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Mapping and predicting ecosystem responses to climate extremes is crucial in the face of
global change. To what extent the behavior of non-experimental systems at large scales
corresponds to the relationships discovered in biodiversity-ecosystem functioning (BEF)
experiments remains unclear. We investigated the relationship between remotely-sensed
trait-based diversity and drought responses in temperate forests in Switzerland during the hot,
dry summer of 2018. Using Sentinel-2 data, we assessed the diversity of physiological canopy
traits and quantified drought response in resistance, recovery, and resilience from 2017 to
2020. The BEF relationship between diversity and drought response revealed that forests
with higher trait richness were more resistant and resilient, while trait evenness had a hump-
shaped or negative relationship with resistance and resilience, respectively. These findings
suggest that trait diversity supports drought response through complementarity and dominance
effects. Our findings provide new insights into BEF relationships in non-experimental forest

ecosystems.
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Teaser Remotely-sensed diversity of tree physiological traits explains forest drought responses at landscape scale.

Shorttitle Trait diversity increases forest drought responses

1 Introduction

Global climate change is expected to increase both the frequency and intensity of climate extremes (/),
and so it is of growing importance to study ecosystem responses to these extremes. Rising temperatures
due to global change and related evapotranspiration dynamics are predicted to amplify drought stress in
Europe (2) and increasingly challenge the capacity of ecosystems to maintain high levels of ecosystem
functioning (EF). Understanding how changing environmental conditions influence processes across levels
of ecological organization is critical for predicting EF and impacts on ecosystem service provisioning (3).
For example, the extreme 2018 summer drought in central Europe caused unprecedented forest mortality,
highlighting the need for a monitoring network to track climate change impacts (4).

Drought occurs through a deficit in ecosystem water availability below a vulnerability threshold that
affects ecosystem services (5). Drought responses can be divided into resistance — performance during
drought, recovery — performance after drought, and resilience — the similarity of the performance before
and after the event (6) (Fig. 1). Multiple abiotic factors may influence ecosystem responses to drought,
such as topography, soil, and weather conditions (7). Recent studies suggest that alongside multiple abiotic
factors such as topography, biotic factors such as the proportion of needle and leaf trees are explanatory
variables for drought responses (8).

Evidence from experiments shows that biodiversity enhances stability, the ability of ecosystems
to maintain functioning under stressful environmental conditions (9). Studies focusing on resistance
and resilience found that forest stands containing multiple species were less affected by drought than
mono-specific stands (/0), whereas others found no differences in drought responses of trees with different
neighboring species (/7). There is growing recognition of the importance of trait-based diversity to

understand the influence of biodiversity on forest functioning, and trait diversity is expected to promote
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Figure 1: Development of the mean Normalized Difference Water Index (NDWI) in the study area
between 2017 and 2020. The numbers in the legend represent the mean percent changes for the three

drought-response measures (change 2017 to 2018 resistance, change 2018 to 2019 recovery, change 2017
to 2020 resilience) across the entire study area in northern Switzerland.

EF (/2). Rather than the number of species alone, the dissimilarity of functions can positively impact forest
drought responses (/3). This dissimilarity of functions can be represented by, e.g., leaf ecophysiological
traits representing the leaf economics spectrum (/4) or morphological traits, such as tree height or
wood density (/5). It is conceivable that a particular combination of traits causes biodiversity effects
such as resistance and resilience to stress; it is, however, not clear which trait combination might link
to biodiversity effects and whether they are consistent across different environmental and community
contexts, including multiple species mixtures (/6, /7). In one study, functional diversity in tree height,
wood density, seed mass, and seed dispersal did not relate to drought responses (/8). Recent evidence
suggests that biodiversity—ecosystem functioning (BEF) relationships in forest ecosystems are modulated
by differences in leaf traits (/9). In their analysis of forest drought responses across Switzerland, Sturm
and colleagues (8) found that mixed stands of broadleaf and needleleaf trees could cope better with
drought than pure broadleaf or needleleaf stands, but they could not measure functional or taxonomic
diversity at a finer scale than the difference between angiosperms and gymnosperms.

Trait-based diversity is a widely used approach for quantifying the functional contributions of in-
dividuals or species to ecosystem properties (/3). Thus, sampled objects (pixels, individuals, species)

can be classified using traits, defining these objects’ functional roles within communities or responses
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Figure 2: Calculation of diversity metrics from traits within the calculation area (top left). Shown is
an example translation of the 60-m radius (blue circle) neighborhood area to a mask for the calculation
(bottom left). The numbers indicate the weighting of each pixel in calculating the value of the center pixel.
Concepts of diversity metrics (right) in three-dimensional trait space. Richness (Ric) (top right) and even-
ness (Eve) (bottom right). The traits considered include chlorophyll content (CHL), carotenoid/chlorophyll
ratio (CCR), and equivalent water thickness (EWT).

to environmental variables (20). With increasing functional diversity, a greater range of functional trait
values is present, providing opportunities for efficient resource use (27). Trait-based diversity can be
quantified with diversity metrics describing the multidimensional trait space (Fig. 2).

Predicting how ecosystems and the services they provide will respond to accelerating environmental
change requires more comprehensive, globally consistent, and repeated data on the patterns and dynamics
of functional diversity (22). Using remote sensing (RS), the diversity of temperate forest ecosystems
in terms of physiological canopy traits may be directly quantified at landscape scales (23, 24), which
is particularly relevant because resource management decisions are generally made at these scales (25).
RS complements detailed but local and temporally limited field measurements and provides spatially
contiguous and across-scale information on certain traits (e.g., pigments, water content) and their dynamics
throughout the phenological cycle (26). Trait-based diversity is therefore considered an effective measure
for mapping biodiversity and detecting its effects on EF from RS data (22, 27) without the need for

additional data on forest tree species composition.
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Beyond initial studies such as the ones mentioned above (8, 23, 27), the sensitivity of satellite-derived
measures of trait-based functional diversity and the linkage between these and EF in general or ecosystem
drought responses, in particular, have not been rigorously assessed (22). Filling this gap could advance
our understanding of climate change impacts on forest ecosystems and pave the way toward large-scale
assessment and long-term forest diversity and resilience monitoring. Here, we used Sentinel-2-derived
trait-based functional diversity measured at landscape scales in 2017, and Sentinel-2-derived drought
response assessments using changes in the normalized difference water index (NDWI, a measure of forest
canopy water content (6, 8)) from 2017-2020, to study the link between trait-based functional diversity as
biodiversity measure and drought response as an EF measure for the cantons of Aargau and Zurich on the
Swiss Plateau (Fig. 3). We chose this area because abiotic factors (e.g., topography-related air temperature
and illumination, precipitation) are far less variable across the Swiss plateau than throughout the entire
country (8), allowing us to focus on relationships between variation in tree diversity and variation in
forest drought response. To account for the remaining abiotic variability in the study region, we divided
the region into 21 geographic sub-regions. We compared the changes in NDWI between pre-drought
conditions in 2017, drought conditions in 2018, and post-drought conditions in 2019 and 2020. We
focused on how these forest drought responses (resistance, recovery, and resilience) were related to
trait-based functional diversity metrics (richness and evenness). We used three leaf traits that can be
assessed at the canopy level using spectral indices: chlorophyll content (CHL), carotenoid/chlorophyll
ratio (CCR), and equivalent water thickness (EWT) (23, 24).

The two diversity metrics we used, richness and evenness, are commonly used in BEF research (29).
Richness relates to the hypervolume of the trait space occupied by a community of a certain unit area at
a certain time. The larger the richness, the greater the extent of the hypervolume, measured e.g. using
convex hulls (30). Functional richness is different from other functional diversity measures, like Rao’s Q,
that use mean differences between species and which are therefore independent of species richness (/6).
Here we prefer functional richness as a measure because it relates to species richness, whose effects are

commonly studied in field-based BEF research (37). Evenness measures the regularity of the observations’
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Figure 3: Study area of canton Aargau (west) and canton Zurich (east) and location in Switzerland (top
left). Highlighted on the map is the Sihlwald site, where we validated the drought response results. The
true-color composite shows the study area in summer 2017, based on June/July Sentinel-2 data. The
cantonal borders are based on swissBOUNDARIES3D by swisstopo (28).
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distribution within the hypervolume (29). If used with species diversity metrics, evenness refers to the
similarity of species abundance values independent of species number. Conceptually, evenness reflects
how equally different functional trait values are distributed in a community (30). When the occupation of
the hypervolume is skewed toward some specific trait values, then those traits are dominant within the
community and evenness is low (29). Conversely, high evenness (i.e., more uniform occupation of the
hypervolume) implies weak or no dominance of specific trait values and thus species carrying those trait
values.

Relating functional richness and evenness to species richness and evenness suggests that with high
richness, it is possible to have complementarity and selection (i.e., dominance) effects as defined by the
additive partitioning method of biodiversity net effects (32). In a forest with high realized evenness,
complementarity effects strongly contribute to biodiversity net effects, while dominance effects necessarily
reduce realized evenness. At intermediate levels of realized evenness (and high richness), both effects
can contribute positively to net biodiversity effects. Therefore, we hypothesized a positive relationship
between functional richness and drought response and a hump-backed relationship between evenness
and drought response. Furthermore, whereas richness is related to the size of the hypervolume, evenness
can be high even within a small hypervolume in trait space, i.e., low richness. Thus, we expected the
relationship between functional richness and drought response to be stronger than the relationship between

functional evenness and drought response.
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2 Results

2.1 Biodiversity data

We calculated diversity maps based on the three canopy traits chlorophyll content, carotenoid/chlorophyll
ratio, and equivalent water thickness as assessed from spectral reflectance indices (Supplementary Fig.
S1, S2). The three trait maps were independent of each other with coefficients of determination of
r? = 0.215 for CHL and CCR, r? = 0.055 for CCR and EWT, and 7? = 0.185 for CHL and EWT
(Supplementary Fig. S1). The scatterplot in Fig. 4 shows the distribution of richness and evenness among
the 21 subregions. The northern subregions of the study area had higher richness than the southern regions.
Richness was highest in subregions of the Rhine plain (6, 7, 17, 20, 21), and the lowlands of the Swiss
Plateau (2, 13, 16, 19). Subregions of lower richness were found towards the south (4, 11, 12). Regarding
evenness, subregions in the south (1, 3) and southeast (11, 12, 14) showed high values, with the northern
subregions (5-7, 21) showing lower values. The three Jura subregions (8—10), with low richness and
evenness values, differ from the rest of the study region. Although these differences in mean richness and
evenness between subregions were significant, variation in richness and evenness within subregions was

also large (Supplementary Fig. S4).

2.2 Drought-Response Metrics

We derived drought response values across the study area based on the Normalized Difference Water
Index (NDWI) data. The entire study area was strongly affected by the drought in 2018, which was visible
in a reduction of the NDWI from 2017 to 2018 (see Fig. 1). From 2018 to 2019, the forest in the study
area showed an increase in NDWI, followed by a second but weaker decrease in 2020 to a level slightly
lower than in 2017 but higher than in 2018. Low resistance values (< —7.5% in 38.6% of the area, see
Supplementary Table S1) occurred in the northern lowlands (Supplementary Fig. S3, top). Most of the
forested area (73.5%) showed a > 7.5% increase in NDWI from 2018 — 2019 (Supplementary Fig. S3,

middle). Resilience values < —7.5% occurred across 28.5% of the area, especially in the southern regions
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Figure 4: Average diversity of 21 subregions with the plot on the left showing their median richness
and evenness. It is important to note that the variation within the regions is large, and the differences
between regions are comparatively small (see Fig. S4). The subregions shown on the right were obtained
by grouping the forests of the study area according to the intersection of 1) canton (Aargau (AG) and
Zurich (ZH)), 2) geographical regions (Central Plateau (Eastern & Western), Rhine plains, Jura, and
Pre-Alps), and 3) four, respectively seven, cantonal forest districts. Blue-green colors represent canton
AG, and red-yellow colors represent canton ZH. The color gradients range from southern to northern

regions within cantons.
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Figure 5: Subregion-corrected drought resistance, recovery, and resilience (left to right) in relation to
functional richness and evenness. The data were binned into 20 bins along richness and evenness and into
the 21 subregions, resulting in 8400 bins. We then fitted subregion to correct for subregion differences
and finally related the thus corrected drought responses to functional richness and evenness using multiple
regression (as described in the methods section). Resistance and resilience increased with richness.
Resistance showed a hump-backed relationship with evenness, while resilience decreased with evenness.

(Supplementary Fig. S3, bottom). We validated the 2020 resilience maps using a classified dataset based
on visual interpretation of aerial images (see Sup. 1). Visually damaged areas showed a significantly

different RS-derived drought response than visually non-damaged areas (Supplementary Fig. S9).

2.3 Relationships between diversity metrics and drought responses

We first analyzed the relationship between drought resistance, recovery, or resilience and diversity metrics
separately for functional richness and evenness, grouping these measurements into 1000 bins each. Using
the Akaike Information Criterion (AIC) and 2 to determine the optimal model from linear, quadratic, and
logarithmic regressions, we found approximately logarithmic relationships between resistance or recovery
and functional richness, while relationships between resilience and functional richness and evenness were
approximately linear (Supplementary Fig. S5). Resistance increased, and recovery decreased with richness
at low values of richness, and then tempered off, whereas resilience generally increased with richness, but
with a plateau at intermediate richness levels (Supplementary Fig. S5, top row). Resistance and recovery
also increased and decreased, respectively, with evenness at low values of evenness, but at high values, the
relationship reversed; resilience generally decreased with increasing evenness (Supplementary Fig. S5,

bottom row).

10



135

136

137

138

139

140

141

142

143

144

145

146

147

148

We then analyzed the relationships between drought responses and functional richness or evenness in
combined models, aggregating data using 20 bins each for the two diversity metrics crossed with the 21
subregions, yielding a data table with 20 x 20 x 21 = 8400 rows. All bins showed a reduction in NDWI in
2018 (i.e., no bins were fully resistant) and an increase in 2019 (i.e., positive recovery) (Fig. 5).

The best-fitting linear models showed the primary role of functional richness as a predictor for both
resistance and recovery, yet similar roles for functional richness and evenness as predictors for resilience
(Supplementary Tables S2—-S4). The overall relationships between drought responses and functional
richness or evenness were similar when fitted before or after, i.e. corrected for, differences between
subregions (the latter was used to display the results in Fig. 5). When we compared the BEF relationships
between subregions, significant differences were detected, but these were small compared with the average
overall relationship (Supplementary Fig. S7 and Supplementary Tables S2-S4). That is, if mean squares
for the diversity metrics were divided by the mean squares for the corresponding interactions with region,
the resulting F-ratios were all significant (Supplementary Tables S2—-S4). The regional slopes of resilience

as a function of richness and evenness are shown in Supplementary Fig. S8.

11
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Figure 6: Variance explained by the linear model combining the influence of the diversity metrics richness
and evenness on resistance (change in NDWI during the drought 2017-2018, Supplementary Table S2),
recovery (change in NDWI after the drought 2018-2019, Supplementary Table S3) and resilience (change
in NDWTI after the full two-year observation period 2017-2020, Supplementary Table S4). The bars from
top to bottom in each panel are the contributions to the 72 values of linear richness (ric), log-transformed
richness (logric), evenness (eve), evenness squared (eve2), the 21 subregions (REG), and interactions of
the diversity metrics and subregions (ric x REG, eve x REG). Note that all contributions are significantly
larger than zero. The formulae for the fitted linear models are listed in R notation, with N representing the
number of pixels per bin.
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3 Discussion

Our results show an overall positive relationship between RS-derived functional diversity in leaf phys-
iological traits and RS-measured drought responses of forests across an area of 3133 km? in northern
Switzerland, assessed in a scalable approach from satellite remote sensing. Based on results from plot-
scale BEF experiments in grassland and forest ecosystems (33), we hypothesized that more diverse forests
should have suffered less from an extreme drought event occurring in 2018 across central Europe. We
hypothesized a positive relationship between drought response and functional richness and a hump-shaped
relationship between drought response and functional evenness, the latter due to dominance effects
being correlated with less than maximum evenness. Both hypotheses were broadly supported by our
satellite-derived dataset. Furthermore, richness effects were generally stronger than evenness effects as
expected from BEF experiments.

Similar to BEF experiments (9), drought resistance in our observational study increased linearly with
the logarithm of functional richness across 18 subregions, with only three subregions showing non-positive
relationships. Recovery was negatively related to the logarithm of richness, but resilience overall increased
linearly with untransformed richness, although five out of the 21 subregions showed negative responses.
The direct link of functional richness with EF is in agreement with other studies, e.g. it was found that
structural complexity, rather than species diversity alone, explains positive tree richness—productivity
relationships in BEF experiments (34). Furthermore, recent studies point out the importance of functional
traits for understanding forest drought responses, as observed response patterns to drought vary widely
among studied species (35). High functional richness likely increases the probability for complementary
drought reactions among tree species, thus leading to higher resistance and resilience at the level of entire
forest stands. In addition, with higher functional richness it is more likely that a forest stand includes tree
species that can contribute strongly to the drought response of the stand and that this will be reflected
in uneven abundance distributions among species and thus reduced trait evenness. These two effects

resemble complementarity and selection (dominance) effects obtained in additive-partitioning schemes

13
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for net biodiversity effects in BEF experiments (32, 36).

The hump-shaped or negative relationships of drought resistance or resilience, respectively, with
functional evenness indicated that a certain level of dominance was beneficial for forest stands of a
given trait richness under drought. In our study, richness and evenness effects were uncorrelated because
functional evenness was calculated as regularity within a given hypervolume reflecting functional richness.
Thus, functional evenness could not account for differences in functional richness and vice versa (see
Supplementary Fig. S2). Furthermore, functional richness and evenness effects were additive, that is,
there were no interactive effects of the two on drought responses. Thus, the highest drought resistance
was observed in forests with high functional richness and intermediate levels of functional evenness, and
the highest drought resilience was observed in forests with high functional richness and low functional
evenness (see Fig. 5). This suggests that a combination of complementarity and dominance effects
underpin the relationships of forest drought responses with trait-based functional diversity in the studied
temperate forests. Dominant species play a major role in the stability of dry grasslands (37), but how
this is related to functional richness and evenness is unknown. A caveat that remains is that in our study
functional evenness was measured before the extreme drought in 2018 and thus could not be a response
to it. However, it is conceivable that for some forest stands the earlier, less extreme drought events
occurring in 2011 and 2015 (38) had led to trait dominance of trees with more resistant and resilient
drought responses. This could then have predisposed these stands to show more resistant and resilient
responses to the extreme drought event in 2018.

In contrast to other ecosystem functions such as primary productivity and resistance to other dis-
turbances such as pest outbreaks (39), evidence about the impact of mixed forests on drought damage
so far has been largely lacking (40), although evidence is available from grassland biodiversity experi-
ments (9, 47). Challenges in understanding the biodiversity—drought response relationships may arise
from the large scale and low selectivity at which droughts occurs, driven by broad climate impacts across
extensive forested areas (42).

We observed a clear dependence between resistance and recovery when stratified for different diversity

14
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metrics, i.e., bins with lower resistance in 2018 showed increased recovery in 2019. This observation
indicates a compensatory response and is consistent with previous findings by Sturm et al. (8), who
speculated that reduced competition following tree die-back in 2018 may have caused it. Resistance
and recovery have also been shown to be negatively related in previous experimental and observational
studies (43). This negative correlation dampens variation in resilience, yet similarities between the
resistance and resilience responses to the drought in our studies indicate that the recovery responses could
only partly compensate for low resistance. Similar observations have previously been made in diverse
forests (8, 15, 35, 44) and suggest that ecosystem stability may generally be more strongly related to
resistance than to recovery, with the latter being a “passive partial compensation” of the former. Therefore,
we suggest focusing on resistance for predicting stability responses to extreme events such as the 2018
drought across central Europe. To disentangle resilience from this compensatory effect, we added an
additional post-drought year to assess resilience in addition to the post-drought year 2019 used by Sturm
et al. (8).

High biodiversity is suggested to promote forest resilience to climate change (45), although field-based
evidence is still scarce, especially regarding trait-based functional diversity (46). However, studies suggest
that intraspecific variation in functional traits plays a crucial role in regulating drought resilience in
forests (47). Here, we present an approach to link trait-based forest drought responses to functional
diversity at landscape scales using satellite data in a scalable manner. This approach is promising for
assessing and predicting forest drought responses in other regions and over time, as the spectral indices
used to calculate functional diversity can be measured in near-real-time. The thus obtained functional
diversity measures for 20 m pixels may be only indirectly related to field-based measures of diversity
in leaf ecophysiological traits (48). However, our results suggest that these trait measures derived from
Sentinel-2 imagery pick up relevant components of biodiversity related to forest drought responses.
Forests with greater functional diversity as assessed from Sentinel-2 imagery are better protected against
drought than are forests with lower RS-derived functional diversity. The mechanisms underlying this

relationship need further investigation. Functional diversity in leaf ecophysiological traits might also
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link to drought-sensitive soil variables (23). The stabilizing effect of this functional diversity might
emerge from asynchronous drought responses of functional types of species or individuals (49). Leaf
and canopy ecophysiological diversity might also link to functional diversity of plant hydraulic traits,
such as stem water potential, which were found to explain drought-induced tree mortality (44). Our
understanding of these mechanisms will benefit the integration of both field-based and RS approaches to
obtain a comprehensive understanding of how trait-based diversity explains or predicts forest resilience
across various contexts.

Trait-based functional diversity of forest canopies, as derived from satellite data, differs from typical
field-based functional diversity measures calculated from species means or individual-tree values. There
is a need for a systematic evaluation of the links between RS-derived and field-based functional diversity
measures. Extensive trait sampling within a pixel area would be important to represent the community
level as measured by satellites. Validation datasets optimized to capture the spatial, temporal, and
species representativeness of satellite data would enable better validation of RS-based trait estimates (50).
Furthermore, additional work is needed to fill the information gap between leaf measurements and satellite
data. Trait measurements using close-range RS (e.g., from drones or airborne platforms) might be helpful,
as well as upscaling of leaf-level optical properties to canopy spectra using radiative transfer models
(RTMs) (48). Still, the availability of global satellite data indicates that the method presented here can
be applied to other temperate forest regions, provided that temporal and spatial coverage are sufficient.
RS-derived functional diversity measures hold the promise that they can be obtained without the need to
distinguish species and individuals and could thus enable generalization across the forest ecosystems of
the world and their highly diverse species compositions (5/). The impact of droughts varies greatly in
biomes of different climatic regions (52). Using the RS-derived functional diversity measures and drought
responses introduced here, the stability of ecosystems to other disturbances such as pathogen outbreaks
or fires could also be investigated (22). Advances in approaches to analyze satellite RS products to map
forest disturbances at large scales and analyze patterns in disturbance size, frequency, and severity will

support this work (53). Forest masks needed for this approach can either be derived from governmental
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maps, as used here, or from LiDAR-derived vegetation height (24). However, availability is usually
geographically limited. Standardized inventories or frameworks for combining Sentinel-2 data and 3D
information could support the upscaling of the approach to global applications (54).

Multispectral sensors like Sentinel-2 offer limited spectral bands compared with sensors of high
spectral resolution, reducing the dimensions available to derive vegetation properties. The three traits
derived from Sentinel-2 imagery in our study show a link with drought response, but a more diverse set of
traits could provide a more comprehensive understanding. Imaging spectroscopy expands possibilities for
deriving vegetation traits and drought-sensitive indicators, spanning from specific leaf ecophysiological
traits to mapping functional or phylogenetic diversity (55). Recent and upcoming spaceborne imaging
spectrometers will advance spaceborne diversity and forest-health monitoring (56).

There is a need to study EF within the global biodiversity monitoring framework using satellite
RS (57). Existing field-based datasets show geographic and temporal biases, mainly focusing on temperate
ecosystems (58). Our scalable approach builds toward assessing large-scale BEF relationships from
satellite data, independently of the study area and over time. A major advantage of high-resolution public
satellite data is repeated and standardized information enabling monitoring of BEF relationships. The
relationships between RS-derived functional diversity measures and forest drought responses assessed in
the present paper might change over time or depending on the season the drought takes place. Monitoring
these relationships using satellite data can reveal valuable information for adaptive management.

Insights presented here advance large-scale assessments of the stability and resilience of non-
experimental ecosystems using satellites toward global monitoring of the impacts of biodiversity on
EF. Our results indicate that trait-based functional diversity at the canopy level supports forest responses to
drought regardless of other stand characteristics and environmental context within a relatively homogenous
region on the Swiss plateau. Increasing drought resistance positively relates to forest functional richness,
while the observed hump-shaped relationship of drought resistance with functional evenness suggests
an optimum diversity in terms of functional evenness. Increasing drought resilience positively relates to

functional richness and negatively relates to functional evenness. Our work explores and confirms the
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link between trait-based functional diversity and forest drought response assessed using satellite data,
contributes to understanding climate change impacts on forests, and provides the basis for further research
on landscape-scale BEF relationships. Derived insights contribute to establishing large-scale assessment

and long-term monitoring of forest diversity and BEF using satellite data.
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4 Material and Methods

4.1 Study area

The study area comprises the cantons Aargau and Zurich in Switzerland (Fig. 3). Both cantons are located
on the northern central plateau, subject to different forest management practices, containing different
forest communities. The canton Aargau has a total area of 1403.80 km?, of which 35% or 490.70 km? is
forested. The main tree species in canton Aargau are European beech (Fagus sylvatica) with 32% of the
cantonal stocks, followed by Norway spruce (Picea abies) with 26%, silver fir (Abies alba) with 14%, and
sycamore maple (Acer pseudoplatanus) with 5% (59). The canton of Zurich covers an area of 1728.87
km?, of which forests cover 29.1% or 503.73 km?. The main tree species in canton Zurich are P. abies,
with 35% of the cantonal stocks, F. sylvatica with 24%, A. alba, with 12%, and ash (Fraxinus excelsior)
with 8% (60).

We grouped the forests in the study area according to the intersection of cantonal forest districts and
geographical regions into 21 subregions. The subdivision of Switzerland into geographical regions was
based on similar ecological characteristics (67). These geographical regions were the eastern and western
Swiss plateau, pre-Alps, Rhine plains, and Jura mountains. The territorial authority of the cantonal forest
service regulates forest districts (62). The forest-district data were provided by the cantons (62, 63).
Aargau is divided into four and Zurich into seven forestry districts. Management can be assumed to be
similar in one district but might differ between districts. The intersection of geographical regions and
forestry districts resulted in 21 subregions with forested areas between 3.5 km? and 100 km?.

In 2018, the summer weather in central Europe was dominated by large precipitation deficits, high
temperatures, and sunny conditions over large areas (64). In Switzerland, the mean precipitation between
April and September was just above 500 mm (the lowest since 1962) and the mean temperature was the
highest since measurements started in 1864 (64). In Swiss temperate forests, the drought resulted in early
wilting, decreased forest health, and widespread tree mortality (8). Secondary drought effects followed;

for example, in 2019, the amount of wood infested by bark beetles (Ips typographus) in Switzerland
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Table 1: Acquisition dates (left) and sensor type (Sentinel-2A/B, right) of the satellite data as used for the
composites (August 2017 — 2021) to create the drought response maps.

Diversity data | Drought response composite data

2017 2018 2019 2020

06-19 2A | 08-15 2A | 08-03 2A | 08-08 2A | 07-30 2A
06-26 2A | 08-18 2A | 08-05 2B | 08-18 2A | 08-07 2B
07-04 2B | 08-23 2B | 08-20 2A | 08-25 2A | 08-09 2A
08-25 2A | 08-23 2A | 08-28 2A | 08-12 2A
08-30 2B | 08-28 2B | 08-30 2B | 09-03 2B

reached over one million m? for the first time since 2005 (65).

4.2 Satellite data

We used a composite of Sentinel-2 data from three dates in June/July 2017 to generate the diversity maps,
i.e. Sentinel-2A images from June 19*" and 26" and Sentinel-2B data from July 4*. Monthly composites
from August in the years 2017-2020 were used to assess the drought response (see Table 1). In August,
the drought impacts should be at their full strength, whereas the senescence due to the natural phenological
cycle is still absent (64). We ensured the assessments of diversity and drought response were based on

independent observations from the independent times of acquisition.

4.3 Satellite data pre-processing

All data were collected using ESA’s Scihub and atmospherically corrected using Sen2Cor v.2.9.0. in the
ESA Sentinel Application Platform SNAP v9.0. We derived all Sentinel-2 bands available in 10-m or
20-m native spatial resolution. The 10-m bands were resampled to 20 m using mean resampling.

In all images, we flagged all pixels with < 5% reflectance in band B2 (blue) and > 15% in band
B8A (NIR) as cloud- and cloud-shadow-free, following the approach of Sturm et al. (8). Additionally, we
applied the cantonal polygon forest masks available in LV95 reference system and warped them using
gdal to match the projection of the Sentinel-2 data in WGS 84/UTM 32N (66, 67). To calculate forest
traits in June/July 2017, we excluded pixels covering forest gaps, dead canopies, and shadows to tailor

the assessment of canopy traits on living forest canopies only. We therefore derived a forest mask for the
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scene in June/July 2017, which was then applied to all composites. We set a threshold for the normalized
difference vegetation index (NDVI) (bands B4 and B8A) within the forest area. We calculated a median
outlier for the forested area, resulting in NDVI thresholds of 0.795 for 19 June, 0.8003 for 26 June, and
0.81 for 4 July 2017. Lastly, we applied shadow masks based on the bands B6 and B12, excluding the
darkest pixels in these bands, defined as median outliers from the overall distribution (68). We calculated
three forest maps based on the three acquisitions in June/July 2017. Pixels needed to be valid in two out
of three images to be included in the final forest mask using a mean calculation. The resulting forest mask

contained 2°293°752 valid pixels and covered a total forest area of 917.5 km?.

4.4 Leaf ecophysiological traits at canopy level

Trait-based functional diversity from RS can be derived for ecophysiological, morphological, or pheno-
logical features of plants (26). We focused on ecophysiological traits and related them to forest drought
responses since previous studies have shown that ecophysiological traits were closely linked to drought-
sensitive soil variables as well as different stages of forest development and local management (23). Based
on the functional diversity approach initially suggested and applied to APEX imaging spectroscopy data by
Schneider et al. (23) and upscaled to Sentinel-2 data by Helfenstein et al. (24), we mapped three spectral
indices at the canopy level. We used a red-edge chlorophyll index (Clre) to measure leaf chlorophyll
content (CHL), a carotenoid/chlorophyll index (CCI) to measure leaf carotenoid/chlorophyll ratio (CCR),
and a normalized difference infrared index (NDII) to measure leaf equivalent water thickness (EWT). All
index maps were rescaled to O — 1.

Thus, CHL was obtained using Clre according to Clevers & Gitelson (69) as

Clre = P18 (1)
P704

where p stands for the top-of-canopy reflectance at a specific wavelength in nm. We used Sentinel-2

bands B7 and B5. Clre from Sentinel-2 correlated strongly with canopy CHL measured for field-collected
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leaves and needles in a mixed mountain forest (70).
CCI was developed for MODIS data to describe CCR and was successfully applied to Sentinel-2

data (24). CCI was calculated according to Gamon (71) as

cC = 560 — Pe6a )
P560 1+ Pe64

We used Sentinel-2 bands B3 and B4 for this calculation.
The Normalized Difference Infrared Index (NDII) was used for the retrieval of EWT. We used the

narrow infrared bands B8A and B11 (24) and calculated the NDII according to Hardisky (72).

NDII — £865 — L1614 3)
P865 + P1614

4.5 Functional diversity measures and maps

Trait-based functional diversity measures were derived from the per-pixel trait values using a moving
window approach with a circular calculation mask. Based on a previous scaling analysis, we used a
three-pixel calculation radius (i.e., 60 m when working with 20-m pixels) to represent the patchy forest in
the study area with a minimized risk of calculation-based edge effects (24). Fig. 2 shows the calculation
and the resulting mask for the moving window. A 60 m radius results in a calculation area of 28.3 pixels
or 1.131 ha (Sup. 2 showing the outcome of a multiscale analysis). The calculation radius of 60 m has
previously been used to represent variation on the ecosystem to landscape scale (27).

We used two metrics of trait-based functional diversity (Fig. 2), namely functional richness and
evenness calculated in the three-dimensional space of the selected traits (29, 30). These represent distinct
dimensions of diversity (73) and allow testing of the two hypotheses stated at the end of our Introduction
section. Our functional richness and evenness measures were independent of each other (coefficient of
determination of r? = 0.001 in the study area).

We calculated functional richness using concave hulls based on a-shapes around the data points to
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reduce sensitivity to outliers compared to convex hulls (74). We complemented this with functional
evenness to represent the regularity dimension of the data in the trait space. Evenness was calculated based
on the minimum spanning tree (MST) using Euclidean distances between all points in trait space (23, 30).
Functional evenness measures the regularity of the shape of the occupied trait space from the length
of the branches in the MST and the evenness in their abundance. The index is derived by normalizing
edge weights in the MST and accumulating a sum of minimum partial weighted evenness across vertices,

normalized against theoretical minima (30).

4.6 Drought response maps

Our approach to quantifying drought response in forests was based on Sturm et al. (8). We calculated the
normalized difference water index (NDWI) after Gao (75) using the reflectance in bands B8 NIR and B11

SWIRI1 as

NDWI — P833 — P1614 (4)
P833 1+ p1614

Change in NDWI has been shown to be sensitive to water stress (76). The August NDWI values were
calculated for each year from 2017-2020 by taking the median NDWI value from the images in Table 1.

We assessed the response of forests to the 2018 drought year by comparing the relative pixel-wise
percentual change between base NDWI conditions in August 2017 and conditions during the drought
(2018) or post-drought (2019, 2020) years (Fig. 1). Similar to van Moorsel et al. (77), we defined
resistance as the NDWI change ratio between 2017 and 2018 [(NDWIy0;5-NDWI,0;7)/NDWI50;7] to
assess immediate changes happening during the event, and we defined recovery as the change ratio
between 2018 and 2019 [(NDWI,0;0-NDWI50;5)/NDWI5015] to assess post-drought changes. Additionally,
we defined resilience as the change ratio between 2017 and 2020 [(NDWI020-NDW159,7)/NDWI50;7].
We used the second (2020) rather than the first post-drought year (2019) to avoid a linear combination of

resilience and recovery (15).
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NDII and NDWTI are two different indices related to canopy water content, however, they share
bands in their definition. Both the diversity measures and the drought response measures were mapped
using satellite data from the same platform, which might introduce spurious correlations. However, we
designed the experiment to minimize potential effects. We differentiated between NDWI and NDII using
the NIR band 8 for NDWI and the overlapping band 8A for NDII and used Sentinel-2 data at different
times of measurement (Table 1). For further analysis, we mapped functional diversity using the spatial
distribution of EWT from NDII combined with two other ecophysiological traits to describe diversity
(spatial dimension) and pixel-based annual relative change using NDWI to describe drought response
(temporal dimension). Therefore, while we used water content values for diversity and drought response
as part of their calculation (spatial distribution and relative annual change), diversity and drought response

are based on independent observations.

4.7 Separate analysis of drought responses to functional richness and evenness

Small and isolated patches of forest were excluded from the calculation following Helfenstein et al. (24)
because their functional diversity measures were affected by edges. This step removed 14.35 km? or
1.57% of the forest area. We then applied binning to the diversity data to examine the spatial distribution
of diversity values. The binning process over the whole study area reduces potential autocorrelation
effects, because adjacent pixels with similar values will be combined, and pixels with different values will
be separated. We formed 1000 bins of equal range within diversity metrics and averaged drought response
values within each bin. Before binning, we conducted image preprocessing by rescaling to a range of 0-1,
with the lowest 0.1% set to 0 and the highest 0.1% set to 1. This approach avoided generating empty or
small bins that could introduce bias to our subsequent analysis. After the binning process, we excluded
bins that contained less than 1% of the maximum pixel number per bin. Functional richness was divided
into 823 bins with values ranging between 0 and 0.261. Functional evenness was divided into 861 bins
with values ranging between 0.6974 and 0.8698. Results without exclusions of bins were very similar and

presented in Supplementary Fig. S6. We then used the binned values to investigate the drought responses
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to functional richness or evenness in separate linear regression models. The numbers of pixels per bin

were used as weights.

4.8 Combined analysis of drought responses to functional richness and evenness

We employed linear models to examine the relationships between drought response (resistance, recovery,
and resilience) and the two functional diversity measures, treating the latter as explanatory variables.
For this combined analysis, we discretized the explanatory variables into 20 bins and incorporated 21
geographic subregions to account for geographical variation. This resulted in a dataset comprising 8400
strata (20 richness bins x 20 evenness bins x 21 subregions) (Fig. 5). Note that this procedure ensures that
the three variables functional richness, functional evenness, and subregion are more or less orthogonal to
each other, with correlations among them only due to the potential occurrence of empty bins.

We directly analyzed the mean NDWI change (resistance and resilience) for each bin while considering
forested pixels per bin (N) as a weighting variable. We used the linear models to obtain percentages of total
sum of squares (SS) for the different explanatory terms and their interactions in the model (increments of
multiple r2 % 100). In all models, we used the functional diversity measures as continuous variables and
subregion as a 21-level grouping factor. We iteratively refined the models, fitting subregion, functional
diversity measures, and interactions. In the first two cases, the relationship with richness was shown to be
non-linear, while in the third case, we found a linear relationship. Similarly, because evenness showed
a hump-shaped relationship, we fitted a polynomial. Non-significant explanatory terms (p > .05) or
explanatory terms with SS < 1% were excluded from the models. This procedure resulted in the following

linear models for resistance (rst), resistance (rcv), and resilience (rsl), using R notation (78):

(i) Im(terms(rst ~ logric + (eve + eve2) + REG + logrict REG + evex REG + eve2e REG,

keep.order = T), weight = N)

(i) Im(terms(rcv ~ logric + (eve + eve2) + REG + logrict REG + evex REG + eve2x REG,

keep.order = T), weight = N)
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(iii) Im(terms(rsl ~ ric + eve + REG + rict REG + ever REG + eve2x REG,

keep.order = T), weight = N)

Here ric = richness, logric = log(richness), eve = evenness, eve2 = evenness squared, REG = subregion,
X = interaction operator, and N = the number of pixels in the bin. We also tested the functional diversity
effects using their interactions with subregions as error terms to obtain a more conservative F-ratio (F2 in
Supplementary Tables S2—-S4). Note that this corresponds to a data analysis using linear mixed models
with the interactions as random terms (79, 80).

In the above analyses, functional richness effects are tested across subregions, with the interaction
term testing for differences in functional richness effects between subregions. For Fig. 5, richness effects
corrected for subregions were calculated by fitting subregions first in the above linear models. For plotting
the corrected data, we added the residuals from a linear-model fit with subregions as explanatory term to

the overall mean.
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