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Climate extremes such as droughts are expected to increase in frequency and intensity with global

change. Therefore, it is important to map and predict ecosystem responses to such extreme events

to maintain ecosystem functions and services. Alongside abiotic factors, biotic factors such as the

proportion of needle and broadleaf trees were found to affect forest drought responses, corroborating

results from biodiversity-ecosystem functioning (BEF) experiments. Yet it remains unclear to what extent

the behavior of non-experimental systems at large scales corresponds to the relationships discovered in

BEF experiments. Using remote sensing, the trait-based functional diversity of forest ecosystems can be

directly quantified. We investigated the relationship between remotely-sensed functional richness and

evenness and forest drought responses using data from temperate mixed forests in Switzerland, which

experienced an extremely hot and dry summer in 2018. We used Sentinel-2 satellite data to assess aspects

of functional diversity and quantified drought response in terms of resistance, recovery, and resilience

from 2017 to 2020 in a scalable approach. We then analyzed the BEF relationship between functional

diversity measures and drought response for different aggregation levels of richness and evenness of

three physiological canopy traits (chlorophyll, carotenoid/chlorophyll ratio, equivalent water thickness).

Forest stands with greater trait richness were more resistant and resilient to the drought event, and the

relationship of trait evenness with resistance or resilience was hump-shaped or negative, respectively.

These results suggest forest functional diversity can support forests to such drought response via a

mixture of complementarity and dominance effects, the first indicated by positive richness effects and the

second by negative evenness effects. Our results link ecosystem functioning and biodiversity at large

scales and provide new insights into the BEF relationships in non-experimental forest ecosystems.
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1 Introduction

Global climate change is expected to increase both the frequency and intensity of climate extremes

(Smith, 2011), and so it is of growing importance to study ecosystem responses to these extremes. Rising

temperatures due to global change and related evapotranspiration dynamics are predicted to amplify

drought stress in Europe (Jacob et al., 2014) and increasingly challenge the capacity of ecosystems

to maintain high levels of ecosystem functioning (EF). Understanding how changing environmental

conditions influence processes across levels of ecological organization is critical for predicting EF and

impacts on ecosystem service provisioning (Suding et al., 2008). For example, the extreme 2018 summer

drought in central Europe caused unprecedented forest mortality, highlighting the need for a monitoring

network to track climate change impacts (Schuldt et al., 2020).

Drought occurs through a deficit in ecosystem water availability below a vulnerability threshold that

affects ecosystem services (Crausbay et al., 2017). Drought responses can be divided into resistance —

performance during drought, recovery — performance after drought, and resilience — the similarity of

the performance before and after the event (Lloret et al., 2011). Multiple abiotic factors may influence

ecosystem responses to drought, such as topography, soil, and weather conditions (Rita et al., 2020).

Recent studies suggest that alongside multiple abiotic factors such as topography, biotic factors such as

the proportion of needle and broadleaf trees are explanatory variables for drought responses (Sturm et al.,

2022).

Evidence from experiments shows that biodiversity enhances stability, the ability of ecosystems to

maintain functioning under stressful environmental conditions (Isbell et al., 2015). Studies focusing

on resistance and resilience found that forest stands containing multiple species were less affected by

drought than mono-specific stands (Lebourgeois et al., 2013), whereas others found no differences in

drought responses of trees with different neighboring species (Forrester et al., 2016). There is growing

recognition of the importance of trait-based diversity to understand the influence of biodiversity on

forest functioning, and trait diversity is expected to promote EF (Ruiz-Benito et al., 2014). Rather than the

number of species alone, the dissimilarity of functions can positively impact forest drought responses

(Cadotte et al., 2011). This dissimilarity of functions can be represented by, e.g., leaf ecophysiological

traits representing the leaf economics spectrum (Díaz et al., 2016) or morphological traits, such as tree

2



height or wood density (Gazol & Camarero, 2016). It is conceivable that a particular combination of

traits causes biodiversity effects such as resistance and resilience to stress; it is, however, not clear which

trait combination might link to biodiversity effects and whether they are consistent across different

environmental and community contexts, including multiple species mixtures (Huang et al., 2018; Luo

et al., 2023). In one study, functional diversity in tree height, wood density, seed mass, and seed dispersal

did not relate to drought responses (Espelta et al., 2020). Recent evidence suggests that biodiversity–

ecosystem functioning (BEF) relationships in forest ecosystems are modulated by differences in leaf traits

(Feng et al., 2022). In their analysis of forest drought responses across Switzerland, Sturm and colleagues

(Sturm et al., 2022) found that mixed stands of broadleaf and needle trees could cope better with drought

than pure broadleaf or needle stands, but they could not measure functional or taxonomic diversity at a

finer scale than the difference between angiosperms and gymnosperms.

Trait-based diversity is a widely used approach for quantifying the functional contributions of individuals

or species to ecosystem properties (Cadotte et al., 2011). Thus, sampled objects (pixels, individuals, species)

can be classified using traits, defining these objects’ functional roles within communities or responses to

environmental variables (Petchey & Gaston, 2006). With increasing functional diversity, a greater range of

functional trait values is present, providing opportunities for efficient resource use (Díaz & Cabido, 2001).

Trait-based diversity can be quantified with diversity metrics describing the multidimensional trait space.

Predicting how ecosystems and the services they provide will respond to accelerating environmental

change will benefit from comprehensive, globally consistent, and repeated data on the patterns and

dynamics of functional diversity (Jetz et al., 2016). Remote sensing (RS) allows the diversity of temperate

forest ecosystems to be quantified directly at landscape scales through physiological canopy traits

(Schneider et al., 2017; Helfenstein et al., 2022), which is particularly relevant as resource management

decisions are generally made at these scales (Nelson et al., 2009). While the spatial resolution of satellite

sensors may limit the detection of subtle trait variations across species and individuals (Petibon et al., 2021;

Schneider et al., 2017), RS complements detailed but spatially limited field measurements by providing

spatially contiguous and multi-scale information on certain traits (e.g., pigments, water content) and

their dynamics throughout the phenological cycle, provided sufficient spectral and temporal resolution

(Homolová et al., 2013). However, satellite-based observations primarily capture the uppermost canopy

layers, while lower forest strata and soil background are not consistently represented (Damm et al.,
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2020), likely reducing information on 3D canopy variation and below-ground variables. Despite these

limitations, canopy trait-based diversity is considered an effective measure for mapping biodiversity

and detecting its effects on ecosystem functioning (EF) using RS data (Jetz et al., 2016; Zheng et al., 2023),

without requiring additional information on tree species composition.

Beyond initial studies such as the ones mentioned above (Sturm et al., 2022; Schneider et al., 2017; Zheng

et al., 2023), the sensitivity of satellite-derived measures of trait-based functional diversity and the linkage

between these and EF in general or ecosystem drought responses, in particular, have not been rigorously

assessed (Jetz et al., 2016). Filling this gap could advance our understanding of climate change impacts

on forest ecosystems and pave the way toward large-scale assessment and long-term forest diversity

and resilience monitoring. Here, we used Sentinel-2-derived trait-based functional diversity measured

at landscape scales in 2017, and Sentinel-2-derived drought response assessments using changes in

the normalized difference water index (NDWI, a measure of forest canopy water content (Lloret et al.,

2011; Sturm et al., 2022)) from 2017–2020, to study the link between trait-based functional diversity as

biodiversity measure and drought response as an EF measure for the cantons of Aargau and Zurich on

the Swiss Plateau. We chose this area because abiotic factors (e.g., topography-related air temperature

and illumination, precipitation) are far less variable across the Swiss plateau than throughout the entire

country (Sturm et al., 2022), allowing us to focus on relationships between variation in tree diversity and

variation in forest drought response. To account for the remaining abiotic variability in the study region,

we divided the region into 21 geographic sub-regions.

The summer weather in 2018 in central Europe was dominated by large precipitation deficits, high

temperatures, and sunny conditions over large areas (MeteoSchweiz, 2018). In Switzerland, the mean

precipitation between April and September was just above 500 mm (the lowest since 1962) and the

mean temperature was the highest since measurements started in 1864 (MeteoSchweiz, 2018). In Swiss

temperate forests, the drought resulted in early wilting, decreased forest health, and widespread tree

mortality (Sturm et al., 2022). Secondary drought effects followed; for example, in 2019, the amount of

wood infested by bark beetles (Ips typographus) in Switzerland reached over one million m3 for the first

time since 2005 (Stroheker et al., 2020).

We compared the changes in NDWI between pre-drought conditions in 2017, drought conditions in 2018,

and post-drought conditions in 2019 and 2020. All four years had dry and warm summer conditions
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compared to the long-term reference period (Rakovec et al., 2022), but the severity of the drought in 2018

contrasts with the other years (Sturm et al., 2022). 2018 was marked by the most severe drought of the

analyzed years, with the highest summer temperature maxima and prolonged periods of below-average

precipitation. These conditions were described in detail by Sturm et al. (2022) and are further illustrated

in Figure S1, using precipitation and temperature data from MeteoSwiss (Scherrer et al., 2022, Figure

S1). Although warm, 2019 and 2020 experienced more precipitation, resulting in relatively favorable

growing conditions (MeteoSchweiz, 2020, 2021). In particular, 2020 was characterized by a prolonged dry

spell in spring and moderate heatwaves later in the season. Precipitation increased toward the end of the

summer, alleviating drought impacts (MeteoSchweiz, 2021).

The aim of this study is to investigate the relationships between trait-based functional diversity metrics

and forest drought responses using Sentinel-2-derived canopy traits. We aim to provide insights into

how satellite-based functional diversity influences forest stability under drought conditions, advancing

our understanding of BEF relationships at landscape scales. We focused on how forest drought responses

(resistance, recovery, and resilience) across the years of 2017–2020 were related to trait-based functional

diversity metrics (richness and evenness).

We used three leaf traits that can be assessed at the canopy level using spectral indices: chlorophyll content

(CHL), carotenoid/chlorophyll ratio (CCR), and equivalent water thickness (EWT) (Helfenstein et al.,

2022; Schneider et al., 2017). The two diversity metrics we used, richness and evenness, are commonly

used in BEF research (Mammola et al., 2021). We calculated two complementary metrics to gain distinct

insights into the separate aspects of diversity and their relationships with drought responses. Richness

relates to the hypervolume of the trait space occupied by a community of a certain unit area at a certain

time. The larger the richness, the greater the extent of the hypervolume, measured e.g. using convex

hulls (Villéger et al., 2008). Functional richness is different from other functional diversity measures,

like Rao’s Q, that use mean differences between species and which are therefore independent of species

richness (Huang et al., 2018). Here we prefer functional richness as a measure because it relates to species

richness, whose effects are commonly studied in field-based BEF research (Liu et al., 2024). Evenness

measures the regularity of the observations’ distribution within the hypervolume (Mammola et al., 2021).

If used with species diversity metrics, evenness refers to the similarity of species abundance values

independent of species number. Conceptually, evenness reflects how equally different functional trait
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values are distributed in a community (Villéger et al., 2008). When the occupation of the hypervolume

is skewed toward some specific trait values, then those traits are dominant within the community and

evenness is low (Mammola et al., 2021). Conversely, high evenness (i.e., more uniform occupation of the

hypervolume) implies weak or no dominance of specific trait values and thus species carrying those trait

values.

Relating functional richness and evenness to species richness and evenness suggests that with high

richness, it is possible to have complementarity and selection (i.e., dominance) effects as defined by the

additive partitioning method of biodiversity net effects (Loreau et al., 2001). In a forest with high realized

evenness, complementarity effects strongly contribute to biodiversity net effects, while dominance effects

necessarily reduce realized evenness. At intermediate levels of realized evenness (and high richness),

both effects can contribute positively to net biodiversity effects. Therefore, we hypothesized a positive

relationship between functional richness and drought response and a hump-backed relationship between

evenness and drought response. Furthermore, whereas richness is related to the size of the hypervolume,

evenness can be high even within a small hypervolume in trait space, i.e., low richness. Thus, we expected

the relationship between functional richness and drought response to be stronger than the relationship

between functional evenness and drought response.

2 Material and Methods

2.1 Study area

The study area comprises the cantons Aargau and Zurich in Switzerland (Figure 1). The cantonal borders

in Figure 1 are based on swissBOUNDARIES3D by swisstopo (2021). Both cantons are located on the

northern central plateau, subject to different forest management practices, containing different forest

communities. The canton Aargau has a total area of 1403.80 km2, of which 35% or 490.70 km2 is forested.

The main tree species in canton Aargau are European beech (Fagus sylvatica) with 32% of the cantonal

stocks, followed by Norway spruce (Picea abies) with 26%, silver fir (Abies alba) with 14%, and sycamore

maple (Acer pseudoplatanus) with 5% (Aargau, 2018). The canton Zurich covers an area of 1728.87 km2,

of which forests cover 29.1% or 503.73 km2. The main tree species in canton Zurich are P. abies, with
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35% of the cantonal stocks, F. sylvatica with 24%, A. alba, with 12%, and ash (Fraxinus excelsior) with 8%

(Baudirektion Kanton Zürich, 2020).

We grouped the forests in the study area according to the intersection of cantonal forest districts and

geographical regions into 21 subregions. The subdivision of Switzerland into geographical regions was

based on similar ecological characteristics (BAFU, 2022). These geographical regions were the eastern

and western Swiss plateau, pre-Alps, Rhine plains, and Jura mountains. The territorial authority of the

cantonal forest service regulates forest districts (AGIS, 2023). The forest-district data were provided by

the cantons (AGIS, 2023; GIS-ZH, 2019a). Aargau is divided into four and Zurich into seven forestry

districts. Management can be assumed to be similar in one district but might differ between districts. The

intersection of geographical regions and forestry districts resulted in 21 subregions with forested areas

between 3.5 km2 and 100 km2.
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Figure 1: Study area of canton Aargau (west) and canton Zurich (east) and location in Switzerland (top
left). Highlighted on the map is the Sihlwald site, where we validated the drought response results. The
true-color composite shows the study area in summer 2017, based on June/July Sentinel-2 data. The
cantonal borders are based on swissBOUNDARIES3D by swisstopo (swisstopo, 2021).
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2.2 Satellite data

We used a composite of Sentinel-2 data from three dates in June/July 2017 to generate the diversity maps,

i.e. Sentinel-2A images from June 19th and 26th and Sentinel-2B data from July 4th. Monthly composites

from August in the years 2017–2020 were used to assess the drought response (see Table 1). In August, the

drought impacts should be at their full strength, whereas the senescence due to the natural phenological

cycle is still absent (MeteoSchweiz, 2018). We ensured the assessments of diversity and drought response

were based on independent observations from the independent times of acquisition.

2.3 Satellite data pre-processing

All data were collected using ESA’s Scihub and atmospherically corrected using Sen2Cor v.2.9.0. in the

ESA Sentinel Application Platform SNAP v9.0. We derived all Sentinel-2 bands available in 10-m or 20-m

native spatial resolution. The 10-m bands were resampled to 20 m using mean resampling.

In all images, we flagged all pixels with < 5% reflectance in band B2 (blue) and > 15% in band B8A (NIR)

as cloud- and cloud-shadow-free, following the approach of Sturm et al. (Sturm et al., 2022). Additionally,

we applied the cantonal polygon forest masks available in LV95 reference system and warped them using

gdal to match the projection of the Sentinel-2 data in WGS 84/UTM 32N (AGIS, 2019; GIS-ZH, 2019b).

To calculate forest traits in June/July 2017, we excluded pixels covering forest gaps, dead canopies, and

shadows to tailor the assessment of canopy traits on living forest canopies only. We therefore derived a

forest mask for the scene in June/July 2017, which was then applied to all composites. We set a threshold

for the normalized difference vegetation index (NDVI) (bands B4 and B8A) within the forest area. We

calculated a median outlier for the forested area, resulting in NDVI thresholds of 0.795 for 19 June, 0.8003

for 26 June, and 0.81 for 4 July 2017. Lastly, we applied shadow masks based on the bands B6 and B12,

excluding the darkest pixels in these bands, defined as median outliers from the overall distribution

(Rüfenacht et al., 2013). We calculated three forest maps based on the three acquisitions in June/July 2017.

Pixels needed to be valid in two out of three images to be included in the final forest mask using a mean

calculation. The resulting forest mask contained 2’293’752 valid pixels and covered a total forest area of

917.5 km2.
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Table 1: Acquisition dates (left) and sensor type (Sentinel-2A/B, right) of the satellite data used for
the composites to calculate the diversity data (June/July 2017) and the drought response data (August
2017–2020) to create the drought response maps.

Diversity data Drought response composite data

Jun–Jul 2017 Aug 2017 Aug 2018 Aug 2019 Aug 2020

Date Sensor Date Sensor Date Sensor Date Sensor Date Sensor

Jun 19 A Aug 15 A Aug 03 A Aug 08 A Jul 30 A
Jun 26 A Aug 18 A Aug 05 B Aug 18 A Aug 07 B
Jul 04 B Aug 23 B Aug 20 A Aug 25 A Aug 09 A

Aug 25 A Aug 23 A Aug 28 A Aug 12 A
Aug 30 B Aug 28 B Aug 30 B Sep 03 B

2.4 Leaf ecophysiological traits at canopy level

Trait-based functional diversity from RS can be derived for ecophysiological, morphological, or pheno-

logical features of plants (Homolová et al., 2013). We focused on ecophysiological traits and related them

to forest drought responses since previous studies have shown that ecophysiological traits were closely

linked to drought-sensitive soil variables as well as different stages of forest development and local

management (Schneider et al., 2017). Based on the functional diversity approach from ecophysiological

traits initially suggested and applied to APEX imaging spectroscopy data by Schneider et al. (Schneider

et al., 2017) and upscaled to Sentinel-2 data by Helfenstein et al. (Helfenstein et al., 2022), we mapped

three spectral indices at the canopy level.

We used a red-edge chlorophyll index (CIre) to measure leaf chlorophyll content (CHL), a carotenoid/

chlorophyll index (CCI) to measure leaf carotenoid/chlorophyll ratio (CCR), and a normalized difference

infrared index (NDII) to measure leaf equivalent water thickness (EWT). All index maps were rescaled to

0–1.

CHL was obtained using CIre according to Clevers & Gitelson (Clevers & Gitelson, 2013) as

CIre :=
ρ783

ρ704
− 1 (1)

where ρ stands for the top-of-canopy reflectance at a specific wavelength in nm. We used Sentinel-2

bands B7 and B5. CIre from Sentinel-2 correlated strongly with canopy CHL measured for field-collected

leaves and needles in a mixed mountain forest (Ali et al., 2020).
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CHL affects photosynthesis, resource strategies (Croft et al., 2017), and growth potential by influencing

how efficiently a plant can convert light into biomass. High chlorophyll content indicates a higher

potential for photosynthesis and links to productivity.

CCI was developed for MODIS data to describe CCR and was successfully applied to Sentinel-2 data

(Helfenstein et al., 2022). CCI was calculated according to Gamon (Gamon et al., 2016) as

CCI :=
ρ560 − ρ664

ρ560 + ρ664
(2)

We used Sentinel-2 bands B3 and B4 for this calculation.

CCR reflects strategies for protecting photosynthesis against excess light input, which can impact growth

rates and survival under stress.

The Normalized Difference Infrared Index (NDII) was used for the retrieval of EWT. We used the narrow

infrared bands B8A and B11 (Helfenstein et al., 2022) and calculated the NDII according to Hardisky

(Hardisky et al., 1983).

NDII :=
ρ865 − ρ1614

ρ865 + ρ1614
(3)

EWT is influenced by the structure (for example, in broadleaf vs. needle trees), functions, and age of

leaves and is affected by water availability, resource use, and conservation strategies.

We selected indices related to ecophysiological canopy traits for both ecological and technical reasons.

Ecophysiological canopy traits are linked to growth, reproduction, and survival (Violle et al., 2007; Liu

et al., 2016). They can be related to the leaf economic spectrum (Díaz et al., 2016) through their influence on

photosynthetic efficiency, photoprotection, and water use strategies. The combination of the three selected

traits, chlorophyll, carotenoid/chlorophyll ratio, and water content, describes canopy productivity and

the tradeoff between productivity and protection important for response to disturbance. For example,

young, productive forests and trees typically show high CHL and EWT as they invest energy in growth

(Finegan, 1984; Day et al., 2001; Acker et al., 2002). They tend to be less robust to stress, with most

energy allocated to growth rather than defense, health, and reproduction (Loehle, 1988; Obeso, 2002).

Carotenoids serve as antioxidants, ensuring the protection of leaves against high radiation and increased

temperatures (Demmig-Adams & Adams, 1996; Lichtenthaler, 2007).
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We tried to avoid potential correlations among the selected indices, as a high correlation of the traits in

the n-dimensional trait space can negatively affect the calculation of the diversity metrics (Schneider et al.,

2017; Blonder et al., 2018). All three selected indices show a low correlation with each other, which is a

technical prerequisite for the functional diversity calculation. Furthermore, as seen in the selection of

bands, the chosen indices do not overlap along the electromagnetic spectrum, providing independent

measurements while using a broad variety of the spectral information provided by Sentinel-2. In addition,

it was discussed that the three traits investigated represent different plant responses to water limitation,

each acting at a different temporal scale (e.g., Damm et al., 2018).

2.5 Functional diversity measures and maps

Trait-based functional diversity measures were derived from the per-pixel trait values using a moving

window approach with a circular calculation mask. Based on a previous scaling analysis, we used a

three-pixel calculation radius (i.e., 60 m when working with 20-m pixels) to represent the patchy forest in

the study area with a minimized risk of calculation-based edge effects (Helfenstein et al., 2022). Figure

2 shows the calculation and the resulting mask for the moving window. A 60 m radius results in a

calculation area of 28.3 pixels or 1.131 ha (Supplementary Section 2 showing the outcome of a multiscale

analysis). The calculation radius of 60 m has previously been used to represent variation on the ecosystem

to landscape scale (Zheng et al., 2023).

We used two metrics of trait-based functional diversity (Figure 2), namely functional richness and

evenness calculated in the three-dimensional space of the selected traits (Mammola et al., 2021; Villéger

et al., 2008). These represent distinct dimensions of diversity (Rossi et al., 2020) and allow testing of the

two hypotheses stated at the end of our Introduction section. Our functional richness and evenness

measures were independent of each other (coefficient of determination of r2 = 0.001 in the study area).

We calculated functional richness using concave hulls based on α-shapes around the data points to reduce

sensitivity to outliers compared to convex hulls (Gruson, 2020). We complemented this with functional

evenness to represent the regularity dimension of the data in the trait space. Evenness was calculated

based on the minimum spanning tree (MST) using Euclidean distances between all points in trait space

(Schneider et al., 2017; Villéger et al., 2008). Functional evenness measures the regularity of the shape of

the occupied trait space from the length of the branches in the MST and the evenness in their abundance.
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Figure 2: Calculation of diversity metrics from traits within the calculation area (top left). Shown is an ex-
ample translation of the 60-m radius (blue circle) neighborhood area to a mask for the calculation (bottom
left). The numbers indicate the weighting of each pixel in calculating the value of the center pixel. Con-
cepts of diversity metrics (right) in three-dimensional trait space. Richness (Ric) (top right) and evenness
(Eve) (bottom right). The traits considered include chlorophyll content (CHL), carotenoid/chlorophyll
ratio (CCR), and equivalent water thickness (EWT).

The index is derived by normalizing edge weights in the MST and accumulating a sum of minimum

partial weighted evenness across vertices, normalized against theoretical minima (Villéger et al., 2008).

2.6 Drought response maps

Our approach to quantifying drought response in forests was based on Sturm et al. (Sturm et al., 2022).

We calculated the normalized difference water index (NDWI) after Gao (1996) using the reflectance in

bands B8 NIR and B11 SWIR1 as

NDWI :=
ρ833 − ρ1614

ρ833 + ρ1614
(4)

Change in NDWI has been shown to be sensitive to water stress (Marusig et al., 2020). The August NDWI

values were calculated for each year from 2017–2020 by taking the median NDWI value from the images

in Table 1.

We assessed the response of forests to the 2018 drought year by comparing the relative pixel-wise

percentual change between base NDWI conditions in August 2017 and conditions during the drought

(2018) or post-drought (2019, 2020) years (Figure 3). Similar to van Moorsel et al. (2021), we defined
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Figure 3: Trend of the mean Normalized Difference Water Index (NDWI) in the study area between 2017
and 2020. The numbers in the legend represent the mean percent changes for the three drought-response
measures (change 2017 to 2018 resistance, change 2018 to 2019 recovery, change 2017 to 2020 resilience)
across the entire study area in northern Switzerland.

resistance as the NDWI change ratio between 2017 and 2018 [(NDWI2018-NDWI2017)/NDWI2017] to assess

immediate changes happening during the event, and we defined recovery as the change ratio between

2018 and 2019 [(NDWI2019-NDWI2018)/NDWI2018] to assess post-drought changes. Additionally, we

defined resilience as the change ratio between 2017 and 2020 [(NDWI2020-NDWI2017)/NDWI2017]. We

used the second (2020) rather than the first post-drought year (2019) to avoid a linear combination of

resilience and recovery (Gazol & Camarero, 2016) and to partially account for potential time-lagged

drought response effects, which might be visible in additional physiological changes or secondary

drought effects like bark beetle outbreaks (Stroheker et al., 2020).

NDII and NDWI are two different indices related to canopy water content, however, they share bands

in their definition. Both the diversity measures and the drought response measures were mapped

using satellite data from the same platform, which might introduce spurious correlations. However,

we designed the experiment to minimize potential effects. We differentiated between NDWI and NDII

using the NIR band 8 for NDWI and the overlapping band 8A for NDII and used Sentinel-2 data at

different times of measurement (Table 1). For further analysis, we mapped functional diversity using

the spatial distribution of EWT from NDII combined with two other ecophysiological traits to describe

diversity (spatial dimension) and pixel-based annual relative change using NDWI to describe drought

response (temporal dimension). Therefore, while we used water content values for diversity and drought

14



response as part of their calculation (spatial distribution and relative annual change), diversity and

drought response are based on independent observations.

2.7 Separate analysis of drought responses to functional richness and evenness

Small and isolated patches of forest were excluded from the calculation following Helfenstein et al.

(Helfenstein et al., 2022) because their functional diversity measures were affected by edges. This step

removed 14.35 km2 or 1.57% of the forest area. We then applied binning to the diversity data to examine

the spatial distribution of diversity values. The binning process over the whole study area reduces

potential autocorrelation effects, because adjacent pixels with similar values will be combined, and pixels

with different values will be separated. We formed 1000 bins of equal range within diversity metrics and

averaged drought response values within each bin. Before binning, we conducted image preprocessing

by rescaling to a range of 0–1, with the lowest 0.1% set to 0 and the highest 0.1% set to 1. This approach

avoided generating empty or small bins that could introduce bias to our subsequent analysis. After the

binning process, we excluded bins that contained less than 1% of the maximum pixel number per bin.

Functional richness was divided into 823 bins with values ranging between 0 and 0.261. Functional

evenness was divided into 861 bins with values ranging between 0.6974 and 0.8698. Results without

exclusions of bins were very similar and presented in Figure S9. We then used the binned values to

investigate the drought responses to functional richness or evenness in separate linear regression models.

The numbers of pixels per bin were used as weights.

2.8 Combined analysis of drought responses to functional richness and evenness

We employed linear models to examine the relationships between drought response (resistance, recovery,

and resilience) and the two functional diversity measures, treating the latter as explanatory variables.

For this combined analysis, we discretized the explanatory variables into 20 bins and incorporated 21

geographic subregions to account for geographical variation. This resulted in a dataset comprising

8400 strata (20 richness bins x 20 evenness bins x 21 subregions) (Figure 5). Note that this procedure

ensures that the three variables functional richness, functional evenness, and subregion are more or less

orthogonal to each other, with correlations among them only due to the potential occurrence of empty

bins.
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We directly analyzed the mean NDWI change for each bin while considering forested pixels per bin

(N) as a weighting variable to emphasize bins with more data. We used the linear models to obtain

percentages of total sum of squares (SS) for the different explanatory terms and their interactions in

the model (increments of multiple r2 ∗ 100). In all models, we used the drought response measures

as continuous variables, functional diversity measures binned into 20 bins, and subregion (REG) as a

categorical variable with 21 levels representing the spatial variation. We iteratively refined the models,

fitting subregion, functional diversity measures, and interactions (x).

Richness (ric) showed a linear relationship with resilience (rsl) and a non-linear relationship with re-

sistance (rst) and recovery (rcv), necessitating a logarithmic transformation (logric) in the latter case.

Similarly, because evenness (eve) showed a hump-shaped relationship in all models, we fitted a poly-

nomial (eve2). Non-significant explanatory terms (p ≥ .05) or explanatory terms with SS < 1% were

excluded from the models. We used the Akaike Information Criterion (AIC) and r2 to determine the

optimal model from linear, quadratic, and logarithmic regressions. AIC helps balance goodness of fit

with model complexity, while r2 helps assess how well each model describes the variance in the data.

This procedure resulted in the following linear models using R notation (R Core Team, 2024):

(i) lm(terms(rst ∼ logric + (eve + eve2) + REG + logricxREG + evexREG + eve2xREG,

keep.order = T), weight = N)

(ii) lm(terms(rcv ∼ logric + (eve + eve2) + REG + logricxREG + evexREG + eve2xREG,

keep.order = T), weight = N)

(iii) lm(terms(rsl ∼ ric + eve + REG + ricxREG + evexREG,

keep.order = T), weight = N)

Here ric = richness, eve = evenness, logric = log(richness), eve2 = evenness squared, REG = subregion, x

= interaction operator (indicating how the effect of one variable depends on another, e.g., how diversity

effects vary across subregions), and N = the number of forested pixels per bin.

We also tested the functional diversity effects using their interactions with subregions as error terms to

obtain a more conservative F-ratio (F2 in Supplementary Tables S2–S4). Note that this corresponds to a

data analysis using linear mixed models with the interactions as random terms (Nelder & Lane, 1995;

Schmid et al., 2017).
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In the above analyses, functional richness effects are tested across subregions, with the interaction term

testing for differences in functional richness effects between subregions. For Figure 5, richness effects

corrected for subregions were calculated by fitting subregions first in the above linear models. For

plotting the corrected data, we added the residuals from a linear-model fit with subregions as explanatory

term to the overall mean.

3 Results

3.1 Biodiversity data

We calculated diversity maps based on the three canopy traits chlorophyll content, carotenoid/chlorophyll

ratio, and equivalent water thickness as assessed from spectral reflectance indices (Figure S2, S3). The

three trait maps only showed weak linear correlation with each other, with coefficients of determination

of r2 = 0.215 for CHL and CCR, r2 = 0.185 for CHL and EWT, and r2 = 0.055 for CCR and EWT (Figure

S2). The scatterplot in Figure 4 shows the distribution of richness and evenness among the 21 subregions.

The northern subregions of the study area had higher richness than the southern regions. Richness was

highest in subregions of the Rhine plain (6, 7, 17, 20, 21), and the lowlands of the Swiss Plateau (2, 13,

16, 19). Subregions of lower richness were found towards the south (4, 11, 12). Regarding evenness,

subregions in the south (1, 3) and southeast (11, 12, 14) showed high values, with the northern subregions

(5–7, 21) showing lower values. The three Jura subregions (8–10), with low richness and evenness values,

differ from the rest of the study region. Although these differences in mean richness and evenness

between subregions were significant, variation in richness and evenness within subregions was also large

(Figure S6).
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Figure 4: Average diversity of 21 subregions with the plot on the left showing their median richness and
evenness. It is important to note that the variation within the regions is large, and the differences between
regions are comparatively small (see Supplementary Fig. S6). The subregions shown on the right were
obtained by grouping the forests of the study area according to the intersection of 1) canton (Aargau (AG)
and Zurich (ZH)), 2) geographical regions (Central Plateau (Eastern & Western), Rhine plains, Jura, and
Pre-Alps), and 3) four, respectively seven, cantonal forest districts. Blue-green colors represent canton
AG, and red-yellow colors represent canton ZH. The color gradients range from southern to northern
regions within cantons.
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3.2 Drought-Response Metrics

We derived drought response values across the study area based on the Normalized Difference Water

Index (NDWI) data. The entire study area was strongly affected by the drought in 2018, which was

visible in a reduction of the NDWI from 2017 to 2018 (see Figure 3). From 2018 to 2019, the forest in the

study area showed an increase in NDWI, followed by a second but weaker decrease in 2020 to a level

slightly lower than in 2017 but higher than in 2018. Low resistance values (< −7.5% in 38.6% of the area,

see Supplementary Table S1) occurred in the northern lowlands (Figure S5, top). Most of the forested

area (73.5%) showed a > 7.5% increase in NDWI from 2018–2019 (Figure S5, middle). Resilience values

< −7.5% occurred across 28.5% of the area, especially in the southern regions (Figure S5, bottom). We

validated the 2020 resilience maps using a classified dataset based on visual interpretation of aerial images

(see Supplementary Section 1). Visually damaged areas showed a significantly different RS-derived

drought response than visually non-damaged areas (Figure S12).

3.3 Relationships between diversity metrics and drought responses

We first analyzed the relationship between drought resistance, recovery, or resilience and diversity metrics

separately for functional richness and evenness, grouping these measurements into 1000 bins each. The

correlation between the satellite-derived maps before and after binning is illustrated in Figure S7. Using

AIC and r2 to determine the optimal model from linear, quadratic, and logarithmic regressions, we found

approximately logarithmic relationships between resistance or recovery and functional richness, while

relationships between resilience and functional richness and evenness were approximately linear (Figure

S8). Resistance increased, and recovery decreased with richness at low values of richness, and then

tempered off, whereas resilience generally increased with richness, but with a plateau at intermediate

richness levels (Figure S8, top row). Resistance and recovery also increased and decreased, respectively,

with evenness at low values of evenness, but at high values, the relationship reversed; resilience generally

decreased with increasing evenness (Figure S8, bottom row).

We then analyzed the relationships between drought responses and functional richness or evenness in

combined models, aggregating data using 20 bins each for the two diversity metrics crossed with the 21

subregions, yielding a data table with 20 x 20 x 21 = 8400 rows. All bins showed a reduction in NDWI in

2018 (i.e., no bins were fully resistant) and an increase in 2019 (i.e., positive recovery) (Figure 5).
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Figure 5: Subregion-corrected drought resistance, recovery, and resilience (left to right) in relation to
functional richness and evenness. The data were binned into 20 bins along richness and evenness and into
the 21 subregions, resulting in 8400 bins. We then fitted subregion to correct for subregion differences and
finally related the thus corrected drought responses to functional richness and evenness using multiple
regression (as described in the methods section). Resistance and resilience increased with richness.
Resistance showed a hump-backed relationship with evenness, while resilience decreased with evenness.

The best-fitting linear models showed the primary role of functional richness as a predictor for both

resistance and recovery, yet similar roles for functional richness and evenness as predictors for resilience

(Figure 6, Supplementary Tables S2–S4). The overall relationships between drought responses and

functional richness or evenness were similar when fitted before or after, i.e. corrected for, differences

between subregions (the latter was used to display the results in Figure 5). When we compared the BEF

relationships between subregions, significant differences were detected, but these were small compared

with the average overall relationship (Figure S10 and Supplementary Tables S2–S4). That is, if mean

squares for the diversity metrics were divided by the mean squares for the corresponding interactions

with region, the resulting F-ratios were all significant (Supplementary Tables S2–S4). The regional slopes

of resilience as a function of richness and evenness are shown in Figure S11.
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Figure 6: Variance explained by the linear model combining the influence of the diversity metrics richness
and evenness on resistance (change in NDWI during the drought 2017–2018, Supplementary Table S2),
recovery (change in NDWI after the drought 2018–2019, Supplementary Table S3) and resilience (change
in NDWI after the full two-year observation period 2017–2020, Supplementary Table S4). The bars from
top to bottom in each panel are the contributions to the r2 values of linear richness (ric), log-transformed
richness (logric), evenness (eve), evenness squared (eve2), the 21 subregions (REG), and interactions of
the diversity metrics and subregions (ric x REG, eve x REG). Note that all contributions are significantly
larger than zero. The formulae for the fitted linear models are listed in R notation, with N representing
the number of pixels per bin.
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4 Discussion

Our results show an overall positive relationship between RS-derived functional diversity in leaf phys-

iological traits and RS-measured drought responses of forests across an area of 3133 km2 in northern

Switzerland, assessed in a scalable approach from satellite remote sensing. Based on results from plot-

scale BEF experiments in grassland and forest ecosystems (Schmid et al., 2009), we hypothesized that more

diverse forests should have suffered less from an extreme drought event occurring in 2018 across central

Europe. We hypothesized a positive relationship between drought response and functional richness

and a hump-shaped relationship between drought response and functional evenness, the latter due to

dominance effects being correlated with less than maximum evenness. Both hypotheses were broadly

supported by our satellite-derived dataset. Furthermore, richness effects were generally stronger than

evenness effects as expected from BEF experiments.

Similar to BEF experiments (Isbell et al., 2015), drought resistance in our observational study increased

linearly with the logarithm of functional richness across 18 subregions, with only three subregions

showing non-positive relationships. Recovery was negatively related to the logarithm of richness, but

resilience overall increased linearly with untransformed richness, although five out of the 21 subregions

showed negative responses. The direct link of functional richness with EF is in agreement with other

studies, e.g. it was found that structural complexity, rather than species diversity alone, explains positive

tree richness–productivity relationships in BEF experiments (Ray et al., 2023). Furthermore, recent studies

point out the importance of functional traits for understanding forest drought responses, as observed

response patterns to drought vary widely among studied species (Pardos et al., 2021). High functional

richness likely increases the probability for complementary drought reactions among tree species, thus

leading to higher resistance and resilience at the level of entire forest stands. In addition, with higher

functional richness it is more likely that a forest stand includes tree species that can contribute strongly

to the drought response of the stand and that this will be reflected in uneven abundance distributions

among species and thus reduced trait evenness. These two effects resemble complementarity and

selection (dominance) effects obtained in additive-partitioning schemes for net biodiversity effects in BEF

experiments (Isbell et al., 2018; Loreau et al., 2001).
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The hump-shaped or negative relationships of drought resistance or resilience, respectively, with func-

tional evenness indicated that a certain level of dominance was beneficial for forest stands of a given trait

richness under drought. In our study, richness and evenness effects were uncorrelated because functional

evenness was calculated as regularity within a given hypervolume reflecting functional richness. Thus,

functional evenness could not account for differences in functional richness and vice versa (see Figure

S4 and S7). Furthermore, functional richness and evenness effects were additive, that is, there were no

interactive effects of the two on drought responses. Thus, the highest drought resistance was observed

in forests with high functional richness and intermediate levels of functional evenness, and the highest

drought resilience was observed in forests with high functional richness and low functional evenness

(see Figure 5). This suggests that a combination of complementarity and dominance effects underpin the

relationships of forest drought responses with trait-based functional diversity in the studied temperate

forests. Dominant species play a major role in the stability of dry grasslands (Wang et al., 2022), but

how this is related to functional richness and evenness is unknown. A caveat that remains is that in our

study functional evenness was measured before the extreme drought in 2018 and thus could not be a

response to it. However, it is conceivable that for some forest stands the earlier, less extreme drought

events occurring in 2011 and 2015 (MeteoSchweiz, 2020) had led to trait dominance of trees with more

resistant and resilient drought responses. This could then have predisposed these stands to show more

resistant and resilient responses to the extreme drought event in 2018.

Additionally, the years 2017, 2019, and 2020 were also comparatively warm and dry, although they lacked

the prolonged drought phases observed in 2018 (see Figure S1). While these years serve as a reference in

this study, physiological responses might already have influenced observed resistance and resilience, and

limited recovery. Ideal (i.e., closer to average conditions observed between 1961 and 1990 (MeteoSchweiz,

2019)) reference years that might have occurred before the Sentinel-2 satellite record started (Immitzer

et al., 2016) would provide a potentially better pre-drought baseline. However, the use of recent and thus

warmer and/or dryer reference years in our study should not have diminished the overall robustness

of our results because ideal reference years would likely have led to even larger estimates of forest

responses to drought stress. Furthermore, given the increased frequency of dry and warm conditions in

recent years across central Europe (Jacob et al., 2014), our reference years might be considered the new

“normal.” Because we focused on the analysis of change in canopy water content, we here did not isolate
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secondary drought effects (e.g., dieback, pests) from direct drought damage. This would be an important

consideration for future studies incorporating longer temporal ranges, including post-2020 data, to better

isolate secondary drought effects and improve reference year selection. This will introduce additional

complexity when attributing damage to a specific drought event.

In contrast to other ecosystem functions such as primary productivity and resistance to other disturbances

such as pest outbreaks (Jactel et al., 2020), evidence about the impact of mixed forests on drought damage

so far has been largely lacking (Bauhus et al., 2017), although evidence is available from grassland

biodiversity experiments (Pfisterer & Schmid, 2002; Isbell et al., 2015). Challenges in understanding the

biodiversity–drought response relationships may arise from the large scale and low selectivity at which

droughts occurs, driven by broad climate impacts across extensive forested areas (Jactel et al., 2017).

We observed a clear dependence between resistance and recovery when stratified for different diversity

metrics, i.e., bins with lower resistance in 2018 showed increased recovery in 2019. This observation

indicates a compensatory response and is consistent with previous findings by Sturm et al. (Sturm et al.,

2022), who speculated that reduced competition following tree die-back in 2018 may have caused it.

Resistance and recovery have also been shown to be negatively related in previous experimental and

observational studies (Gazol et al., 2017). This negative correlation dampens variation in resilience, yet

similarities between the resistance and resilience responses to the drought in our studies indicate that the

recovery responses could only partly compensate for low resistance. Similar observations have previously

been made in diverse forests (Anderegg et al., 2018; Gazol & Camarero, 2016; Pardos et al., 2021; Sturm

et al., 2022) and suggest that ecosystem stability may generally be more strongly related to resistance than

to recovery, with the latter being a “passive partial compensation” of the former. Therefore, we suggest

focusing on resistance for predicting stability responses to extreme events such as the 2018 drought

across central Europe. To disentangle resilience from this compensatory effect, we added an additional

post-drought year to assess resilience in addition to the post-drought year 2019 used by Sturm et al.

(Sturm et al., 2022).

High biodiversity is suggested to promote forest resilience to climate change (Messier et al., 2019),

although field-based evidence is still scarce, especially regarding trait-based functional diversity (Mori

et al., 2017). However, studies suggest that intraspecific variation in functional traits plays a crucial role

in regulating drought resilience in forests (Andrés et al., 2021). Here, we present an approach to link
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trait-based forest drought responses to functional diversity at landscape scales using satellite data in

a scalable manner. This approach is promising for assessing and predicting forest drought responses

in other regions and over time, as the spectral indices used to calculate functional diversity can be

measured in near-real-time. The thus obtained functional diversity measures for 20 m pixels may be only

indirectly related to field-based measures of diversity in leaf ecophysiological traits (Schneider et al., 2014).

The 20 m resolution of the Sentinel-2 imagery leads to an averaging of multiple trees’ intra-individual

and inter-individual trait values within each pixel (see Figure S12), leading to an underestimation of

the trait variance and resulting functional diversity. Previous research using high-resolution airborne

spectroscopy data in the research area has shown that coarser resolutions reduce observed trait variance

but still capture meaningful patterns of functional diversity relevant to ecosystem processes (Helfenstein

et al., 2022).

Furthermore, our results suggest that these trait measures derived from Sentinel-2 imagery pick up

relevant components of biodiversity related to forest drought responses. Forests with greater functional

diversity as assessed from Sentinel-2 imagery are better protected against drought than are forests

with lower RS-derived functional diversity. The mechanisms underlying this relationship need further

investigation. Functional diversity in leaf ecophysiological traits might also link to drought-sensitive soil

variables (Schneider et al., 2017). The stabilizing effect of this functional diversity might emerge from

asynchronous drought responses of functional types of species or individuals (Schnabel et al., 2021). Leaf

and canopy ecophysiological diversity might also link to functional diversity of plant hydraulic traits,

such as stem water potential, which were found to explain drought-induced tree mortality (Anderegg

et al., 2018). Our understanding of these mechanisms will benefit the integration of both field-based and

RS approaches to obtain a comprehensive understanding of how trait-based diversity explains or predicts

forest resilience across various contexts.

Trait-based functional diversity of forest canopies, as derived from satellite data, differs from typical

field-based functional diversity measures calculated from species means or individual-tree values. There

is a need for a systematic evaluation of the links between RS-derived and field-based functional diversity

measures. Extensive trait sampling within a pixel area would be important to represent the community

level as measured by satellites. Validation datasets optimized to capture the spatial, temporal, and

species representativeness of satellite data would enable better validation of RS-based trait estimates
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(Cavender-Bares et al., 2022). Furthermore, additional work is needed to fill the information gap between

leaf measurements and satellite data. Trait measurements using close-range RS (e.g., from drones or

airborne platforms) might be helpful, as well as upscaling of leaf-level optical properties to canopy

spectra using radiative transfer models (RTMs) (Schneider et al., 2014). Still, the availability of global

satellite data indicates that the method presented here can be applied to other temperate forest regions,

provided that temporal and spatial coverage are sufficient. RS-derived functional diversity measures hold

the promise that they can be obtained without the need to distinguish species and individuals and could

thus enable generalization across the forest ecosystems of the world and their highly diverse species

compositions (Kunstler et al., 2016). The impact of droughts varies greatly in biomes of different climatic

regions (Liu et al., 2021). Using the RS-derived functional diversity measures and drought responses

introduced here, the stability of ecosystems to other disturbances such as pathogen outbreaks or fires

could also be investigated (Jetz et al., 2016). Advances in approaches to analyze satellite RS products to

map forest disturbances at large scales and analyze patterns in disturbance size, frequency, and severity

will support this work (Senf & Seidl, 2021). Forest masks needed for this approach can either be derived

from governmental maps, as used here, or from LiDAR-derived vegetation height (Helfenstein et al.,

2022). However, availability is usually geographically limited. Standardized inventories or frameworks

for combining Sentinel-2 data and 3D information could support the upscaling of the approach to global

applications (Valbuena et al., 2020).

The adaptability of the presented approach highlights the potential for translation to landscapes world-

wide. Switzerland’s small-scale heterogeneity and availability of detailed environmental data allowed for

the use of finely resolved subregions and facilitated analysis of the variability of the observed patterns

on smaller scales. Similar patterns over larger geographic extents may require alternative subregion

definitions, such as bioclimatic zones, ecoregions, or clustering methods, to effectively capture spatial

variation in functional diversity and responses.

Multispectral sensors like Sentinel-2 offer limited spectral bands compared with sensors of high spectral

resolution, reducing the dimensions available to derive vegetation properties. The three traits derived

from Sentinel-2 imagery in our study show a link with drought response, but a more diverse set of traits

could provide a more comprehensive understanding. Imaging spectroscopy expands possibilities for

deriving vegetation traits and drought-sensitive indicators, spanning from specific leaf ecophysiological
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traits to mapping functional or phylogenetic diversity (Meireles et al., 2020). Recent and upcoming

spaceborne imaging spectrometers will advance spaceborne diversity and forest-health monitoring

(Cawse-Nicholson et al., 2021). Furthermore, various diversity measures for remotely-sensed data were

presented in recent years, such as Rao’s Q (Botta-Dukát, 2005; Pangtey et al., 2023; Rocchini et al., 2017).

We used a complementary set of diversity metrics, richness, and evenness to provide clear insights into

how these distinct facets of diversity relate to drought responses. A single measure incorporating aspects

of these metrics may be useful for a concise indicator of diversity, for example, Petchey & Gaston’s

functional diversity measure based on branch lengths in a dendrogram calculated from species trait

values (Petchey & Gaston, 2002). However, this measure could not be calculated in the absence of

species identification. Furthermore, Rao’s Q as a measure based on mean distances does not account for

important richness effects of functional diversity. For these reasons, we here decided not to complement

the presented metrics with further measures.

There is a need to study EF within the global biodiversity monitoring framework using satellite RS

(Pettorelli et al., 2018). Existing field-based datasets show geographic and temporal biases, mainly

focusing on temperate ecosystems (Proença et al., 2017). Our scalable approach builds toward assessing

large-scale BEF relationships from satellite data, independently of the study area and over time. A major

advantage of high-resolution public satellite data is repeated and standardized information enabling

monitoring of BEF relationships. The relationships between RS-derived functional diversity measures

and forest drought responses assessed in the present paper might change over time or depending on the

season the drought takes place. Monitoring these relationships using satellite data can reveal valuable

information for adaptive management.

Insights presented here advance large-scale assessments of the stability and resilience of non-experimental

ecosystems using satellites toward global monitoring of the impacts of biodiversity on EF. Our results

indicate that trait-based functional diversity at the canopy level supports forest responses to drought

regardless of other stand characteristics and environmental context within a relatively homogenous

region on the Swiss plateau. Increasing drought resistance positively relates to forest functional richness,

while the observed hump-shaped relationship of drought resistance with functional evenness suggests

an optimum diversity in terms of functional evenness. Increasing drought resilience positively relates

to functional richness and negatively relates to functional evenness. Our work explores and confirms
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the link between trait-based functional diversity and forest drought response assessed using satellite

data, contributes to understanding climate change impacts on forests, and provides the basis for further

research on landscape-scale BEF relationships. Derived insights contribute to establishing large-scale

assessment and long-term monitoring of forest diversity and BEF using satellite data.
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