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Abstract

Soil microorganisms play a critical role in shaping biodiversity dynamics in plant com-
munities. These microbial effects can arise through direct mediation of plant fitness by
pathogens and mutualists, and over the past two decades, numerous studies have shined
a spotlight on the role of dynamic feedbacks between plants and soil microorganisms as
key determinants of plant species coexistence. Such feedbacks arise when plants species
modify the composition of the soil community, which in turn affects plant performance.
Stimulated by a theoretical model developed in the 1990s, a bulk of the empirical evi-
dence for microbial controls over plant coexistence comes from experiments that quantify
plant growth in soil communities that were previously conditioned by conspecific or het-
erospecific plants. These studies have revealed that soil microbes can generate plant com-
munity dynamics ranging from strong negative frequency-dependence to strong positive
frequency-dependence.

Even as soilmicrobes have become recognized as a key player in determining plant
coexistence outcomes, the past five years have seen a renewed interest in expanding the
conceptual foundations of this field. New results include extensions of plant-soil feed-
back theory to multi-species communities, re-interpretations of key metrics from classic
two-species models, and frameworks to integrate plant-soil feedbacks with processes like
intra- and inter-specific competition. Here, I review the implications of theoretical de-
velopments for interpreting existing empirical results, and highlight proposed designs for
future experiments that can reinforce keymodel assumptions and enable a more complete
understanding of microbial regulation of plant community dynamics.
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The environment is not a structure imposed on living beings from the outside
but is in fact a creation of those beings. Just as there is no organism without
an environment, there is no environment without an organism.

Richard Lewontin
The Organism as the Subject and Object of Evolution

Introduction1

Like all organisms, plants simultaneously respond to and shape their environment. One2

aspect of the environment that is especially dynamic is the microbial community in the3

soil. Plants can actively alter the structure of the soil community, for example by secret-4

ing root exudates that promote the growth of some microbes over others. Plants can also5

affect the soil community more passively, for example by creating leaf litter that favors6

certain decomposing microbes over others. The soil community is itself a heterogeneous7

entity, comprising a diversity of microbes that can interact with plants directly as mutual-8

ists or pathogens, or indirectly by regulating nutrient dynamics and other soil properties9

in their role as decomposers. Through these complex networks of interactions, soil mi-10

crobes likely play an important role in structuring biodiversity and community dynamics11

in all terrestrial ecosystems (Van Der Heijden et al., 2008).12

One plant community outcome for which there is growing interest and evidence13

of microbial regulation is that of plant species coexistence. A hallmark of this research14

has been a tight integration of theory and experiment (e.g. Bever et al., 1997; Kulmatiski15

et al., 2011; Stein and Mangan, 2020). Theory suggested a streamlined experimental de-16

sign for quantifyingmicrobial effects on plant coexistence (Bever et al., 1997), and through17

meta-analysis of numerous such experiments, we now know that microbes can affect plant18

coexistence outcomes in a wide range of ecosystems (Crawford et al., 2019). Coexistence-19

promoting negative feedbacks most strongly arise among plant pairs that are distantly20

related, associate with similar mycorrhiza, and interact in soils to which they are native21

(Crawford et al., 2019), but this negative feedback is seldom strong enough to overcome22

the fitness imbalances between plants that microbes simultaneously generate (Yan et al.,23

2022). As a result, soil communities by themselves are unlikely to explain observed coex-24

istence in plant communities, and building on simple pairwise pot experiments to under-25

stand how these effects play out in nature remains a challenge. To help foster continued26

interplay between theoretical and empirical research as we address this challenge, I use27

this Synthesis as an opportunity to review recent theoretical advances and their implica-28

tions for empirical work.29
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Pairwise plant coexistence under soil microbial feedbacks30

Experimental research on soil microbial regulation of plant species coexistence was cat-31

alyzed by the theoretical framework of Bever et al. (1997), which evaluates microbial ef-32

fects on the dynamics of two plant species. In this model, each plant population grows33

exponentially at a rate determined by the composition of the soil microbial community.34

The composition of the soil community, in turn, is determined by the composition of the35

plant community, along with the strength of each species’ conditioning effect. This bidi-36

rectional interaction gives rise to feedbacks in the plant-soil system, in which the growth37

rate (fitness) of a plant species depends on its own frequency in the system. A formal38

model description is available in the original publication (Bever et al., 1997) and in Ap-39

pendix S1. Briefly, the model follows the the dynamics of two plant species 1 and 2, and40

the distinct soil microbial communities 𝐴 and 𝐵 that each species cultivates (Fig. 1A).41

The rate at which plant 1 conditions the soil towards community 𝐴 is set to 1, and the42

relative rate at which plant 2 conditions the soil towards 𝐵 is denoted 𝑣.1 The effects of43

microbial community 𝐴 on the growth rate of plants 1 and 2 are denoted 𝑚1𝐴 and 𝑚2𝐴,44

respectively, and 𝑚1𝐵 and 𝑚2𝐵 capture the effect of microbial community 𝐵 on plants45

1 and 2. Positive values of 𝑚𝑖𝑋 indicate that plant species 𝑖 perform better in soils with46

microbial community 𝑋 than in soils without this microbial community; negative values47

indicate that plant 𝑖 is suppressed by microbial community 𝑋 (Fig. 1A-B).48

Bever et al. (1997) presented two key insights about this model that set the stage49

for the design and analysis of subsequent empirical studies of microbially mediated plant50

coexistence. First, the authors showed that whether microbes drive positive or negative51

feedback in plant population dynamics is captured by the sign of a metric termed 𝐼𝑆:52

𝐼𝑆 = (𝑚1𝐴 + 𝑚2𝐵) − (𝑚1𝐵 + 𝑚2𝐴) (Eqn. 1)

Positive feedback arises when microbial communities generally benefit their conditioning53

plant species more than they benefit the other species, or when microbes generally hurt54

the conditioning plant less than they hurt the other plant. Mathematically, this requires55

that 𝑚1𝐴 + 𝑚2𝐵 > 𝑚1𝐵 + 𝑚2𝐴. On the other hand, negative feedback arises when con-56

ditioned soil communities generally benefit the conditioning species less than the other57

plant (or hurt the conditioning species more than the other plant). Positive feedback hin-58

ders plant diversity, because microbes provide a relative advantage to whichever species59

is more frequent in the community. Negative feedback promotes diversity, because mi-60

crobes provide an advantage to whichever species is rare, allowing it to rise in frequency61

and avoid extinction (Fig. 1C-D). Subsequent descriptions of this model further extended62

1Thus, 𝑣 < 1 indicates that plant 2 conditions the soil towards 𝐵 more slowly than does plant 1 towards
community 𝐴, and vice-versa when 𝑣 > 1
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the implications of 𝐼𝑆 for species coexistence, as in Bever (2003):63

“When the interaction coefficient is positive (𝐼𝑆 > 0), the soil community64

dynamics generate net positive feedback on plant growth and the compet-65

ing plant species do not coexist. When the interaction coefficient is negative66

(𝐼𝑆 < 0), the soil community dynamics generate net negative feedback on67

plant growth, and, as a result the competing plant species do coexist.”68

The second key contribution of Bever et al. (1997) was a clear explanation of the69

steps necessary for quantifying 𝐼𝑆 empirically. This experimental design builds on im-70

portant features of the parameters 𝑚𝑖𝑋, and of the interaction coefficient 𝐼𝑆. Recall that71

in this model, microbes only affect the rate of exponential population growth for the two72

plant species (Fig. 1B-C). Assuming that biomass accumulation dynamics of individual73

plants mirror the population growth process (but see Fridley (2017)), one can estimate74

the 𝑚 parameters with the log-transformed biomass of plants grown in different soil mi-75

crobial contexts: 𝑚𝑖𝑋 = 𝑙𝑜𝑔(𝐵𝑖𝑋) − 𝑙𝑜𝑔(𝐵𝑖0).2 Here, 𝐵𝑖𝑋 is the biomass of plant 𝑖 in76

soil community 𝑋, and 𝐵𝑖0 is plant 𝑖’s biomass in reference (unconditioned) soil. In fact,77

Bever et al. (1997) showed that the data requirements for quantifying 𝐼𝑆 simplify even78

further. Due to the arrangement of the 𝑚𝑖𝑋 terms, empirical quantification of 𝐼𝑆 only re-79

quires biomass data of plants grown with a conspecific- or heterospecific-conditioned soil80

community; growth in unconditioned soils cancels out altogether:81

𝐼𝑆 = [
𝑚1𝐴

⏞⏞⏞⏞⏞⏞⏞⏞⏞(𝑙𝑜𝑔(𝐵1𝐴) −�����𝑙𝑜𝑔(𝐵10)) +
𝑚2𝐵

⏞⏞⏞⏞⏞⏞⏞⏞⏞(𝑙𝑜𝑔(𝐵2𝐵) −XXXXXX𝑙𝑜𝑔(𝐵20)) ]−

[
𝑚1𝐵

⏞⏞⏞⏞⏞⏞⏞⏞⏞(𝑙𝑜𝑔(𝐵1𝐵) −�����𝑙𝑜𝑔(𝐵10)) +
𝑚2𝐴

⏞⏞⏞⏞⏞⏞⏞⏞⏞(𝑙𝑜𝑔(𝐵2𝐴) −XXXXX𝑙𝑜𝑔(𝐵20)) ]

Building on this insight, Bever et al. (1997) proposed a two-phased empirical design that82

2There is some ambiguity in the literature about the importance of log-transforming biomass measure-
ments. Some authors omit this step entirely (or omit it from the reported methods) (e.g. Bauer et
al. (2017)); some employ other transformations (e.g. square root transformation, Smith and Reynolds
(2015)); and some effectively apply a double log transformation (e.g. Dudenhöffer et al. (2022), in which
biomass is first modeled with a log-family generalized linear model, and model coefficients are again
log-transformed for calculating 𝐼𝑆). When log-transformation is reported, it is often justified on the basis
of the statistical properties (skewness) of the data (e.g. Duell et al., 2023).

While ensuring that the appropriate data transformations are applied prior to model fitting is of
course essential, log-transforming biomass data from plant-soil feedback experiments before calculating
𝐼𝑆 serves more than just a statistical purpose. A key (but implicit) assumption to calculating 𝐼𝑆 on the
basis of biomass data is that plant growth during the response phase of experiments is an exponential
process (mirroring the exponential population growth of the underlying dynamics model). Assuming
that the final biomass value is the result of an exponential growth process, log-transforming the final
biomass converts the measured values into the rate of biomass accumulation (Blackman, 1919) - i.e., the
biomass analog of the exponential population growth rate parameters 𝑚𝑖𝑋.
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yields all the necessary 𝐵𝑖𝑋 terms for quantifying 𝐼𝑆. This design has been described in83

detail elsewhere (e.g. Bever et al., 2012), and is summarized in Fig. S.1.84
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Fig 1: Schematic and simulated model dynamics from Bever et al. (1997)’s canonical framework for plant-
soil feedback.
A. The model simulates the dynamics of two plant species (1 and 2) that cultivate distinct soil com-
munities (𝐴 and 𝐵). Both plant species have some growth rate in unconditioned soils (set to 0.16 for
the simulations in panels B-D), which is increased or decreased depending on the state of the microbial
community, as described by the arrows (e.g. when the soil only reflects microbial community 𝐴, plant
1’s growth rate decreases by 0.05, and plant 2’s growth rate increases by 0.11). Following Eqn. 1, mi-
crobes generate 𝐼𝑆 < 0 (negative feedback) for this set of parameters. B. Plant population dynamics
when each species is growing separately in soils that are unconditioned (thin solid line), wholly con-
ditioned by Plant 1 (𝑆𝐴 = 1, dashed line), or wholly conditioned by Plant 2 (𝑆𝐵 = 1, dotted line).
Note that these scenarios are only illustrative and not biologically plausible dynamics - for example, as
plant 1 grows, it should become impossible for the soil state 𝑆𝐵 = 1 to persist, as plant 1’s conditioning
effects become evident. C. When both plants grow together, the soil community dynamically changes
between 𝑆𝐴 = 1 and 𝑆𝐵 = 1, as determined by the plant composition. Both plants experience expo-
nential growth, at a rate determined by the composition of the soil. In this simulatation each species’
abundance periodically rises above the other’s. D. The relative abundance (frequency) of each plant
species. Microbes promote coexistence in this system by generating netral oscillations.

Limits to inferring coexistence from 𝐼𝑆 < 085

While the insights from Bever et al. (1997) have enabled a vast body of empirical work86

(synthesized most recently in Crawford et al., 2019; see also Kulmatiski et al., 2008; Bever87

et al., 2012), several recent studies have highlighted limitations to inferring microbially-88

mediated plant coexistence on the basis of negative feedback alone (Ke and Miki, 2015;89

Kandlikar et al., 2019; Broekman et al., 2019; Beckman et al., 2023). The main takeaway90

from this work is that while 𝐼𝑆 < 0 is a necessary condition for coexistence in the Bever et91

al. (1997) model, stabilizing effects of microbes do not guarantee long-term plant coexis-92

tence (Fig. 2). Part of the issue is that additional information that is not captured in 𝐼𝑆 is93

required for accurate inferences of coexistence. This is not a new result per se: the original94

analysis and interpretation of 𝐼𝑆 operates within the assumption that the soil microbes95

do not disproportionately harm or benefit one species more than the other (see pp. 56396
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of Bever et al. (1997)). However, in practice, this assumption is rarely tested, and the97

renewed clarity that one species can exclude the other despite 𝐼𝑆 < 0 represents a de-98

parture from the longstanding interpretation that the sign of this metric reflects whether99

or not microbes drive species coexistence. I discuss theoretical metrics and experimental100

designs that help overcome this assumption in the following section.101

Bever et al. (1997)’s analysis also builds on the assumption that neither species102

has a disproportionately strong conditioning effect on the soil (𝑣 is not too small or large).103

While very few studies have explicitly tested this assumption, recent results raise ques-104

tions about its generality. For example, we now know that differences in the duration of105

soil conditioning can lead to variation in the microbial community, as well as in strength106

of plant-soil feedback (e.g. Wubs and Bezemer, 2018; Hannula et al., 2019; Ke et al., 2021).107

Similarly, studies have found that low-abundance non-native species can have outsized108

effects on soil microbial communities (Peltzer et al., 2009), pointing to substantial inter-109

specific variation in soil conditioning strength. While the magnitude of 𝑣 does not change110

the coexistence criteria in Bever et al. (1997) model (see Appendix S1), strong asymme-111

tries in conditioning strengths have important implications for the system’s temporal dy-112

namics. For example, for a given set of 𝑚𝑖𝑋 parameters that should result in coexistence,113

𝑣 >> 1 or 𝑣 << 1 result in extended periods of dominance by one species (Fig. S.2). This114

increases the risk of stochastic extinction of the rare species. Very few studies have sys-115

tematically evaluated the consequences if varying conditioning strengths on the feedback116

process (but see Ke and Levine (2021)), and further theoretical and empirical evaluation117

of microbial conditioning dynamics should yield fruitful insights.118

How to more thoroughly evaluate plant coexistence with soil feedbacks?119

Given that 𝐼𝑆 < 0 does not guarantee plant coexistence in the Bever et al. (1997), what120

other information can help generate more reliable inferences? At least two analytical ap-121

proaches address this question, yielding complementary insights. Both approaches are122

detailed in Appendix S1 and summarized here. The first approach was outlined in the123

original model analysis, but has received little empirical attention. This approach pro-124

ceeds by identifying parameter combinations that allow for equilibrium conditions that125

are both feasible (meaning that all players are present with frequency > 0) and neutrally126

stable (meaning that perturbations to the equilibrium do not cause the system to collapse127

to monodominance).128

A second approach for identifying coexistence outcomes in the Bever et al. (1997)129

model was implemented in Kandlikar et al. (2019), and builds on the mutual invasibil-130

ity requirement for pairwise species coexistence (Turelli, 1978; Chesson and Ellner, 1989;131
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Fig 2: Soil microbes can drive plant species exclusion even when they generate negative feedback.
A. In this simulation, plant 1’s performance is suppressed by its own microbial community 𝐴, but
boosted by microbial community 𝐵. On the other hand, plant 2’s performance is increased by either
conditioned community. The 𝑚 terms yield the same negative 𝐼𝑆 as in Fig. 1. B. Population growth
dynamics for the two plants when soil is entirely conditioned by one plant or the other. C. When the
two plants grow together, plant 2 has a higher rate of exponential growth than plant 1 at all times. D.
Due to differences in the rates of exponential growth, the gulf in the two species’ relative frequencies
grows until the system is effectively entirely dominated by plant 2, and plant 1’s frequency is nearly
zero. E. The result shown in panels A-D is not exceptional: when microbes drive negative feedback
(𝐼𝑆 < 0), the two plant species coexist in only about half of the simulation runs; in the other half, only
one species persists. While coexistence is never possible under positive feedback (𝐼𝑆 > 0), inferring
plant dyanamics on the basis of 𝐼𝑆 alone obscures the fact that in some cases, microbes give rise to
frequency-dependent priority effects (species that is initally more abundant excludes the other), while
in other cases, the same plant wins regardless of its initial frequency. Values of 𝑚𝑖𝑋 were drawn from
a uniform distribution (minimum value: -0.5, maximum value: 0.5). The density graph summarizes
outcomes from 2000 simulation runs.
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Grainger et al., 2019). Applying the invasion criterion to the Bever et al. (1997) model132

means that the plants can coexist if each species can successfully establish a foothold into133

an equilibrium monoculture of the other plant (and its corresponding soil community).134

Each species’ population growth rate as it begins (or fails) to establish in its competitor’s135

monoculture is its “low-density growth rate”, or LDGR.3 For the Bever et al. (1997)model,136

the LDGR for each species is given by the following:137

LDGR1→2 = 𝑚1𝐵 − 𝑚2𝐵 and LDGR2→1 = 𝑚2𝐴 − 𝑚1𝐴

Coexistence requires that each species have a positive LDGR, meaning that the following138

inequalities should be true:139

𝑚2𝐵 < 𝑚1𝐵 and 𝑚1𝐴 < 𝑚2𝐴 (Eqn. 2)

As show in Appendix S1, this is identical to the coexistence requirements identified by the140

first approach, and it mirrors the well-established criteria for two-species coexistence in a141

Lotka-Volterra competition model.142

Evaluating Eqn. 2 is enough for evaluating whether or not species can coexist143

in the Bever et al. (1997) model, but further decomposing the LDGRs can yield useful144

insights into the biological basis for coexistence outcomes. Specifically, following the ap-145

proach described in Chesson (2000) and Chesson (2018), one can further decompose LD-146

GRs into two terms. One term captures the degree to which the soil communities increase147

(or decrease) the LDGRof both species, thereby favoring (or disfavoring) coexistence. The148

second term captures the degree to which the microbial communities disproportionately149

favor one plant species over the other, thereby increasing the LDGR of one species and150

decreasing the LDGR for the other. Kandlikar et al. (2019) derived these terms for Bever151

et al. (1997)’s model which, following convention (Chesson, 2000, 2018), are termed as152

the microbially mediated “stabilization” and “fitness difference”, respectively. Whether153

or not species can coexist is determined by the balance of these two effects. Specifically,154

coexistence requires the following to be true:155

3The low-density growth rate is more commonly called the “invasion growth rate” in the coexistence lit-
erature (e.g. Grainger et al. (2019), Ellner et al. (2019), Chesson (2018)), including in Kandlikar et al.
(2019), but given the potential confusion between this abstract property and the separate process of eco-
logical invasions by non-native plants, where plant-soil microbe interactions can also play an important
role, I follow Lavorel and Chesson (1995) and Hallett et al. (2023) in using the term “low-density growth
rate” in this manuscript. LDGR1→2 is the growth rate of Plant 1 as it grows into a monoculture of Plant 2,
and vice-versa for LDGR2→1
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stablization
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
− 1

2((𝑚1𝐴 + 𝑚2𝐵) − (𝑚2𝐴 + 𝑚1𝐵)) > abs(

fitness difference1,2

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞1
2(𝑚1𝐴 + 𝑚1𝐵) − 1

2(𝑚2𝐴 + 𝑚2𝐵) )
(Eqn. 3)

Algebraically, the expression above is equivalent to Eqn. 2 (see Box S1.2 in Ap-156

pendix S1). When this inequality is met, both species have positive LDGRs. Alter-157

nately, when microbes primarily act to destabilize plant interactions (stabilization <158

0 and abs(stablization) > abs(fitness difference)), both species have negative LDGRs,159

and microbes give rise to frequency-dependent priority effects (either species can form a160

monoculture, but the two species cannot coexist (Yan et al., 2022; Zou and Rudolf, 2023)).161

When fitness differences overwhelm the strength of (de)stabilization, one species has162

negative LDGR, and the other has a positive LDGR. In this case, microbes drive exclusion163

of the species with negative LDGR.164

Evaluating microbial effects on the basis of the (de)stabilization and fitness dif-165

ferences provides valuable insight into how their net effects arise. For example, the accu-166

mulation of species specific pathogens favors stabilization, but host-specific pathogens can167

nevertheless drive exclusion if one plant suffers more from its pathogens than the other168

(strong fitness differences). On the other hand, when plants are equally susceptible to169

pathogens, even a small amount of host specificity can promote stable plant coexistence.170

Moreover, framing soil microbial effects in terms of the degrees to which they generate171

stabilization and fitness differences unlocks the potential to integrate soil microbes into a172

broader theoretical framework that is actively being applied for studying howplant coexis-173

tence is mediated by pollinators (Lanuza et al., 2018; Johnson et al., 2022), seed consumers174

(Petry et al., 2018), foliar pathogens (Uricchio et al., 2019), facilitation (Bimler et al., 2018),175

and a host of other abiotic and biotic processes.176

Implications for empirical studies177

As with 𝐼𝑆, the complete coexistence criterion in Eqn. 3 is simply a linear combination of178

the four 𝑚𝑖𝑋 terms that capture microbial effects on plant performance. In principle, this179

might suggest that evaluating coexistence requires the same data as is required for quan-180

tifying 𝐼𝑆. However, in practice, evaluating coexistence requires more information. This181

distinction has to do with the role that plant performance in reference (uncultivated) soils182

plays in determining 𝑚𝑖𝑋. As shown above, plant biomass in reference soil cancels out of183

the equation for 𝐼𝑆. This is also true for calculating stabilization; indeed, stabilization is184

simply equal to −1
2𝐼𝑆. However, plant growth in reference soil does not cancel out of the185
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fitness difference expansion:186

fitness difference1,2 = 1
2[

𝑚1𝐴

⏞⏞⏞⏞⏞⏞⏞⏞⏞(𝑙𝑜𝑔(𝐵1𝐴) − 𝑙𝑜𝑔(𝐵10)) +
𝑚1𝐵

⏞⏞⏞⏞⏞⏞⏞⏞⏞(𝑙𝑜𝑔(𝐵1𝐵) − 𝑙𝑜𝑔(𝐵10)) ] −

1
2[

𝑚2𝐴

⏞⏞⏞⏞⏞⏞⏞⏞⏞(𝑙𝑜𝑔(𝐵2𝐴) − 𝑙𝑜𝑔(𝐵20)) +
𝑚2𝐵

⏞⏞⏞⏞⏞⏞⏞⏞⏞(𝑙𝑜𝑔(𝐵2𝐵) − 𝑙𝑜𝑔(𝐵20)) ]

The trivial implication of this result is that experiments aiming to infer plant coexistence187

in the Bever et al. (1997) model should include an additional response phase treatment in188

which plants are grown in with a reference soil community (Kandlikar et al., 2019; Beck-189

man et al., 2023).4 However, theory alone does not provide an unambiguous guide for190

defining the “correct” reference soil to use in an experiment. The original parameter de-191

scriptions only define the reference soil by negation, as soil without a conditioning history192

of either focal plant (Bever et al., 1997). In principle, this definition could apply equally193

well to any soils where the focal species have not grown. Kandlikar et al. (2021) suggest194

that the ideal reference soil for experiments reflects the microbial community that would195

exist in the relevant field system when the focal plant species are absent. Alternatively,196

Beckman et al. (2023) suggest soils conditioned by plants that associate with mycorrhizal197

fungi from different guilds or that have different geographic origins than the focal species198

as potential references. However, such soils are unlikely to include even low abundances of199

specialist pathogens or mutualists that the focal species might encounter in nature, which200

could affect the estimation of fitness differences and stabilization. When studies replace201

a specific conditioning phase and instead inoculate response phase pots with soils from202

adults in the field, soil from bare patches devoid of vegetation may be an appropriate ref-203

erence. Many past studies included controls of plants growing in sterilized soils. While204

comparisons to sterilized soils can yield important insights into the effects of the soil mi-205

crobiome as a whole on plant coexistence (Yan et al., 2022; Ke and Wan, 2023), such soil is206

not an appropriate reference for isolating the effects of the conditioning/feedback process itself207

(Abbott et al., 2021; Yan et al., 2022).208

It is worth noting although the importance of reference soil growth is underscored209

by its prominence in the fitness difference calculation, the choice of reference soil plays210

a role in determining the outcome of all two phased feedback studies - including ones211

designed to measure 𝐼𝑆 specifically rather than coexistence more generally. For exam-212

ple, conditioning soils from a a reference that contains low densities of the focal species’213

specialist pathogens can drive stronger stabilization (if the specialist pathogens prolifer-214

4Elsewhere, the reference (uncultivated) soils have been called unexposed, naive, untrained, unconditioned, or
uncultured soils (e.g. Bever et al. (1997); Abbott et al. (2021); Maron et al. (2015); Bezemer et al. (2018);
Beckman et al. (2023), respectively); the common implication here is that this soil should not reflect the
conditioning effect of the focal plant species.
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ate during the conditioning phase) than conditioning from a reference that is completely215

lacking in specialist pathogens. In other words, all two-phase studies are built on implicit216

choices of a reference soil state. When the goal is to evaluate coexistence, plant growth in217

this same baseline soil community should be used to estimate 𝐵𝑖0. Preserving the refer-218

ence soil community during the conditioning phase presents methodological challenges,219

as microbial communities are dynamic entities whose members grow and die (Abbott et220

al., 2021). Thus, future studies that couple reference soil treatments with assays of micro-221

bial activity/composition (especially approaches that also quantify microbial abundances222

(Tkacz et al., 2018)), and/or include carefully designed controls to evaluate the effects of223

suchmicrobial dynamics will help paint a more complete picture of how soil communities224

shape plant coexistence.225

Soil microbial feedbacks in more diverse plant communities226

While studies of plant coexistence are often motivated by diverse communities , microbial227

mediation of plant coexistence is usually evaluated among species pairs. While pairwise228

analyses provide important insights, extending these results to interpret microbial effects229

on diverse plant systems can be challenging (Barabás et al., 2016; Levine et al., 2017). Sev-230

eral studies have addressed this gap through extensions to the classic two-species plant-231

soil feedbackmodel. An early advancewas that of Kulmatiski et al. (2011), who developed232

a model of three plant species and showed that the additional complexity of such a system233

can yield routes to coexistence that are not identified from pairwise analyses. For exam-234

ple, cyclic plant dynamics can arise even when each species performs better in its own soil235

community than in other species’ soil (i.e. 𝑚1𝐴 > {𝑚1𝐵, 𝑚1𝐶}) – an outcome that seem-236

ingly contradicts the two-species coexistence criteria (Eqn. 2). More recently, Miller et al.237

(2022) extended the classic plant-soil feedback model to an arbitrary number of species238

and found that without any additional assumptions beyond those in Bever et al. (1997),239

robust coexistence of more than two species is virtually impossible. While it is possible to240

identify precise parameter sets yield oscillatory coexistence in this 𝑛-species model, this241

coexistence is fragile: minuscule perturbations to plant frequencies or to parameters cause242

the system to collapse to low-diversity (1 or 2 species). They conclude that stable multi-243

species coexistence is unlikely without accounting for other processes that regulate the dy-244

namics of plants or of soil microbes. One such source of regulation is to more thoroughly245

integrate plant-microbe interactions and plant competition into a unified framework, a246

topic I return to in a following section.247

Another potential source of regulation is through incorporating density-248

dependence in the microbial dynamics. This approach was implemented for two-species249
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systems in Eppinga et al. (2006) and Aguilera (2011), andwas extended to amulti-species250

plant system by Mack et al. (2019). This analysis identified a range of pathways through251

which microbes can enable multispecies plant coexistence, ranging from strict negative252

feedback to strict intransitivity in the system. Building on this model, Eppinga et al.253

(2018) analytically derived an 𝑛-species analogue of the pairwise stabilization metric254

termed 𝐼𝐶 . As with 𝐼𝑆, negative values of 𝐼𝐶 predict negative community-wide feedback,255

which is necessary for all 𝑛 species persist in the system (see Appendix S2). Similar256

caveats also apply: while coexistence of all species is promoted by 𝐼𝐶 < 0, negative com-257

munity feedback does not guarantee coexistence. Importantly for empirical application,258

quantifying 𝐼𝐶 only requires a complete performance matrix (i.e. all combinations of259

𝐵𝑖𝑋), the likes of which are generated from pairwise plant-soil feedback studies of >2260

species.261

Implications for empirical studies262

To date, the vast majority of experiments interested in evaluating microbial effects in di-263

verse communities have done so by inferring system-wide feedback from contrasts of pair-264

wise 𝐼𝑆 at the species level (statistical summary of all 𝐼𝑆 values involving species 𝑖, 𝑗, 𝑘, ...265

(Mangan et al., 2010; Bauer et al., 2015)), or whole-community level (Pizano et al., 2019;266

Stein andMangan, 2020; Dudenhöffer et al., 2022). While such statistical averaging of pair-267

wise metrics can provide valuable insights, theory suggests that inferring multi-species268

effects such calculations comes with pitfalls (Barabás et al., 2016; Spaak and Schreiber,269

2023) that have not yet been formally evaluated in the context of plant-soil feedback. The270

theoretical advances in Eppinga et al. (2018) suggest a robust alternative that is also fric-271

tionless, in that it does not require changing the two-phase design (Fig. S.1). In systems272

where the model’s assumptions regarding self-regulation of microbial dynamics are ex-273

pected to apply, quantifying community-wide feedback through 𝐼𝐶 provides a theoreti-274

cally justified measure of microbial feedbacks on multispecies plant community structure.275

Moreover, parameterizing 𝐼𝐶 requires the same information necessary to quantify species-276

or community-average 𝐼𝑆, and can yield surprising results. For example, Dudenhöffer et277

al. (2022) find that soil microbes most strongly stabilize pairwise plant coexistence un-278

der drought, but quantifying 𝐼𝐶 for species triplets suggest that microbes most strongly279

destabilize multispecies systems under drought (Fig. S.3 and Appendix S2). Such analy-280

ses point to the value of future studies linking data with theoretically rigorous metrics of281

multispecies coexistence dynamics for advancing our understanding microbial regulation282

of plant dynamics in diverse systems.283
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Contextualizing plant-microbe interactions relative to plant-plant interactions284

Plant–microbe interactions are one of many processes that simultaneously structure plant285

communities. While models and experiments that isolate the soil conditioning/response286

process help establish the potential role of soil microbes in regulating plant communities,287

quantifying their contributions to plant coexistence in nature requires contextualizing this288

process relative to that of other processes like resource competition (reviewed in Lekberg289

et al., 2018) or herbivory (Heinze et al., 2020). An early conceptual advance towards this290

goal was the mathematical model of Bever (2003), which integrated microbial feedbacks291

with intra- and inter-specific competition among plants. A key result from this work was292

that sufficiently strong negative feedback from soil microbes can promote coexistence of293

plants even in the face of competition-mediated species exclusion. However, two features294

of this framework limit its utility in helping unravel the relative contribution of soil mi-295

crobes and direct competition to species coexistence. First, microbial and competitive296

effects are defined with different units (microbial effects are based on their frequencies,297

competitive effects are based on plant densities), which makes it difficult to evaluate their298

relative strengths (Miller et al., 2022). Second, the feedback framework focuses on the299

differential conditioning of background soil microbes, and does not easily accommodate300

environments lacking a soil community altogether – an important theoretical construct for301

defining a baseline against which to contextualize the effects of soil microbes.5 Modeling302

how the absolute densities of microbes (rather than relative frequencies) affect plant pop-303

ulation dynamics can help overcome some of these limitations (Kandlikar et al., 2019; Ke304

and Wan, 2020). These changes come with some cost of empirical tractability, but most305

relevant parameters for such models can nevertheless be quantified from pot experiments306

tracking plant growth without explicit measurements of microbe dynamics (Ke and Wan,307

2020, 2023). The design and analysis of pot experiments will vary depending on whether308

the goal is to focus on the effects of soil microbes as a whole or of the conditioning process309

specifically, andwhethermicrobes are only thought to affect intrinsic growth rates, density310

dependence, or both processes (Fig. 3). Further departures from the feedback framework,311

which implies a strict correspondence between the number of plant species and microbial312

communities, also yield important insights. For example, tracking plant species’ interac-313

tions with mutualistic vs. harmful microbes can yield a more predictive understanding314

of conditions under which soil microbes contribute to coexistence vs. species replacement315

(Jiang et al., 2020; Schroeder et al., 2020). Integrating the role of soil microbes as mutual-316

5For example, Stein and Mangan (2020) use an extended version of the Bever (2003) model to show that
the stabilizing effects of soil microbes exceed those of direct competition, but the base “competition” and
“microbially mediated competition” outcomes (models a and b in that paper) differ only in what soil
treatments were used to fit a pair of parameters (𝐾 and 𝑐𝑖𝑗 in sterilized vs. live soil). This suggests
that there are important aspects of the system’s biology (namely, that density-dependence changes with
microbial context, regardless of soil conditioning) that are not captured in the model.
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ists, pathogens, and decomposers into a mechanistic framework for resource competition317

is also a compelling a path towards understand the relative importance of microbes on318

biodiversity maintenance in nature (Chung et al., 2023).319

Implications for empirical tests320

Evidence that soil microbial effects scale up to structure whole plant communities largely321

comes from studies that correlate outcomes from feedback experiments to properties like322

species’ relative abundance (meta-analyzed by Reinhart et al., 2021), community stabil-323

ity (Chung et al., 2019), or productivity (Forero et al., 2022). While such work provides324

compelling evidence for the importance of soil microbes, the lack of an integrative frame-325

work for studying their effects stymies our ability to make sense of seemingly contradic-326

tory results. For example, species whose performance is more strongly suppressed by327

conspecific-conditioned soil communities tend to be less abundant on the landscape in328

some systems (Klironomos, 2002; Mangan et al., 2010), but precisely the opposite pattern329

arises elsewhere (Corrales et al., 2016; Maron et al., 2016). In yet other systems, feed-330

back strength and abundance are unrelated (Reinhart, 2012). A unified framework that331

integrates microbial effects with other processes structuring plant communities can offer332

useful insights for making sense of the diversity of patterns observed in nature. For exam-333

ple, explicitly integrating plant-soil feedbacks and resource competition suggests that soil334

microbes drive plant dynamics most strongly when nutrients are less limiting; microbial335

effects are unlikely to affect plant competition when resource dynamics are slow (Kand-336

likar et al., 2019). Qualitatively, such a result is consistently with Corrales et al. (2016)’s337

conclusion that effects of slow soil nitrogen cycling override any negative plant-soil feed-338

backs in driving the monodominance of an ectomycorrhizal tree in a tropical montane339

forest. Moving forward, designing experiments for simultaneously testingmultiple mech-340

anisms of diversity maintenance rather than isolating single processes (e.g. Chung and341

Rudgers, 2016; Stein and Mangan, 2020) is a challenging but essential step towards ad-342

vancing our understanding of how microbes contribute to plant community dynamics in343

nature.344
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Fig 3: Potential design of a pot experiment that yields a more complete understanding of how microbes
shape plant interactions.
Arrows labelledA fall under the purviewof the classic pairwise feedback framework; these comparisons
help predict coexistence when plants only interact with one another through the soil community. Ar-
rows B provide insight on how the whole microbial community - and not just the conditioning process -
shapes coexistence. ArrowsC,D, and E quantify plant-plant interactions (both intra- and inter-specific)
in the absence of microbes, in the absence of the conditioning process, and when microbes are present
and conditioned, respectively. Differences in arrows C-E can be used to infer how direct plant interac-
tions and soil microbes jointly shape coexistence outcomes. For simplicity this figure only illustrates the
soil treatments for one plant species; similar soil treatments are also required with plant 2 as the focal
species for evaluating coexistence. Note that this design differs from the ‘minimal design’ of Ke and
Wan (2020) by including individual plant growth in different soil backgrounds; these treatments can
be omitted if microbes are thought to only affect the nature of density dependence rather than plants’
intrinsic growth. As highlighted in Ke and Wan (2023), additional density treatments may be required
to evaluate the nature of density dependence in some systems.
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Conclusion345

Soil microbes play a key role in the dynamics of all terrestrial ecosystems. A tight integra-346

tion of theory and experiments over the past few decades has enabled rapid and sustained347

progress in our understanding of how soil microbes shape plant species coexistence. The348

theoretical advances reviewed here point to three areas of empirical research that should349

yield important insights:350

1. While now know that soil microbes can drive positive or negative feedback in a wide351

range of ecosystems, existing evidence also suggests that any such negative feedback352

rarely results in long-term coexistence (Yan et al., 2022). Evaluating the conditions353

under which soil microbes themselves give rise to pairwise coexistence (versus exclu-354

sion or priority effects) remains an open question.355

2. While statistical averaging of pairwise metrics can provide useful insights into mi-356

crobial effects in diver communities, theory shows that such analyses come with357

some pitfalls. Eppinga et al. (2018)’s analytically-derived community-wide stabi-358

lization metric can be parameterised with data from fully factorial feedback studies,359

and doing so has the potential to yield insights into microbial effects on multispecies360

systems that are masked in pairwise analyses.361

3. Designing pot experiments with treatments informed by theoretical models that in-362

tegrate soil microbial effects with those of other processes like resource competi-363

tion (e.g. Ke and Wan, 2020, 2023) will enable a more complete understanding of364

the conditions under which soil microbial effects scale up to affect plant community365

structure.366

Continuing the interplay between theory and data is critical not only to improve our fun-367

damental understanding of how soil microbes shape plant coexistence, but also promises368

to generate actionable insights into the role of soil microbes in pressing environmental369

challenges like invasive species management habitat restoration.370
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Supplemental Figures

A

B

Fig S.1: Schematic of the two-phase feedback experimental design. A. In the first phase of the experiment,
individuals (or monocultures) of each species are grown in soils that are identical at the beginning
of the experiment. Over time, the plants grow, and the soil microbial community changes to reflect
each species’ unique conditioning effect (represented by distinct soil colors). B. In the second phase
of the experiment, individuals of each species are grown, this time soils conditioned by conspecifics
or by heterospecifics in the previous phase. A small volume of the conditioned inoculum is added
to pots that primarily contain a common sterilized background soil (often <= 10% of the total soil
volume in the pot is live conditioned inoculum, and the rest is bulk sterilized soil). Thus, soils should
only differ in terms of their microbial community, and any nutritional differences that arise during
the conditioning phase should not have a stong effect on plant growth in the response phase.
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Fig S.2: Variation in species’ conditioning strengths affects the temporal dynamics of species coexistence
A. This simulation uses identical 𝑚𝑖𝑋 parameters as in Fig. 1 of the main text, but now, 𝑣 = 5,
which means that plant 2 conditions the soil towards 𝑆𝐵 more strongly than does plant 1 towards
𝑆𝐴. B. Population growth dynamics for the two plants when soil is entirely conditioned by one
plant or the other; this is identical to Fig. 1B. C. When the two plants grow together, both plants
have periods when they overtake the other in abundance, but there is an extended period of time
when plant 1 is substantially more abundant than plant 2 - punctuated by brief periods during which
plant 2 overtakes plant 1 in abundanceD. Due to differences in the rates of exponential growth of the
species over extended periods of time, the gulf in the two species’ relative frequencies grows until the
system appears to be effectively entirely dominated by plant 1. Only over long periods of time does it
become evident that plant 2 can rebound in abundance.
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Fig S.3: Microbial stabilization of species pairs and triplets under low, medium, and high watering
regimes. This figures shows results from an analysis estimating Eppinga et al. (2018)’s 𝐼𝐶, the mul-
tispecies analog of the pairwise interaction metric 𝐼𝑆, using data from Dudenhoffer et al. (2022).
As in the original publication, we find that among species pairs, microbes exert stronger stabiliza-
tion under drought (“low watering”) than under high-watering regimes. However, among species
triplets, the trend is reversed, with microbes generating slightly positive (destabilizing) feedbacks
under drought, and slight negative (stabilizing) feedback under high-watering. Analysis details are
available in Supplement S3, as are similar figures for 4 to 8 species communities that can be assembled
fromDudenhoffer et al. (2022)’s study; these show that the the result shown for triplets here generaly
extends to more diverse communities as well.
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Appendix S1: Conditions for coexistence in the classic plant-soil
feedback model
Contact: Gaurav S. Kandlikar, gkandlikar@lsu.edu

This appendix begins with a overview of dynamics model from Bever et al. (1997), in-
cluding detailed steps to convert the underlying exponential growth equations for plants
and microbes into equations for tracking changes in plant and microbe frequencies. After
describing the model, I then outline two approaches for identifying the conditions that
allow long-term persistence of both plant species in this model. Note that throughout this
appendix, I use 𝑁 to denote state variables in that reflection abundances, and 𝐹 to denote
frequency. The subscripts 1 and 2 refer to the plant species, and the subscripts 𝐴 and 𝐵
refer to their associated soil communities.

Model description
The Bever et al. (1997) framework begins by considering a system comprising two plant
species whose populations grows exponentially at a rate determined by the composition
of the soil microbial community:

𝑑𝑁1
𝑑𝑡 = 𝑊1𝑁1 and

𝑑𝑁2
𝑑𝑡 = 𝑊2𝑁2 (S1.4)

𝑊𝑖, the per-capita population growth rate of species 𝑖, is determined by the relative fre-
quency of microbial community (𝐹𝐴 and 𝐹𝐵), and the effect of eachmicrobial community
on plant 𝑖:

𝑊𝑖 = 𝑚𝑖𝐴𝐹𝐴 + 𝑚𝑖𝐵𝐹𝐵 (S1.5)

Note that 𝐹𝐴 and 𝐹𝐵 represent the relative frequency of eachmicrobial community, rather
than their absolute abundance. Thus, 𝐹𝐴 + 𝐹𝐵 = 1, and Eqn. S1.5 can also be written as
𝑊𝑖 = 𝑚𝑖𝐴𝐹𝐴 + 𝑚𝑖𝐵(1 − 𝐹𝐴). Substituting this into the plant dynamics equation (S1.4)
gives the full equations for plant population dynamics:

𝑑𝑁1
𝑑𝑡 = 𝑁1(𝑚1𝐴𝐹𝐴 + 𝑚1𝐵(1 − 𝐹𝐴)) and

𝑑𝑁2
𝑑𝑡 = 𝑁2(𝑚2𝐴𝐹𝐴 + 𝑚2𝐵(1 − 𝐹𝐴))

(S1.6)
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The abundance of soil microbial communities 𝑁𝐴 and 𝑁𝐵 also experiences exponential
growth, with the rate of growth determined by the relative frequency of each plant6:

𝑑𝑁𝐴
𝑑𝑡 = 𝑁𝐴

𝑁1
𝑁1 + 𝑁2

and
𝑑𝑁𝐵
𝑑𝑡 = 𝑣𝑁𝐵

𝑁2
𝑁1 + 𝑁2

(S1.7)

The parameter 𝑣 defines how strongly soil microbial community B accumulates with plant
2, relative to how strongly soil community A accumulates with plant 1.

Recognizing that plant population growth rates depend on the composition of the micro-
bial community, which in turn depend on the relative frequency of each plant, we can
express the system in terms of plant frequencies. This lets us simplify from the two equa-
tions in S1.6, to one equation for the frequency of plant 1 (𝐹1 = 𝑁1

𝑁1+𝑁2
):

𝑑𝐹1
𝑑𝑡 = 𝐹1(1 − 𝐹1)[(𝑚1𝐴 − 𝑚2𝐴)𝐹𝐴 + (𝑚1𝐵 − 𝑚2𝐵)(1 − 𝐹𝐴)] (S1.8)

By definition, 𝐹2 = 1 − 𝐹1, and
𝑑𝐹2
𝑑𝑡 = −𝑑𝐹1

𝑑𝑡 .

Similarly, from the equations for tracking change in soil community abundance (Eqns.
Equation S1.7), we can derive equations for the change in the frequency of microbial com-
munity (𝐹𝐴 = 𝑁𝐴

𝑁𝐴+𝑁𝐵
):

𝑑𝐹𝐴
𝑑𝑡 = 𝐹𝐴(1 − 𝐹𝐴)(𝐹1 − 𝑣(1 − 𝐹1)) (S1.9)

By definition, 𝐹𝐵 = 1 − 𝐹𝐴, and 𝑑𝐹𝐵
𝑑𝑡 = −𝑑𝐹𝐴

𝑑𝑡 .

Deriving Eqn. S1.8 from Eqn. S1.6, and for deriving Eqn. S1.9 from Eqn. S1.7 requires ap-
plication of the quotient rule. To make this derivation more accessible, I provide detailed
steps in Box S1. After Box S1, I outline two complementaryways to evaluate the conditions
for coexistence in this model (via evaluating feasibility and stability of equilibria, or via
evaluating the invasion growth rates).

Box S1: Deriving the equation for plant frequency dynamics from exponential
growth equations
This box details the steps for expressing plant and soil microbial frequency dynamics
(Eqns S1.8 and S1.9) from the exponential growth models (Eqns S1.6 and S1.7).

6Note that on p. 563 of Bever et al. (1997), the authors write that 𝑑𝑁𝐴/𝑑𝑡 = 𝑁𝐴𝑁1, implying that the
growth rate of microbial community 𝐴 depends on the abundance rather than frequency of plant 1. I believe
this to be a typo.
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Plant frequency dynamics To derive the plant frequency dynamics equation, we
first define 𝐹1 as the relative abundance of plant 1: 𝐹1 = 𝑁1

𝑁1+𝑁2
. Our goal now is to

derive the equation for change in 𝐹1 over time: 𝑑𝐹1
𝑑𝑡 .

We proceed by applying the quotient rule (for ℎ(𝑥) = 𝑓(𝑥)
𝑔(𝑥) , ℎ′(𝑥) =

𝑓′(𝑥)𝑔(𝑥)−𝑔′(𝑥)𝑓(𝑥)
𝑔(𝑥)2 ) to get

𝑑𝐹1
𝑑𝑡 =

𝑑 𝑁1
𝑁1+𝑁2

𝑑𝑡 =
𝑑𝑁1
𝑑𝑡 (𝑁1 + 𝑁2) − 𝑁1(𝑑𝑁1

𝑑𝑡 + 𝑑𝑁2
𝑑𝑡 )

(𝑁1 + 𝑁2)2

Recalling that 𝑑𝑁1
𝑑𝑡 = 𝑁1(𝑚1𝐴𝐹𝐴 + 𝑚1𝐵𝐹𝐵) and 𝑑𝑁2

𝑑𝑡 = 𝑁2(𝑚2𝐴𝐹𝐴 + 𝑚2𝐵𝐹𝐵),
we can rewrite the equation as follows:

𝑑𝐹1
𝑑𝑡 = 𝑁1(𝑚1𝐴𝐹𝐴 + 𝑚1𝐵𝐹𝐵)

𝑁1 + 𝑁2
−𝑁1(𝑁1(𝑚1𝐴𝐹𝐴 + 𝑚1𝐵𝐹𝐵) + 𝑁2(𝑚2𝐴𝐹𝐴 + 𝑚2𝐵𝐹𝐵))

(𝑁1 + 𝑁2)2

Recalling that by definition, 𝐹1 = 𝑁1
𝑁1+𝑁2

and 𝐹2 = 𝑁2
𝑁1+𝑁2

, this equation simplifies
as follows:

𝑑𝐹1
𝑑𝑡 = 𝐹1[(𝑚1𝐴𝐹𝐴 +𝑚1𝐵𝐹𝐵)−𝐹1(𝑚1𝐴𝐹𝐴 +𝑚1𝐵𝐹𝐵)−𝐹2(𝑚2𝐴𝐹𝐴 +𝑚2𝐵𝐹𝐵)]

Combining the first two terms in the square brackets gives:

𝑑𝐹1
𝑑𝑡 = 𝐹1[(1 − 𝐹1)(𝑚1𝐴𝐹𝐴 + 𝑚1𝐵𝐹𝐵) − 𝐹2(𝑚2𝐴𝐹𝐴 + 𝑚2𝐵𝐹𝐵)]

Now, recognizing that (1 − 𝐹1) = 𝐹2, we can simplify this to:

𝑑𝐹1
𝑑𝑡 = 𝐹1[𝐹2[(𝑚1𝐴𝐹𝐴 + 𝑚1𝐵𝐹𝐵) − (𝑚2𝐴𝐹𝐴 + 𝑚2𝐵𝐹𝐵)]]

Moving 𝐹2 outside the brackets, recognizing that 𝐹2 = 1 − 𝐹1, and recognizing that
𝐹𝐵 = (1−𝐹𝐴) gives the frequency dynamics equation as stated in Bever et al. (1997)
(see also Eqn. S1.8 above):

𝑑𝐹1
𝑑𝑡 = 𝐹1(1 − 𝐹1)[(𝑚1𝐴 − 𝑚2𝐴)𝐹𝐴 + (𝑚1𝐵 − 𝑚2𝐵)(1 − 𝐹𝐴)]

continued on next page
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Soil frequency dynamics
Next, we derive the microbial frequency dynamics (Eqn S1.9) from the equations
for change in microbial abundance (Eqn S1.7). As above, we first define 𝐹𝐴 as the
relative abundance of soil community 𝐴: 𝐹1 = 𝑁𝐴

𝑁𝐴+𝑁𝐵
. Our goal now is to derive

the equation for change in 𝐹𝐴 over time: 𝑑𝐹𝐴
𝑑𝑡 .

As above, applying the quotient rule yields:

𝑑𝐹𝐴
𝑑𝑡 =

𝑑 𝑁𝐴
𝑁𝐴+𝑁𝐵

𝑑𝑡 =
𝑑𝑁𝐴

𝑑𝑡 (𝑁𝐴 + 𝑁𝐵) − 𝑁𝐴(𝑑𝑁𝐴
𝑑𝑡 + 𝑑𝑁𝐵

𝑑𝑡 )
(𝑁𝐴 + 𝑁𝐵)2

Recalling from above that 𝑑𝑁𝐴
𝑑𝑡 = 𝑁𝐴𝐹1 and canceling terms gives:

𝑑𝐹𝐴
𝑑𝑡 = 𝑁𝐴𝐹1

𝑁𝐴 + 𝑁𝐵
− 𝑁𝐴(𝑁𝐴𝐹1 + 𝑣𝑁𝐵𝐹2)

(𝑁𝐴 + 𝑁𝐵)2

Recognizing that 𝐹𝐴 = 𝑁𝐴
𝑁𝐴+𝑁𝐵

, and expanding out the second term, we can rewrite
the equation as follows:

𝑑𝐹𝐴
𝑑𝑡 = 𝐹𝐴𝐹1 − 𝐹𝐴(𝑁𝐴𝐹1)

𝑁𝐴 + 𝑁𝐵
− 𝐹𝐴(𝑣𝑁𝐵𝐹2)

𝑁𝐴 + 𝑁𝐵

Once again recognizing that 𝐹𝐴 = 𝑁𝐴
𝑁𝐴+𝑁𝐵

, we can further simplify the equation:

𝑑𝐹𝐴
𝑑𝑡 = 𝐹𝐴𝐹1 − 𝐹 2

𝐴(𝐹1) − 𝑣𝐹𝐴𝐹𝐵(𝐹2)
Factoring out 𝐹𝐴 gives

𝑑𝐹𝐴
𝑑𝑡 = 𝐹𝐴(𝐹1 − 𝐹𝐴𝐹1 − 𝑣𝐹𝐵𝐹2)

We can further factor out 𝐹1 in the parenthetical term to rewrite the equation:

𝑑𝐹𝐴
𝑑𝑡 = 𝐹𝐴(𝐹1(1 − 𝐹𝐴) − 𝑣𝐹𝐵𝐹2)

Recognizing that 1 − 𝐹𝐴 = 𝐹𝐵, we can write:

𝑑𝐹𝐴
𝑑𝑡 = 𝐹𝐴(𝐹1𝐹𝐵 − 𝑣𝐹𝐵𝐹2) = 𝐹𝐴(1 − 𝐹𝐴)[𝐹1 − 𝑣(1 − 𝐹1)]

This is the same as Eqn. S1.9
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Evaluating coexistence by analysing the feasibility and stability of equilibrium
points
The first approach to deriving the conditions necessary for coexistence of the two plant
species involves identifying the criteria that ensure feasible and stable equilibrium points.
Feasible equilibrium points mean that all the components of the system (in this case, the
two plant species and their associatedmicrobial communities) are present in the system at
equilibrium; stability means that slight perturbations of the equilibrium do not push the
system towards exclusion of one plant or the other. This approach builds on the insight that
for two-species Lotka-Volterra models, feasible equilibria that are locally stable guarantee
coexistence (Goh, 1976).

Identifying the equilibrium conditions

Thefirst step in this analysis is to find the equilibria of themodel. Todo so, we set Eqns. S1.8
and S1.9 to both equal zero. We can start by evaluating the plant dynamics equation:

𝑑𝐹1
𝑑𝑡 = 𝐹1(1 − 𝐹1)[(𝑚1𝐴 − 𝑚2𝐴)𝐹𝐴 + (𝑚1𝐵 − 𝑚2𝐵)(1 − 𝐹𝐴)] = 0

This equilibrium can arise when 𝐹1 = 0 or when 𝐹1 = 1, which corresponds to cases
in which the plant community is a monoculture of species 2 or 1 respectively. However,
equilibrium can also arise when the third term (in square brackets) is equal to zero:

[(𝑚1𝐴 − 𝑚2𝐴)𝐹𝐴 + (𝑚1𝐵 − 𝑚2𝐵)(1 − 𝐹𝐴)] = 0 (S1.10)

Solving this for 𝐹𝐴 shows that equilibrium is achieved when the following is true:

𝐹 ∗
𝐴 = 𝑚2𝐵 − 𝑚1𝐵

𝑚1𝐴 − 𝑚2𝐴 − 𝑚1𝐵 + 𝑚2𝐵
= 𝑚2𝐵 − 𝑚1𝐵

𝐼𝑆
(S1.11)

Given that 𝑑𝐹2/𝑑𝑡 = −𝑑𝐹1/𝑑𝑡, Equation S1.11 also implies that 𝑑𝐹2/𝑑𝑡 = 0.

For the system to be at equilibrium, the microbial communities also need to be static:

𝑑𝐹𝐴
𝑑𝑡 = 𝐹𝐴(1 − 𝐹𝐴)[(𝐹1 − 𝑣(1 − 𝐹1)] = 0 (S1.12)

As above, the system is at equilibrium when it comprises entirely of microbial commu-
nity 𝐴 or 𝐵, corresponding to 𝐹𝐴 = 1 or 𝐹𝐴 = 0, respectively. The system is also at
equilibrium when the third term (in square brackets) is equal to zero:

𝐹1 − 𝑣(1 − 𝐹1) = 0

29



Solving this for 𝐹1 shows that equilibrium requires the following to be true:

𝐹 ∗
1 = 𝑣

1 + 𝑣 (S1.13)

Identifying feasible equilibrium points

Having identified the equilibrium conditions (Eqns. S1.11 and S1.13) can now evaluate the
conditions under which this equilibrium is feasible, i.e. what is required for the equilibrium
frequency of both plants and microbes to be between 0 and 1 (0 < 𝐹 ∗

𝐴 < 1 and 0 < 𝐹 ∗
1 <

1).

For simplicity, we begin with 𝐹 ∗
1 . The value of Eqn. S1.13 will be between 0 and 1 for any

𝑣 > 0. In other words, so long as both plant species condition the soil community, this
condition is satisfied.

Next we move to Eqns. S1.11. Two sets of conditions can allow for 0 < 𝐹 ∗
𝐴 < 1:

Condition 1: Both the numerator and denominator of Eqn. S1.11 are positive
(𝑚2𝐵 − 𝑚1𝐵 > 0 and 𝑚1𝐴 − 𝑚2𝐴 − 𝑚1𝐵 + 𝑚2𝐵 > 0), and the magnitude of
the numerator is smaller than that of the denominator (𝑚2𝐵 − 𝑚1𝐵 < 𝑚1𝐴 −
𝑚2𝐴 − 𝑚1𝐵 + 𝑚2𝐵).7

Condition 2: Both the numerator and denominator of Eqn. S1.11 are negative
(𝑚2𝐵 − 𝑚1𝐵 < 0 and 𝑚1𝐴 − 𝑚2𝐴 − 𝑚1𝐵 + 𝑚2𝐵 < 0), and the magnitude
of the numerator is smaller than that of the denominator (abs(𝑚2𝐵 − 𝑚1𝐵) <
abs(𝑚1𝐴 − 𝑚2𝐴 − 𝑚1𝐵 + 𝑚2𝐵))

If either condition is met (along with the condition that 𝑣 > 0), the system has a feasible
equilibrium point at which all players (both plants and both microbes) are present in the
system at a frequency of between 0 and 1. If neither of these conditions is met (e.g. if
𝐼𝑆 < 0 but 𝑚2𝐵 − 𝑚1𝐵 > 0), the system does not have an internal equilibrium; in other
words, the system only has a boundary equilibrium corresponding to only one species
being present in the system.

The next step for understanding the coexistence conditions in this model is to evaluate the
dynamic stability of these equilibrium points.

Evaluating the dynamic stability of equilibrium points

While the above expressions (conditions 1 and 2, along with 𝑣 > 0) capture the condi-
tions necessary for the existence of feasible equilibrium points, long-term coexistence also
requires that these points are dynamically stable (i.e. that the system recovers equilibrium
from slight perturbations away from the equilibrium state, Goh (1976)).

7Note that due to algebra, if 𝑚2𝐵 > 𝑚1𝐵 and 𝐼𝑆 > 0, 𝑚1𝐴 > 𝑚2𝐴 is implied; likewise, if 𝑚2𝐵 < 𝑚1𝐵
and 𝐼𝑆 < 0 (Condition 2) is satisfied, 𝑚1𝐴 < 𝑚2𝐴 is implied.
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We can evaluate the local stability of the equilibria by creating the Jacobian Matrix of the
system, which is denoted J. The Jacobian matrix helps us evaluate whether a system that
is at equilibrium returns to the equilibrium when it is perturbed slightly, or if the pertur-
bation causes the continues shifting away from the equilibrium. Each element in J is the
partial derivative of one of the dynamics equations (Eqns S1.8 and S1.9) with respect to
one of the components:

J = [
𝜕 ̇𝐹1
𝜕𝐹1

𝜕 ̇𝐹1
𝜕𝐹𝐴

𝜕 ̇𝐹𝐴
𝜕𝐹1

𝜕 ̇𝐹𝐴
𝜕𝐹𝐴

]

Note that above, ̇𝐹1 = 𝑑𝐹1
𝑑𝑡 , and ̇𝐹𝐴 = 𝑑𝐹𝐴

𝑑𝑡 . Taking the respective partial derivatives gives
us the following expressions for the four elements of the matrix:

𝜕 ̇𝐹1
𝜕𝐹1

= (1 − 2𝐹1)[(𝑚1𝐴 − 𝑚2𝐴)𝐹𝐴 + (𝑚1𝐵 − 𝑚2𝐵)(1 − 𝐹𝐴)]
𝜕 ̇𝐹1
𝜕𝐹𝐴

= 𝐹1(1 − 𝐹1)(𝑚1𝐴 − 𝑚2𝐴 − 𝑚1𝐵 + 𝑚2𝐵) = 𝐹1(1 − 𝐹1)𝐼𝑆

𝜕 ̇𝐹𝐴
𝜕𝐹1

= 𝐹𝐴(1 − 𝐹𝐴)(1 + 𝑣)
𝜕 ̇𝐹𝐴
𝜕𝐹𝐴

= [𝐹1 − 𝑣(1 − 𝐹1)](1 − 2𝐹𝐴)

These four terms define the entries of the Jacobian matrix, which we can now evaluate at
the system’s equilibrium points to determine their local stability.

Recall from our analysis of Eqn. S1.10 that at equilibrium, [(𝑚1𝐴 − 𝑚2𝐴)𝐹𝐴 + (𝑚1𝐵 −
𝑚2𝐵)(1 − 𝐹𝐴)] = 0; thus, 𝜕 ̇𝐹1

𝜕𝐹1
also equals 0 at equilibrium.

Similarly, recall from the analysis of Eqn. S1.12 that [𝐹1 − 𝑣(1 − 𝐹1)] = 0 at equilibrium;
thus, 𝜕 ̇𝐹𝐴

𝜕𝐹𝐴
also equals zero at equilibrium.

The system’s Jacobian evaluated at its equilibrium (𝐹 ∗
1 , 𝐹 ∗

𝐴) thus simplifies as follows:

J|𝐹 ∗
1,𝐹 ∗

𝐴
= [ 0 𝐹1(1 − 𝐹1)𝐼𝑆

𝐹𝐴(1 − 𝐹𝐴)(1 + 𝑣) 0 ]

We can evaluate the local stability of the equilibrium points on the basis of the trace and
determinant of the matrix J (Panvilov et al., 2021). The trace (tr) for a square matrix is the
sum of its diagonal entries, so tr(J|𝐹 ∗

1,𝐹 ∗
𝐴

) = 0.
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Given that the trace of the matrix is zero, the equilibrium can have one of two properties:

1. The equilibrium is a “center equilibrium” if the determinant is positive
(Panvilov et al., 2021). A center equilibrium implies that the system is
neutrally stable, meaning that the system never returns to the equilibrium
point itself after perturbation; it remains in a perpetual cycle. For our
purposes, we interpret this as a coexistence equilibrium, because it implies
that both species have cyclical dynamics of their frequency in the system.

2. The equilibrium is a saddle node if the determinant is negative (Panvilov
et al., 2021). Thismeans that once perturbed from equilibrium, the system
continues moving away from the equilibrium (peturbations in favor of
species 1 eventually lead to monodominance by species 1, and vice-versa
for perturbations in favor of species 2).

Thus, whether or not any feasible equilibrium point corresponds to stable coexistence is
determined by the sign of the determinant.

Recalling that the determinant of a generic two-by-two matrix (𝑎 𝑏
𝑐 𝑑) is equal to (𝑎𝑑) −

(𝑏𝑐), the determinant of 𝐽 is as follows:

det(J|𝐹 ∗
1,𝐹 ∗

𝐴
) = 0 − [

term 1
⏞⏞⏞⏞⏞⏞⏞⏞⏞(𝐹𝐴(1 − 𝐹𝐴)(1 + 𝑣)) ∗

term 2
⏞⏞⏞⏞⏞⏞⏞(𝐹1(1 − 𝐹1)𝐼𝑆)]

Given that we are evaluating feasible equilibrium points where 0 < 𝐹𝐴, 𝐹𝐵 < 1, and
𝑣 > 0, term 1 is always positive. Additionally, given that by definition at the feasible
equilibrium 0 < 𝐹1, 𝐹2 < 1, the sign of term 2 - and thus, the sign of the determinant as
a whole - is determined by the sign of 𝐼𝑆. Specifically, negative values of 𝐼𝑆 correspond to
a positive determinant, while positive values of 𝐼𝑆 correspond to a negative determinant.

Building on the two potential properties listed above, this means that the equilibrium is
neutrally stable if 𝐼𝑆 < 0, or is a saddle node if 𝐼𝑆 > 0.

Combining the criteria for feasibility and stability

From the above analysis, we see that only equilibrium points that satisfy Condition 2 for
feasible equilibria correspond to a an equilibrium in which both species can coexist with
neutral stability:

𝑚2𝐵 − 𝑚1𝐵 < 0 and 𝑚1𝐴 − 𝑚2𝐴 − 𝑚1𝐵 + 𝑚2𝐵 < 0.

Note that the above inequality implies that 𝑚1𝐴 < 𝑚2𝐴. Thus, we can express the coex-
istence conditions simply as:

𝑚2𝐵 < 𝑚1𝐵 and 𝑚1𝐴 < 𝑚2𝐴 (S1.14)
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Evaluating coexistence by analysing the requirements for mutual invasion
While the above approach derives the coexistence criteria by evaluating the conditions
for local stability around feasible equilibria, one can also approach coexistence criteria by
evaluating the conditions that allow mutual invasibility (Turelli, 1978; Chesson and Ell-
ner, 1989; Grainger et al., 2019). As explained in the main text of the manuscript, this ap-
proach builds on the insight that coexistence requires that each species can gain a foothold
(i.e. achieve a positive low-desnity growth rate, or LDGR) as it grows into an equilibrium
monoculture of the other. Following Chesson (2000) and Chesson (2018), one can fur-
ther decompose the LDGRs into two terms - one that captures the microbially mediated
stabilization (which promotes both species’ invasion growth rates, and thus favors coexis-
tence), and a second term that captures themicrobiallymediated fitness difference (which
benefits one plant’s invasion growth rate but suppresses the other, and thus favors exclu-
sion). The details of this analysis are provided in the appendix of Kandlikar et al. (2019),
and summarized below.

We begin the analysiswith Eqn. S1.8, which defines the dynamics of each plant’s frequency
in the system:

𝑑𝐹1
𝑑𝑡 = 𝐹1(1 − 𝐹1)[(𝑚1𝐴 − 𝑚2𝐴)𝐹𝐴 + (𝑚1𝐵 − 𝑚2𝐵)(1 − 𝐹𝐴)]

We first evaluate the case where the system is an equilibrium monoculture of plant 2 (and
its corresponding soil community). Plant 1 and its soil community are absent, meaning
that 𝐹1 = 𝐹𝐴 = 0. We can now quantify plant 1’s per-frequency growth rate ( 1

𝐹1
𝑑𝐹1
𝑑𝑡 ) as

follows:

LDGR1→2 = 1
𝐹1

𝑑𝐹1
𝑑𝑡 = (1 − 𝐹1)[(𝑚1𝐴 − 𝑚2𝐴)𝐹𝐴 + (𝑚1𝐵 − 𝑚2𝐵)(1 − 𝐹𝐴)] (S1.15)

Given that 𝐹1 = 𝐹𝐴 = 0, Eqn. S1.15 simplifies as follows:
LDGR1→2 = 𝑚1𝐵 − 𝑚2𝐵 (S1.16)

Through a similar analysis of plant 2’s growth into a monoculture of plant 1, we get the
invasion growth rate of plant 2:

LDGR2→1 = 𝑚2𝐴 − 𝑚1𝐴 (S1.17)

If both of these conditions are satisfied, both species have positive low-density growth
rates and can coexist provided that the following is true. Thus, this analysis yields the
coexistence criteria:

𝑚1𝐵 > 𝑚2𝐵 and 𝑚2𝐴 > 𝑚1𝐴 (S1.18)

The inequalities in Eqn. S1.18 are identical to those that we derived through the feasibility
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analysis above Eqn. S1.14, showing the inherent complementarity of these two approaches.
If our goal were to simply evaluate coexistence in the Bever et al. (1997) model, evaluating
is a perfectly valid ending.

However, we can extend our analysis further to generate additional insights. Specifically,
decomposing the LDGRs into microbially mediated stabilization and fitness differences
allows us to integrate plant-microbe interactions into a wider body of work that seeks to
understand how plant coexistence is structured by competition, pollinators, herbivores,
etc. (see main text for citations to specific examples).

As explained in Appendix S1 of Kandlikar et al. (2019), the first step in this decomposition
is to define the species-level average fitness (Chesson, 2018). In the case of the Bever et al.
(1997) model, we can define the average fitness of species 1 as its average growth rate at
all possible soil states (from 𝐹𝐴 = 0 to 𝐹𝐴 = 1):

fitness1 =
∫1
0 𝑚1𝐵 + (𝑚1𝐴 − 𝑚1𝐵)𝐹𝐴𝑑𝐹𝐴

∫1
0 𝑑𝐹𝐴

= 𝑚1𝐵𝐹𝐴+𝑚1𝐴 − 𝑚1𝐵
2 𝐹 2

𝐴∣
1

0
= 𝑚1𝐴 + 𝑚1𝐵

2

Similarly, fitness2 = 𝑚2𝐴+𝑚2𝐵
2 . With these definitions of species 1 and 2’s average fitness,

we can express each species’ invasion growth rate as the sum of the fitness difference and
stabilization:

LDGR1 = fitness difference1,2 + stabilization (S1.19)

LDGR2 = fitness difference2,1 + stabilization (S1.20)

Note that fitness difference1,2 is simply the difference between species 1 and 2’s average
fitness as defined above:

fitness difference1,2 = (

plant 1 fitness

⏞⏞⏞⏞⏞𝑚1𝐴 + 𝑚1𝐵
2 ) − (

plant 2 fitness

⏞⏞⏞⏞⏞𝑚2𝐴 + 𝑚2𝐵
2 )

The order of the two terms is flipped for calculating fitness difference2,1. Thus, in the
absence of stabilization, only one species can have a positive invasion growth rate, and
coexistence is not possible.

Above, we saw that LDGR1→2 = 𝑚1𝐵−𝑚2𝐵 (Eqn S1.16). Combining thiswith Eqn. S1.19,
we get:

𝑚1𝐵 − 𝑚2𝐵 = (𝑚1𝐴 + 𝑚1𝐵
2 ) − (𝑚2𝐴 + 𝑚2𝐵

2 ) + stabilization
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Algebra (detailed in Box S2) yields the expression for stabilization:

stabilization = −1
2(𝑚1𝐴 − 𝑚1𝐵 − 𝑚2𝐴 + 𝑚2𝐵) = −1

2𝐼𝑆

For both species to have a positive LDGR, the strength of stabilization should exceed the
absolute value of the fitness difference8:

stabilization > 𝑎𝑏𝑠(fitness difference)
When fitness differences exceed stabilization, only the species with the higher fitness can
invade into a monoculture of the other; this corresponds to species exclusion.

Negative stabilization (destabilization) suppresses each species’ LDGR. If it does so to the
point that neither species has a positive LDGR, the system experiences priority effects:
whichever species is present at a higher frequency will dominate, and the species with
initially low frequencies eventually gets excluded.

Box S2: Deriving the stabilization term
Above, we saw that the LDGR1→2can be expressed as follows:

LDGR1→2 = 𝑚1𝐵 − 𝑚2𝐵 = (𝑚1𝐴 + 𝑚1𝐵
2 ) − (𝑚2𝐴 + 𝑚2𝐵

2 ) + stabilization

We can rewrite this as follows:

𝑚1𝐵 − 𝑚2𝐵 = 1
2𝑚1𝐴 + 1

2𝑚1𝐵 − 1
2𝑚2𝐴 − 1

2𝑚2𝐵 + stabilization

Moving the terms to the left of the equal sign to the right, and moving stabilization
to the left gives

−stabilization = 1
2𝑚1𝐴 − 1

2𝑚1𝐵 − 1
2𝑚2𝐴 + 1

2𝑚2𝐵

This equation simplifies to the expression for stabilization:

stabilization = −1
2(𝑚1𝐴 − 𝑚1𝐵 − 𝑚2𝐴 + 𝑚2𝐵)

The decomposition also applies to LDGR2→1
While we derived stabilization from plant 1’s LDGR, we can show that this applies
equally well to plant 2’s low density growth:

8the absolute value of (fitness difference)1,2 equals that of (fitness difference)2,1, so subscripts are not re-
quired
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LDGR2→1 = fitness difference2,1 + stabilization

Substituting the expressions for fitness difference2,1 and stabilization gives us:

LDGR2→1 = 𝑚2𝐴 + 𝑚2𝐵
2 − 𝑚1𝐴 + 𝑚1𝐵

2 − 1
2(𝑚1𝐴 − 𝑚1𝐵 − 𝑚2𝐴 + 𝑚2𝐵)

Through algebra, we recover Eqn. S1.20 as above:

LDGR2→1 = 𝑚2𝐴 − 𝑚1𝐴

The coexistence criteria in terms of stabilization/fitness difference is equivalent
to that from the LDGR analysis
Finally, we can show that the coexistence criteria expressed as “stabilization >
abs(fitness difference)” is equivalent to the criteria in Eqn. S1.18.
Recall the coexistence criteria in terms of stabilization and fitness difference:

stablization
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
− 1

2((𝑚1𝐴 + 𝑚2𝐵) − (𝑚2𝐴 + 𝑚1𝐵)) > abs(

fitness difference1,2

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞1
2(𝑚1𝐴 + 𝑚1𝐵) − 1

2(𝑚2𝐴 + 𝑚2𝐵) )
(S1.21)

By dividing though by −1
2 , this can be rexpressed as follows:

𝑚1𝐴 + 𝑚2𝐵 − 𝑚2𝐴 − 𝑚1𝐵 < abs(𝑚1𝐴 + 𝑚1𝐵 − 𝑚2𝐴 − 𝑚2𝐵)
To accounting for the absolute value function on the right, this inequality can bewrit-
ten as two separate inequalities:

𝑚1𝐴 + 𝑚2𝐵 − 𝑚2𝐴 − 𝑚1𝐵 < 𝑚1𝐴 + 𝑚1𝐵 − 𝑚2𝐴 − 𝑚2𝐵 (S1.22)

𝑚1𝐴 + 𝑚2𝐵 − 𝑚2𝐴 − 𝑚1𝐵 > −𝑚1𝐴 − 𝑚1𝐵 + 𝑚2𝐴 + 𝑚2𝐵 (S1.23)

Cancelling like terms in Eqn. S1.22 gives 𝑚1𝐵 > 𝑚2𝐵, and doing the same in
Eqn. S1.23 𝑚1𝐴 > 𝑚2𝐴. Together, these are identical to Eqn. S1.18.
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Appendix S2: Quantifying the community-wide stabilization
metric 𝐼𝐶 with empirical data
Contact: Gaurav S. Kandlikar, gkandlikar@lsu.edu

With some modifications to the nature of soil microbial dynamics, Mack et al. (2019) and
Eppinga et al. (2018) extended the two-species feedback model of Bever et al. (1997) to
evaluate microbial effects on coexistence in multi-species plant communities. Details of
this multispecies model derivation and analysis are provided in the original publications.
In this appendix, I demonstrate a practical application of quantifying the feedback metric
from Eppinga et al. (2018) using empirical data from Dudenhöffer et al. (2022).

By analyzing an 𝑛-species plant-soil feedback model, Eppinga et al. (2018) showed that
whether microbes generate positive or negative feedback is determined by the sign of the
metric 𝐼𝐶 , which serves as a community-wide analog of the two-species term 𝐼𝑆. Extend-
ing from the notation of the two-species model used in the main text, plant species are de-
noted 1, 2, … , 𝑛, and the corresponding microbial communities are denoted 𝐴, 𝐵, … , 𝑋.
The effect of a given microbial community 𝑥 on plant 𝑖 is denoted 𝑚𝑖𝑥. One can arrange
the 𝑚 terms into an interaction matrix A:

A =
⎡⎢⎢
⎣

𝑚1𝐴 𝑚1𝐵 … 𝑚1𝑋
𝑚2𝐴 … … 𝑚2𝑋
… … … …

𝑚𝑛𝐴 … … 𝑚𝑛𝑋

⎤⎥⎥
⎦

One can use this interactionA to calculate the community-wide stabilization 𝐼𝐶 as follows:

𝐼𝐶 = (−1)𝑛
𝑛

∑
𝑗=1

det A𝑗 (S2.24)

Here, det represents the matrix determinant, andAj denotes the interactionmatrix 𝐴 with
the 𝑗’th column replaced with a vector of 1s. Note that in two-species systems (𝑛 = 2),
𝐼𝐶 = 𝐼𝑆, as detailed in Box S2.1.

The main text presents the caveats of using 𝐼𝑆 to predicting pairwise species coexistence.
Such caveats also exist for 𝐼𝐶 < 0. While negative values of 𝐼𝐶 indicate negative feedback
(stabilizing effects on community dynamics), they do not guarantee that all species can
coexist. In addition to 𝐼𝐶 < 0, community-wide coexistence also requires that each species
can persist at non-zero frequency at equilibrium:

0 < ̂𝑃𝑖 = det A𝑖
(−1)𝑛 ∑𝑛

𝑗=1 det A𝑗
< 1 (S2.25)

For the same reason that growth in reference soil is essential for calculating pairwise fitness

37

mailto:gkandlikar@lsu.edu


differences (see Main Text), such data is also required for quantifying the equilibrium
frequency.

Box 1: Correspondence between 𝐼𝐶 and 𝐼𝑆 when 𝑛 = 2
The interaction matrix for two species is as follows:

A = [𝑚1𝐴 𝑚1𝐵
𝑚2𝐴 𝑚2𝐵

]

Following Eqn. S2.24 above, 𝐼𝐶 for this 2-species system (𝐼𝐶) is calculated as follows:

𝐼𝐶 = (−1)2
2

∑
𝑗=1

det 𝐴𝑗 = (−1)2(det(1 𝑚1𝐵
1 𝑚2𝐵

) + det(𝑚1𝐴 1
𝑚2𝐴 1)) (S2.26)

Given that det(𝑎 𝑏
𝑐 𝑑) = 𝑎𝑑 − 𝑏𝑐, Eqn. S2.26 simplifies as:

𝐼𝐶 = (−1)2((1 ∗ 𝑚2𝐵 − 𝑚1𝐵 ∗ 1) + (𝑚1𝐴 ∗ 1 − 1 ∗ 𝑚2𝐴))
Through algebra, this simplifies to 𝐼𝐶 = 𝑚2𝐵 − 𝑚1𝐵 + 𝑚1𝐴 − 𝑚2𝐴, which is equiv-
alent to the pairwise 𝐼𝑆.

Quantifying 𝐼𝐶 with empirical data
This subsection provides R code for calculating 𝐼𝐶 from the data collected for Dudenhöffer
et al. (2022)’s study, which evaluated how drought affects plant-soil feedback outcomes.

Note: The goal of this code is not to be universally applicable in its current form to all
datasets; rather, this code can merely serve as a starting point for future studies aiming to
evaluate community-wide stability with 𝐼𝐶 . The code below makes a number of simplify-
ing assumptions (Box S2) which may not be appropriate in other contexts.

Assumptions embedded in the code
• Microbial effects on plant performance arise primarily through modification of

plant biomass (survival not impacted; note that this diverges fromDudenhöffer
et al. (2022)’s original analysis)

• In cases where an estimate of 𝐵𝑖𝑥 was unable, I use the average value of 𝐵𝑖𝑥
from all other pots in the same environmental (watering) treatment.
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library(tidyverse)
library(readxl)
library(osfr) # for downloading dataset

# Download dataset if it is not available
if(!("data_PSF_response_phase.xlsx" %in% list.files())) {
osf_retrieve_file("https://osf.io/nx2e6") %>%
osf_download()

}

psf_data <- read_xlsx("data_PSF_response_phase.xlsx")

# Structure of the dataset
colnames(psf_data)

[1] "block" "soil" "treatment" "species" "part" "bm"
[7] "dead"

unique(psf_data$block) # There are sterile soils in this; we can filter them

[1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "S1" "S2" "S3"

table(psf_data$dead)/2

0 1
2081 223

# There are >200 dead plants; for now we can set aside
# microbial effects on mortality and focus instead on growth
# This differs from the authors of this study, but is consistent
# with lots of other work on PSF.
# For now, we can just assign dead plants to have the mean biomass
# across other replicates of the same species/soil/treatment combo.

# Data reformatting
interaction_matrices <-
psf_data %>%
# Change the species names to be in sentence case i.e. "AT" becomes "At"

mutate(soil = str_to_sentence(soil),
species = str_to_sentence(species)) %>%

# filter out sterile soils treatment - not relevant for I_C
filter(!str_detect(block, "S")) %>%
# group by the relevant categories
group_by(block, soil, treatment, species) %>%
# Right now, biomass is separated agb/bgb;
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# This chunk combines the two into whole-plant biomass ("combined_bm")
summarize(combined_bm = sum(bm),

dead = max(dead)) %>%
ungroup() %>%
# Next, we replace NAs (biomass of dead plant) with mean values of that group
# NOTE that this is not a unviersally good choice; but needed to do something
# like this here because if any one entry of the matrix A is missing,
# that matrix cannot be used for calculating I_C.
group_by(soil, treatment, species) %>%
mutate(combined_bm = ifelse(dead ==1, NA, combined_bm),

combined_bm = ifelse(dead == 1,
mean(combined_bm, na.rm = T),
combined_bm)) %>%

# filter out dead individuals
select(-dead) %>%
# calculate log biomass
mutate(combined_bm = log(combined_bm)) %>%
# make treatment into a factor vector, with levels L/M/H
mutate(treatment = as_factor(treatment),

treatment = fct_relevel(treatment, c("L", "M", "H"))) %>%
ungroup() %>%
# Now, we can work within each treatment & block to make interaction matrices.
group_by(treatment, block) %>%
arrange(treatment) %>%
nest() %>%
# The next chunk uses the biomass values B_{ij} and makes an
# interaction matrix (A) for each replicate block/treatment combo
mutate(interaction_matrix =

map(data,
~pivot_wider(.x,

# row is a species and each column is a soil type:
names_from = soil,
values_from = combined_bm) %>%

column_to_rownames('species') %>%
as.matrix()))

# We can look at this new object:
interaction_matrices

# A tibble: 27 x 4
# Groups: treatment, block [27]

block treatment data interaction_matrix
<chr> <fct> <list> <list>

1 A L <tibble [64 x 3]> <dbl [8 x 8]>
2 B L <tibble [64 x 3]> <dbl [8 x 8]>
3 C L <tibble [64 x 3]> <dbl [8 x 8]>
4 D L <tibble [64 x 3]> <dbl [8 x 8]>
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5 E L <tibble [64 x 3]> <dbl [8 x 8]>
6 F L <tibble [64 x 3]> <dbl [8 x 8]>
7 G L <tibble [64 x 3]> <dbl [8 x 8]>
8 H L <tibble [64 x 3]> <dbl [8 x 8]>
9 I L <tibble [64 x 3]> <dbl [8 x 8]>
10 A M <tibble [64 x 3]> <dbl [8 x 8]>
# i 17 more rows

# We can look at what an interaction matrix looks like:

# This is the interaction matrix for Block A, low water treatment:
interaction_matrices %>%
filter(block == "A", treatment == "L") %>%
pull(interaction_matrix) %>% pluck(1) %>% round(., 2)

At Bi Rc Rh Sh Sn Ss Vb
At -1.33 -1.51 -0.89 -0.61 -1.69 -0.90 -0.67 -1.97
Bi -1.45 -3.86 -2.70 -0.31 -4.34 -4.42 -3.00 -2.60
Rc -1.31 -1.26 -0.87 -1.90 -4.02 -1.66 -1.14 -1.01
Rh -0.42 -0.85 -1.46 -0.94 -4.96 -1.12 -0.59 -1.43
Sh -2.90 -2.54 -2.02 -2.47 -3.73 -2.26 -0.49 -3.69
Sn -1.04 -3.44 -1.43 -1.96 -1.26 -1.39 -1.93 -0.80
Ss -1.41 -1.60 -1.85 -1.38 -3.32 -2.60 -1.16 -1.82
Vb -0.47 -0.77 0.06 -0.97 -3.61 -0.84 -1.01 -1.42

# Conceptually it is similar to Fig. 2A from the paper, but note that this matrix
# is for Block A only; that one averages from across blocks (and also accounts
# for microbial effects on mortality).

Now that we have made the interaction matrices (1 matrix per block, per treatment), we
can use this matrix to calculate the 𝐼𝐶 for every possible 2, 3, 4, 5, 6, 7, and 8 species
combination. That will represent the 𝐼𝐶 for a given community, in a given treatment, in
a given block. We can then summarize over different blocks to get a mean 𝐼𝐶 for each
community in each treatment.

# To make calculations easier, we can write a function that calculates
# I_C for all possible subcommunities, gien a complete interaction matrix:

Ic_for_all_subs <- function(intmat) {

# 1. Helper function: Given a species combination, make a submatrix
make_submatrix <- function(intmat, indices) {
to_return <- apply(indices, 2, function(x) intmat[x,x], simplify = F)
names(to_return) <- apply(indices, 2, function(x)

paste(rownames(intmat)[x], collapse=""))
to_return

}
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# 2. Helper function: Given an interaction matrix, calculate I_C
Ic <- function(intmat) {
# 2.1. make a variable that holds species number
nsp = ncol(intmat)

# 2.2. Define a sub-helper function for making matrices A_j
# This function replaces the j'th column
# in the interaction matrix (intmat) with a column of 1s
make_Aj_mat <- function(intmat, j) {

temp_mat <- intmat # Define a temporary holder matrix
temp_mat[,j] <- 1 # Return the j'th column with 1
return(temp_mat) # return the holder matrix

}

# 2.3. Make Aj vectors using the sub-helper function above
Ajs <- map(1:nsp, ~make_Aj_mat(intmat, .x))
# 2.4. Calculate determinants of all Aj matrices
dets <- map_dbl(Ajs, det)
# 2.5. Calculate IC
((-1)^nsp)*(sum(dets))

}

# 3. Helper function: Given a list of submatrices, calculate their IC
# This function returns a vector; each element in the vector is I_C
make_Ic_vec <- function(submats) {
map_dbl(submats, Ic)

}

# 4. Define the number of species (total), all possible 2:n species combinations,
# and make all possible sub-matrices of 2:n species using Helper Fn 1 above.
nsp <- nrow(intmat)
possible_combns <- map(2:nsp, ~combn(nsp, .x))
submats <- map(possible_combns, ~make_submatrix(intmat, .x))

# 5. calculate Ic for all submatrices
all_Ics <- map(submats, make_Ic_vec)
all_Ics

}

# We can now use this function to calculate all ICs:
# Here, we use the interaction_matrices object and make a new column
# called all_Ics; each element in this column will have all
# possible I_C values for a given matrix.

42



interaction_matrices_with_ICs <-
interaction_matrices %>%
mutate(all_Ics = map(interaction_matrix, Ic_for_all_subs))

head(interaction_matrices_with_ICs)

# A tibble: 6 x 5
# Groups: treatment, block [6]
block treatment data interaction_matrix all_Ics
<chr> <fct> <list> <list> <list>

1 A L <tibble [64 x 3]> <dbl [8 x 8]> <list [7]>
2 B L <tibble [64 x 3]> <dbl [8 x 8]> <list [7]>
3 C L <tibble [64 x 3]> <dbl [8 x 8]> <list [7]>
4 D L <tibble [64 x 3]> <dbl [8 x 8]> <list [7]>
5 E L <tibble [64 x 3]> <dbl [8 x 8]> <list [7]>
6 F L <tibble [64 x 3]> <dbl [8 x 8]> <list [7]>

# The first entry has all I_Cs for Block A/treatment L:
# (This will be a list; the first element in the list is a vector
# of the two-species I_Cs; the second element is a vector of the 3-species
# I_Cs, and so on)

# Two species I_C (AKA I_S), only printing first 10
interaction_matrices_with_ICs$all_Ics[[1]][[1]][1:10]

AtBi AtRc AtRh AtSh AtSn AtSs
-2.23727667 0.00289922 -1.24613067 -0.46826601 -0.78187924 -0.41424075

AtVb BiRc BiRh BiSh
-0.30827442 -0.76536237 -3.64484659 -0.71182094

# I_S for triplets, only printing first 10
interaction_matrices_with_ICs$all_Ics[[1]][[2]][1:10]

AtBiRc AtBiRh AtBiSh AtBiSn AtBiSs AtBiVb AtRcRh
-0.3814381 -2.8975229 -2.4155463 5.8255029 -0.8931710 -0.6285068 1.9405044

AtRcSh AtRcSn AtRcSs
-1.0305773 0.6521919 0.4319539

We now have a value of 𝐼𝐶 for every 𝑛 = 2, 3.., 8 species combination in each
block/treatment combination. There are various ways one can summarize this informa-
tion; for simplicity, I will just summarize the mean value of pairwise 𝐼𝐶 , triplet 𝐼𝐶 , …
8-species 𝐼𝐶 in each treatment.

interaction_matrices_with_ICs %>%
# This next mutate call takes the big list of Ics and splits the
# information into columns for 2, 3,..8 species communities
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mutate(coms2 = map(all_Ics, ~pluck(.x,1)),
coms3 = map(all_Ics, ~pluck(.x,2)),
coms4 = map(all_Ics, ~pluck(.x,3)),
coms5 = map(all_Ics, ~pluck(.x,4)),
coms6 = map(all_Ics, ~pluck(.x,5)),
coms7 = map(all_Ics, ~pluck(.x,6)),
coms8 = map(all_Ics, ~pluck(.x,7))) %>%

# data managing: we can get rid of a few things and only focus on the IC columns
select(-data, -interaction_matrix, -all_Ics) %>%
unnest(c(treatment, block)) %>%
# At this step, we get the mean value of $I_C$ for each n-species community
mutate(across(coms2:coms8, ~map_dbl(.x, mean))) %>%
# Clean out some columns that we don't need
select(block, treatment, coms2:coms8) %>%
# Calculate mean and SD of IC for each community size in each treatment
group_by(treatment) %>%
# Get the mean, standard deviation, and replicates per calculation
summarise(across(coms2:coms8, mean, .names = "{.col}_mean"),

across(coms2:coms8, sd, .names = "{.col}_sd"),
across(coms2:coms8, length, .names = "{.col}_nreps")) %>%

# Clean out some unsed columns
select(-(coms2_nreps:coms7_nreps), nreps = coms8_nreps) %>%
# Reshape the data in two steps:
# First, pivot it longer so that each sd/mean ends up on its own row
pivot_longer(coms2_mean:coms8_sd) %>%
# Then, clean up the names and pivot it wider so that mean/sd are in different columns
separate(name, into = c("which_comm", "which_value"), sep = "_") %>%
pivot_wider(names_from = which_value, values_from = value) %>%
# calculate SEM as sd/sqrt(n)
mutate(sem = sd/sqrt(nreps)) %>%

# NOTE: uncomment the following lines to make the Main Text Fig. S3;
# which focuses only on two- and three-species communities
# filter(which_comm %in% c("coms2", "coms3")) %>%
# mutate(which_comm = ifelse(which_comm == "coms2", "Species pairs", "Triplets")) %>%

mutate(which_comm = case_when(which_comm == "coms2" ~ "2 species communities",
which_comm == "coms3" ~ "3 species communities",
which_comm == "coms4" ~ "4 species communities",
which_comm == "coms5" ~ "5 species communities",
which_comm == "coms6" ~ "6 species communities",
which_comm == "coms7" ~ "7 species communities",
which_comm == "coms8" ~ "8 species communities")) %>%

ggplot(aes(x = treatment, y = mean, ymin = mean-sem*2, ymax = mean+sem*2)) +
geom_point(size = 3) +
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geom_errorbar(width = 0) +
facet_wrap(.~which_comm, scales = "free") +
ylab(latex2exp::TeX("Mean $I_C$")) +
geom_hline(yintercept = 0, linewidth = 0.4, linetype = "dashed", color = "grey") +
theme_classic()
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# ggsave(filename = "figures/figS4.pdf", width = 5, height = 2)

45


	Quantifying soil microbial effects on plant species coexistence: a conceptual synthesis
	Abstract
	Keywords

	Introduction
	Pairwise plant coexistence under soil microbial feedbacks
	Limits to inferring coexistence from I_S<0
	How to more thoroughly evaluate plant coexistence with soil feedbacks?
	Implications for empirical studies

	Soil microbial feedbacks in more diverse plant communities
	Implications for empirical studies

	Contextualizing plant-microbe interactions relative to plant-plant interactions
	Implications for empirical tests

	Conclusion
	Data/code availability
	Acknowledgements
	References
	Supplemental Figures

	Appendix S1: Conditions for coexistence in the classic plant-soil feedback model
	Model description
	Evaluating coexistence by analysing the feasibility and stability of equilibrium points
	Identifying the equilibrium conditions
	Identifying feasible equilibrium points
	Evaluating the dynamic stability of equilibrium points
	Combining the criteria for feasibility and stability

	Evaluating coexistence by analysing the requirements for mutual invasion

	Appendix S2: Quantifying the community-wide stabilization metric I_C with empirical data
	Quantifying I_C with empirical data


