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Abstract1

Wild populations frequently undergo demographic changes that can challenge their2

persistence and, thus, the equilibrium of ecosystems. For instance, habitat fragmentation3

due to human activity leads to a drastic population size reduction, a process called a4

bottleneck. By reducing genetic diversity, a bottleneck may prevent a population from5

adapting to subsequent environmental changes. In the context of climate change, it is6

crucial to accurately predict how a wild population evolves after a bottleneck and how it7

affects its persistence. Mathematical models have provided valuable insights into the im-8

pact of bottlenecks on the adaptive potential of populations. However, their application to9

wild populations requires further improvement as these theoretical predictions have been10

mostly experimentally tested with microbial populations. Thus, it remains unclear what11

the implications of the theoretical predictions are at the macroscopic scale, although these12

predictions are crucial for conservation biology. This review aims to determine how the13

knowledge acquired through evolutionary theory and experimental microbiology applies14

to wild populations. To achieve this aim, we address the following questions: (i) What15

do theory and microbiology experiments tell us about the impact of bottlenecks on the16

ability of populations to adapt to future environmental changes? (ii) Do these theoretical17

predictions apply to wild populations? and (iii) What is missing to better predict the evo-18

lution of wild populations after a bottleneck? We analyze how the four main evolutionary19

processes (i.e., mutation, genetic drift, natural selection, and gene flow) impact the fate20

of populations facing bottlenecks. By linking theory, microbial experiments, and empiri-21

cal studies on natural populations, we identify research directions that could help manage22

populations undergoing bottlenecks and plead for increased communication between these23

fields.24
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1 Introduction27

Most natural populations experience bottlenecks that can be caused, for example, by severe28

climate events, habitat loss, and overhunting (Lande, 1988; Frankham et al., 2002). The29

bottleneck-induced population size reduction increases the extinction risk of populations and,30

thus, may destabilize ecosystems (Frankham et al., 1999). As the current intensive anthro-31

pogenic perturbations of Earth’s systems are increasing the occurrence of bottlenecks (Barnosky32

et al., 2011; Ceballos et al., 2015), there is an urgent need to understand how bottlenecks impact33

the evolutionary fate of at-risk populations. This review examines the evolutionary fate of pop-34

ulations undergoing sudden random decreases in size that are selectively neutral, as opposed to35

those caused by directional selection. Specifically, this review focuses on bottlenecks involving36

random reductions in population size rather than selective bottlenecks involving non-random37

reductions in population size (but see section 4.2).38

Forecasting the effects of population bottlenecks is crucial in conservation biology (Frankham39

et al., 2002). However, our ability to predict the long-term consequences of bottlenecks under40

natural conditions remains weak. First, predictions in the wild are generally made retrospec-41

tively, i.e., after a bottleneck has occurred and the population has gone extinct or survived42

(Bouzat, 2010). Second, predictions are often made case-by-case, preventing their applicability43

to other systems. To fill this knowledge gap and improve our understanding of bottlenecks,44

we need to develop a comprehensive overview combining theoretical predictions and empirical45

evidence. Although connections between fundamental evolutionary biology and wildlife conser-46

vation have slowly developed, they are increasingly strengthening, highlighting their importance47

(Hohenlohe et al., 2020).48

Microbiology is a field that allows for experimentally assessing the impact of bottlenecks49

on the adaptive potential of microbial populations (LeClair and Wahl, 2017). A common50

experimental evolution technique is subjecting micro-organisms to serial passaging, which in-51

volves repeated bottlenecks. In such experiments, a microbial population is inoculated into a52

medium and grows. Then, the experimenter takes a fraction of this population, inoculates a53

new medium, and repeats the process several times. This common technique explains why the54

literature in experimental microbiology has so well documented the impact of bottlenecks on55

the adaptation of microbial populations (LeClair and Wahl, 2017). Micro-organisms, such as56

bacteria and fungi, can reproduce rapidly and reach large numbers in small spaces, allowing for57

highly replicated experiments and, therefore, highly accurate predictions (Elena and Lenski,58

2003). In summary, the simplicity of these experiments makes microbiology an excellent field59

for testing theoretical predictions.60

To the best of our knowledge, no study has yet bridged the gap between what microbi-61

ology tells us about the impact of bottlenecks on the adaptive potential of populations and62
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conservation biology. The lack of direct links between both fields likely results from the many63

differences between microbial populations in controlled laboratory experiments and wild pop-64

ulations in natural ecosystems [see Box 4 in Kawecki et al. (2012)]:65

1. Microbes used in experiments substantially differ from endangered natural species tar-66

geted by conservation efforts, mostly diploid and sexual.67

2. The demography of microbial populations studied in laboratory conditions also differ68

from that of wild populations. For example, the size of microbial populations is likely69

larger than that of wild populations. As a result, the genetic load is likely higher in wild70

populations than in laboratory populations.71

3. Bottlenecks in the wild likely vary in intensity and frequency, whereas they are typically72

periodic in microbiology experiments.73

4. The number of generations before adapting to a new environment differs for microbial74

and wild populations.75

Many other differences exist, such as variations in environmental constraints, and anthro-76

pogenic pressures, which affect wild population dynamics but are absent from laboratory con-77

ditions. Despite these differences, our review describes how microbiology findings apply to wild78

populations.79

The evolution of wild populations involves multiple evolutionary and ecological processes80

that act simultaneously. Understanding the influence of each process independently is crucial81

for a better understanding of the overall effect of a bottleneck during demographic history on82

future response to selection to a new environment. Yet, empirical studies under laboratory83

conditions involving models other than micro-organisms have never examined the effects of84

bottlenecks in anything other than a holistic way [e.g., fish populations of Heterandria formosa85

in Klerks et al. (2019), insect populations of Tribolium castaneum in Olazcuaga et al. (2023),86

Drosophila melanogaster in Ørsted et al. (2019)]. Therefore, it is impossible to quantify the87

contribution of each process. Conversely, theory and microbiology have studied each ecological88

and evolutionary process independently [e.g., the fraction of beneficial mutations lost due to89

bottlenecks in Wahl et al. (2002)]. Therefore, we discuss in this review the impact on adap-90

tive potential of each of the following evolutionary processes occurring during a bottleneck:91

mutation, genetic drift, natural selection, and gene flow.92

This review aims to enhance our comprehension of how bottlenecks impact adaptive poten-93

tial to a new environment of a population. This aim is achieved by synthesizing theoretical94

and microbiological knowledge and applying it to wild populations. For each of the evolution-95

ary processes of interest, we inquire: (i) What do theory and microbiology experiments tell us96

about the impact of bottlenecks during demographic history on the ability of populations to97

adapt to a future environmental change? (ii) Do these theoretical predictions apply to wild98

populations? and (iii) What is needed to better predict the wild population evolution after a99

bottleneck? Our review aims to increase the effectiveness of conservation efforts by anticipating100

the evolutionary consequences of demographic changes in wild ecosystems.101
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2 Disentangling the influence of each evolutionary pro-102

cess during a bottleneck on the future adaptive poten-103

tial of populations104

2.1 Mutation105

Population bottlenecks can impact mutations’ appearance, fixation, and frequency, potentially106

disturbing future adaptation. Indeed, mutations introduce genetic variation on which selection107

can act, allowing populations to adapt to their environment. A population will adapt to108

future environmental changes by increasing the frequency of mutations that are beneficial in109

the new environment. The population can adapt via (i) the appearance of new beneficial110

mutations, known as an adaptation from de novo mutations, and (ii) the pre-existence of111

beneficial mutations in the population, known as an adaptation from standing genetic variation.112

The relative importance of these two mechanisms varies depending on the population properties,113

such as the population size, and some timescales, such as the number of generations between the114

bottleneck and the environmental change. In the following section, we discuss how these two115

mechanisms, i.e., the appearance of de novo mutations and mutations from standing genetic116

variation (or pre-existing mutations), can be impacted during a bottleneck.117

2.1.1 Impact of bottleneck on de novo mutations118

Theoretical work has shown that bottlenecks can reduce the mutation supply and the fixation119

probability of beneficial mutations in populations experiencing them (Wahl et al., 2002). More120

precisely, populations adapting mainly from de novo mutations have an adaptation rate limited121

by the mutation supply, which depends on population size and the appearance rate of adaptive122

beneficial mutations. These theoretical predictions were experimentally confirmed with asexual123

populations where adaptation depends mainly on de novo mutations [see, e.g., de Visser and124

Rozen (2005)]. Campos and Wahl (2010) even derived a more complex expression of the125

adaptation rate of asexuals, taking into account clonal interference. Mechanically, a bottleneck126

reduces the population size and, thus, limits adaptation.127

Additionally, the adaptation rate of populations adapting through de novo mutations also128

depends on the distribution of fitness effects of beneficial mutations, which may also be affected129

by bottlenecks. Indeed, the fixation probability of all beneficial mutations is predicted to130

be reduced in a population undergoing bottlenecks (Wahl et al., 2002). However, mutations131

are affected differently depending on their rate and the fitness benefit they confer, which are132

usually negatively correlated. Gamblin et al. (2023) used a stochastic model to show that severe133

bottlenecks following a long growth phase favor rare beneficial mutations [as shown by Wahl134

et al. (2002)]. In contrast, relaxed bottlenecks following short growth phases favor frequent135

weakly beneficial ones. A similar effect has been observed in microbial experiments studying136

antimicrobial resistance. Garoff et al. (2020) and Schenk et al. (2022) found that antimicrobial137

resistance evolved through weakly beneficial mutations with large mutational targets when138
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the population size prior to the bottleneck was small. When the population size prior to139

the bottleneck was larger, antimicrobial resistance evolved through rarer and more beneficial140

mutations.141

The theoretical and experimental studies mentioned above mostly deal with asexual popu-142

lations, which rely more on de novo mutations to adapt to environmental changes than sexual143

populations, the latter being more frequently genetically diverse. Even if most endangered144

species, which are the focus of conservation efforts, are sexual, these predictions could apply to145

them. Indeed, recent evidence suggests that some animal species are also limited by mutation146

supply on recent evolutionary scales (Rousselle et al., 2020).147

2.1.2 Impact of bottleneck on pre-existing genetic variation148

Populations experiencing a bottleneck are theoretically expected to have reduced genetic diver-149

sity (Chakraborty and Nei, 1982; Lynch and Hill, 1986; Nei et al., 1975; Tajima, 1989, 1996).150

This reduction can limit their ability to adapt to future changing environments (Frankham151

et al., 2002; Willi et al., 2006). This effect is especially important for sexual populations, as152

their adaptation in a short timescale is mostly driven by standing genetic variation. Indeed,153

sexual populations have constrained access to beneficial mutations due to Haldane’s sieve, which154

results from selection mainly acting on heterozygotes, thus decreasing the fixation probability155

of beneficial recessive mutations compared to asexual populations [see Marad et al. (2018) for156

a comparison in yeast]. Also, sexual reproduction allows selection to act on individual loci157

rather than haplotypes, thus making it possible to exploit the standing diversity [see Burke158

et al. (2014) for this observation in yeast]. Finally, higher organisms typically have smaller159

population sizes and lower mutation rates than micro-organisms, resulting in a limited supply160

of new mutations to rely on for adaptation.161

Studies on asexual yeasts have shown that standing genetic variation drives adaptation along162

with de novo mutations (Vázquez-García et al., 2017; Ament-Velásquez et al., 2022). However,163

this aspect of microbial adaptation has not been extensively studied because experiments in-164

volving asexual individuals often start with a clonal population. Thus, there are no results165

yet from microbial experiments based on standing genetic variation that could apply to wild166

endangered populations.167

Nonetheless, some observations from Drosophila experiments show how bottlenecks impact168

adaptation from standing genetic variation by disrupting allele frequencies. Rare alleles are169

likely to be lost during the bottleneck, resulting in a reduced allelic diversity (Allendorf, 1986;170

Fuerst and Maruyama, 1986). Swindell and Bouzat (2005) performed an empirical test of the171

drift-mutation model using Drosophila. This drift-mutation model aimed to predict the adap-172

tive potential of a population through genetic variation, which is modeled as an equilibrium173

between mutations and fixation due to inbreeding (Lynch and Hill, 1986; Clayton and Robert-174

son, 1955). In particular, this model assumes that the adaptive potential only depends on175

heterozygosity and not on allelic diversity (Falconer, 1960), which are two different aspects of176

the genetic diversity of a population. During their experiment, Swindell and Bouzat (2005)177
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observed a good agreement between model predictions and empirical observations, except after178

a severe bottleneck. The authors hypothesized that not considering the loss of allelic diversity179

during the bottleneck leads to overestimating the adaptive capacity following this event. This180

result suggests that the loss of heterozygosity and rare alleles are to be accounted for when181

predicting the effect of a bottleneck on a wild endangered population.182

2.1.3 Additive genetic variance from a quantitative genetics perspective183

For quantitative traits, the additive component of the genetic variance, which is denoted VA,184

is often taken as a proxy for the adaptive potential. The effect of a bottleneck on quantitative185

genetic variation is more complex to predict (Hoffmann et al., 2017). In theory, the genetic186

variance should decrease after a bottleneck as it is proportional to the effective population size187

(Lynch and Hill, 1986). This effect is usually observed in morphological traits (Willi et al.,188

2007), whereas fitness-associated life-history traits often show an increased genetic variance189

following a bottleneck (van Heerwaarden et al., 2008). A possible explanation is that, after a190

bottleneck, the disruption of allele frequencies could result in a transfer of epistatic and domi-191

nance variance to additive variance, especially for life-history traits, which are more influenced192

by these non-additive effects (Crnokrak and Roff, 1995; Roff and Emerson, 2006). However,193

these life-history traits also typically experience high inbreeding depression (DeRose and Roff,194

1999). As a result, an increase in additive variance for the genes associated with these traits195

may mitigate the fitness decrease. Still, it will not allow an increase in fitness compared to the196

pre-bottleneck level.197

Overall, Willi et al. (2006) and Lopez-Fanjul and Villaverde (1989) concluded that genetic198

variance, and thus the future adaptive response, may increase in a population facing a bottleneck199

("bottlenecked population" hereafter). However, this phenomenon is unlikely to result in a full200

fitness recovery, let alone a fitness increase.201

The implication for endangered species management is that computing the additive genetic202

variance just after a bottleneck event may not reflect long-term adaptive potential but merely203

short-term adaptation in reaction to this event.204

2.1.4 Prospects for filling knowledge gaps205

Understanding the effect of bottlenecks simultaneously on pre-existing mutations and de novo206

mutations appearing during a bottleneck is important to predict the impact of bottlenecks on207

adaptability better. Performing microbial experiments that include initial genetic variation, al-208

lowing for better differentiating the effect of de novo mutations from standing genetic variation209

after a bottleneck, could improve this understanding. A recent review (Burke, 2023) suggested210

using yeast evolution experiments with standing genetic variation to study eukaryote adapta-211

tion. Indeed, yeast can combine short generation time and easy handling in the lab with sexual212

reproduction. Performing such experiments, particularly with small populations undergoing213

different types of bottlenecks, would help quantify the importance of standing genetic variation214

versus de novo mutations for eukaryote adaptation.215
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To improve our knowledge of which quantitative traits have their variance decreased after a216

bottleneck, we would need experiments to estimate the genetic variance in a wide range of traits217

(Willi et al., 2006). Estimating the genetic variance seems essential to predict the overall effect218

of a bottleneck on the population’s adaptive potential. Moreover, in natural populations, the219

link between genetic diversity and response to selection is not always clear (Pujol et al., 2018).220

For example, Albatross persists despite losing genetic diversity (Milot et al., 2007). Clarifying221

the link between genetic variation and response to selection would help understand if genetic222

diversity can be used to accurately predict the natural populations’ potential to adapt after223

one or more bottlenecks.224

2.2 Genetic drift225

Populations suffering from bottlenecks are particularly affected by genetic drift, which is the226

change in allele frequencies caused by population size fluctuations rather than by selection,227

mutation, or migration. Indeed, the strength of this process is inversely proportional to the228

effective size of the population (Kimura, 1955). These population size fluctuations caused by229

chance likely lead to negative impacts on a population, such as (i) the fixation of deleterious230

mutations, which decreases the population’s fitness; (ii) the reduction in the fixation probability231

of beneficial mutations, which limits adaptation, and (iii) the increase of alleles at extreme232

frequencies (i.e., 0 or 1), which reduces genetic variation (Falconer, 1960). The latter point has233

already been covered in section 2.1 about mutation. Taken together, these effects may limit234

the adaptation of bottlenecked populations to future environmental changes.235

2.2.1 Fixation of deleterious mutations236

The accumulation of deleterious mutations caused by genetic drift in a population undergoing237

repeated bottlenecks predicted by theoretical work was highlighted numerous times in microbial238

experiments (Muller, 1964). In particular, many experiments used clone-to-clone transfers to239

maximize the rate and the speed of accumulation (Clarke et al., 1993) [see the review Elena240

and Lenski (2003) for references on viruses, bacteria, and yeast]. For instance, a linear decay241

of the average fitness of a hypermutator Escherichia coli strain subject to repeated single-cell242

bottlenecks was observed in (Heilbron et al., 2014).243

Sexual populations are also theoretically expected to suffer from deleterious mutation ac-244

cumulation (Lynch et al., 1995). This accumulation was observed in domesticated species due245

to bottlenecks and selective sweeps (Marsden et al., 2016; Xie et al., 2018), but also in some246

wild bottlenecked populations such as the Florida panther (Roelke et al., 1993). However, the247

deleterious mutation is potentially less common than in asexual microorganisms, where, due to248

the absence of recombination, the offsprings are expected to bear at least as much mutational249

load as their ancestors, a process called Muller’s ratchet (Muller, 1964, 1932). In wild popula-250

tions that reproduce sexually, recombination can break this process (McDonald et al., 2016).251

Therefore, the populations being the focus of conservation efforts are probably less affected by252

this particular bottleneck effect.253
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2.2.2 Reduced fixation probability of beneficial mutations254

Some theoretical studies reproducing microbiology experiments showed that bottlenecks can255

reduce the fixation probability of a beneficial mutation. For example, Wahl et al. (2002) found256

that the fixation probability of a beneficial mutation in a periodically bottlenecked popula-257

tion was reduced by a factor accounting for the probability of losing the mutation during the258

dilution. As a reminder, the fixation probability of a beneficial mutation in a fixed-size pop-259

ulation is approximately twice the selective advantage (Haldane, 1927). Heffernan and Wahl260

(2002) also considered that genetic drift is increased in bottlenecked populations due to a lower261

size resulting from the bottleneck. This effect reduces the fixation probability by about 25%262

compared to previous estimates. These theoretical predictions were confirmed by experiments263

using microorganisms where bottlenecks and genetic drift hindered adaptation. In the case264

of experimental evolution of antibiotic resistance, Huseby et al. (2017) found a positive cor-265

relation between bottleneck size and ciprofloxacin tolerance. In addition, Garoff et al. (2020)266

highlighted that a low-intensity bottleneck (i.e., a small reduction in population size) leads to267

higher fluoroquinolone tolerance than a high-intensity bottleneck. This effect is also likely to268

impact wild populations of endangered species, though the extent of this impact is not clear as269

their adaptation relies mostly on standing genetic variation.270

2.2.3 Prospects for filling knowledge gaps271

As bottleneck-induced drift affects both new and existing mutations, estimating its impact on272

the adaptive potential of bottlenecked populations would require quantifying the respective273

importance of de novo mutations versus standing genetic variation for the adaptation of a274

given population on a given timescale. This problem was previously mentioned in section 2.1275

about mutation. The review (Barrett and Schluter, 2008) presents the relative contribution of276

these two sources of genetic variation in wild populations. This review suggested ways to detect277

molecular signatures of adaptation from standing genetic variation (Barrett and Schluter, 2008;278

Przeworski et al., 2005).279

Another open question deals with the potential beneficial effect of genetic drift on the280

adaptive potential of populations. In a modeling study, Handel and Rozen (2009) found that281

small asexual populations could reach higher fitness peaks than large ones on rugged landscapes282

because drift prevents them from being stuck on a local maximum. The authors concluded that283

there is an optimal population size to maximize adaptation, depending on the fitness landscape’s284

characteristics and the relative importance of adapting rapidly versus reaching high fitness peaks285

(Handel and Rozen, 2009). Assessing whether these effects are also observed in wild populations286

would be interesting.287

2.3 Natural selection288

Natural selection will act more or less effectively on the bottlenecked population depending289

on several factors, such as the severity of the bottleneck, its duration, and the population’s290
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genetic diversity before and after the bottleneck. Some general predictions can be drawn from291

microbiology about the impact of natural selection after a bottleneck, regardless of the charac-292

teristics of the bottleneck: (i) Several mechanisms tend to reduce the population fitness, such293

as genetic load and inbreeding depression, but (ii) natural selection can also purge deleterious294

alleles in sexual populations. These mechanisms will modify the population’s fitness, impacting295

its ability to adapt to future environmental changes.296

2.3.1 Fitness decrease due to bottlenecks297

Several factors may explain why a bottlenecked population experiences a fitness decline, even298

without any environmental change.299

As detailed in section 2.2 about genetic drift, bottlenecks are expected to cause an accumu-300

lation of deleterious mutations in the population due to genetic drift, leading to a decrease in301

fitness if the bottlenecks are severe.302

It is important to note a major difference between microbial populations and the endangered303

wild populations of diploid eukaryotes that we are considering in this review: the latter can304

suffer from inbreeding depression because bottlenecks reduce population sizes (Charlesworth305

and Charlesworth, 1987; Keller, 2002), leading to more reproductive events between related306

individuals. This inbreeding depression results in a loss of heterozygosity that can unmask re-307

cessive deleterious alleles, ultimately decreasing this population’s fitness and adaptive potential308

(Barrett and Kohn, 1991; Ellstrand and Elam, 2003). More generally, genetic load (i.e., the309

actual or potential reduction in population mean fitness due to drift load, inbreeding load, and310

mutation load) is responsible for a direct decline in population fitness following a bottleneck311

(Hedrick and Garcia-Dorado, 2016; Kirkpatrick and Jarne, 2000).312

In less well-understood ways, bottlenecks can affect other characteristics of the populations313

than genetics but still influence their fitness and future ability to adapt. Specifically, a bot-314

tleneck can impact the balanced relationship between host and microbiome in eukaryotes. For315

instance, Ørsted et al. (2022) showed that Drosophila populations that had undergone bottle-316

neck treatment also lost the diversity and richness of their microbiome. The direct consequence317

of this loss is a reduction in the fitness of individuals belonging to bottlenecked populations318

(Ørsted et al., 2022).319

2.3.2 Purge of deleterious alleles by natural selection increases population fitness320

Whereas a bottleneck can increase the frequency of deleterious alleles (see section 2.2 about321

genetic drift), natural selection can purge these deleterious alleles (Kirkpatrick and Jarne, 2000;322

Hedrick and Garcia-Dorado, 2016). If a purging process is more efficient during a bottleneck,323

then going through a bottleneck could be beneficial for the adaptive potential of the population324

(Bouzat, 2010; Bertorelle et al., 2022; Dussex et al., 2023).325

Purifying selection can play out in microorganism experiments and yet population evolution,326

but inbreeding facilitates the purge in diploid eukaryotes (Hedrick and Garcia-Dorado, 2016).327

As mentioned above, inbreeding increases homozygosity and, thus, the unmasking of recessive328

9



deleterious alleles. Whereas inbreeding depression decreases population fitness, it is also an329

opportunity for selection to act on these deleterious alleles and purge them.330

The empirical evidence for a purge of deleterious alleles following a bottleneck appears to331

be mixed (Bouzat, 2010). There is some evidence that purge can strongly affect experimental332

populations (Crnokrak and Barrett, 2002) and captive populations (López-Cortegano et al.,333

2021; Boakes et al., 2006). In experimental yeast populations, Agrawal and Whitlock (2011)334

used data from the Saccharomyces Genome Deletion Project to estimate fitness and dominance335

coefficient at about 1000 loci. From this, the authors estimated that the effect of one gener-336

ation of purging (i.e., deliberate inbreeding) in an already partially inbred population would337

substantially decrease inbreeding depression.338

Evidence of a purge process in wild endangered populations is mostly indirect (Bouzat,339

2010). However, some direct evidence exists. For example, the deleterious load was significantly340

lower for the endangered species Iberian lynx (Lynx pardinus) than for the widespread Eurasian341

lynx (Lynx lynx) due to a genetic purging process (Kleinman-Ruiz et al., 2022). Other examples342

of purging in natural environments after a bottleneck exist [e.g., the Alpine ibex Grossen et al.343

(2020)]. As discussed in (Bouzat, 2010), the role of purging during a bottleneck and the factors344

influencing its role in natural populations still need to be discovered.345

2.3.3 Prospects for filling knowledge gaps346

While allele purging appears to be a key process for understanding the adaptive potential of347

bottlenecked populations, empirical evidence is still mixed, proving that we do not yet fully348

understand this mechanism. Therefore, it would be useful to use diploid eukaryotic microor-349

ganisms to test the factors and conditions under which allele purging occurs.350

In addition, a study suggested carefully handling the results of selection detection methods351

when working with bottlenecked populations (Leigh et al., 2021). Indeed, Leigh et al. (2021)352

found that, due to the high level of genetic drift, methods commonly used to detect selec-353

tion (e.g., FST outlier scans and Genome-Environment Association analyses) presented high354

false positive rates when applied to bottlenecked Alpine Ibex populations. Detecting adapta-355

tion is essential for managing endangered populations, so testing other methods’ false positive356

and negative rates and developing new methods to distinguish between drift and selection is357

necessary.358

2.4 Gene flow359

Human activity causes fragmentation of populations in the wild, leading to spatially structured360

populations divided into sub-populations (also called demes or islands) of reduced sizes between361

which individuals may migrate. Thus, population fragmentation results in a bottleneck that362

risks reducing genetic diversity within sub-populations (i.e., genetic depression), losing adap-363

tive potential, and accumulating deleterious mutations (Keyghobadi, 2007; Frankham et al.,364

2017). However, the migration of individuals between sub-populations can induce gene flow,365

which represents an opportunity to diversify the gene pool of the sub-populations despite the366
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fragmentation-induced bottleneck. Quantifying the genetic diversity of sub-populations is cru-367

cial to assessing the adaptive potential of fragmented populations, particularly in the case of368

changing environments threatening their persistence. This section reviews how and in what369

conditions gene flow can restore the adaptive potential of a bottlenecked population. Gene370

flow can (i) restore lost genetic variation, (ii) mitigate inbreeding depression, (iii) resulting in371

a decreased probability of extinction and restoration of adaptive potential, and (iv) amplify372

natural selection depending on the meta-population structure.373

2.4.1 Restoration of lost genetic variation374

One of the main effects of gene flow in a bottleneck population is the restoration of lost genetic375

variation (Soulé, 1987; Franklin and Frankham, 1998). This theoretical expectation is observed376

experimentally (Swindell and Bouzat, 2006) and in natural populations (Jangjoo et al., 2016;377

Goodman et al., 2001; Chiucchi and Gibbs, 2010).378

Habitat fragmentation can cause the extinction of bottlenecked populations. Gene flow be-379

tween sub-populations can mitigate the negative effects of bottlenecks by restoring lost genetic380

diversity (Ingvarsson, 2001). For example, Jangjoo et al. (2016) discovered that connectivity381

in a meta-population of the alpine butterfly Parnassius smintheus preserves genetic diversity382

before, during, and after a two-generation bottleneck. The Roseate Tern (Sterna dougallii383

dougallii) is an endangered Atlantic seabird population that provides another example of how384

connectivity and gene flow across populations can help retain genetic diversity despite a severe385

bottleneck (Dayton and Szczys, 2021). Seed dispersal with water facilitates gene flow between386

bottlenecked populations, mitigating the decrease in allelic diversity caused by a bottleneck387

(Yu et al., 2020). These examples are not isolated cases and are found in many endangered388

species. To further elaborate, gene flow between sub-populations undergoing a bottleneck can389

even erase the genetic variation effects of a bottleneck to the point where no negative genetic390

effects can be detected [e.g., Actinidia chinensis populations (Yu et al., 2020)].391

2.4.2 Change in genetic load composition392

One less studied effect of gene flow on bottleneck populations, which could be predominant in393

the populations’ fate, is its impact on genetic load. Gene flow is theoretically expected to reduce394

the deleterious effects of inbreeding in bottleneck populations. Gene flow in metapopulations395

can mitigate inbreeding load by preventing the fixation of deleterious alleles in bottleneck396

populations (Whitlock, 2003). However, gene flow can also reduce the effectiveness of the purge397

of these deleterious alleles by increasing heterozygosity. With individual-based simulations,398

a study found that an intermediate rate of gene flow can minimize the mutation load and399

prevent the extinction of local populations while still allowing some purging of deleterious400

alleles (Sachdeva et al., 2022).401
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2.4.3 Gene flow mitigate extinction risk402

Bottlenecked populations are highly vulnerable to extinction via (i) demographic stochasticity403

(e.g., random births and deaths), demographic heterogeneity and sampling variation in sex404

ratios (Melbourne and Hastings, 2008), and (ii) environmental stochasticity [e.g., catastrophic405

events Lande (1988)]. Specifically, bottlenecked populations can fall into an "extinction vortex",406

often characterized by a complex interplay between genetic drift, demographic stochasticity,407

and environmental fluctuations (Soulé, 1986). A population bottleneck reduces fitness directly408

through increased genetic load and indirectly through erosion of genetic variation, leading to409

population decline, exacerbating the effects of genetic drift, demographic stochasticity, and410

environmental fluctuations until extinction (Nordstrom et al., 2023). Theoretical models have411

highlighted a critical level of gene flow that allows a metapopulation to survive over long412

timescales, even if it is often ultimately driven to extinction (Hanski and Ovaskainen, 2003;413

Gyllenberg and Hanski, 1992; Lande et al., 1998).414

The process of restoring gene flow in these bottlenecked populations to alleviate genetic load,415

increase genetic variation, and increase persistence probability is termed genetic rescue (Bell416

et al., 2019; Tallmon et al., 2004; Whiteley et al., 2015). Much empirical evidence suggests that417

recently fragmented populations will likely receive a demographic benefit from gene flow, beyond418

the addition of immigrant individuals, through genetic rescue (Whiteley et al., 2015; Frankham,419

2015; Hufbauer et al., 2015; Fitzpatrick and Reid, 2019). A recent meta-analysis revealed the420

significant and consistent benefits of gene flow for the adaptive potential of endangered species421

experiencing a fragmentation-induced population bottleneck (Frankham, 2015).422

When a population faces deteriorating environmental conditions and is doomed to extinc-423

tion, gene flow may allow its evolutionary rescue. For example, Bell and Gonzalez (2011) set up424

an experiment in which a yeast metapopulation was subjected to salt-induced environmental425

stress. This experiment showed that local yeast dispersal and gradual deterioration favored426

the evolutionary rescue of the metapopulation, which would otherwise die out due to envi-427

ronmental stress. This experimental result later led to the development of theoretical models428

investigating the probability of evolutionary rescue by including a hitherto overlooked ecolog-429

ical factor: population structure, which may result from fragmentation. Interestingly, these430

models showed that the probability of evolutionary rescue in an island model, in which demes431

deteriorate one by one, does not vary monotonically with gene flow rate (Uecker et al., 2014).432

In other words, there is a gene flow rate that optimizes the evolutionary rescue of a popula-433

tion. Gene flow allows genetic variation and the introduction of beneficial mutants necessary434

for adaptation. However, a too-strong gene flow risks preventing local beneficial mutants from435

becoming permanently established, hence the need for intermediate gene flow to optimize adap-436

tation (Tomasini and Peischl, 2022). Further studies showed that directed gene flow based on437

habitat choice could favor evolutionary rescue (Czuppon et al., 2021). Habitat choice occurs,438

for example, when individuals, whether mutant or wild-type, preferentially immigrate to demes439

whose environment has already changed. Other details of population fragmentation, such as440

between which sub-populations gene flow is allowed (e.g., island model, stepping-stone model)441
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or its asymmetry, impact the probability of evolutionary rescue (Tomasini and Peischl, 2020,442

2022). To our knowledge, the above-mentioned theoretical predictions have not been tested443

experimentally.444

2.4.4 Meta-population structure can amplify or suppress natural selection445

The fragmentation of a population induces a bottleneck that divides the population into smaller446

sub-populations. This bottleneck accentuates genetic drift within sub-populations, but its effect447

on natural selection is more subtle. Its effect may depend on the meta-population structure448

resulting from fragmentation and the gene flow pattern.449

Many scientific publications address whether population fragmentation and gene flow change450

the fixation probability of a mutation compared to a non-fragmented population of the same451

size. In (Pollak, 1966), the author focused on a population fragmented into a finite number of452

demes between which individuals can migrate and showed that symmetric migrations lead to453

the same fixation probability as in a non-subivided population.454

Whitlock (2003) and Whigham et al. (2008) challenged this independence of the fixation455

probability from the meta-population structure resulting from fragmentation. Further works456

showed that the meta-population structure resulting from fragmentation could either amplify457

or suppress natural selection (Lieberman et al., 2005; Houchmandzadeh and Vallade, 2011)458

(i.e., increase or decrease the efficacy of natural selection, respectively). Amplifying natural459

selection means reducing the fixation probability of deleterious mutations and increasing that460

of beneficial ones, whereas suppressing natural selection does the opposite. Importantly, the461

meta-population structure alone is insufficient to assess the impact of a fragmentation-induced462

bottleneck on natural selection (i.e., amplifier, suppressor, or without effect) as the gene flow463

pattern needs to be taken into account (Marrec et al., 2021). Many theoretical studies assessing464

the impact of fragmentation on evolutionary dynamics focused on the fixation probability, but465

other important quantities are impacted, such as the adaptation rates (Hindersin and Traulsen,466

2014). An experiment in which ciprofloxacin-resistant mutants were tracked in a Pseudomonas467

aeruginosa meta-population showed that for low migration rates, natural selection is ampli-468

fied in a star topology compared to a well-mixed population (Chakraborty et al., 2023), thus469

confirming a theoretical prediction made by (Marrec et al., 2021).470

2.4.5 Prospects for filling knowledge gaps471

Human activity fragments populations into several sub-populations (also called demes or is-472

lands), which can become isolated if gene flow between them is limited. As biodiversity declines,473

it is crucial to understand the impact of fragmentation and gene flow on the evolutionary dy-474

namics of bottlenecked populations and, in particular, their adaptive potential. In this review,475

we have shown that there are many theoretical studies investigating this impact. However, the-476

oretical predictions are rarely directly tested or mostly with microbiology experiments whose477

design does not allow comparison with mathematical models. A stronger collaboration be-478

tween theory and experiment [e.g., Marrec et al. (2021) combined with Chakraborty et al.479
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(2023)] would lead to a better understanding of fragmentation and gene flow on the evolu-480

tionary dynamics of meta-populations. Also, more experiments with diploid organisms would481

enable better comparison with wild populations [e.g., Bakker et al. (2010)].482

3 Relative importance of these processes483

Figure 1: Potential effects of a bottleneck on adaptive potential. Summary of the main
effects of bottlenecks on the adaptive potential of a population, as described in this review. The
existence and relative importance of these different effects vary across populations, bottleneck
characteristics, and environments. Black arrows represent a causal effect, green arrows represent
a positive effect, and red arrows represent a negative effect.

3.1 Summary of the previous parts484

We have reviewed in the previous parts how the different evolutionary processes can be disrupted485

during a bottleneck and how these processes shape the adaptive potential of bottlenecked486

populations (see Figure 1).487

As expected, most of these mechanisms are predicted to decrease the adaptive potential488

following a bottleneck. Bottlenecks limit adaptation from de novo mutations by reducing489

the mutation supply and the fixation probability of beneficial mutations. More importantly490

for sexual populations, they also limit adaptation from standing genetic variation. Indeed,491

molecular variation is decreased due to smaller population sizes, increased drift, and the loss492

of rare alleles during bottlenecks. In addition, the fitness of a bottlenecked population may493

decrease due to the accumulation of deleterious mutations and genetic load in general, which494

for sexual diploids includes inbreeding depression. A population with lower fitness will struggle495

to survive future environmental changes that may increase its probability of extinction.496

Conversely, only two mechanisms can mitigate the negative impacts of bottlenecks. When497

the population is part of a meta-population, gene flow can restore some of the lost genetic498

variation by introducing new variation. In addition, in the case of sexual diploid populations,499
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inbreeding could, under some conditions, facilitate the purge of deleterious alleles and, thus,500

reduce the masked genetic load.501

These findings show that knowledge transfer from microbial to endangered wild populations502

is possible. A collaboration between microbiology and conservation biology would be fruitful503

if microbial experiments were adapted to include more characteristics of these endangered504

populations. For example, one could use (facultative) sexual micro-organisms, such as yeast,505

or include standing genetic variation in evolution experiments.506

3.2 Relative importance of each of these processes507

Several evolutionary processes come into play when trying to predict the impact of a bottleneck.508

As some of these processes have opposite effects, a major concern is to estimate the relative509

importance of these processes to predict the fate of a population. Even when two processes510

negatively affect the adaptive potential of populations, it may be useful to know which one511

is predominant to determine the conditions threatening the persistence of wild populations512

precisely. Determining these conditions would help identify the key priorities in population513

management. In the following of this review, we discuss the relative contribution of the evolu-514

tionary processes seen above.515

3.2.1 Selection vs. genetic drift516

One of the major concerns during a bottleneck is the increase of genetic drift. The positive or517

negative aspect of genetic drift depends on whether the alleles are deleterious or beneficial.518

In section 2.2 about genetic drift, we have seen that a bottleneck reduces the fixation519

probability of beneficial alleles and increases the chance that they are lost compared to a fixed-520

size population.521

The impact of a bottleneck on deleterious alleles is more complex, as inbreeding can facilitate522

their purge by natural selection. As previously said, little is known about the conditions required523

for selection to overcome drift. Even if these conditions were known, we would still have to524

choose if the management priority is to purge deleterious alleles, which requires inbreeding, or525

to restore genetic diversity, which requires outcrossing. Conservation biology often deals with526

small endangered wild populations that have already experienced severe bottlenecks. For such527

populations, the loss of genetic diversity may be a major concern, and the impact of the purge is528

minor, which has been confirmed in wild populations (Bouzat, 2010) [but see van Heerwaarden529

et al. (2008)]. For example, wild populations of elephants in South Africa underwent a severe530

bottleneck due to widespread hunting. Microsatellite comparisons of current wild populations531

with museum specimens of this elephant population before the bottleneck confirmed the loss532

of genetic diversity (Whitehouse and Harley, 2001). In such wild populations, the response to533

selection can be expected to be less effective, as the probability of having beneficial mutations534

is low (Frankham, 2009). A reduced response to selection after a bottleneck has already been535

highlighted in experimental fish populations. For example, populations of Heterandria formosa536

having undergone a bottleneck during their demographic history showed a 50% slower response537
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to selection for heat tolerance than populations having not undergone a bottleneck (Klerks538

et al., 2019). An experiment showed that housefly populations that faced a short bottleneck539

followed by a period of expansion had better fitness and lower genetic load than populations540

kept at a constant size with a similar expected inbreeding score (Reed and Bryant, 2001). Reed541

and Bryant (2001) concluded that, when managing endangered wild populations, the priority542

is to act on the cause of decline to promote rapid expansion and avoid inbreeding.543

For adaptive polymorphisms such as the Major Histocompatibility Complex (MHC), the544

predominance of selection over drift probably depends on the duration of the bottleneck. The545

MHC is a set of polymorphic genes essential to the adaptive immune system of vertebrates546

and can be particularly affected by bottlenecks. The potential loss of diversity at this locus547

is of great concern as it is associated with increased disease susceptibility (Sommer, 2005). In548

the meta-analysis (Sutton et al., 2011), the adaptive polymorphism of the MHC was shown549

to be significantly reduced after a bottleneck, and even more so than neutral polymorphisms550

(by 15%). One possible explanation found by Sutton et al. (2011) is that negative frequency-551

dependent selection is an important force shaping pre-bottleneck Major Histocompatibility552

Complex diversity, resulting in a high frequency of very rare alleles. As these rare alleles are553

more at risk of being lost during a bottleneck, this would explain the greater reduction in Major554

Histocompatibility Complex diversity. The authors concluded that diversifying selection cannot555

counter genetic drift in recently bottlenecked populations. However, this conclusion can be556

mitigated as the authors did not find a significant effect on Major Histocompatibility Complex557

diversity for short-scale bottlenecks. For instance, in a water vole population undergoing a 4-558

month bottleneck, the Major Histocompatibility Complex diversity was greatly reduced during559

this period but recovered in a few generations to reach the pre-bottleneck level (Oliver and560

Piertney, 2012).561

3.2.2 Loss of heterozygosity vs. loss of genetic variation562

Another open question is to identify the mechanism causing the more significant reduction in563

the adaptive potential of bottlenecked populations between the loss of heterozygosity and the564

loss of genetic variation. In population genetics theory, heterozygosity determines the evolution-565

ary potential, particularly the short-term response to selection (Falconer, 1960). Accordingly,566

Drosophila populations that faced intense or diffuse bottlenecks leading to the same level of het-567

erozygosity showed no difference in their response to selection (England et al., 2003). Whereas568

both bottleneck regimes were expected to yield different allelic diversities, the measured allelic569

diversities were not significantly different (England et al., 2003).570

On the other hand, Ørsted et al. (2019), focusing on Drosophila populations having ex-571

perienced different levels of inbreeding, showed that molecular diversity was more strongly572

correlated to adaptation than was the expected inbreeding coefficient. This result highlights573

the importance of molecular diversity for adaptation. It provides a way to summarize the574

history of a population, which seems more relevant than keeping track of population sizes.575

However, to our knowledge, the methods used to restore heterozygosity are the same as576
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those used to restore diversity and consist of outcrossing (i.e., crossing the population with577

individuals from other populations and/or expanding the population size).578

4 Thoughts for future research directions579

In the future, conservation biology could benefit even more from microbiology by maintaining580

a close link between the two fields. With a reverse approach, evolution experiments using581

microorganisms could directly address the conservation biology needs. We make the following582

suggestions:583

1. Include ecological factors within experimental evolution studies.584

2. Include selective history when considering the demographic history of populations.585

3. Include bottleneck characteristics and demographic history.586

4.1 Testing the influence of ecological factors on population re-587

sponse588

As discussed in this review, most microbiology studies investigating the adaptive potential of589

bottlenecked populations have taken an evolutionary perspective without considering ecological590

factors. However, natural populations evolve in interaction with their biotic and abiotic envi-591

ronment. Theoretical predictions could be biased without considering these ecological factors.592

For instance, Nordstrom et al. (2023) showed through stochastic individual-based simulations593

that considering population growth with negative density dependence (i.e., intraspecific com-594

petition) or density independence leads to different outcomes of evolutionary rescue. This595

prediction regarding the impact of density dependence vs. independence was empirically tested596

and confirmed with flour beetles (Olazcuaga et al. in prep.). More precisely, Olazcuaga et al.597

showed that the effect of negative density dependence varies depending on whether the popula-598

tions have experienced a bottleneck in their demographic history. Osmond and de Mazancourt599

(2013) proved with an adaptive dynamic model that interspecific competition can favor evolu-600

tionary rescue by increasing the strength of selection and speeding up adaptation. Following601

Olazcuaga et al.’s example, examining how interspecific competition affects the probability of602

rescue in bottlenecked populations would be valuable.603

4.2 Testing the influence of selective and demographic history on604

population response605

In this review, we focused on the effects of bottlenecks, which entail random reductions in606

population size ("random bottleneck" hereafter), rather than selective bottlenecks, which in-607

volve non-random decreases in population size. Wild populations can experience both random608
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and selective bottlenecks. Random bottlenecks can occur due to fragmentation, whereas se-609

lective bottlenecks are more likely to occur when adapting to a drastic environmental change,610

such as pollutants or antibiotic resistance. These selective bottlenecks can result in U-shaped611

population size curves during evolutionary rescue processes (Gomulkiewicz and Holt, 1995).612

Selective bottlenecks, as random bottlenecks, can impact how populations respond to future613

stress. A few studies tested how adaptation to a first environmental change, which was associ-614

ated with a decrease in population size, impacted the response to future adaptation to a new615

environment (Lachapelle et al., 2017; O’Connor et al., 2020; Samani and Bell, 2016; Gonzalez616

and Bell, 2013) using microorganisms: Chlamydomonas reinhardtii, Pseudomonas fluorescens,617

Saccharomyces paradoxus, and Saccharomyces spp, respectively). Adaptation to a new envi-618

ronmental change would be favored for populations that have already undergone similar stress619

in their demographic history (Lachapelle et al., 2017) [see O’Connor et al. (2020) for a change620

in the speed of future adaptation]. Conversely, if the stress is different, adaptation would be621

less likely (Lachapelle et al., 2017). This impact of the first dissimilar stress makes sense since622

the response to the selection of the first stress would reduce genetic variability (Carlson et al.,623

2014). Additionally, populations that have evolved under first stress during their demographic624

history seem to have a higher probability of extinction when they experience new and different625

stress (Lachapelle et al., 2017; Samani and Bell, 2016; Gonzalez and Bell, 2013). An increase in626

genetic load is expected during selective bottleneck (Stewart et al., 2017), which could explain627

this result. However, whether these deleterious mutations can be purged as efficiently as in628

a random bottleneck is unclear. Furthermore, the mean frequency of mutations and the ge-629

netic load can change in a complex way during a selective bottleneck, in contrast to a random630

bottleneck (Dussex et al., 2023). Overall, the evidence that adaptive bottlenecks increase the631

probability of extinction and impact the probability of adaptation suggests that the processes632

involved differ from those occurring in a random bottleneck or are not as straightforward as633

expected. The impacts of random bottlenecks versus selective bottlenecks have been studied634

theoretically in infection models and host-pathogen infection processes [as reviewed in Abel635

et al. (2015), e.g., Moxon and Kussell (2017) and De Ste Croix et al. (2020)]. However, how a636

selective bottleneck, compared to a random bottleneck, impacts the response to future stress637

has never been empirically studied. Integrating demographic and selective history can improve638

predictions of population response to different stresses.639

Finally, it is essential to note that bottlenecks exist on a gradient and cannot be categorized640

into two binary categories. Selective and random bottlenecks represent the extreme points of641

this gradient, where the relative contribution of drift and selection varies. Moreover, we have642

discussed that natural selection can play a role in a random bottleneck process, challenging the643

assumption that a random bottleneck is entirely random. As a first step, it would be useful644

to compare the effects of selective and random bottlenecks on the probability of adaptation to645

future environmental conditions. Then, it would be important to study how the contribution of646

genetic drift and selection during demographic history influences the response of bottlenecked647

populations.648
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4.3 Testing the influence of bottleneck characteristics on future pop-649

ulation response650

In this review, we have focused on the impact of a single bottleneck on population response,651

except when considering microbial experiments that usually involve multiple bottlenecks. How-652

ever, the demographic history of natural populations is never restricted to a single bottleneck653

(Hohenlohe et al., 2020; Gladstone et al., 2022). Therefore, it is essential to consider the en-654

tire demographic history of natural populations, including the intensity and frequency of these655

bottlenecks.656

Microbiology informs us about the impact of the intensity and frequency of bottlenecks,657

which can be useful to conservation biology. Microbiologists can control the characteristics of658

the bottleneck, such as its frequency, intensity, and duration (LeClair and Wahl, 2017). The659

impact of bottleneck intensity has been tested in microbial experimental evolution. The adap-660

tive pathways differ depending on whether the bottleneck is weak or intense (Garoff et al., 2020;661

Vogwill et al., 2016; Mahrt et al., 2021). Overall, empirical studies on the evolution of antibi-662

otic resistance have observed a negative correlation between bottleneck severity and adaptive663

response (Garoff et al., 2020; Huseby et al., 2017; Mahrt et al., 2021). In addition, Mahrt et al.664

(2021) showed a decrease in parallel evolution with increasing bottleneck intensity. This result665

suggests that after experiencing strong bottlenecks, resistance evolves through a wider range666

of genetic mechanisms, likely due to increased genetic drift. Theoretical studies of bottleneck667

characteristics suggest that smaller population sizes before or after the bottleneck constrain668

evolutionary paths, thus limiting the supply of beneficial mutations and adaptation (Gamblin669

et al., 2023). In addition, Wein and Dagan (2019) pointed out that while bottleneck intensity is670

a factor in determining population evolvability, selective conditions during evolution can play671

a more significant role. Mahrt et al. (2021) notably examined the interaction between bottle-672

neck intensity and intensity of selective pressure. The application of the effect of bottleneck673

intensity to natural populations remains unclear. Olazcuaga et al. (2023) conducted an experi-674

ment demonstrating that Tribolium castaneum populations responds similarly to environmental675

change, regardless of the intensity of the bottleneck they experienced in their demographic his-676

tory. England et al. (2003) also found no difference in adaptive potential between Drosophila677

melanogaster populations that underwent an intense or diffuse bottleneck designed to produce678

similar inbreeding levels.679

The duration for which populations can recover, which is the time between two bottlenecks,680

also affects the adaptive potential of populations. For instance, Moxon and Kussell (2017)681

showed that increasing the severity of bottlenecks or reducing the growth period leads to faster682

adaptation during pathogen microbial infection. Natural microbial populations that experience683

frequent bottlenecks, such as pathogens, can adapt to changing environmental conditions. A684

theoretical study predicted a high probability that some mutations acquired during growth in a685

given host will be passed to the next one in viruses (Sigal et al., 2018). These results could apply686

to conservation biology since frequent bottlenecks are commonly observed in wild populations687

(Hohenlohe et al., 2020). Recent genomic approaches have been used to determine the timing688
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and nature of past population bottlenecks by detecting changes in the shape of the deleterious689

variation landscape [see Bortoluzzi et al. (2019) for an application with chicken populations as690

well as Cornuet and Luikart (1996) and Peery et al. (2012) for classical approaches].691

An important area for future research is to investigate whether the cumulative effects of692

multiple bottlenecks are additive or synergistic. This effect could be studied experimentally in693

microbiology and then applied to natural populations. In theory, multiple bottlenecks will not694

have the same impact on the population’s ability to adapt from de novo mutations and from695

standing genetic variation. What matters for adaptation from de novo mutation is the current696

population census size, which is the result of the last bottleneck only. What matters for adap-697

tation from standing genetic variation is the genetic diversity of the population, which results698

from past variations in population size (i.e., from the last common ancestor of the population to699

the present). Genetic diversity is proportional to the effective population size, which is usually700

computed as the harmonic mean of past population sizes for populations of varying sizes (Crow701

and Kimura, 2009; Otto and Whitlock, 1997; Charlesworth, 2009). However, other parameters,702

such as population structure and selection, can also impact the effective population size. As703

these parameters can vary between different environments, comparisons between experimental704

and wild populations must be made with caution. Advances in population genomics applied to705

conservation biology are very useful in this case and are a fruitful avenue of research (Hohenlohe706

et al., 2020). Moreover, even if genetic diversity should theoretically correlate with the response707

to selection, this effect is rarely observed in the wild due to interference from other biological708

mechanisms [e.g., plasticity or coevolution, see Pujol et al. (2018)]. We would need experiments709

with populations undergoing bottlenecks of different severity and duration to assess the differ-710

ential impacts of such bottlenecks on genetic variation. Indeed, some studies have observed711

that genetic variation quickly recovers after a short bottleneck, with examples of both short-712

generation (water vole) and long-generation (white-tailed eagle) species (Oliver and Piertney,713

2012; Keller et al., 2001; Hailer et al., 2006). Moreover, low initial genetic variation does not714

seem to be limiting for the adaptation of invaders [see the review Bock et al. (2015)]. Thus,715

there is likely to be a threshold of severity and duration above which a population struggles to716

recover.717

To conclude, in this section and throughout the review, we have proposed several research718

directions and suggested new experiments that could help to understand the adaptation of719

bottlenecked populations. The new knowledge gained from these experiments could ultimately720

be integrated into existing methods for detecting species most at risk of extinction due to721

climate change [reviewed in Hoffmann and Sgrò (2011)].722

5 Perspectives723

Our review has shown that the impact of bottlenecks on the evolutionary dynamics of popu-724

lations is a topic that spans several fields, such as microbiology and conservation biology, and725

has inspired theoretical, and empirical works. Our review emphasizes that these fields share726
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a common goal and are not as distinct as previously thought. We believe that an improved727

collaboration between these fields will lead to a better understanding of how bottlenecks affect728

the evolutionary dynamics of populations.729

Similar to our review, Alexander et al. (2014) showed how seemingly unrelated fields address730

the evolution of declining populations. Specifically, Alexander et al. (2014) emphasized that731

evolutionary rescue is a research topic in medicine (e.g., drug resistance evolution in patients732

undergoing chemotherapy) and conservation biology (e.g., survival of species undergoing habitat733

deterioration). Similar to our review, Alexander et al. (2014) pointed out that integrating734

different fields could accelerate our scientific knowledge.735

We hope that these synthesis reviews will pave the way for empirical studies that combine736

different fields. Given the challenges of the 21st century, such as the loss of biodiversity, it would737

be highly valuable to employ approaches that enhance our comprehension of biological processes738

and our ability to forecast the reaction of natural populations to environmental change.739
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