturing different aspects of local 363 

adaptation between low/sub-Arctic subpopulations and high Arctic subpopulations. Ice thickness 364 



   

 

   

 

may be a more influential predictor for high Arctic polar bears that are experiencing rapid 365 

thinning of multiyear ice compared to bears farther south (Stroeve and Notz 2018).  366 

The reliance on multiyear sea ice may explain why we observed greater genetic offsets in 367 

the high Arctic. Declines in ice thickness likely contribute to allelic mismatch in some high 368 

Arctic subpopulations, such as Viscount Melville Sound (VM) and Norwegian Bay (NW), which 369 

had the highest offset scores. However, decreasing sea ice thickness may provide temporary 370 

benefits to some subpopulations due to increased marine productivity in areas that were 371 

previously covered by multiyear sea ice (Yool et al. 2015). Between 1990 and 2010, Kane Basin 372 

(KB) transitioned from a multiyear ice habitat to a seasonal ice habitat (Laidre et al. 2020). Polar 373 

bears in KB have shown improvements in body condition and increased range sizes, suggesting 374 

that they are benefitting from sea ice loss (Laidre et al. 2020). We found that KB had higher 375 

genetic diversity than many other subpopulations, but also had high offset scores, suggesting that 376 

continued sea ice loss may become problematic for the subpopulation. Interestingly, Southern 377 

Hudson Bay (SH), the only sub-Arctic subpopulation, had the lowest genetic offsets and 378 

increased in abundance between 2016-2021 (Northrup et al. 2021), potentially indicating some 379 

degree of robustness to climate change.  380 

Variation in genetic offset scores across the Arctic suggests that subpopulations differ in 381 

their potential for adaptation to climate change (Fitzpatrick et al. 2021). Adaptation depends on 382 

the strength of selection imposed by the environment, standing genetic variation within each 383 

population, and the rate of gene flow between populations. The efficacy of selection is weaker in 384 

small populations and when standing genetic variation is reduced (Barrett and Schluter 2008; 385 

Charlesworth 2009). We found that genetic offset scores were negatively correlated with 386 

subpopulation abundance, consistent with the hypothesis that small population sizes reduce 387 



   

 

   

 

adaptive capacity (Charlesworth 2009). This trend was observed even after accounting for spatial 388 

variation in population abudance with the PCNMs. We also identified the lowest genetic 389 

diversity in NW, which combined with its small abundance, suggests that NW may have less 390 

capacity to adapt to climate warming than other subpopulations. 391 

We identified two spatial predictors as the most influential drivers of allele turnover. These 392 

predictors corresponded to variation in latitude and population abundance and suggest the 393 

presence of IBD among polar bears. If bears from the southern Arctic migrate north, they may 394 

introduce alleles adapted to warmer conditions into high Arctic subpopulations. For example, a 395 

small, isolated population of polar bears in southeastern Greenland that relies on glacial ice 396 

rather than sea ice may could serve as a critical source of adaptive alleles for populations farther 397 

north (Laidre et al. 2022). Although polar bears are capable of long-distance dispersal (Durner 398 

and Amstrup 1995), the effects of climate change on dispersal rate are variable (Ferguson et al. 399 

2002; Pagano et al. 2021). Our sPCA identified evidence of IBD among polar bears, suggesting 400 

that while dispersal does occur, it is limited by the distance. Consequently, the rate of gene flow 401 

may be insufficient to prevent maladaptation of Canadian high Arctic polar bears.  402 

In addition to patterns of IBD, we identified five genetic clusters of polar bears. This 403 

number is consistent with those identified by other studies conducted in Canada (Malenfant et al. 404 

2016; Jensen et al. 2020), although we did not find a unique cluster corresponding to SH 405 

(Viengkone et al. 2016). The clusters we identified correspond approximately to the four polar 406 

bear ecoregions that are based on life-history and sea-ice dynamics, both of which contribute to 407 

genetic structure among bears (Amstrup et al. 2008). The NW subpopulation formed a unique 408 

genetic cluster that is not accounted for in the ecoregions. Previous research has examined the 409 

genetic structure of NW, but low samples sizes have limited the power for drawing robust 410 



   

 

   

 

conclusions (Jensen et al. 2020). We found that the NW subpopulation had the greatest number 411 

of private alleles despite low genetic diversity, suggesting that many of the present genetic 412 

variants are unique to this subpopulation. The distinctive genetic attributes indicate that NW may 413 

require special consideration when designing management plans.   414 

Some caution is required when applying our results to conservation. The SNPs in our 415 

analysis contained few highly differentiated loci, which contributes to the low R2 values from the 416 

models and could reduce our ability to detect variation in allele frequency that is driven by 417 

natural selection. However, our primary goal was to rank the predictors of allele turnover, which 418 

does not require interpreting the magnitude of the R2 values. Additionally, climate change 419 

vulnerability assessments typically require that phenotypic and genetic changes associated with 420 

climate change are correlated with fitness measures (Pacifici et al. 2015; Foden et al. 2019). A 421 

preliminary analysis of the lifetime reproductive success of the 50 Western Hudson Bay (WH) 422 

polar bears found that individual offsets score was negatively associated with reproductive 423 

success (p = 0.08; Figure S7). Studies that tie genome-wide measures of genetic offsets with 424 

patterns of selection, gene flow, and fitness estimates are needed to fully investigate the 425 

vulnerability of polar bears to climate change (Capblancq et al. 2020). 426 

In this study, we have identified Canadian high Arctic polar bears as being at greater risk of 427 

maladaptation to climate change. As the Arctic moves towards being ice-free in the summer, 428 

polar bears must adapt quickly, disperse to lower quality habitat, or risk extirpation. Our work 429 

suggests that bears that already face ice-free summers in the low and sub-Arctic are potentially 430 

better suited for life in the warming Arctic. Given the extent of sea ice loss that has already 431 

occurred, it is unlikely that most polar bears are adapted to current environmental conditions in 432 

the Arctic. Designing conservation and management strategies for the polar bear subpopulations 433 



   

 

   

 

that have the greatest capacity for adaptation may be important (Nicotra et al. 2015). However, 434 

the high Arctic contains a substantial portion of standing genetic variation that is absent or rare in 435 

most of the Canadian range, and conserving this unique genetic variation may improve 436 

persistence across the range. Ultimately, all polar bears, and indeed all ice-adapted Arctic 437 

species, are likely to face negative outcomes to climate warming. Reductions of greenhouse gas 438 

emissions and protection of the remaining habitat may facilitate the long-term persistence of 439 

polar bears.  440 
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Tables and Figures 707 

Table 1. Subpopulation names, location in the high, low, and sub-Arctic, most recent abundance estimates, and year they were 708 

censused. Sample size (N) of each subpopulation included in this study is also provided, along with the primary genetic cluster 709 

assignment (see Figure 1 for visualization of cluster assignments), mean observed heterozygosity (HO), inbreeding (F), nucleotide 710 

diversity (), and the number of private alleles per subpopulation. Subpopulation abundance was obtained from the IUCN/SSC (2021). 711 

 712 

Subpopulation Location Census Year Abundance N Cluster HO F  
Private 

alleles 

Southern Hudson Bay (SH) sub 2016 780 37 5 0.264 0.036 0.131 469 

Western Hudson Bay (WH) low 2016 842 50 5 0.269 0.017 0.133 429 

Foxe Basin (FB) low 2010 2,585 28 5 0.269 0.016 0.133 405 

Davis Strait (DS) low 2007 2,158 32 2  0.267 0.022 0.133 295 

Gulf of Boothia (GB) low 2017 1,525 13 2 0.270 0.012 0.129 551 

Baffin Bay (BB) high 2013 2,826 28 2 0.268 0.019 0.131 336 

Kane Basin (KB) high 2014 357 10 2 0.271 0.009 0.128 667 

Lancaster Sound (LS) high 1997 2,541 30 2 0.265 0.033 0.131 315 

Northern Beaufort Sea (NB) high 2006 980 50 4 0.263 0.039 0.130 245 

Southern Beaufort Sea (SB) high 2010 900 50 4 0.259 0.054 0.130 296 

M’Clintock Channel (MC) high 2016 716 27 1 0.259 0.052 0.128 453 

Viscount Melville Sound (VM) high 1992 161 39 1 0.259 0.053 0.131 261 

Norwegian Bay (NW) high 1997 203 17 3 0.240 0.121 0.118 747 



   

 

   

 

 

  

Figure 1. A) Map of ancestry coefficient proportions (K = 5 clusters) for each subpopulation (N = 

411 polar bears, 3,685 SNPs). Each cluster has a subpopulation abbreviation (high Arctic: Kane 

Basin (KB), Lancaster Sound (LS), M’Clintock Channel (MC), Northern Beaufort Sea (NB), 

Norwegian Bay (NW), Southern Beaufort Sea (SB), Viscount Melville Sound (VM), Baffin Bay 

(BB); low Arctic: Davis Strait, (DS), Foxe Basin (FB), Gulf of Boothia (GB), Western Hudson 

Bay (WH); sub-Arctic: Southern Hudson Bay (SH)). Subpopulation borders recreated from 

Obbard et al (2022). B) Map of North America with study region highlighted in red. C) 

Individual ancestry proportions, where each bar represents a single individual and similar colors 

represent shared ancestry.  



   

 

   

 

 

Figure 2. Allele turnover associated with ice thickness and air temperature in geographic and 

genetic space (N = 411 polar bears, 3,830 SNPs). A) Cumulative importance of allele turnover 

across all bears associated with the gradient in ice thickness and temperature, where steeper 

slopes indicate greater turnover in allele frequencies. B) Gradient in genetic turnover derived 

from transformed ice thickness and temperature predictors. Locations with similar colours are 

predicted to harbour populations with similar genetic composition. Inset depicts the PCA biplot 

with arrows showing the direction and magnitude of the contributions from each predictor. Points 

depict sampled bears. 

  



   

 

   

 

 

Figure 3. Genetic offset values predicted under RCP8.5 by 2100. A) Boxplot of genetic offset 

scores for each subpopulation, color coded by ancestry assignment (Clusters 1-5). 

Subpopulations are grouped into sub, low, and high Arctic categories and were significantly 

different from one another (p < 0.001). B) Genetic offsets scores as a function of subpopulation 

abundance. Genetic offset declined with increasing abundance (p < 0.001). Subpopulations are 

labeled on the x-axis to provide an indication of where each fall along the axis, see Table 1 for 

exact values. C) Individual genetic offsets (N = 411 polar bears, 3,830 SNPs) plotted in 

geographical space. Warmer colors represent higher offset, and each black point represents a 

polar bear individual. 

 



   

 

   

 

Supplementary Results 

Gradient Forest model of allele turnover (ice cover model) 

We found a similar trend for the GF model with ice cover and temperature. Mean weighted R2 

was 0.0023. PCNM-2 was the top ranked variable (R2 = 0.018). Ice cover was the second ranked 

variable (R2 = 0.015), with the largest turnover in alleles occurring at 60% ice cover (Fig. S4a). 

Temperature was the fourth ranked variable (R2 = 0.0050), with the largest turnover in alleles at -

5 °C (Figure. S4a). Visualization of the PCA scores highlights a longitudinal split in genetic 

composition between bears that was best explained by changes in ice cover (Figure S4b). 

Temperature contributed to latitudinal variation in genetic composition, with Hudson Bay polar 

bears exhibiting stronger turnover in response to temperature than the rest of the Arctic (Figure 

S4b).  



   

 

   

 

Supplemental Tables and Figures  

 

Table S1. Mean genetic diversity for each subpopulation estimated for the complete HWE-filtered dataset (N = 3,685 SNPs), the 

RAD-derived dataset (N = 2,304 SNPs), and the transcriptomic-derived dataset (N = 1,381 SNPs). 

 

Subpopulation 
Complete  RAD-derived  Transcriptomic  

HO  HO  HO  

Baffin Bay (BB) 0.268 0.131 0.223 0.11 0.343 0.166 

Davis Strait (DS) 0.267 0.133 0.222 0.11 0.343 0.171 

Foxe Basin (FB) 0.269 0.133 0.214 0.106 0.361 0.178 

Gulf of Boothia (GB) 0.270 0.129 0.230 0.109 0.337 0.163 

Kane Basin (KB) 0.271 0.128 0.229 0.109 0.341 0.16 

Lancaster Sound (LS) 0.265 0.131 0.224 0.111 0.333 0.164 

M’Clintock Channel (MC) 0.259 0.128 0.221 0.109 0.323 0.161 

Northern Beaufort Sea (NB) 0.263 0.130 0.227 0.113 0.322 0.159 

Norwegian Bay (NW) 0.240 0.118 0.204 0.100 0.300 0.148 

Southern Beaufort Sea (SB) 0.259 0.130 0.225 0.113 0.315 0.159 

Southern Hudson Bay (SH) 0.264 0.131 0.210 0.105 0.352 0.175 

Viscount Melville Sound (VM) 0.259 0.131 0.223 0.112 0.320 0.161 

Western Hudson Bay (WH) 0.269 0.133 0.214 0.105 0.360 0.178 

 

 

  



   

 

   

 

Table S2. Pairwise FST values between each subpopulation. Each pairwise comparison is significant at p < 0.05 except for Kane Basin-

Baffin Bay (p = 0.29).  

 

 BB DS FB GB KB LS MC NB NW SB SH VM 

Davis Strait (DS) 0.010            
Foxe Basin (FB) 0.029 0.014           
Gulf of Boothia (GB) 0.009 0.012 0.027          
Kane Basin (KB) 0.001 0.011 0.032 0.008         
Lancaster Sound (LS) 0.006 0.016 0.035 0.007 0.002        
M’Clintock Channel (MC) 0.022 0.032 0.050 0.015 0.018 0.014       
Northern Beaufort Sea (NB) 0.033 0.037 0.055 0.031 0.030 0.030 0.037      
Norwegian Bay (NW) 0.050 0.055 0.076 0.051 0.044 0.036 0.056 0.068     
Southern Beaufort Sea (SB) 0.036 0.039 0.058 0.033 0.033 0.033 0.043 0.002 0.071    
Southern Hudson Bay (SH) 0.042 0.025 0.007 0.039 0.044 0.048 0.062 0.066 0.089 0.069   
Viscount Melville Sound (VM) 0.022 0.028 0.047 0.016 0.017 0.014 0.015 0.018 0.055 0.022 0.059  
Western Hudson Bay (WH) 0.040 0.024 0.004 0.039 0.043 0.047 0.061 0.065 0.088 0.068 0.009 0.058 



   

 

   

 

1 
Figure S1: Individual heterozygosity (HO) and inbreeding (F) averaged per subpopulation. 2 

Estimated on SNPs filtered for Hardy-Weinberg Equilibrium (N = 3,685 SNPs). 3 

 4 

 5 

 6 
Figure S2. Cross-entropy score comparison of clustering assignment for 411 polar bears. The 7 

model with the lowest score (K=5) is considered to be the best fitting model.  8 
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 10 
Figure S3. Translated principal component scores from the sPCA. Each point represents an 11 

individual (N = 411, N = 3,685 SNPs). Similar colors indicate shared genetic variation among 12 

individuals.  13 
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 16 
Figure S4. Map of spatial the top-ranked predictor variables from the Gradient Forest model with 17 

ice thickness and temperature. Individual sampling points are color coded by their PCNM value 18 

for each predictor. Top: Spatial scores (PCNM-2) that corresponded to variation in latitude and 19 

population abundance. Bottom: Variation in spatial scores (PCNM-4) that corresponded to maps 20 

of genetic structure among individuals. 21 
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 24 
Figure S5. Allele turnover associated with ice cover and temperature in geographic and genetic 25 

space (N = 411 polar bears, 3,830 SNPs). A) Cumulative importance of allele turnover across all 26 

bears associated with the gradient in ice cover and temperature, where steeper slopes indicate 27 

greater turnover in allele frequencies. B) Gradient in genetic turnover derived from transformed 28 

ice thickness and temperature predictors. Locations with similar colours are predicted to harbour 29 

populations with similar genetic composition. Inset depicts the PCA biplot with arrows showing 30 

the direction and magnitude of the contributions from each predictor. Points depict sampled 31 

bears. 32 
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 35 
Figure S6. Map of individual genetic offset scores estimated from projected environments in 36 

2100. Color gradient denotes offset values, with blue representing low values and red 37 

representing high values. Shapes denote ancestry assignments. 38 
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 40 
Figure S7. Genetic offset scores correlated negatively (p = 0.113) with lifetime reproductive 41 

success in 50 bears from the Western Hudson Bay subpopulation.  42 
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