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Abstract1

Biodiversity–ecosystem functioning (BEF) relationships are increasingly recognized as an important2

aspect of ecosystem research and management thanks to knowledge gained from long-term grassland3

and, more recently, forest experiments. However, to what extent the behavior of non-experimental4

systems corresponds to the relationships discovered in BEF experiments remains controversial. We5

investigated the relationship between trait-based diversity and drought response using data from forests6

in northern Switzerland, which experienced an extremely hot and dry summer in 2018. We used Sentinel-7

2 satellite data to assess trait diversity and quantified drought response in terms of resistance, recovery,8

and resilience from 2017 to 2020. We then analyzed the BEF relationship between trait-based diversity9

and drought response for different aggregation levels of richness and evenness. Forests with greater10

richness were more resistant and resilient to the drought event, and the relationship of evenness with11

resistance or resilience was hump-shaped or negative, respectively. These results suggest that trait-based12

diversity supported forest drought response via a mixture of complementarity and dominance effects, the13

first indicated by positive richness effects and the second by negative evenness effects. Our results link14



ecosystem functioning and biodiversity at large scales and provide new insights into the BEF relationships15

in real-world forest ecosystems.16

1 Introduction17

Forests provide habitat for the majority of the world’s animal and plant species and are exceptionally18

rich in biodiversity[1, 2]. Evidence shows that biodiversity positively relates to ecosystem functions19

(EF) in forests, including productivity[3], carbon storage[4, 5], and water-use efficiency[6]. Furthermore,20

biodiversity enhances stability, the ability of forests to maintain functioning under stressful environmental21

conditions[7, 8, 9, 10]. However, biodiversity is in decline worldwide due to human activities and climate22

change, potentially reducing the capacity of ecosystems to provide valuable services[11]. The protection23

of biodiversity should be a global priority[12, 13, 14] and is targeted in the UN Sustainable Development24

Goals for 2030[1].25

Rising temperatures due to global change and related evapotranspiration dynamics are predicted to26

amplify regional drought stress[15] and increasingly challenge the capacity of European forests to27

maintain high levels of ecosystem functioning, stressing the importance of biodiversity as a mitigating28

ecosystem property[16]. Ecological drought refers to a deficit in ecosystem water availability below29

a vulnerability threshold that affects ecosystem services[17]. Drought responses can be divided into30

resistance — performance during drought, recovery — performance after drought, and resilience — the31

similarity of the performance before and after the event[18] (Fig. 1). Some studies focusing on forest32

resistance and resilience found that stands containing multiple species were less affected by drought than33

mono-specific stands[19, 20], whereas others found no differences in drought responses of trees with34

different neighboring species[21, 22, 23]. There is growing recognition of the importance of BEF research35

beyond species richness and considering trait-based diversity to understand the influence of diversity36

on forest functioning and to demonstrate how trait diversity may promote EF[24, 25, 26]. Rather than37

the number of species, it is likely the dissimilarity of functions that can positively impact the drought38

response of forests. This dissimilarity of the functions can be represented by, e.g., morphological traits,39

such as tree height or wood density[27], or hydraulic traits, such as stem water potential[28].40

Trait-based diversity is a widely used approach for quantifying the functional contributions of individuals41

or species to ecosystem properties[29, 30]. Thus, sampled objects (pixels, individuals, species) can42
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Figure 1: Development of the mean Normalized Difference Water Index (NDWI) in the study area
between 2017 and 2020. The numbers in the legend represent the mean percent changes for the three
drought-response measures (change 2017 to 2018 resistance, change 2018 to 2019 recovery, change 2017 to
2020 resilience) across the entire study area in northern Switzerland.

Figure 2: Calculation of diversity metrics from traits within the calculation area (top left). Shown is an
example translation of the 60-m radius (blue circle) neighborhood area to a mask for the calculation
(bottom left). The numbers indicate the weighting of each pixel in calculating the value of the center
pixel. Concepts of diversity metrics (right) in three-dimensional trait space. Richness (Ric) (top right)
and evenness (Eve) (bottom right). The three traits considered include chlorophyll content (CHL),
carotenoid/chlorophyll ratio (CCR), and equivalent water thickness (EWT).
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be classified using traits, defining these objects’ functional roles within communities or responses to43

environmental variables[31, 32]. With increasing functional diversity, a greater range of functional trait44

values is present, providing opportunities for efficient resource use[33, 34]. Trait-based diversity can be45

quantified with diversity metrics describing the multidimensional trait space (Fig. 2). We exploit two46

diversity metrics often used in ecological frameworks: richness and evenness[35]. Richness relates to the47

hypervolume of the trait space occupied by a community of a certain unit area at a certain time. The larger48

the resulting value, the greater the extent of the hypervolume, e.g., measured using convex hulls[36, 37].49

Evenness measures the regularity of the observations’ distribution within the hypervolume[35]. If used50

with species diversity metrics, evenness refers to similarity of species abundance values independent51

of species number. Conceptually, evenness reflects how equally available resources in a community52

are distributed[38]. When the occupation of the hypervolume is skewed toward some specific trait53

expressions, then those traits are dominant within the community and evenness is low[35]. Conversely,54

high evenness (i.e., more uniform occupation of the hypervolume) implies weak or no dominance of55

community members with particular traits[39].56

Using remote sensing (RS), trait-based diversity of temperate forest ecosystems may be directly quantified57

at regional scales, which is particularly relevant because resource management decisions are generally58

made at these scales[41]. RS complements detailed but local and temporally limited field measurements59

and provides spatially contiguous and across-scale information on certain traits (e.g., pigments, water60

content) and their dynamics throughout the phenological cycle[42, 43]. Trait-based diversity is therefore61

considered an effective measure for mapping biodiversity and detecting its effects on EF from RS62

data[44, 45, 46, 47].63

The sensitivity of satellite-derived trait-based diversity for dynamics in EF in general and the linkage64

between trait-based diversity and ecosystem drought responses so far has not been rigorously assessed[48,65

44, 49]. Filling this gap could advance understanding of climate change impacts on forest ecosystems and66

pave the way towards large-scale assessment and long-term forest diversity and resilience monitoring.67

In the present study, we used Sentinel-2-based trait diversity measured at landscape scales in 2017 and68

Sentinel-2-based drought response assessments from 2017 – 2020 to study the link between trait-based69

diversity as biodiversity measure and drought response as EF measure for the two cantons Aargau and70

Zurich on the Swiss Plateau (Fig. 3). We chose this area because abiotic factors (e.g., topography-related71
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Figure 3: Study area of canton Aargau (west) and canton Zurich (east) and location in Switzerland (top
left). Highlighted on the map is the Sihlwald site, where we validated the drought response results. The
true color composite shows the study area in summer 2017, based on June/July Sentinel-2 data. The
cantonal borders are based on swissBOUNDARIES3D[40].
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air temperature and illumination, precipitation) were more or less homogeneous across this area[50],72

allowing us to focus on relations between variation in tree diversity (mostly management-related) and73

variations in forest drought response. We compared the changes in canopy water content between74

pre-drought conditions in 2017, drought conditions in 2018, and post-drought conditions in 2019 and75

2020, following the drought response indices proposed by Lloret et al.[18] and adapted by Sturm et76

al.[50] using Sentinel-2. We focus on how these forest drought responses (resistance, recovery, and77

resilience) related to trait-based canopy diversity metrics (richness and evenness) from physiological78

traits. We used three spectral indices as proxies for the physiological canopy traits chlorophyll content79

(CHL), carotenoid/chlorophyll ratio (CCR), and equivalent water thickness (EWT)[51, 46]. We focused80

on physiological traits because previous studies have shown that physiological traits are closely linked to81

drought-sensitive soil variables[46].82

Relating functional richness and evenness to species richness and evenness suggests that with high83

richness, it is possible to have complementarity and selection (i.e., dominance) effects as defined by the84

additive partitioning method of biodiversity net effects[52]. In a forest with high realized evenness, only85

complementarity effects can contribute to biodiversity net effects, while dominance effects necessarily86

reduce realized evenness. At intermediate levels of realized evenness (and high richness), both effects87

can contribute positively to net biodiversity effects. Therefore, we expected a positive relationship88

between functional richness and drought response and a hump-backed relationship between evenness89

and drought response. Furthermore, whereas richness is related to the size of the hypervolume, evenness90

can be high even within a small hypervolume in trait space, i.e. low richness. Thus, we expected the91

relationship between functional richness and drought response to be stronger than the relationship92

between functional evenness and drought response.93
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2 Results94

2.1 Biodiversity data95

We calculated diversity maps based on the three canopy traits chlorophyll content (CHL), carotenoid/chlorophyll96

ratio (CCR), and equivalent water thickness (EWT) (Supplementary Fig. 1, 2). The scatterplot in Fig. 497

shows the distribution of richness and evenness among 21 subregions. The northern regions of the study98

area had higher richness than the southern regions. Richness was highest in the Rhine plain areas (6, 7, 17,99

20, 21), and the lowlands of the Swiss Plateau (2, 13, 16, 19). Areas of lower richness were found towards100

the south (4, 11, 12). Regarding evenness, areas in the south (1, 3) and southeast (11, 12, 14) showed high101

values, with the northern regions (5–7, 21) showing lower values. The three Jura regions (8–10), with low102

richness and evenness values, differ from the rest of the study region.103

2.2 Drought-Response Metrics104

We derived drought response values across the study area based on the Normalized Difference Water105

Index (NDWI) data. The entire study area was strongly affected by the drought in 2018, which was106

visible in a reduction of the NDWI from 2017 to 2018 (see Fig. 1). From 2018 to 2019, the forest of the107

study area showed an increase in NDWI, followed by a new decrease in 2020 to a level slightly lower108

than in 2017. Low Resistance values (< −7.5% in 38.6% of the area, see Supplementary Table 1) occurred109

in the northern lowlands (Supplementary Fig. 3, top). Most of the forested area (73.5%) showed a > 7.5%110

increase in NDWI from 2018 – 2019 (Supplementary Fig. 3, middle). Resilience values < −7.5% occurred111

across 28.5% of the area, especially in the southern regions (Supplementary Fig. 3, bottom). We validated112

the 2020 resilience maps using a classified dataset based on visual interpretation of aerial images (see113

Sup. 1). Visually damaged areas showed a significantly different drought response than non-damaged114

areas (Supplementary Fig. 8).115

2.3 Relationships between diversity metrics and drought response116

We first analyzed the relationship between diversity metrics and drought resistance, recovery, or resilience117

separately for richness and evenness, grouping these measurements into 1000 bins each. Using the118

Akaike Information Criterion (AIC) and r2 to determine the optimal model from linear, quadratic, and119
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Figure 4: Average diversity of 21 regions with the scatterplot (left) showing their mean richness and
evenness. The regions (right) are obtained by grouping the forests of the study area according to the
intersection of 1) canton (Aargau (AG) and Zurich (ZH)), 2) biogeographical regions (Central Plateau
(Eastern & Western), Rhine plains, Jura, and Pre-Alps), and 3) four, respectively seven, cantonal forest
districts. Blue-green colors represent canton AG, and red-yellow colors represent canton ZH. The color
gradients range from southern to northern regions within cantons.

Figure 5: The region-corrected drought-response measures resistance, recovery, and resilience (left to
right) as a function of richness and evenness. The data were binned into 20 bins along richness and
evenness and into 21 regions, resulting in 8400 bins. We then first fitted region to correct for region
differences and then estimated the effects of richness and evenness. Resistance and resilience increased
with richness. Resistance showed a hump-backed relationship with evenness, while resilience decreased
with evenness.
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logarithmic regressions, we found logarithmic relationships between richness and resistance/recovery,120

while relationships between richness or evenness and resilience were more or less linear (Supplementary121

Fig. 4). Resistance increased, and recovery decreased with richness at low values of richness and then122

tempered off whereas resilience generally increased with richness, but with a plateau at intermediate123

richness levels (Supplementary Fig. 4, top row). Resistance and recovery also increased and decreased,124

respectively, with evenness at low values of evenness, but at high values, the relationship reversed;125

resilience generally decreased with increasing evenness (Supplementary Fig. 4, bottom row).126

We then analyzed the relationships between richness or evenness and drought responses in combined127

models, aggregating data using 20 bins each for the two diversity metrics crossed with the 21 regions,128

yielding a data table with 20 x 20 x 21 = 8400 rows. All bins showed a reduction in NDWI in 2018 (i.e., no129

bins were fully resistant) and an increase in 2019 (i.e., positive recovery) (Fig. 5).130

The best-fitting linear models showed the primary role of richness as a predictor for both resistance and131

recovery, yet similar roles for richness and evenness as predictor for resilience (Supplementary Tables132

2–4). The overall relationships between richness or evenness and drought response were similar when133

fitted before or after, i.e. corrected for, differences between regions (the latter was used to display the134

results in Fig. 5). When we compared the BEF relationships between the different geographic regions,135

significant differences were detected, but these were small compared with the average overall relationship136

(Supplementary Fig. 6 and Supplementary Tables 2–4). That is, if mean squares for the diversity metrics137

were compared with mean squares for the corresponding interactions with region, the resulting F-tests138

were all significant and mostly highly significant (Supplementary Tables 2–4). The regional slopes of139

resilience as a function of richness and evenness are shown in Supplementary Fig. 7.140
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Figure 6: Variance explained by the linear model combining the influence of the diversity metrics richness
and evenness on resistance (change in NDWI during the drought 2017 – 2018, Supplementary Table 2),
recovery (change in NDWI after the drought 2018 – 2019, Supplementary Table 3) and resilience (change
in NDWI after the full two-year observation period 2017 – 2020, Supplementary Table 4). The bars from
top to bottom in each panel are the contributions to the r2 values of linear richness (ric), log-transformed
richness (logric), evenness (eve), evenness squared (eve2), the 21 regions (REG), and interactions of the
diversity metrics and regions (ric x REG, eve x REG). Note that all contributions are significantly larger
than zero. The formulae for the fitted linear models are listed in R[53] notation, with N representing the
number of pixels per bin.
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3 Discussion141

Based on results from plot-scale BEF experiments in grassland and forest ecosystems[54, 55], we hypothe-142

sized that more diverse forests from northern Switzerland should have suffered less from an extreme143

drought event occurring in 2018 across central Europe. We hypothesized a positive relationship between144

functional richness and drought response and a hump-shaped relationship between functional even-145

ness and drought response. Both hypotheses were broadly supported by our satellite-based dataset.146

Furthermore, richness effects were generally stronger than evenness effects, again as predicted.147

Similar to BEF experiments, drought resistance in our observational study increased linearly with the148

logarithm of richness across 18 regions, with only three regions showing non-positive relationships.149

Compensating recovery was negatively related to the logarithm of richness, but resilience was overall150

linearly increasing with untransformed richness, although five out of the 21 regions showed negative151

responses. High functional richness likely increases the probability for complementary drought reactions152

among tree species, thus leading to higher resistance and resilience at the level of entire forest stands.153

Furthermore, with higher functional richness, it is more likely that a forest stand includes tree species154

that can contribute strongly to the drought response of the stand and that this will be reflected in155

uneven abundance distributions among species and thus reduced functional evenness. These two effects156

resemble complementarity and selection (dominance) effects obtained in additive-partitioning schemes157

for net biodiversity effects in BEF experiments[56, 57, 52]. In our study, the hump-shaped or negative158

relationships of functional evenness with drought resistance and resilience, respectively, indicated that a159

certain level of dominance was beneficial for forest stands of a given functional richness under drought.160

In our study, these two effects were uncorrelated because evenness was calculated as regularity within a161

given hypervolume reflecting richness. Thus, evenness could not account for differences in richness and162

vice versa (see Supplementary Fig. 2). Furthermore, richness and evenness effects were additive, that is,163

there were no interactive effects of the two on drought responses). Thus, the highest drought resistance164

was observed in forests with high richness and intermediate levels of evenness, and the highest drought165

resilience was observed in forests with high richness and low evenness (see Fig. 5). This suggests that a166

combination of complementarity and dominance effects underpin the relation of forest drought responses167

with trait-based diversity in the studied temperate forests. Dominant species play a major role in the168
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stability of dry grasslands[58], but how this was related to functional richness and evenness remains169

unknown. A caveat that remains is that in our study functional unevenness was measured before the170

extreme drought in 2018 and thus could not be a response to it. However, it is conceivable that forest171

stands where the earlier, less extreme drought events occurring in 2011 and 2015[59] had led to functional172

dominance of trees with more resistant and resilient drought responses, compared with other stands,173

were predisposed to show more resistant and resilient responses to the extreme drought event in 2018.174

In contrast to other EF such as production and resistance to disturbances like pest outbreaks[60, 61],175

evidence about the impact of mixed forests on drought damage so far has been largely lacking[62].176

Challenges in understanding the biodiversity–drought resistance relationship may arise from the large177

scale and low selectivity at which droughts occur, driven by broad climate impacts across extensive178

forested areas[63]. Because our study was based on functional diversity, we did not directly test to which179

extent different demographics of species populations contributed to the observed positive functional180

richness–resistance and –resilience relationships. Although research has explored the direct link between181

functional traits and drought mortality[64], less is known about trait-based diversity and drought182

response[65, 63]. Recently, it was found that structural complexity, rather than species diversity alone,183

explains positive tree richness–productivity relationships in BEF experiments[66]. Furthermore, recent184

studies point out the importance of functional traits for understanding forest drought response[67].185

Regions with low evenness, characterized by high specialization and low competition, may withstand186

long-term drought effects better, as evidenced by their pronounced recovery[35]. However, drought187

resilience was negatively related to evenness, meaning that high-evenness regions showed low resilience188

in 2020. High evenness in a community implies low dominance and high complementarity, promoting189

efficient resource use through a more regular spacing of trait values. Although high-evenness forests190

recovered well in 2019, they were severely impacted in 2020 due to resource exhaustion or post-drought191

disturbances like pests, as competition was found to intensify tree vulnerability during bark beetle192

outbreaks due to limited resources[68].193

High biodiversity, especially species diversity, is suggested to be key to promoting forest resilience to194

climate change[69, 70], although field-based evidence is still scarce, especially regarding trait-based195

diversity[71]. Concerning drought resilience in forest ecosystems, functional traits have been demon-196

strated to play a crucial role in drought response[72, 73]. Furthermore, higher hydraulic diversity was197
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linked to ecosystem resilience, which aligns with our findings[28]. However, our results contrast with198

previous findings by Espelta et al.[74], where functional dispersion did not relate to the growth response199

to drought but to mean growth and reduced herbivory[74]. These contrasting findings suggest that the200

influence of functional diversity may vary depending on the scale of the study, the trait selection, and the201

characteristics of the forest ecosystem involved. This observation highlights the need for integrating both202

field-based and remote sensing approaches to obtain a comprehensive understanding of how functional203

diversity affects forest resilience across various contexts.204

We observed a clear dependence between resistance and recovery when stratified for different diversity205

metrics, i.e., bins with lower resistance in 2018 showed increased recovery in 2019. This compensatory206

recovery is consistent with previous observations by Sturm et al.[50], who speculated that reduced207

competition following tree die-back in 2018 may have caused it. Resistance and recovery have also208

been shown to be negatively related in previous experimental and observational studies[75, 76]. This209

negative correlation dampens variation in resilience, yet similarities between the resistance and resilience210

responses to the drought in our studies indicate that the recovery responses could only partly compensate211

for low resistance. Similar observations have previously been made in diverse forests[28, 27, 67, 50] and212

suggest that ecosystem stability may generally be more strongly related to resistance than to recovery,213

with the latter being a “passive partial compensation” of the former. Therefore, we suggest focusing on214

resistance for predicting stability responses to extreme events such as the 2018 drought year in central215

Europe.216

Many biodiversity studies and related field campaigns focus on either species richness, trait measures217

per species, or ground-based trait measures, which cannot be directly compared with trait-based canopy218

diversity as derived from satellite data. There is a need for a systematic evaluation of the links between219

in-situ measured biodiversity and diversity estimates based on spectral variation[77]. Extensive trait220

sampling of all species, including non-canopy material and intra-specific differences within the pixel221

area, would be important to represent the community level as measured by satellites. Trait data sampled222

using a composite of plots scaled to Sentinel-2 pixels differ from most existing field datasets and would223

need expensive and prohibitive field effort, especially in forest ecosystems[78]. Validation datasets224

optimized to capture the spatial, temporal, and species representativeness of satellite data would enable225

better validation of RS-based trait estimates[79, 80]. Furthermore, additional work is needed to fill the226
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information gap between leaf measurements and satellite data. Trait measurements using close-range227

RS (e.g., from drones or airborne platforms) might be helpful, as well as upscaling of leaf-level optical228

properties to canopy spectra using radiative transfer models (RTMs)[81]. Still, the availability of global229

data indicates applicability to other temperate forest regions, provided that temporal and spatial coverage230

is sufficient. Trait-based approaches could enable generalization across the forest ecosystems of the world231

and their highly diverse species compositions[82]. The impact of droughts varies greatly in biomes of232

different climatic regions[83]. Using the RS-based functional diversity approach presented here, the233

stability of ecosystems to other disturbances linked to climate change, such as pathogen outbreaks or fires,234

could also be investigated[44]. Advances in approaches to analyze satellite RS products to map forest235

disturbances at large scales and analyze patterns in disturbance size, frequency, and severity will support236

this work[84, 85]. Forest masks needed for this approach can either be derived from governmental maps,237

as used here, or from LiDAR-derived vegetation height[51]. However, the availability of both data sources238

is usually geographically limited. Standardized inventories or frameworks for combining Sentinel-2 data239

and 3D information could support the upscaling of the approach to global applications[86].240

Multispectral sensors like Sentinel-2 offer limited spectral bands compared to hyperspectral sensors,241

reducing the information dimensions available to derive vegetation properties. Imaging spectroscopy ex-242

pands possibilities for deriving vegetation traits and drought-sensitive indicators, spanning from specific243

biochemical traits to mapping phylogenetic diversity[87, 88]. Recent spaceborne imaging spectrometers244

such as EnMAP[89], PRISMA[90], and upcoming missions like CHIME[91] and SBG[92] will advance245

spaceborne diversity and forest-health monitoring.246

There is a need to study EF within the global biodiversity monitoring framework using satellite RS[93].247

Many existing datasets show geographic and temporal biases, mainly focusing on temperate ecosystems[94].248

Our work builds towards assessing large-scale BEF from satellite data independently of the study area249

and over time. A major advantage of high-resolution temporal satellite data is repeated and standardized250

information[95] enabling monitoring of BEF. Results of functional diversity measures and the relation-251

ship with drought response might change over time or depending on the season the drought takes252

place. Monitoring these relationships using satellite data can reveal valuable information for adaptive253

management.254

14



Insights presented here advance large-scale assessments of the stability and resilience of real-world255

ecosystems using satellites towards global monitoring of the impacts of biodiversity on EF. Our results256

indicate that physiological trait-based canopy diversity links to forest drought responses regardless of the257

species, stand, or extent of sampling. We conclude that increasing drought resistance positively depends258

on forest richness, while the observed hump-shaped relationship of resistance with evenness suggests an259

optimum diversity in terms of evenness. We found that drought resilience had a positive relationship with260

richness and a negative relationship with evenness. Our work explores and confirms the link between261

trait-based diversity and drought resilience from satellite data, contributes to understanding climate262

change impacts on forests, and provides the basis for further research on landscape-scale interactions.263

Derived insights contribute to paving the way toward large-scale assessment and long-term monitoring264

of forest diversity and BEF using satellite data.265
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4 Material and Methods266

4.1 Study area267

The study area comprises the cantons Aargau and Zurich in Switzerland (Fig. 3). Both cantons are located268

on the northern Central Plateau, subject to different forest management practices, containing different269

forest types, and providing various ecosystem services[96]. The canton Aargau has a total area of 1403.80270

km2, of which 35% or 490.70 km2 is forested[97]. The main tree species in canton Aargau are European271

beech (Fagus sylvatica) with 32% of the cantonal stocks, followed by Norway spruce (Picea abies) with272

26%, silver fir (Abies alba) with 14%, and sycamore maple (Acer pseudoplatanus) with 5%[98]. The canton273

of Zurich covers an area of 1728.87 km2, of which forests cover 29.1% or 503.73 km2[99]. The main tree274

species in canton Zurich are P. abies, with 35% of the cantonal stocks, F. sylvatica with 24%, A. alba, with275

12%, and ash (Fraxinus excelsior) with 8%[100].276

We grouped the forests in the study area according to the intersection of cantonal forest districts and277

biogeographical regions into 21 regions. The subdivision of Switzerland into biogeographical regions of278

similar ecological characteristics takes account of regional floristic and faunistic conditions[101]. We used279

the revised biogeographical classification recognized by the Federal Office for the Environment[102, 101].280

The study area comprises the biogeographical regions of the eastern and western Plateau, Pre-Alps,281

Rhine plains, and Jura. Forest districts regulate the territorial authority of the cantonal forest service[103].282

The forest-district data were provided by the cantons[103, 104]. Aargau is divided into four and Zurich283

into seven forestry districts. The intersection of both datasets resulted in 21 regions with forested areas284

between 3.5 km2 and 100 km2.285

In 2018 the summer weather in Central Europe was dominated by large precipitation deficits, high286

temperatures, and sunny conditions over large areas[105]. In Switzerland, the mean precipitation287

between April and September was just above 500 mm (the lowest since 1962) and the mean temperature288

was the highest since measurements started in 1864[105]. In the Swiss temperate forests, the drought289

resulted in early wilting[106], decreased forest health[50], and widespread tree mortality[107]. Secondary290

drought effects followed; for example, in 2019, the level of wood infested by bark-beetle (Ips typographus)291

reached over one million m3 for the first time since 2005[107, 108].292

16



Table 1: Acquisition dates (left) and sensor type (Sentinel-2A/B, right) of the satellite data as used for the
composites (August 2017 – 2021) to create the drought response maps.

Diversity data Drought response composite data
2017 2018 2019 2020

06-19 2A 08-15 2A 08-03 2A 08-08 2A 07-30 2A
06-26 2A 08-18 2A 08-05 2B 08-18 2A 08-07 2B
07-04 2B 08-23 2B 08-20 2A 08-25 2A 08-09 2A

08-25 2A 08-23 2A 08-28 2A 08-12 2A
08-30 2B 08-28 2B 08-30 2B 09-03 2B

4.2 Satellite data293

We used a composite of Sentinel-2 data from three dates in June/July 2017 to generate the diversity294

maps, i.e. Sentinel-2A images from June 19th and 26th and Sentinel-2B data from July 4th. Monthly295

composites from August in the years 2017 – 2020 were used to assess the drought response (see Table296

1). In August, the drought impacts should be at their full strength, whereas the senescence due to the297

natural phenological cycle is still absent[105, 109]. We ensured the assessments of diversity and drought298

response were based on independent observations from the independent times of acquisition.299

4.3 Satellite data pre-processing300

All data were collected using ESA’s Scihub and atmospherically corrected using Sen2Cor v.2.9.0. in the301

ESA Sentinel Application Platform SNAP v9.0. We derived all Sentinel-2 bands available in 10-m or 20-m302

native spatial resolution. The 10-m bands were resampled to 20 m using mean resampling.303

In all images, we flagged all pixels with < 5% reflectance in band B2 (blue) and > 15% in band B8A304

(NIR) as cloud- and cloud-shadow-free, following the approach of Sturm et al.[50]. Additionally, we305

applied the cantonal polygon forest masks available in LV95 reference system and warped them using306

gdal to match the projection of the Sentinel-2 data in WGS 84/UTM 32N[110, 111]. To calculate forest307

traits in June/July 2017, we excluded pixels covering forest gaps, dead canopies, and shadows to tailor308

the assessment of canopy traits on alive forest canopies only. We therefore derived a forest mask for the309

scene in June/July 2017, which was then applied to all composites. We set a threshold for the normalized310

difference vegetation index (NDVI) (bands B4 and B8A) within the forest area. We calculated a median311

outlier for the forested area, resulting in NDVI thresholds of 0.795 for 06-19, 0.8003 for 06-26, and 0.81312

for 07-04. Lastly, we applied shadow masks based on the bands B6 and B12, excluding the darkest313

pixels in these bands, defined as median outliers from the overall distribution[112]. We calculated three314
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forest maps based on the three acquisitions in June/July 2017. Pixels needed to be valid in two out of315

three images to be included in the final forest mask using a mean calculation. The resulting forest mask316

contains 2’293’752 valid pixels and a total forest area of 917.5 km2.317

4.4 Physiological canopy traits318

Trait-based diversity from RS can be derived from physiological, morphological, or phenological traits[42,319

113]. We focused on physiological traits and related them to forest drought responses since previous320

studies have shown that physiological traits were closely linked to drought-sensitive soil variables as321

well as different stages of forest development and local management[46]. Based on the physiological322

diversity approach initially suggested and applied to APEX imaging spectroscopy data by Schneider et323

al.[46] and upscaled to Sentinel-2 data by Helfenstein et al.[51], we used three spectral indices as proxies324

for the physiological canopy traits chlorophyll content (CHL), carotenoid/chlorophyll ratio (CCR), and325

equivalent water thickness (EWT). All index maps were rescaled to 0 – 1.326

CHL was obtained using CIre according to Clevers & Gitelson[114] as327

CIre =
ρ783

ρ704
− 1 (1)

where ρ stands for the top-of-canopy reflectance at a specific wavelength in nm. We used Sentinel-2328

bands B7 and B5. CIre from Sentinel-2 correlated strongly with in-situ measured canopy CHL measured329

from collected leaves and needles in a mixed mountain forest[115].330

As a proxy for CCR, CCI developed for MODIS data and successfully applied to Sentinel-2 data[51] was331

used. CCI can be calculated according to Gamon[116] as332

CCI =
ρ560 − ρ664

ρ560 + ρ664
(2)

We used Sentinel-2 bands B3 and B4 for this calculation.333

The Normalized Difference Infrared Index (NDII) was used as proxy for the retrieval of EWT[117, 118,334

119]. We used the narrow infrared bands B8A and B11[51, 120] and calculated the NDII according to335

Hardisky[117].336
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NDII =
ρ865 − ρ1614

ρ865 + ρ1614
(3)

NDII and NDWI are sometimes synonyms for the same index (e.g., Pan et al.[121]). We here differentiate337

between NDII and NDWI (see below) using the NIR band 8 for NDWI and band 8A for NDII.338

4.5 Diversity metrics and maps339

Trait-based diversity measures were derived from the per-pixel trait values using a moving window340

approach with a circular calculation mask. Based on a previous analysis, we used a three-pixel calculation341

radius (i.e., 60 m when working with 20-m pixels) to represent the patchy forest in the study area[51].342

Fig. 2 shows the calculation and the resulting mask for the moving window. A 60 m radius results343

in a calculation area of 28.3 pixels or 1.131 ha (Sup. 2 showing the outcome of a multiscale analysis).344

The calculation radius of 60 m was considered to represent a relatively large ecosystem to landscape345

scale[122, 123, 47].346

We used two components of trait-based diversity (Fig. 2), namely richness and evenness calculated in the347

multidimensional space spanned by the three traits[35, 37]. Two distinguishable diversity metrics allow348

a better interpretation of diversity–ecosystem functioning relationships, representing different dimen-349

sions of diversity[45, 46] and allow testing of the two hypotheses stated at the end of our Introduction350

section. Our richness and evenness measures are known to be independent of each other (coefficient of351

determination of r2 = 0.001 in our study area).352

We calculate richness using concave hulls based on α-shapes around the data points to reduce sensitivity353

to outliers compared to convex hulls[124, 46, 37]. We complemented the richness of traits with evenness354

to represent the regularity dimension of the data in the trait space[125, 126]. Evenness was calculated355

based on the minimum spanning tree (MST) using Euclidean distances between all the points in the trait356

space[46, 37]. Evenness measures the regularity of the shape of the occupied trait space from the length357

of the branches in the MST and the evenness in their abundance. The index is derived by normalizing358

edge weights in the MST and accumulating a sum of minimum partial weighted evenness across vertices,359

normalized against theoretical minimums[37].360
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4.6 Drought response maps361

Our approach to quantifying drought response in forests is based on Sturm et al.[50]. We calculated the362

normalized difference water index (NDWI) after Gao[127] using the reflectance in bands B8 NIR and B11363

SWIR1 as364

NDWI =
ρ833 − ρ1614

ρ833 + ρ1614
(4)

NDWI has been proven sensitive to water stress[128]. The August NDWI values were calculated for each365

year from 2017 – 2020 by taking the median NDWI value from the images mentioned in Table 1.366

We assessed the response of forests to the 2018 drought year by comparing the relative pixel-wise367

percentual change between base NDWI conditions[50] defined from August 2017 and conditions during368

the drought (2018) or post-drought (2019, 2020) years (Fig. 1). We define resistance as the NDWI change369

ratio between 2017 and 2018 [(NDWI2018-NDWI2017)/NDWI2017] to assess immediate changes happening370

during the event, and we define recovery as the change ratio between 2018 and 2019 [(NDWI2019-371

NDWI2018)/NDWI2018] to assess post-drought changes. Additionally, we define resilience as the change372

ratio between 2017 and 2020 [(NDWI2020-NDWI2017)/NDWI2017]. We use the second (2020) rather than373

the first post-drought year (2019) to avoid a linear combination of resilience and recovery[27].374

4.7 Separate analysis of drought responses to richness and evenness375

Small and isolated patches of forest were excluded from the calculation following Helfenstein et al.[51]376

because the results of the trait diversity metric were strongly influenced by the number of considered377

pixels. This step removed 14.35 km2 or 1.57% of the forest area. We then applied binning to the diversity378

data to examine the spatial distribution of diversity values. The binning process over the whole study area379

reduces potential autocorrelation effects, because adjacent pixels with similar values will be combined,380

and pixels with different values will be separated. We formed 1000 bins of equal range within diversity381

metrics and averaged drought response values within each bin. Before binning, we conducted image382

preprocessing by rescaling to a range of 0–1, with the lowest 0.1% set to 0 and the highest 0.1% set to383

1. This approach avoided generating empty or small bins that could introduce bias to our subsequent384

analysis. After the binning process, we excluded bins that contained less than 1% of the maximum pixel385
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number per bin. Richness was divided into 823 bins with values ranging between 0 and 0.261. Evenness386

was divided into 861 bins with values ranging between 0.6974 and 0.8698. Results without exclusions387

of bins were very similar and presented in Supplementary Fig. 5. We then used the binned values to388

investigate the drought responses to richness or evenness in separate linear regression models. The389

number of pixels per bin were used as weights.390

4.8 Combined analysis of drought responses to richness and evenness391

We employed linear models to examine the relationships between drought response (resistance, recovery,392

and resilience) and diversity estimates (richness and evenness), treating the latter as explanatory variables.393

We discretized the explanatory variables into 20 bins and incorporated 21 geographic regions to account394

for geographical variation. This resulted in a dataset comprising 8400 strata, calculated as combining 20395

richness bins, 20 evenness bins, and 21 geographic regions (Figure 5). Note that this procedure ensures396

that the three variables richness, evenness, and geographic region are more or less orthogonal to each397

other, with correlations among them only due to the potential occurrence of empty bins[50].398

We directly analyzed the mean NDWI change (resistance and resilience) for each bin while considering399

forested pixels per bin (N) as a weighting variable. We used the linear models to obtain percentages400

of total sum of squares (SS) for the different explanatory terms and their interactions in the model401

(increments of multiple r2 ∗ 100). In all models, we used diversity metrics as continuous variables and402

geographic region as a 21-level grouping factor. We iteratively refined the models, controlling for region403

and diversity metrics and interactions. Non-significant explanatory terms (p ≥ .05) or explanatory terms404

with SS < 1% were excluded from the models. This procedure resulted in the following linear models for405

resistance (rst), resistance (rcv), and resilience (rsl), using R notation[53]:406

(i) lm(terms(rst ∼ logric + (eve + eve2) + REG + logricxREG + eve2xREG + evexREG,407

keep.order = T), weight = N)408

(ii) lm(terms(rcv ∼ logric + (eve + eve2) + REG + logricxREG + eve2xREG + evexREG,409

keep.order = T), weight = N)410

(iii) lm(terms(rsl ∼ ric + eve + REG + ricxREG + evexREG + eve2xREG,411

keep.order = T), weight = N)412
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Here ric = richness, logric = log(richness), eve = evenness, eve2 = evenness squared, REG = region, x413

= interaction operator, and N = the number of pixels in the bin. We also tested the diversity effects414

using their interactions with the region as error terms (F2 in Supplementary Tables 2–4). Note that this415

corresponds to a data analysis using linear mixed models with the interactions as random terms[129].416

In the above analyses, richness effects are tested across regions, with the interaction term testing for417

differences in richness effects between regions. For Fig. 5, richness effects corrected for the region were418

calculated by fitting the region first in the above linear models. For plotting the thus corrected data, we419

added the residuals from a linear-model fit with the region as an explanatory term to the overall mean.420
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Supplementary Material

Supplementary Figure S1: Top: calculated indices CIre (green), CCI (red), and NDII (blue) as proxies for
the physiological traits CHL, CCR, and EWT at the research site and normalized between 0 and 1. Bottom
left: histogram of physiological traits, including means and standard deviations. Bottom right: coefficient
of determination of vegetation indices. CIre and CCI show the highest coefficient of determination with
r2 = 0.215, followed by CIre and NDII with r2 = 0.185 and CCI and NDII with r2 = 0.055.



Supplementary Figure S2: Functional richness and functional evenness maps of the study area (left)
and histograms of distribution (right) calculated at a 60 m radius. The histogram colors indicate 20%-
percentiles, with the mean of every class in the color bars. The histogram of richness is slightly skewed
toward zero, and richness varies between zero and 0.03. Evenness varies between 0.7 and 0.9, with a
histogram skewed towards 1. The richness and evenness map showed a correlation coefficient of r =
0.027.
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Supplementary Figure S3: Drought response of forest ecosystems. NDWI-based drought response for the
forested area in August composites for 2017–2020. The drought response is quantified using resistance
(top, difference 2017–2018 in percent of 2017), recovery (center, difference 2018–2019 in percent of 2018),
and resilience (bottom, difference 2017–2020 in percent of 2017). The mean resistance was -6.03%, mean
recovery was 15.19% and resilience was -2.18%.
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Supplementary Table S1: Area of forest response strength to the drought of 2018. Resistance, recovery,
and resilience were divided into five classes, from strongly negative (< −15%) to strongly positive
(> 15%) changes of the Normalized Difference Water Index (NDWI). The percentage of forest area falling
into each class for each drought response measure is indicated.

Change < −15% < −7.5% −7.5% − 7.5% > 7.5% > 15% Total
Resistance 16.15% 22.47% 53.80% 5.53% 2.05% 100%
Recovery 1.50% 1.37% 23.62% 33.13% 40.38% 100%
Resilience 12.15% 16.34% 54.05% 10.92% 6.53% 100%

Supplementary Table S2: Analysis of variance for resistance as dependent variable and diversity metrics
and region as explanatory terms. logric = log-transformed richness, eve = evenness, eve2 = evenness
squared, REG = region, Df = degree of freedom, SS = sum of squares (in thousands), %SS = SS in percent
(corresponding to increments of model multiple r2 * 100), MS = mean square, F1 = F-ratio using MS
of residuals as denominator, F2 = F-ratio using MS of interaction with region as denominator (this
corresponds to a mixed-model analysis with the interaction as random-effects term). All F1 were highly
significant (p <0.001), for F2 significances are indicated by asterisks (*** p <0.001, * p <0.05).

Response: rst
Df SS/1000 %SS MS/1000 F1 F2

logric 1 2744 11.38 2744 5237 40.6***
eve 1 201 0.83 201 384.5 5.9*
eve2 1 509 2.11 509 970.7 85.9***
REG 20 15240 63.22 762 1454.4
logric x REG 20 1352 5.61 68 129.1
eve x REG 20 678 2.81 34 64.7
eve2 x REG 20 119 0.49 6 11.30
Residuals 6232 3265 13.54 0.5
Total 6315 24108 100

r2 0.865

Supplementary Table S3: Analysis of variance for recovery as dependent variable and diversity metrics
and region as explanatory terms. logric = log-transformed richness, eve = evenness, eve2 = evenness
squared, REG = region, Df = degree of freedom, SS = sum of squares (in thousands), %SS = SS in percent
(corresponding to increments of model multiple r2 * 100), MS = mean square, F1 = F-ratio using MS
of residuals as denominator, F2 = F-ratio using MS of interaction with region as denominator (this
corresponds to a mixed-model analysis with the interaction as random-effects term). All F1 were highly
significant (p <0.001), for F2 significances are indicated by asterisks (*** p <0.001).

Response: rcv
Df SS/1000 %SS MS/1000 F1 F2

logric 1 5331 13.40 5331 3119.8 61.2***
eve 1 1251 3.14 1251 732.1 19.5***
eve2 1 724 1.82 724 423.8 37.5***
REG 20 18421 46.30 921 539
logric x REG 20 1744 4.38 87 51
eve x REG 20 1284 3.23 64 37.6
eve2 x REG 20 385 0.97 19 11.3
Residuals 6232 10650 26.77 1.7
Total 6315 39790 100

r2 0.732
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Supplementary Table S4: Analysis of variance for resilience as dependent variable and diversity metrics
and region as explanatory terms. ric = richness, eve = evenness, eve2 = evenness squared, REG =
region, Df = degree of freedom, SS = sum of squares (in thousands), %SS = SS in percent (corresponding
to increments of model multiple r2 * 100), MS = mean square, F1 = F-ratio using MS of residuals as
denominator, F2 = F-ratio using MS of interaction with region as denominator (this corresponds to a
mixed-model analysis with the interaction as random-effects term). All F1 were highly significant (p
<0.001), for F2 significances are indicated by asterisks (*** p <0.001).

Response: rsl
Df SS/1000 %SS MS/1000 F1 F2

ric 1 1582 8.43 1582 2027.8 19.2***
eve 1 1692 9.01 1692 2168.8 45.9***
REG 20 8239 43.89 412 528.2
ric x REG 20 1647 8.77 82 105.6
eve x REG 20 737 3.93 37 47.2
Residuals 6253 4877 25.98 0.8
Total 6315 18774 100

r2 0.740

Supplementary Figure S4: Resistance, recovery, and resilience (left to right) binned to 1000 bins of richness
(top) and evenness (bottom) calculated at a 60 m radius. The black line represents the best-fit function.
The gray line shows the null model of the experiment (all trait values shuffled prior to the calculation).

5



Supplementary Figure S5: Resistance, recovery, and resilience (left to right) binned to 1000 bins of
functional richness (top) and functional evenness (bottom) calculated at a 60 m radius. Empty or small
bins are included in the graph, showing high variability within the bins. The gray area represents the
99% confidence interval.

Supplementary Figure S6: Regional drought responses resistance, recovery and resilience (left to right) as
functions of functional richness (top) and functional evenness (bottom) calculated at a 60 m radius.
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Supplementary Figure S7: Regional slopes of resilience (RSL) as a function of functional richness (Ric)
(left) and functional evenness (Eve) (right). Blue colors represent increasing slopes, red colors represent
decreasing slopes.
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1 Validation of the drought resilience maps1

To validate the 2020 resilience approach, we prepared a reference dataset with 271 data points representing2

20-m Sentinel-2 pixels for the Sihlwald region. The Sihlwald is a 1098-ha natural reserve, ranging from3

483 to 866 m a.s.l. in the southeast of the study area [1]. Each 20-m pixel was optically evaluated for4

damage in the canopy and classified as damaged or intact in 2020 and unharmed in 2018.5

Sihlwald reported damage without any management cuttings, which excludes potential bias due to the6

removal of damaged trees with the potential to recover in the seasons between 2018 and 2020. The only7

exception is around pathways and roads to minimize the risk of falling trees for visitors and traffic. The8

park data were based on the forest inventory from 1990 (GIS Wildnispark Zürich & Grün Stadt Zürich,9

[2]).10

We created the validation dataset using aerial images RGB/infrared from summer 2018/2020 provided11

by the canton of Zurich [3, 4]. The 2018 dataset was acquired in the Sihlwald area between 27 July 201812

and 3 August 2018 on two dates. The 2020 data were acquired on three days between 9 and 12 August13

2020. Both images were resampled to 0.5 m. Using high-resolution optical data gave clear advantages14

over identifying crown damage in the field. Data digitized by the canton allowed us to locate the pixels15

containing the canopy unambiguously, and we could see damage to the top layer of the forest, which16

might not necessarily have been visible from the ground in the forest.17

We labeled intact and damaged satellite pixels by interpreting a pre-selection through high-resolution18

images of the area of interest. An example of this method is shown in Supplementary Figure S8. The19

pre-selection was done by calculating the mean µ and standard deviation σ of the change in NDVI for20

the pixels that showed NDVI values of > 0.4 in 2018. Satellite pixels needed a minimum of 75% healthy21

forest pixels in 2018. Pixels showing a negative change of < 2σ from the mean change were pre-classified22

as ‘damaged,’ and pixels showing a positive, neutral, or negative change > σ from the mean change23

in NDVI were classified as ‘intact.’ We ended up with a pre-selection of 649 damaged and 2834 intact24

pixels. We selected the pixels in a random sampling for optical selection of the validation dataset from25

200 pixels per class, regularly distributed along the test site. We optically decided if the canopy showed26

significant (> 50% of the pixel area) damage to the canopy in 2020 or was optically intact and healthy.27

The criteria to be selected for the reference were an intact canopy in 2018 and, if visible, no roads in28
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Supplementary Figure S8: Graphical representation of a pre-selected pixel as displayed for optical
selection. The pixel shown here was classified as ’damaged’ in pre-selection and the optical selection
processes. The requirements for the classification were an intact canopy in 2018 and evident damage to
the canopy in 2020. Furthermore, the same section should be identifiable and recognizable without, for
example, overly large shadows.

proximity. Additionally, the canopy should be visible, with no large-area shadow effects or similar in29

either year. Based on these criteria, we selected 150 damaged and 121 intact pixels, which were used to30

validate the 2020 drought resilience. We validated using a standard confusion matrix with dead pixels31

classified as having resilience < 15% and a t-test with continuous resilience values.32

From a pre-selection based on NDVI values, groups of damaged and non-damaged (‘intact’) areas were33

identified in 2020 compared to 2018. Visually damaged areas showed a different drought response than34

non-damaged areas. Welch’s t-test indicates a significant difference between the groups (Supplementary35

Figure S9). For damaged pixels, we achieved a user’s accuracy of 97.26% and a producer’s accuracy36

of 94.67%. The user’s accuracy for intact pixels was 97.87%, and the producer’s accuracy was 76.03%.37

The comparably low producer’s accuracy for intact pixels can be explained by the validation dataset,38

including visible damage. Trees that suffered greatly during the drought might show a reduction in water39

content and LAI but might not show visible damage in the validation dataset.40
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Supplementary Figure S9: Boxplots showing the validation results for the two classes ’damaged’ and
’intact.’

2 Multi-scale analysis41

We tested for scale effects using different radii (60 m, 120 m, and 240 m) to derive diversity metrics,42

resulting in different calculation areas ranging from 1.1 ha to 18.1 ha (see Supplementary Table S5). The43

three calculation radii were selected as approximations for the calculations in 100 m, 250 m, and 500 m,44

which were assumed to be relatively large ecosystem scales and landscape scales [5, 6, 7].45

Supplementary Figure S10 shows the change in drought response with trait-based diversity at the three46

different scales of calculation 1.13 ha, 4.5 ha, and 18 ha. Functional richness results in higher values when47

derived from a larger calculation area, as it is directly affected by the number of data points [8]. Although48

the value ranges change, the qualitative relationship is constant across the scales. Functional evenness49

shows a smaller range of values at a large grid. The evenness–resistance relationship shows a less clear50

hump shape at larger scales, mainly due to the lower value range of low evenness values. Besides these51

observations, resilience shows a clear relationship with evenness at all calculation scales. However, this52

relationship is less clear due to the smaller value range and more outliers.53

Supplementary Table S5: The three different calculation radii and resulting area.

Radius 60 m 120 m 240 m
# Pixels 28.3 p 113.1 p 452.39 p
Area 1.131 ha 4.524 ha 18.096 ha
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Supplementary Figure S10: Change in RST, RCV, and RSL by quantiles of functional richness (top)
and functional evenness (bottom) defined classes with absolute mean values of respective class and by
calculation area (1.1 ha – 4.5 ha, dark to light color). The values of diversity ranking (mean per bin) are
sorted from low to high.
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