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Abstract 8 

Quantifying temporal and spatial variation in animal population size and demography is a 9 

central theme in ecological research and important for directing management and policy. 10 

However, this requires field sampling at large spatial extents and over long periods of time, 11 

which is not only prohibitively costly but often politically untenable. Participatory 12 

monitoring programs (also called citizen science programmes) can alleviate these 13 

constraints by recruiting stakeholders and the public to increase the spatial and temporal 14 

resolution of sampling effort and hence resulting data. While the majority of participatory 15 

monitoring programs are limited by opportunistic sampling designs, we are starting to see 16 

the emergence of structures citizen science programs that employ trained volunteers to 17 

collect data according to standardized protocols. Simultaneously, there is much ongoing 18 

development of statistical models that are increasingly more powerful and able to make 19 

more efficient use of field data. Integrated population models (IPMs), for example, are able 20 

to use multiple streams of data from different field monitoring programmes and/or 21 

multiple aspects of single datasets to estimate population sizes and key vital rates. Here, we 22 

developed a multi-area version of a recently developed integrated distance sampling model 23 

(IDSM) and applied it to data from a large-scale participatory monitoring program – the 24 

“Hønsefuglportalen” – to study spatio-temporal variation in population dynamics of willow 25 

ptarmigan (Lagopus lagopus) in Norway. We constructed an open and reproducible 26 



workflow for exploring temporal, spatial (latitudinal, longitudinal, altitudinal), and residual 27 

variation in recruitment, survival, and population density, as well as relationships between 28 

vital rates and relevant covariates and signals of density dependence. Recruitment rates 29 

varied more across space than over time, while the opposite was the case for survival. 30 

Slower life history patterns (higher survival, lower recruitment) appeared to be more 31 

common at higher latitudes and altitudes, portending differential effects of climate change 32 

on ptarmigan across their range. While there was variation in the magnitude of the effect 33 

small rodent occupancy had on recruitment, the relationships were predominantly positive 34 

and thus consistent with the alternative prey hypothesis. Notably, the accurate estimation 35 

of covariate effect was only made possible by integrating data from several monitoring 36 

areas for analysis. Our study highlights the potential of participatory monitoring and 37 

integrated modelling approaches for estimating and understanding spatio-temporal 38 

patterns in species abundance and demographic rates, and showcases how corresponding 39 

workflows can be set up in a reproducible and semi-automated way that increases their 40 

usefulness for informing management and regular reporting towards national and 41 

international biodiversity frameworks. 42 

  43 



Introduction 44 

There is growing demand for biodiversity indicators from international unions, national 45 

governments, local management bodies, and corporate and industry actors. Indicators 46 

should ideally represent a wide range of biodiversity’s states and functions (e.g. Essential 47 

Biodiversity Variables, Pereira et al. 2013; Jetz et al. 2019), yet the development of suitable 48 

indicators for certain attributes, such as species abundance and demography, has been 49 

more difficult than for others (Schmeller et al. 2018; Waldock et al. 2022). This is at least 50 

partially due to challenging requirements regarding spatial scales of useful biodiversity 51 

indicators. On one hand, indicators need to be representative at large geographic scales, for 52 

example, in the context of countries’ reporting towards biodiversity targets (e.g. Feld et al. 53 

2009). On the other hand, indicators also ideally have good spatial resolution, as the scales 54 

relevant for local-level management and planning are often much smaller (Stevenson et al. 55 

2021). This latter requirement is particularly crucial for infrastructure development 56 

strategies and for species management and conservation, both of which tend to require 57 

knowledge on species abundance and population dynamics (i.e. demographic rates) that is 58 

relevant for county- or municipality-level decision making (Christie et al. 2020). Another 59 

reason why abundance and population indicators ideally come with good spatial resolution 60 

is that there can be substantial amounts of variation in population dynamics and life history 61 

of species across space (e.g. Robinson, Morrison, and Baillie 2014; Horswill et al. 2019). 62 

This variation needs to be accounted for to develop successful and sustainable strategies for 63 

area use, harvest management, and species and biodiversity conservation (Williams, 64 

Nichols, and Conroy 2002). 65 

While large-scale, spatially-explicit indicators for species abundance and populations are 66 

clearly needed, development and practical implementation are greatly limited due to the 67 

reliance of such indicators on the availability of data from large-scale, long-term monitoring 68 

programmes (Proença et al. 2017). Consequently, many countries have been working on 69 

setting up, maintaining, and improving such monitoring programmes over the last decades. 70 

Many now well-established programmes focus on breeding birds and butterflies, and 71 

examples include the North American Breeding Bird Survey 72 



(https://www.pwrc.usgs.gov/bbs/), the PanEuropean Common Bird Monitoring Scheme 73 

(https://pecbms.info/), the UK Butterfly Monitoring Scheme (https://ukbms.org/), the 74 

Game and Wildlife Conservation Trust Partridge Count Scheme (Aebischer and Ewald 75 

2010), and the Swiss Biodiversity Monitoring (https://www.biodiversitymonitoring.ch/). 76 

There is a natural trade-off between quality and quantity of data that can be collected in any 77 

monitoring programme: collecting high quality data in a structured manner is costly, 78 

requires trained specialists, and hinges on a sufficient degree of top-down control of the 79 

programme. This often limits the amount of data that can be collected, while participatory 80 

monitoring, i.e. the collection of ecological data by members of the public (also called citizen 81 

or community science, Fraisl et al. 2022), allows to greatly reduce costs and extend spatial 82 

and taxonomic scales of monitoring at the expense of data quality and risk of bias (Johnston, 83 

Matechou, and Dennis 2023). Consequently, many large-scale monitoring programmes are 84 

often limited to presence(-absence) or very simple count observations, making them 85 

suitable for the development of indicators of species distributions and perhaps population 86 

trends, but usually not of abundance, population dynamics, and demographic rates 87 

(Dickinson, Zuckerberg, and Bonter 2010; Johnston, Matechou, and Dennis 2023). The 88 

exception here are monitoring programmes that succeed in making use of a large number of 89 

volunteers that have been trained to collect data and record metadata in a structured 90 

manner and according to a carefully designed protocol. For example, in the United States 91 

hunters participate in the collection of bands and wings from harvested American 92 

Woodcock (Scopolax minor) to estimate survival and age ratios (Zimmerman et al. 2010). At 93 

the European level, the recently established initiative “European Observatory of Wildlife” is 94 

offering common field- and analyses protocols and aims to establish a network of 95 

“observation points” for monitoring wildlife populations at the European level 96 

(https://wildlifeobservatory.org/). In Norway there is a monitoring programme for 97 

terrestrial game bird species called “Hønsefuglportalen” (= “game bird portal”, 98 

https://honsefugl.nina.no/Innsyn/en). It is a line transect survey programme carried out 99 

annually in >120 localities across the country (>2000 transects) by trained volunteers using 100 

pointing dogs. The programme has a well developed protocol for recording bird 101 

observations, auxiliary data, and relevant metadata and established routines for quality 102 

https://www.pwrc.usgs.gov/bbs/
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control and annual releases of publicly available data via the Global Biodiversity 103 

Information Facility (GBIF). As such, it is particularly well suited to become part of a 104 

workflow for producing and updating abundance and population indicators on an annual 105 

basis. 106 

The line transect data from “Hønsefuglportalen” has been used previously for estimating 107 

abundance trends of willow ptarmigan (Lagopus lagopus) across Norway (e.g. Bowler et al. 108 

2020; Nilsen and Rød-Eriksen 2020), and to test a range of relevant ecological hypotheses 109 

(Bowler et al. 2020; Breisjøberget, Odden, Wegge, et al. 2018). However, large-scale 110 

estimation of demographic rates underlying abundance trends has thus far remained as 111 

untapped potential of the dataset. Nilsen and Nater (2024) recently developed a novel 112 

integrated distance sampling model (IDSM) which successfully uses the age of individuals 113 

detected along line transects data coupled with radio-telemetry data to jointly estimate 114 

abundance, survival, and recruitment across years. In this study, we adapt and extend the 115 

model of Nilsen and Nater (2024) to run not just on a single site but on all areas with 116 

publicly available line transect data from “Hønsefuglportalen” simultaneously. Unlike 117 

several previous studies applying integrated models for population dynamics to multiple 118 

(sub-) populations separately and comparing results (e.g. Robinson, Morrison, and Baillie 119 

2014; Nater et al. 2023), we opt for an approach explicitly integrating across space, thus 120 

allowing for sharing of information across locations and – in effect – space-for-time 121 

substitution (e.g. Horswill et al. 2019; Morrison et al. 2022). We then apply the resulting 122 

multi-area IDSM to “Hønsefuglportalen” data on willow ptarmigan to estimate population 123 

size, age-structure, survival, recruitment, and impacts of small rodent occupancy across 41 124 

reporting districts and 15 years (2007-2021) for this culturally important small-game 125 

species. We further embed the modelling workflow in a reproducible, semi-automated 126 

pipeline that will greatly facilitate the repeated calculation of abundance and population 127 

indicators at different spatial scales as new data are added every year. 128 

  129 



Methods 130 

Study species 131 

The willow ptarmigan is a tetraoid bird with a circumpolar distribution, mainly inhabiting 132 

sub-alpine and arctic ecosystems (see e.g. Fuglei et al. 2020). While the species is currently 133 

listed as Least Concern (LC) both in the global and Norwegian Red List of Species, it has 134 

undergone rather dramatic declines in abundance in Norway since the turn of the 20th 135 

century (Hjeljord and Loe 2022). The main reason for the long-term decline in abundance 136 

remain unresolved, but the willow ptarmigan are considered sentinel species that are 137 

sensitive to both climate change and land use changes (John-André Henden et al. 2017; 138 

Storch 2007). Moreover, being one of only a handful of bird species that spend the winter in 139 

mountain ecosystems in Scandinavia, they are important components of the ecosystem as 140 

prey species for resident predators, such as the gyrfalcon (Franke et al. 2020). The willow 141 

ptarmigan has a relatively fast pace of life (Sandercock, Martin, and Hannon 2005; Steen H. 142 

and Erikstad 1996), and can display substantial spatio-temporal variation in demographic 143 

rates (Bowler et al. 2020). Their population dynamics are characterized by large inter-144 

annual fluctuations in abundance (Hjeljord and Loe 2022), and previous research has tied 145 

these fluctuations to rodent cycle through shared predators (Hagen 1952; Bowler et al. 146 

2020). This tight relationship between the breeding success of ground nesting birds and the 147 

rodent cycle is known as the Alternative Prey Hypothesis (APH) and has been a central part 148 

of research on Fennoscandian grouse population dynamics for many decades (Elton 1942; 149 

Hagen 1952; Linden 1988; J. B. Steen et al. 1988). In addition, spring weather conditions 150 

and phenology is known to have considerable effects on breeding success and recruitment 151 

rates (Eriksen et al. 2023; J. B. Steen et al. 1988). Across their distributional range, willow 152 

ptarmigan are an iconic species with a high cultural value, partly linked to their popularity 153 

as game species. The latter means that information about spatio-temporal variation in 154 

demographic rates and population dynamics is particularly important in order to design 155 

sustainable harvest strategies (Eriksen et al. 2023). In addition, being a sentinel species, the 156 

willow ptarmigan is well suited as an indicator species for ecosystem status; in Norway it is 157 

included in both the main national biodiversity (Nature Index for Norway, Jakobsson and 158 



Pedersen 2020, https://www.naturindeks.no/Indicators/lirype) and ecosystem condition 159 

(Assessment of the Ecological Condition, Framstad et al. 2022) assessments. 160 

Data collection, management, and preparation 161 

Line transect sampling 162 

The line transect survey data were collected through a structured participatory monitoring 163 

program called “Hønsefuglportalen” (https://honsefugl.nina.no/Innsyn/en). In the first 164 

three weeks of August each year, trained volunteer fieldworkers collect observations of 165 

willow ptarmigan and other grouse species (rock ptarmigan Lagopus muta, black grouse 166 

Lyrurus tetrix, and capercaillie Tetrao urogallus) along predefined line transects. To 167 

increase the detection probability, fieldworkers use pointing dogs to locate the birds. A 168 

survey team typically consist of at least two people (one dog handler and one person 169 

responsible for following the transect line) and one dog. Often, more than one dog is used 170 

for a survey, but only one dog should be used at a time. The transect lines vary in length, but 171 

are typically between 1 and 8 km (range: 0.3-16.2 km, median: 3 km). When birds are 172 

observed, the exact location of observation is reported, along with its perpendicular 173 

distance from the transect line, as well as the age and sex of the birds. An observation 174 

typically includes 1 - 12 birds (mean = 5.6), with groups > 1 typically representing one 175 

brood (female and or male with young-of-the-year chicks). When the surveys are conducted 176 

in August, the chicks of the year are able to fly but can be distinguished from older birds as 177 

they are still of smaller body size. Since 2019, most of the data has been collected using a 178 

mobile app tailored to the monitoring program, where the field workers can register and 179 

get access to the transect lines allocated to them by the local organizers. Prior to 2019, data 180 

were collected on a dedicated fieldwork form, and entered manually in a web portal 181 

afterwards. After field data has been registered, it undergoes several steps of quality control 182 

carried out by local stakeholders and personnel from the Norwegian Institute for Nature 183 

Research (NINA). Surveys are carried out on both public and private land. After an initial 184 

embargo period, all data from public land are published and made freely available as a 185 

sampling-event data set on GBIF (https://www.gbif.org/sampling-event-data). The 186 

published datasets contain both metadata about the transect surveys (survey date, line 187 

https://www.naturindeks.no/Indicators/lirype
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transect length and location, study area ID, etc.) and bird observation data (species, number 188 

of birds of different categories (adult males, adult females, juveniles, and birds of unknown 189 

category), perpendicular distance to transect line, exact location, and time of observation). 190 

Formally, the data from public land is published as three distinct data sets, one for each of 191 

the main public land administrators (Statskog, FeFo and Fjellstyrene, respectively). 192 

Notably, the program is not designed as a centralized national monitoring programme, but 193 

rather a collection of local and regional survey programs. All involved survey areas use a 194 

common field protocol and data collection model. In addition, the local study designs are 195 

reviewed by staff at NINA, and common recommendations for study design are provided. 196 

However, because participation by stakeholders is voluntary, the spatial distribution of 197 

transects and sampling effort is not homogeneous across space. In general, sampling effort 198 

is higher in South-Eastern and Central Norway, intermediate in Northern Norway, and low 199 

in Western and Southern Norway. 200 

In this study we used all publicly available data for the period 2007-2021, which included a 201 

total of 2225 transects in 41 different reporting districts spanning 9 counties and 50 202 

municipalities. Transects on which no willow ptarmigan were observed during the study 203 

period (i.e. species absence likely due to low habitat suitability) were not included. After 204 

this initial filtering, a total of 2077 transects were included in the analyses. 205 

Radio-telemetry study in Lierne 206 

The model of Nilsen and Nater (2024) integrated line transect data with radio-telemetry 207 

data from from an ongoing field study of marked willow ptarmigans in Lierne municipality 208 

in Central Norway. From 2015 to 2019, around 50 birds were captured in winter (late 209 

February or early March) each year and fitted with VHF collars. The marked birds were 210 

then monitored on a regular basis until they either i) died, ii) their transmitter’s battery 211 

stopped working, or iii) we lost contact with the bird for other reasons. For most of the 212 

year, the birds were monitored at least once a month by radio triangulation. Most of the 213 

fieldwork was conducted from the ground, but to avoid data gaps, the birds were also 214 

triangulated from helicopters in May, September, and November. During the breeding and 215 

chick-rearing season (May to July) birds were monitored more often, and during December 216 



and January we obtained fewer observations due to challenging field work conditions. A 217 

proportion of the birds were harvest annually in the regular recreational harvest, and birds 218 

that were harvested were reported as shot to the field personnel. In addition, as the collars 219 

had mortality switch, we were also able to locate and retrieve a high proportion of birds 220 

that died for natural causes, resulting in a known-fate mark-recapture dataset. The radio-221 

telemetry study is described in detail in Israelsen et al. (2020) and in Arnekleiv et al. 222 

(2022). 223 

In this study we used data from years 2015 - 2020, and the total sample size across these 224 

years was 139 birds for the Aug-Jan period and 258 birds for the Feb-Jul period. 225 

Rodent occupancy data 226 

As part of the line transect sampling (see above), observers are also requested to report 227 

whether they have seen any small rodents while surveying a transect. For each transect 228 

survey, this information is recorded as 1’s (small rodents spotted at least once) and 0’s (no 229 

small rodents spotted). We aggregated this data into area- and year-specific rodent 230 

occupancy covariates by averaging the 0 and 1 reports for all transect surveys within a 231 

given area and year and subsequently z-standardizing values. We note that while we refer 232 

to the covariate as “rodent occupancy” throughout the manuscript, it can be interpreted as 233 

an index for rodent abundance. 234 

National-scale integrated model 235 

Integrated distance sampling model (IDSM) for willow ptarmigan 236 

Nilsen and Nater (2024) recently developed an integrated distance sampling model (IDSM) 237 

which jointly analyses line transect and radio-telemetry data and applied it to willow 238 

ptarmigan in the Western part of Lierne municipality in Norway. The model consists of a 239 

population model with two age classes (juveniles and adults) and four data likelihoods: 1) 240 

likelihood for observation distances from transect lines for estimating detection 241 

probability; 2) likelihood for age-specific counts on transect surveys for estimating 242 

numbers of juveniles and adults present; 3) likelihood for juvenile to adult ratios observed 243 

at the locality level to provide estimate recruitment rate (as juveniles/adult); and 4) 244 



likelihood for known-fate telemetry data to estimate seasonal and annual survival. Below, 245 

we describe our new extension of this model to include data from several areas as opposed 246 

to just one. For more detailed information on the single-site model, including tests of model 247 

performance, see Nilsen and Nater (2024). 248 

Multi-area model extension 249 

For applying the ptarmigan IDSM across all 41 reporting districts we included an area index 250 

in all model parameters (Figure 1) and enabled sharing of information among areas by 251 

explicitly modelling spatial variation alongside shared temporal and residual variation in 252 

vital rates and detection parameters. 253 

 

Figure 1: Simplified graphical representation of the ptarmigan life cycle with two age classes 

and the data sources included in the integrated distance sampling model. The pink “x”’s 

indicate the added dimension for area. Juv[x,t] = juveniles in area x year t. Ad[x,t] = adults in 

area x in year t. R[x,t] = recruitment rate in area x in year t. S[x,t] = survival probability from 

year t to t+1 in area x. Note that the additional site (=transect) dimension, “j”, is omitted for 

the sake of illustration. 



The spatially-explicit formulation of the two age-class population model can be written as: 254 

𝐷𝑗𝑢𝑣,𝑥,𝑗,𝑡+1 = 𝐷𝑎𝑑,𝑥,𝑗,𝑡+1 ∗ 𝑅𝑥,𝑡+1

𝐷𝑎𝑑,𝑥,𝑗,𝑡+1 = 𝑆𝑥,𝑡 ∗ (𝐷𝑗𝑢𝑣,𝑥,𝑗,𝑡 +𝐷𝑎𝑑,𝑥,𝑗,𝑡)
 255 

Here, 𝐷𝑗𝑢𝑣,𝑗,𝑥,𝑡 and 𝐷𝑎𝑑,𝑗,𝑥,𝑡 are the densities of juvenile and adult ptarmigan in survey site (= 256 

transect) 𝑗 of area 𝑥 in year 𝑡, respectively. Both juveniles and adult survive from year 𝑡 to 257 

𝑡 + 1 with an area- (𝑥) and year- (𝑡) specific survival probability 𝑆𝑥,𝑡, and survivors produce 258 

the next generation of juveniles according to an area- and year-specific recruitment rate 259 

(𝑅𝑥,𝑡). 260 

The initial densities, 𝐷𝑗𝑢𝑣,𝑥,𝑗,1 and 𝐷𝑎𝑑,𝑥,𝑗,1 are modelled for each site (= transect) as random 261 

realizations of log normal distributions with area-specific log means (𝜇𝑥
𝐷1) and log standard 262 

deviations (𝜎𝑥
𝐷1). Survival (𝑆𝑥,𝑡) and recruitment (𝑅𝑥,𝑡), on the other hand, are assumed to 263 

be the same for all sites 𝑗 within a given area 𝑥 and were modelled as: 264 

𝑙𝑜𝑔𝑖𝑡(𝑆𝑥,𝑡) = 𝑙𝑜𝑔𝑖𝑡(𝜇𝑆) + 𝜀𝑥
𝑋.𝑆 + 𝜀𝑡

𝑇.𝑆 + 𝜀𝑥,𝑡
𝑅.𝑆

𝑙𝑜𝑔(𝑅𝑥,𝑡) = 𝑙𝑜𝑔(𝜇𝑅) + 𝛽𝑥 ∗ 𝑟𝑜𝑑𝑒𝑛𝑡𝑂𝑐𝑐𝑥,𝑡 + 𝜀𝑥
𝑋.𝑅 + 𝜀𝑡

𝑇.𝑅 + 𝜀𝑥,𝑡
𝑅.𝑅

 265 

The global means ,𝜇, and the normally distributed spatial random effects, 𝜀𝑋, represent the 266 

equivalent of what is elsewhere referred to as “hyper-parameter distributions” for sharing 267 

information on demographic rates across areas (e.g. Horswill et al. 2019, 2021). We also 268 

used this same approach for defining the area-specific effects (𝛽𝑥) of local yearly rodent 269 

occupancy (𝑟𝑜𝑑𝑒𝑛𝑡𝑂𝑐𝑐𝑥,𝑡) on recruitment. In addition to spatial variation in survival and 270 

recruitment, we also included large-scale temporal variation through random year effects 271 

that were shared by across all areas (𝜀𝑡
𝑇) and otherwise unaccounted for variation through 272 

year- and area-specific residual random effects (𝜀𝑥,𝑡
𝑅 ). Spatial, temporal, and residual 273 

random effects were modelled as normally distributed with globally defined (= shared) 274 

standard deviations. 275 

The three likelihoods for data resulting from the line transect sampling (observation 276 

distances, age-specific counts, and juvenile to adult ratios, see above) were also formulated 277 

as spatially explicit, with year- and area-specific distance sampling detection parameters 278 

modelled in the same way as survival and recruitment (except the effect of rodent 279 



occupancy, Figure 1). For the known-fate telemetry data (and the seasonal decomposition 280 

of survival estimated from it), on the other hand, we did not add an additional area 281 

dimension as this data was only available for on study area (the Lierne area). 282 

Model implementation 283 

We implemented our multi-area IDSM in a Bayesian framework using NIMBLE version 1.0.1 284 

(Valpine et al. 2017) in R version 4.3.1 (R Core Team 2023). For the likelihood for line 285 

transect observation distances we used a custom half-normal distribution developed by 286 

Michael Scroggie in the “nimbleDistance” package 287 

(https://github.com/scrogster/nimbleDistance). We used non-informative uniform priors 288 

for all parameters, but used biologically sensible boundaries where possible. We simulated 289 

complete sets of initial values for all model nodes prior to model running and using pre-290 

defined seeds to ensure reproducibility. Using NIMBLE’s standard samplers, we then ran 5 291 

MCMC chains of 150k iterations each. We discarded the first 75k samples of each chain as 292 

burn-in, and thinned the remainder by a factor 25, resulting in a final joint posterior 293 

containing a total of 5 x 3k = 15k samples (note that high thinning rates were necessary to 294 

constrain memory load of the joint posterior, which included 314568 monitored 295 

parameters). 296 

Post-hoc variance decomposition 297 

Following model fitting, we calculated posterior distributions for the proportions of 298 

variance in survival probabilities, recruitment rates, and detection decay explained by 1) 299 

spatial variation (𝑣𝑎𝑟𝑎𝑟𝑒𝑎), 2) temporal variation (𝑣𝑎𝑟𝑦𝑒𝑎𝑟), 3) residual variation 300 

(𝑣𝑎𝑟𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙), and 4) variation in rodent occupancy (𝑣𝑎𝑟𝑟𝑜𝑑𝑒𝑛𝑡). To obtain the proportion 301 

variance explained by each of the component, we divided it by the sum of all the 302 

components (𝑣𝑎𝑟𝑎𝑟𝑒𝑎 + 𝑣𝑎𝑟𝑦𝑒𝑎𝑟 + 𝑣𝑎𝑟𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 + 𝑣𝑎𝑟𝑟𝑜𝑑𝑒𝑛𝑡). The spatial, temporal, and 303 

residual variance components were defined as the square of the estimated corresponding 304 

random effects standard deviation from the model while 𝑣𝑎𝑟𝑟𝑜𝑑𝑒𝑛𝑡 was calculated as the 305 

variance of all area- and year-specific 𝛽𝑥 ∗ 𝑟𝑜𝑑𝑒𝑛𝑡𝑂𝑐𝑐𝑥,𝑡 products. This approach for  306 

https://github.com/scrogster/nimbleDistance


variance decomposition is equivalent to that used by Nater et al. (2018) and inspired by 307 

Nakagawa and Schielzeth (2013). 308 

Reproducible workflow with 309 

“targets” 310 

Reproducibility and ease of repeating 311 

analyses was a key focus when developing 312 

the multi-area IDSM. To that end, we set 313 

up the workflow as a “targets pipeline”, 314 

implemented through the R package 315 

“targets” (Landau 2021). The pipeline 316 

contains a variety of options for 317 

controlling modelling decisions in the 318 

workflow such as the year range of data to 319 

consider, the level of spatial aggregation 320 

(i.e. reporting district vs. survey locality), 321 

whether to model time variation in 322 

survival and/or effects of rodent 323 

occupancy, whether to run MCMC chains 324 

sequentially or in parallel, etc. A visual 325 

representation of the pipeline is also 326 

displayed in Figure 2 and for more details 327 

on pipeline implementation and options, 328 

we refer the reader to the GitHub 329 

repository: 330 

https://github.com/ErlendNilsen/OpenPo331 

p_Integrated_DistSamp. 332 

  333 

 

Figure 2: Graphical representation of the “targets 

pipeline” for the multi-area modelling setup. 

Upward facing triangles are functions, downward 

facing triangles are general options/arguments, 

circles are objects and outputs (=“targets”) created 

as part of the workflow. 

https://github.com/ErlendNilsen/OpenPop_Integrated_DistSamp
https://github.com/ErlendNilsen/OpenPop_Integrated_DistSamp


Results 334 

All numerical results in the following are presented as median [95% credible interval] 335 

unless otherwise indicated. Posterior summaries (median, 95% credible interval, mean, 336 

standard deviation, coefficient of variation) for all main parameters are also provided in the 337 

supplementary file “PosteriorSummaries_byAreas.csv”. Supplementary figures (SFs) are 338 

provided as .pdf files with captions in “SuppFigures_Captions.txt”; all files are deposited on 339 

OSF (https://osf.io/7326r/). 340 

Population density 341 

Only during the most recent four years (2018-2021) has data been collected regularly for 342 

all reporting areas included in the analyses. During this period, estimated population 343 

densities varied between 2.205 [1.551, 3.097] birds/km2 in the area “Statskog og Klinga 344 

utm.” close to the coast in central Norway to 55.85 [51.699, 60.003] birds/km2 in “Ålen og 345 

Haltdalen Fjellstyre” further south near the Swedish border. In general, recent population 346 

density appeared to be lowest in the northern Norway and highest in the eastern part of 347 

central Norway (Figure 3 (a)). Uncertainty in density estimates was relatively consistent, 348 

with a few areas (including the one with the lowest estimated density, “Statskog og Klinga 349 

utm.”) sticking out by having substantially less precise estimates (Figure 3 (b)). Populations 350 

fluctuated substantially over time in any given area (SF “TimeSeries_popDens1.pdf”) and 351 

some years seemed to be indicative of relatively high (e.g. 2011, 2014, 2018) or low 352 

(e.g. 2012, 2015) densities across a substantial number of areas. 353 

https://osf.io/7326r/


  

(a) Median density estimates (b) Uncertainty in density estimates 

Figure 3: Median (a) and coefficient of variation (standard deviation / mean) (b) of posterior 

estimates of average ptarmigan density in the four most recent years (2018-2021) across 41 

reporting areas (summarised at the municipality level) in Norway. Darker colors indicate 

higher median values and higher uncertainty. 

Population growth rate 354 

Average population growth rates over the last four years (2018-2021) ranged from 355 

moderate declines (0.718 [0.639, 0.923] in the “Kongsvoll” area) to > 50% increase (1.553 356 

[1.262, 1.961] in the “Statskog og Klinga utm.” area). In the majority of reporting areas (24 357 

out of 41), populations of willow ptarmigan have been increasing over the period 2018-358 

2021 (Figure 4). Some areas – predominantly in central Norway – also had declining 359 

populations, but many of those declines followed upon periods of increase between the 360 

start of data collection in 2007 and sometime between 2016 and 2018 (SF 361 

“TimeSeries_popDens1.pdf”). 362 



  

(a) Median population growth rate estimates (b) Uncertainty in population growth rate 
estimates 

Figure 4: Median (a) and standard deviation (b) of posterior estimates of average annual 
population growth rate over the four most recent years (2018-2021) across 41 reporting 
areas (summarised at the municipality level) in Norway. In a), pinkish colors indicate 
declining populations while greenish colors indicate growing populations (white = stable 
populations). In b) darker colors indicate higher uncertainty. 

 363 

The highest recent population growth rates were estimated for areas with relatively low 364 

recent population densities across latitudes but we did not find evidence for a strong 365 

association between population growth rates and population densities overall (Figure 5 A). 366 



 

Figure 5: Posterior summaries (points = posterior medians, lines = 95% credible intervals) of 

area-specific population growth rate vs. population density over the four most recent years 

(2018-2021, A), recruitment rate vs. survival probability (B) and rodent effect on recruitment 

along a longitudinal gradient (C). Color indicates latitude of the midpoint of each area. 

Survival probabilities and recruitment rates 367 

Annual survival probabilities ranged from 0.34 [0.265, 0.431] (area “Statskog og Klinga 368 

utm.”) to 0.453 [0.362, 0.569] (area “Eidfjord Fjellstyre”) across reporting areas in Norway, 369 

with the highest values occurring in the far north and in the mountains in the south 370 

(Figure 6 (a)). The global average survival probability across all areas and years (𝜇𝑆) was 371 

estimated at 0.4 [0.347, 0.459]. Spatial variation in survival (random effect SD = 0.169 372 

[0.079, 0.28]) was relatively low compared to temporal (0.548 [0.291, 1.042]) and residual 373 

(0.636 [0.577, 0.703]) variation. 374 

Recruitment rates varied between 1.701 [1.404, 2.02] (area “Gausdal Fjellstyre”) and 3.229 375 

[2.6, 4.018] (area “Statskog og Klinga utm.”) and displayed a spatial pattern opposite to that 376 



of annual survival, i.e., lower recruitment rates co-occurring with higher survival rates and 377 

vice-versa (Figure 6 (b); Figure 5 B). Across all areas and years, average recruitment rate 378 

was 2.383 [2.155, 2.835]. Unlike for survival, the model predicted similar magnitudes of 379 

spatial and temporal variation (random effect SDs of 0.167 [0.126, 0.233] and 0.121 [0.069, 380 

0.205], respectively), and about twice as much residual variation (0.331 [0.307, 0.356]). 381 

  

(a) Median survival probabilities (b) Median recruitment rates 

Figure 6: Posterior medians of average annual survival probabilities (a) and recruitment rates 

(b) across 41 reporting areas (summarised at the municipality level) in Norway. Darker colors 

indicate higher median values. Measures for corresponding uncertainty in estimates are 

visualized in SFs “Avg_pSurv_Map.pdf” and “Avg_rRep_Map.pdf” for survival and recruitment, 

respectively. 

 382 

The MCMC chains for many of the area-specific average survival probabilities and 383 

recruitment rates, as well as for the global averages for both vital rates, were mixing rather 384 

poorly. Despite that, mixing was good and resulting posteriors well defined for the area- 385 



and year-specific estimates of survival and recruitment (SF “PostDens_tS_tR.pdf”). There 386 

was substantial variation in both vital rates across time (SFs “TimeSeries_pSurv.pdf” and 387 

“TimeSeries_rRep.pdf”). In a substantial number of areas, the years 2011, 2014, and 2018 388 

not only supported high population densities (see above) but were also characterized by 389 

both high recruitment and low subsequent survival.  The overall low density years 2012 390 

and 2015, conversely, often featured lower recruitment and, in some cases, higher survival. 391 

Notably, there were also years with very little spatial synchrony, i.e. very different relative 392 

yearly survival probabilities and recruitment rates (e.g. 2010 and 2020 for survival and 393 

2013, 2016, and 2017 for recruitment). 394 

Effects of rodent occupancy 395 

The model predicted a positive global effect of rodent occupancy on recruitment rate 396 

(average slope on the log scale = 0.067 [-0.004, 0.124]). Nonetheless, spatial variation in the 397 

rodent effect was substantial (random effect SD = 0.093 [0.031, 0.153]). This resulted in 398 

negative (median) effects in 4 areas, positive (median) effects in 37 areas, and a range of 399 

effect sizes from -0.031 [-0.205, 0.1] (area “Selbu Fjellstyre”) to 0.154 [0.025, 0.332] (area 400 

“Indre Finnmark”, Figure 5 C, SF “Rep_betaR.R.pdf”). The largest positive rodent effects 401 

were estimated for areas in the very North of Norway, as well as in the mountaineous 402 

regions in the central and southwestern parts of the country (SF “betaR_Map.pdf”). Effects 403 

with negative posterior medians were located mostly at intermediate latitudes, but we note 404 

that all of these had posterior distributions featuring substantial overlap with 0 (Figure 5 405 

C). 406 

Detection parameters 407 

Detection decay parameters, which determine detection probability in distance sampling 408 

surveys, varied across areas from between 69.461 [61.075, 79.231] in “Namskogan 409 

Fjellstyre” to 125.03 [109.715, 142.31] in “Engerdal Fjellstyre, resulting in detection 410 

probabilities over the transect sites ranging from 0.435 [0.383, 0.497] to 0.784 [0.688, 411 

0.892], respectively (truncation distance = 200 m) . The global average detection decay was 412 

95.668 [86.858, 105.263] (detection probability = 0.6 [0.544, 0.66]), and in general, higher 413 



values were more common in the Southern half of the country than the Northern half 414 

(SF”Avg_detect_Map.pdf”). Variation in detection over time was modest (SF 415 

“TimeSeries_pDetect.pdf”), and among-year variation in detection decay (random effect log 416 

SD = 0.144 [0.097, 0.234]) was almost identical in magnitude to spatial (0.143 [0.109, 0.19]) 417 

and residual (0.142 [0.124, 0.16]) variation. 418 

Variance decomposition 419 

The relative importance of different 420 

components for explaining parameter 421 

variation differed among recruitment 422 

rate, survival probability, and 423 

detection decay (Figure 7). The 424 

largest portion of variation in 425 

recruitment was attributed to 426 

residual variation (65.3 [53.2, 76] %), 427 

followed by spatial (16.7 [9.8, 28.5] 428 

%) and temporal (8.8 [2.9, 22.3] %) 429 

variation. Rodent occupancy, which 430 

contains both a spatial and a 431 

temporal dimension, explained 7.8 432 

[2.3, 13.6] % of the total variation. 433 

For survival, there was large 434 

uncertainty in the estimated 435 

proportions of variance explained by 436 

different components. The model 437 

predicted similar potential 438 

contributions from temporal (40.5 439 

[16.6, 71.2] %) and residual (54.7 [26.7, 80.7] %) variation and suggested that spatial 440 

variation was only responsible for 3.6 [0.9, 9.6] % of the total variance. Total variance in 441 

detection decay was attributed evenly to spatial, temporal, and residual variation at 32.8 442 

[18, 49.6] %, 33.6 [17.5, 58.6] %, and 31.9 [19.5, 45.3] %, respectively.  443 

 

Figure 7: Posterior distributions for the proportions of 
parameter variance explained by spatial (blue), 
temporal (orange), and residual (green) variation, as 
well as by effects of rodent occupancy (yellow). 



Discussion 444 

Building on the work of Nilsen and Nater (2024), we applied a novel integrated population 445 

model to data collected through a national-scale participatory monitoring programme to 446 

estimate spatial and temporal variation in demography of a culturally important game bird 447 

species, the willow ptarmigan. While our study was exploratory in nature, it recovered 448 

patterns consistent with ecological and life-history theory including trade-offs between 449 

survival and recruitment, and a tendency towards slower life histories at higher latitudes 450 

and altitudes. Space-for-time substitution also provided the statistical power necessary for 451 

the analysis to provide evidence for the alternative prey hypothesis, i.e. ptarmigans 452 

benefiting from high abundance of alternative rodent prey for their predators. Taken 453 

together, the results highlight the potential of integrating demographic data across large 454 

spatial scales in the contexts of both informing management and creating biodiversity 455 

indicators for higher-level reporting. 456 

Abundance and vital rates across space and time 457 

The wide spatial distribution of the line transect monitoring afforded us the opportunity to 458 

explore variation in population density and vital rates across a relatively large spatial 459 

extent. 460 

Ptarmigan densities across the 41 reporting districts included in our analyses varied from 461 

around 2 birds/km2 to 55 birds/km2, with the lowest densities occurring far north in the 462 

country, as well as on the west coast and in the mountains in central Norway Figure 3 (a). 463 

The same spatial pattern was also evident at the level of the demographic rates: consistent 464 

with basic life history theory (Stearns 1992), average recruitment rates were inversely 465 

related to average survival probabilities Figure 5, and the slower life histories (higher 466 

survival and lower recruitment) were more common in the northern and mountaineous 467 

parts of the country. This aligns with previous studies reporting relatively slower bird life 468 

histories in alpine / high altitude areas (e.g. Sandercock, Martin, and Hannon 2005; Bears, 469 

Martin, and White 2009; Wilson and Martin 2011; Alice Boyle, Sandercock, and Martin 470 

2016). In Norway, the northern and mountainous areas are characterized by more extreme 471 



climatic conditions, boasting cold temperatures and short growing seasons. Resulting 472 

reduced primary production limits food availability and as ptarmigan are income breeders 473 

that use food resources acquired from nesting areas to supply energy and nutrients for egg 474 

production and incubation (Sandercock, Martin, and Hannon 2005), lower carrying capacity 475 

in such areas is to be expected. 476 

We found increasing population trends over recent years in over half of the reporting 477 

districts, but population declines were also evident in some areas, particularly in the 478 

mountains in central Norway Figure 4 (a). Predominantly increasing population trends are 479 

consistent with a recent national-scale analysis by Nilsen and Rød-Eriksen (2020) which 480 

found an overall increase in the Norwegian ptarmigan population between 2009 and 2020. 481 

While we may speculate that recent population trends could be linked to changes in harvest 482 

regulations and/or climatic conditions, considering the whole time-series (2007-2021) 483 

illustrated that population densities in all areas were subject to substantial variation across 484 

years, featuring periods of stability, increase, and decrease (SF 485 

“TimeSeries_PopDens1.pdf”). In most areas, there were also strong year-by-year 486 

fluctuations in population density on top of longer-term trends. Some of the resulting “high 487 

density years” were highly synchronized across large spatial scales, such as the years 2011, 488 

2013, and 2018. Taking a closer look, we find that these are years that are characterized by 489 

high recruitment (SF “TimeSeries_rRep.pdf”), followed by a low survival the year after (SF 490 

“TimeSeries_pSurv.pdf”). This often resulted in steep population declines towards the 491 

following year. The fact that these same years also match up with observed peaks in rodent 492 

abundance in many areas, together with the largely positive effects of rodent occupancy on 493 

recruitment estimated by our model (Figure 5 C), provides evidence for the Alternative 494 

Prey Hypothesis [APH; Hagen (1952)]. The APH stipulates that high abundance of 495 

alternative prey (rodents, in this case) for common predators leads to population growth, 496 

and is well-supported throughout the literature for a range of taxa (e.g., Hagen 1952; 497 

Kjellander and Nordström 2003; Reif et al. 2001), including willow ptarmigan (Bowler et al. 498 

2020). While Nyström et al. (2006) suggested that gyrfalcons, which are specialized 499 

ptarmigan predators, do not respond to rodent populations or switch to alternative prey 500 

when ptarmigan populations are low, generalist predators, such as red foxes, are likely to 501 



shift from preying on ptarmigans to rodents when the latter become abundant (e.g. 502 

Breisjøberget, Odden, Wegge, et al. 2018; Bowler et al. 2020). Taking a spatial perspective, 503 

the highest latitude and highest altitude areas stood out once more, sporting the strongest 504 

effects of rodent occupancy (SF “betaR_Map.pdf”). This could be related to warmer areas 505 

generally having larger predator guilds, and consequently more generalists that are able to 506 

maintain relatively stable populations irrespective of small rodent abundance (Bowler et al. 507 

2020). 508 

Notably, the conclusive estimation of overall positive effects of rodent occupancy on 509 

recruitment in our model was only possible thanks to the integration and sharing of data 510 

across multiple areas. When Nilsen and Nater (2024) fit the IDSM to data from only a single 511 

area, they were unable to obtain a reliable estimate for the rodent effect due to limited 512 

statistical power. Consequently, the space-for-time substitution that comes with extending 513 

the model across multiple area allows estimation of covariate effects that otherwise cannot 514 

be estimated, and opens up for future possibilities for studying effects of not just rodents, 515 

but also other environmental drivers on ptarmigan population dynamics. Doing so may also 516 

help with better understanding the mechanisms underlying the large portion of 517 

demographic rate variation that could only be attributed to random variation so far. This is 518 

the case especially for the relatively large residual variation Figure 7 but also relevant for 519 

constant spatial and shared temporal variation. In previous work based on both marked 520 

(Eriksen et al. 2023) and unmarked birds (Bowler et al. 2020; J. A. Henden et al. 2020; 521 

Novoa et al. 2016), spring conditions has come out as an important predictor of ptarmigan 522 

recruitment rates. In general, warmer and earlier springs seem to favour earlier breeding, 523 

larger clutch sizes (Eriksen et al. 2023), and resulting higher recruitment rates measured in 524 

the late summer and early fall. Bowler et al. (2020) further reported that the strength of this 525 

relationship was not consistent in time and space, but was generally stronger in colder 526 

areas, similar to what we found for the effect of rodent occupancy here. In practice, 527 

measures representing spring conditions, such as the cover of ericaceous shrubs (a proxy 528 

for food availability) or spatially-explicit spring green up dates derived from remote-529 

sensing data, thus constitute relevant candidate covariates for future work alongside 530 

temperature. 531 



Another important determinant of vital rate variation is density dependence, in particular 532 

for exploited species like willow ptarmigan (Andrewartha and Birch 1954; Sandercock et al. 533 

2011; Aanes et al. 2002; Willebrand and Hörnell 2001). Negative density dependence has 534 

been found in several gallinaceous birds such as northern bobwhites Colinus virginianus 535 

(McConnell et al. 2018), Perdix perdix (Bro et al. 2003), and wild turkeys Meleagris 536 

gallopavo (McGhee and Berkson 2007)). For willow ptarmigan, evidence for density-537 

dependent population regulation has been mixed. Myrberget (1988), for example, observed 538 

no change in productivity despite a 50% decrease in abundance, while Pedersen et al. 539 

(2004) reported strong negative density-dependence over winter and posited that 540 

dispersal may be the vital rate that responded to changes in density most strongly. 541 

Similarly, J. A. Henden et al. (2020) reported negative density dependence when using a 542 

Gompertz-model to examine how density and a range of environmental covariates affected 543 

willow ptarmigan population dynamics in the northernmost parts of Norway. While we did 544 

not explicitly model density dependence in this study, our results can provide some 545 

preliminary insights into potential density feedbacks from both a spatial (cross-population) 546 

and a temporal (within-population) angle. Comparing average population densities and 547 

growth rate across areas did not provide evidence for strong density dependence, but there 548 

was a tendency towards the highest population growth rates appearing areas with 549 

relatively low density, and relatively low growth rates in high-density areas Figure 5. When 550 

considering density dependence across years within select areas, however, we found that 551 

higher density years were associated with higher recruitment the same year, but followed 552 

by lower apparent survival probabilities and, consequently, lower population growth rates 553 

(as determined by post-hoc Pearson correlation coefficients, supplementary file 554 

“DD_corrCoef.csv”). While this seems to support the notion of negative density-dependence, 555 

testing for this post-hoc gives results that are confounded with sampling correlation 556 

(Freckleton et al. 2006). Hence, formally modelling density-dependence, possibly using 557 

different forms and time-lags, could prove to be a promising extension of our modelling 558 

framework in the future. 559 



Implications for management and monitoring 560 

Management decisions made at the resolution of large geopolitical boundaries (e.g., 561 

Norway) run a high risk of being inadequate when there is substantial spatial variation in 562 

demographic processes and population dynamics, as is the case for willow ptarmigan. In 563 

Norway, willow ptarmigan – and small game in general – is managed at the local and/or 564 

regional scale, with rather limited national regulation beyond updating the length of the 565 

hunting season every fourth year. In effect, management system, regulation type (quota 566 

type, season length, number of licences, bag limit etc.), and quota size are governed by the 567 

local or regional stakeholders (Eriksen, Moa, and Nilsen 2018; Breisjøberget, Odden, 568 

Storaas, et al. 2018). Thus, while national estimates (abundance and/or temporal trend in 569 

abundance) might be important for red listing decisions and for setting the maximum 570 

hunting season length, remaining decisions about harvest management are taken locally. 571 

The results from our study highlight a large degree of spatio-temporal variation in both 572 

ptarmigan densities and demographic rates, suggesting that it is indeed suitable for 573 

management decisions to be spatially refined and ideally informed by up-to-date 574 

knowledge about recent “local” population processes. Accessible and easily repeatable 575 

modelling workflows, such as the one we have developed in this study, can thus become a 576 

valuable source of information for local decision-makers. 577 

Our results also provided some insights into the value, and possibly opportunities for 578 

improving the monitoring programme. First and foremost, our study demonstrates the 579 

tremendous potential lying in coordinating structured monitoring that employs common 580 

sampling protocol, training programmes, and data processing pipelines. These were indeed 581 

the prerequisites that allowed us to easily and efficiently integrate data collected across the 582 

entire country in a joint analysis, and draw inference on fine-scale spatio-temporal 583 

variation in demography and population dynamics at across a large area. While overall less 584 

variable across space and time than vital rates, differences in detection probabilities were 585 

nonetheless evident (SFs “Avg_detect_Map.pdf” and “TimeSeries_pDetect.pdf”) and may 586 

help with mapping out potential for improvement in the monitoring programme. 587 

Particularly, we found generally lower detection probabilities in the northern half of 588 

Norway. This may be related to habitat features, as the transects in the North might be to a 589 



larger extent located in birch forests and rugged terrain, which may hamper detectability. 590 

Additionally, the slower life histories in the northern areas are reflected as generally 591 

smaller bird clusters as well, and smaller clusters have previously been shown to have a 592 

lower detectability than larger ones (e.g. Bowler et al. 2020, see also next section). Our 593 

modelling framework can be easily adapted for studying the impact of these and other 594 

variables on detectability (see below). Additionally, our results could motivate taking a 595 

closer look at monitoring challenges and potential improvements in the northern part of the 596 

country in particular. Ultimately, increased detection probability would contribute to 597 

obtaining more precise estimates of both population density and demographic rates, which 598 

– in turn – would be of great value in particular in areas with relatively low population 599 

densities, low number of transects, and less years of data. 600 

Model limitations and outlook 601 

The primary focus of this work was placed on developing an effective pipeline for 602 

integrating data and modelling population dynamics across a large number of areas. 603 

Consequently, many additional opportunities for improving and refining the modelling 604 

framework itself remain. First, the precision and accuracy of model estimates might be 605 

increased through better accounting for heterogeneity and potential biases in detection of 606 

birds during the line transect surveys. In an earlier study analyzing data from the same 607 

monitoring programme, Bowler et al. (2020), found that detection probability was not 608 

independent of the size of group birds were part of, resulting in birds in larger groups being 609 

more likely to be detected, especially at larger distances. When birds are observed in larger 610 

groups, it is also not unlikely that human observers may miscount, i.e. that there is some 611 

observation error in the number reported. This could be incorporated by including an 612 

additional layer of hierarchy to the observation process (see e.g., Hamilton et al. 2018), and 613 

possibly further extended to also account for error in judging the observation distance (e.g., 614 

Marques 2004). Another potential source of bias in our IDSM is related to failure to 615 

correctly assign the age class of observed birds. Nilsen and Nater (2024) showed that 616 

incorrect age assessment can bias (relative) estimates of survival and recruitment, and 617 

while they only found a weak bias in their case study on a single area, the problem may be 618 

larger in a multi-area setting that may contain areas with different proportions of 619 



misclassified observations. If misclassification happened at random, mixture models could 620 

be used to determine the likely age class of individuals to whom no age class was assigned 621 

during observations (McCrea, Morgan, and Cole 2013). In our case, we might suspect that 622 

an observed is more likely to classify an adult bird as juvenile rather than the other way 623 

around, and more likely to assign “unknown” age class to juveniles than adults. One reason 624 

for this is that observers look for specific signs to classifying a bird as adult (e.g. size, male 625 

sound), and might default to juvenile or unknown if the signs are not clearly detected. 626 

Future studies should investigate to what degree available information on e.g. group 627 

composition could be used for this, and what kind of auxiliary data would need to be 628 

collected to reliably model misclassification error. 629 

The second (and perhaps most attractive) aspect of our modelling framework in the context 630 

of future work is its spatio-temporal hierarchical structure. While we included spatial, 631 

temporal, and residual variation in our framework here, we treated them as independent. 632 

Alternatively, spatial (and temporal) correlations among parameters can be modelled 633 

explicitly, something that is commonly done e.g. in modern species distribution models (e.g. 634 

Pacifici et al. 2017; Guélat and Kéry 2018). For demographic models, this has rarely been 635 

implemented so far, not least due to the fact that few demographic models have sufficient 636 

spatial resolution (Schaub and Kéry 2021). The ptarmigan IDSM presented in this study, 637 

however, does have sufficient resolution and our results do indeed support that there is 638 

spatial clustering in both overall and time-dependent demographic parameters (e.g. 639 

Figure 6, SFs “Avg_pSurv_Map.pdf” & “Avg_rRep_Map.pdf”). Furthermore, we did find that 640 

mixing of several of the global and area-specific intercept parameters in the current model 641 

was suboptimal, suggesting that there may be much to gain from additional structuring, as 642 

well as from development of more efficient MCMC sampling strategies for the resulting 643 

extended model. One promising framework for approaching this are conditionally 644 

autoregressive models (CARs, Ver Hoef et al. 2018). Such models have been used repeatedly 645 

for modelling spatial autocorrelation in species occupancy and demographic rates (e.g. 646 

Saracco et al. 2010, 2012; Guélat and Kéry 2018) and are straightforward to implement 647 

using NIMBLE (Lawson 2020). One possible challenge with using CAR models to explicitly 648 

model spatial correlations within our ptarmigan IDSM is that CAR models rely on 649 



“neighborhood” relationships between discrete areas and many “neighbors” are missing in 650 

our ptarmigan data (e.g. Figure 3). While estimation of latent parameters in missing areas 651 

may possible (Perry de Valpine, personal communication; Schaub and Kéry (2021) chapter 652 

19), this also provides an opportunity for inclusion of additional data. The line transect 653 

survey data included in this study constitutes just the publicly available part of the data 654 

collected through “Hønsefuglportalen” but the programme also includes additional surveys 655 

on private land. Extending to data from private land would provide better coverage 656 

especially in south-eastern and southern parts of Norway, which includes areas where only 657 

very limited amounts of data are collected on public land. Exploring to what degree 658 

additional data from Hønsefuglportalen could be included in future studies employing an 659 

extended IDSM with additional spatial structuring is therefore a worthwhile endeavor. 660 

Finally, including further data beyond the line transect surveys may be relevant in the 661 

future, and in particular in the context of informing and improving management of 662 

ptarmigan hunting. In the present study, we have used auxiliary radio-telemetry data to 663 

supplement information on survival, but since this data was available for only one out of 41 664 

areas, its influence was likely small. Nonetheless, this illustrates a way for how smaller 665 

datasets from single or subsets of areas can be integrated into a large-scale modelling 666 

framework. Other relevant data could be included using the same approach, for example 667 

data from ongoing nesting success monitoring, data from past studies of marked birds 668 

(Sandercock et al. 2011), and data from other monitoring programs for breeding birds 669 

based on point counts (see e.g. the Norwegian Breeding Bird Monitoring: 670 

https://hekkefuglovervakingen.nina.no/). The most relevant source of data to be included 671 

into the IDSM framework in the near future, however, is harvest data. Such data might be 672 

available with different spatial and temporal resolutions. First, at the municipality level 673 

there are data with national coverage collected annually by Statistics Norway 674 

(https://www.ssb.no/). Second, many public land owners have data with much higher 675 

temporal (daily) and spatial (harvest area) resolution, including both harvest bags and 676 

harvest effort (number of hunters per area per day). As the IDSM framework is, in essence, 677 

an IPM, harvest can be modelled through partitioning of survival into cause-specific 678 

mortality in the process model and inclusion of relevant harvest data likelihoods (e.g., 679 

https://hekkefuglovervakingen.nina.no/
https://www.ssb.no/


Gamelon et al. 2021; Nater et al. 2021). While harvest effects on willow ptarmigan have 680 

been studied previously, much uncertainty remains (Sandercock et al. 2011; Aanes et al. 681 

2002; Pedersen et al. 2004; Willebrand and Hörnell 2001). For example, little is known 682 

about how harvest pressure and density feedbacks interact on different temporal and 683 

spatial scales (Kvasnes et al. 2015), despite this knowledge being crucial for preventing 684 

over-exploitation and ensuring sustainable harvest (Williams, Nichols, and Conroy 2002; 685 

Breisjøberget, Odden, Storaas, et al. 2018). Additionally, harvest effects often interact with 686 

other (emergent) factors such as climate change and habitat degradation, making predictive 687 

models that account for harvest alongside other mechanisms invaluable for informing 688 

policy changes (Gamelon, Sandercock, and Sæther 2019). 689 

Reproducible workflows for a sustainable future 690 

Producing a transparent and reproducible workflow for the analysis presented here was a 691 

central objective in this study. We have done this by setting up “targets” pipeline (Landau 692 

2021), which allows (re-)running the complete workflow from downloading the publicly 693 

available data to visualizing the results produced by the IDSM Figure 2. Modern applied 694 

ecology needs research to be published not just as scientific papers, but as reproducible and 695 

well documented workflows (Lewis, Vander Wal, and Fifield 2018). This is particularly 696 

crucial for research that is (to be) closely tied to management and/or used to create 697 

biodiversity indicators that are to be reported nationally or internationally, or to be used by 698 

industrial partners (Powers and Hampton 2019). This is both because of the enhanced 699 

transparency and credibility provided by openly available reproducible workflows and 700 

because of their cost-effectiveness, which allows for more sustainable use of funding in the 701 

mid- to long-term. Finally, open and reproducible workflows facilitate collaboration and 702 

inclusion of stakeholders in the research process, paving the path for the translational 703 

science that is required for society to tackle the the biodiversity crisis (Rubert-Nason et al. 704 

2021). It is our hope that this study can serve as an example of where to start. 705 
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