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Abstract 20 

Marine heatwaves (MHWs) can cause thermal stress in marine ectotherms, experienced as a pulse 21 

against the press of anthropogenic warming. When thermal stress exceeds organismal capacity to 22 

maintain homeostasis, organism survival becomes time-limited and can result in mass mortality events. 23 

Current methods of detecting and categorizing MHWs rely on statistical analysis of historic climatology, 24 

and do not consider biological effects as a basis of MHW severity. The reemergence of thermal tolerance 25 

landscape models provides a physiological framework for assessing the lethal effects of MHWs by 26 

accounting for both the magnitude and duration of extreme heat events. Here, we used a simulation 27 

approach to understand the effects of a suite of MHW profiles on organism survival probability across 1) 28 

thermal tolerance adaptation strategies, 2) interannual temperature variation, and 3) seasonal timing of 29 

MHWs. We identified survival isoclines across MHW magnitude and duration broadly connecting acute 30 

(low duration-high magnitude) and chronic (long duration-low magnitude) events with equivalent lethal 31 

effects on marine organisms. While most attention has been given to chronic MHW events, we show 32 

similar lethal effects can be experienced by more common but neglected acute marine heat spikes. 33 

Critically, a fixed-baseline definition of MHWs does not accurately categorize biological mortality. By 34 

letting organism responses define the extremeness of a MHW event, we can build a mechanistic 35 

understanding of MHW effects from a physiological basis. MHW responses can then be transferred 36 

across scales of ecological organization and better predict marine ecosystem shifts to MHWs.  37 

Keywords: Ecological forecasting, extreme events, heat stress, mass mortality events, mechanistic 38 

ecological models, thermal tolerance, time dependent effects, climate change. 39 

  40 
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Introduction 41 

With the acceleration of climate change has come an urgent need to understand impact 42 

pathways on marine ecosystems. Extreme climate events are hypothesized to have stronger impacts on 43 

organisms rather than a shift in mean conditions (Bailey & van de Pol, 2016; Harris et al., 2018). Recently, 44 

the increased frequency, intensity, and duration of marine heatwaves (MHWs) have garnered attention 45 

as a symptom of climatic warming, with a discrete pulse behavior against the background of chronic 46 

warming (Frölicher et al., 2018; Harris et al., 2018; Oliver et al., 2021). Extreme events due to weather 47 

stochasticity are naturally occurring events, but as climate change presses temperature distributions 48 

upwards these events become more prevalent and increase the probability of lethal effects on organisms 49 

(Frölicher et al., 2018; Harvey et al., 2022; Scheffer et al., 2001; Smale et al., 2019). Mass Mortality 50 

Events (MMEs) occur when a population of organisms can no longer maintain physiological homeostasis 51 

or function (Ern et al., 2023; Ørsted et al., 2022) and are potential sources of population dynamic 52 

inflection. Most studies investigating MHW-linked MMEs are descriptive field studies (Fey et al., 2015; 53 

Garrabou et al., 2022; Glynn, 1968; Jurgens et al., 2015; Raymond et al., 2022; Tricklebank et al., 2021) 54 

that do not investigate how different MHW profiles contribute to MME extent, although newer 55 

experimental methods are trying to accommodate realistic MHW profiles (Bernal-Ibáñez et al., 2022; 56 

Domínguez et al., 2021; Gerhard et al., 2023; Jentsch et al., 2007; Moyen et al., 2022; Pansch et al., 57 

2018; Seuront et al., 2019).  58 

MHW extremeness can be defined using the climatological context in which they occur (Bailey & 59 

van de Pol, 2016; Hobday et al., 2016). Recent consensus has defined MHWs as discrete periods when 60 

temperatures exceed a seasonally varying threshold, which usually is represented by the 90th percentile 61 

of historical climatology for five or more consecutive days (Hobday et al., 2016, 2018; Oliver et al., 2021).  62 

This 90th percentile is calculated daily and thus varies seasonally, which is relevant in the context of 63 

many organisms’ phenology and performance throughout a seasonally variable environment (Hobday et 64 
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al., 2016). Additionally, MHW severity can be categorized and allow for comparison between events of 65 

varying intensity, duration, and rate of onset (Hobday et al., 2018), although categorization is 66 

determined by intensity only. This approach quantifies extreme conditions within a local spatiotemporal 67 

context and approximates what is likely considered extreme by organisms (Oliver et al., 2021). 68 

While such a fixed-baseline oceanographic metric is a good tool for understanding broad 69 

patterns, it does not provide a clear picture of how extreme heat affects organisms and ecosystems 70 

across scales. For example, organismal abilities to withstand MHWs vary greatly depending on 71 

physiology, behavior, function, and thermal niche within an environment (Harris et al., 2018; Smith et 72 

al., 2023). Further, a climatological definition of MHWs is only relevant when long-term data are 73 

available at the scale relevant to an organism, which can vary widely from millimeters to thousands of 74 

kilometers (Bates et al., 2018; Helmuth, 2009; Helmuth et al., 2014). Finally, a five-day minimum 75 

threshold duration for a MHW ignores extreme heat events that do occur on much shorter timescales in 76 

marine systems (Bates et al., 2018; White et al., 2023), although these shorter events may arise due to 77 

interactions between oceanographic and atmospheric processes (Holbrook et al., 2019, 2020). Adhering 78 

exclusively to an oceanographic definition of MHWs fails to consider biological responses to MHWs 79 

(Smith et al., 2023) and how organismal responses are shaped by their environment. Conversely, 80 

experiments and models that describe physiological responses to temperature rarely capture variability 81 

found in MHWs and rely on responses to mean conditions, thereby ignoring non-linear responses and 82 

the effects of Jensen’s inequality (Buckley & Kingsolver, 2021; Dowd et al., 2015; Gerhard et al., 2023; 83 

Harris et al., 2018; Morash et al., 2018). We lack coherent models that mechanistically link MHWs to 84 

observed responses in organisms and ecosystems (González-Trujillo et al., 2023; van de Pol et al., 2017). 85 

 A mechanistic model of organism mortality in response to MHWs needs to accommodate 86 

variation in the magnitude (or intensity) and duration of a heat challenge. Existing metrics that account 87 

for heat duration include cumulative intensity metrics, such as those used in remote-sensed coral reef 88 
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bleaching tracking products (e.g. Coral Reef Watch, Heron et al., 2016; McClanahan, 2022; Skirving et al., 89 

2020). However, such approaches still rely on static thresholds over which to calculate stress 90 

accumulation. A significant mechanistic development towards predicting the lethal effects of MHWs has 91 

been the re-emergence of the thermal death time (TDT) model of ectotherm thermal tolerance – a 92 

model that predicts death as a function of thermal exposure magnitude and time (Rezende et al., 2014). 93 

This model conceptualizes thermal challenge as a heat-dose, and better unifies the relationship between 94 

duration and magnitude of exposure that occur in heatwaves (Neuner & Buchner, 2023). When these 95 

TDT curves are combined with survival probability functions, a thermal tolerance landscape is produced 96 

which conceptualizes survival probability as a continuous response to temperature and temporal 97 

exposure (Rezende et al., 2014). Dynamic tolerance models can be built around thermal tolerance 98 

landscapes (Jørgensen et al., 2019, 2021; Rezende et al., 2020) to predict survival probability over 99 

varying temperature exposures within an organism’s environment. Dynamic tolerance models therefore 100 

account for time-dependent effects of heat stress. An important prediction of these models is death at 101 

relatively benign temperature magnitudes and extended temporal exposures, which are generally 102 

unaccounted for in single measures of thermal tolerance, such as CTmax and LT50. Therefore, dynamic 103 

tolerance models may identify cryptic mortality events that are not predicted by static thermal tolerance 104 

indices. 105 

The dynamic tolerance model approach is likely to produce more accurate predictions of 106 

organism mortality within an environmental context and has shown promise in scaling the physiological 107 

effects of climate change across ecological scales. Dynamic tolerance models predicted mortality events 108 

with current and future water temperature scenarios in Venice Lagoon bivalves (Bertolini et al., 2023), 109 

Antarctic marine invertebrates (Carter et al., 2023; Molina et al., 2022), and lotic amphipods (Verberk et 110 

al., 2023). There has been a single application of dynamic tolerance models to MHWs that explicitly 111 

investigated the potential for mismatches between categorization based on the 90th percentile of 112 
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climatology and modelled mortality (Bertolini & Pastres, 2021). A robust investigation of the interface of 113 

both dynamic tolerance models and MHW categorization would further the field’s ability to 114 

mechanistically quantify MHW strength and better forecast ecological responses.  115 

Here, we present a generalized computer MHW simulation that seeks to understand how 116 

organism mortality responds to variation in MHW duration and magnitude, and how a dynamic 117 

tolerance approach compares to Hobday’s fixed-baseline categorization of MHW extremity. We first 118 

simulate a suite of simple MHWs that vary in magnitude and duration following the threshold-duration 119 

definition of Hobday et al. (2016) to explore all MHW possibilities relative to long-term climatological 120 

baseline. We then simulate the exposure of two hypothetical organisms with different thermal strategies 121 

to each MHW time series using dynamic tolerance models to extract final probability estimates of 122 

organism mortality. We show how categorizing MHWs from the resulting survival landscape results in a 123 

biologically-informed assessment of MHW lethal impacts that can better guide ad hoc classifications of 124 

MHW impacts for species of interest. We hypothesize that similar levels of mortality can occur across 125 

MHW climatology categories and levels of interannual variation, which may mean a climatology 126 

definition of MHWs can both over- and under-estimate ecosystem impacts. Furthermore, a biological 127 

approach will correctly predict low mortality during non-summer MHWs.  128 

Methods 129 

Simulation of MHW Profiles 130 

We first constructed a suite of MHWs with varying magnitude and duration parameters. Hobday et al. ( 131 

2016) define three main MHW parameters: magnitude (thermal intensity), duration (temporal length of 132 

MHW above 90th percentile), and rate of onset/decline (slope value between maximum intensity and 133 

beginning/end of climatological heatwave) (Figure 1A). We defined duration as the MHW length as it 134 

departs from the climatological curve, not the 90% threshold. We adopted this definition because we 135 
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simulated our time series as sinusoidal curves with no stochastic function, focusing on the main effect of 136 

an idealized MHW on mortality. We did not manipulate rate of onset/decline as an independent 137 

parameter of magnitude and duration, as this would require introducing a second MHW geometry 138 

(trapezoidal) and is not aligned with our main research questions.  139 

 We simulated MHWs that ranged in duration from one hour to 30 days, with a discrete timestep 140 

of one day. We investigated MHW duration shorter than the Hobday et al. (2016) threshold of five days 141 

(‘marine heat spikes’) because of several case studies of organismal mortality in heatwave conditions 142 

that last less than five days (Bates et al., 2018; Glynn, 1968; Raymond et al., 2022), although the 143 

attribution of these events solely to marine heatwaves rather than atmospheric heatwaves or their 144 

interaction may not be possible (Amaya et al., 2020; Holbrook et al., 2019, 2020). Next, we simulated 145 

MHWs ranging in magnitude from 0-8°C with discrete breaks of 0.5°C. We chose 8°C as our maximum 146 

magnitude, as this encapsulates the magnitudes of the most intense observed MHWs (Hobday et al., 147 

2018; Holbrook et al., 2019). In total, we simulated 527 distinct MHW profiles across magnitude-duration 148 

parameters (Supplementary Figure 1).  149 

 We added each MHW to 52 days of a simulated temperature time series, composed of a 150 

sinusoidal curve with an annual mean of 12°C and an annual variation of 14°C. Annual time series 151 

maxima occurred on August 17th, and minima on February 15th. This approximates a temperature profile 152 

found in temperate estuarine environments in the northern hemisphere. We next added three different 153 

thresholds on top of this curve, representing scenarios where 90% of interannual temperature variation 154 

occurred within 0.25°C, 0.75°C, and 1.5°C  above annual mean temperature (climatology). Using the 155 

MHW categorization developed by Hobday et al. (2018), we assigned three additional thresholds for 156 

each variation scenario that were 1x, 2x, 3x, and 4x the difference between climatology and the 90% 157 

MHW threshold to give moderate, strong, severe, and extreme categorizations (Figure 1A).  158 
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To demonstrate seasonal timing effects on survival form MHWs, we simulated MHWs across ten 159 

time points 90 days after the annual maximum on August 17th. We allowed MHW magnitude to vary 160 

between 0°C and 8°C, but fixed duration at 24 days. The 90% threshold was set at 0.75°C above 161 

climatological mean.  This totaled 153 simulations for the seasonal occurrence portion of the analysis.  In 162 

total, we simulated 2,261 unique temperature time series across season magnitude-duration 163 

parameters, seasonal variability, and seasonal timing.  164 

Simulation of Thermal Death Time Curves 165 

Thermal Death Time (TDT) curves model the time-dependent effects of temperature exposure on 166 

organismal thermal tolerance (Rezende et al., 2014). Time to death at a given temperature is determined 167 

by a log linear relationship with time of exposure: 168 

𝑇𝑘𝑜 = 𝐶𝑇𝑚𝑎𝑥 − 𝑧𝑙𝑜𝑔10𝑡, Eqn. 1 

where 𝑇𝑘𝑜 is the time to knockout (or death), 𝐶𝑇𝑚𝑎𝑥 is the acute thermal tolerance at 𝑧𝑙𝑜𝑔10𝑡 = 0, 169 

which by definition is the thermal tolerance at 1 minute of exposure, 𝑧 is a species-specific scaling 170 

constant representing the inverse slope of the relationship between temperature and log time, and 𝑡 is 171 

time (eqn. 1, Figure 1B). From a TDT curve and the empirical measures of time to death that it describes, 172 

we constructed thermal tolerance landscapes. These landscapes start from the assumption that a TDT 173 

curve is simply a 50% survival isocline, and the spread of empirical time to death for a given temperature 174 

can be used to construct additional mortality probability isoclines (Rezende et al., 2014). Combining 175 

survival isoclines together results in a three-dimensional thermal tolerance landscape that fully describes 176 

the continuous interactions of time and temperature exposure on probability of death (Rezende et al., 177 

2014).  178 

We simulated two hypothetical species’ TDT modes with two different parameter sets that 179 

reflect two hypothetical thermal adaptation strategies (Supplementary Figure 2). We simulated a chronic 180 
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tolerator organism that maximizes extended exposure tolerance (𝑧 = 4.5) against a tradeoff of low acute 181 

tolerance (𝐶𝑇𝑚𝑎𝑥 = 45°C), and an acute tolerator that maximizes acute tolerance (𝐶𝑇𝑚𝑎𝑥 = 46°C) at the 182 

expense of rapidly decaying tolerance over time (𝑧 =  5.25). The temperature at which these two 183 

strategies have equal responses occurs at their intersection (Supplementary Figure 2). Using the 𝑧 and 184 

 𝐶𝑇𝑚𝑎𝑥 parameters for each hypothetical species, we simulated empirical time to death for each species’ 185 

log-linear model. We simulated ten individuals per temperature treatment (26-46°C, by 2°C, total of 11 186 

temperature treatments) following a normal distribution wherein mean time to death occurred at the 187 

line of fit and error given as standard error = 0.1°C.  188 

Implementation of Dynamic Tolerance Models  189 

Dynamic tolerance models integrate TDT data and environmental temperature time series to 190 

give a cumulative survival estimate at the end of the time series (Figure 1C, Supplementary Text). We 191 

added an additional parameter within our ad hoc functions adapted from Rezende model (Rezende et 192 

al., 2020) to account for the proposed critical temperature (Tc ) delineating the limit of organismal 193 

maintenance of homeostasis and function (Jørgensen et al., 2021; Ørsted et al., 2022; H.-O. Pörtner, 194 

2010). Adding this extra parameter to the Rezende method avoids the accumulation of mortality at 195 

theoretically sublethal temperatures, which is not controlled for in this method. In our simulation, we set 196 

Tc = 26°C as this is the mean maximum temperature experienced by our hypothetical organisms and 197 

within each organism’s adaptive capacity. Additionally, we assumed no nightly or tidal immersion stress 198 

recovery of organisms during each MHW. 199 

Calculation of MHW Mortality and MHW Mortality Heatmaps 200 

 We calculated cumulative mortality for each MHW simulation and extracted the survival at the 201 

end of the exposure period (Figure 1C) using the ad-hoc Rezende dynamic tolerance model 202 

parameterized by one of the two hypothetical species TDT curves (Rezende et al., 2020). In addition, we 203 
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used adjusted functions to accommodate hourly time series from the heatwaveR package (Schlegel & 204 

Smit, 2018) to categorize each simulated MHW according to the statistical oceanographic definition 205 

(Hobday et al., 2018). We performed all analyses in R (v. 4.2.2).  206 
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 207 

Figure 1. Conceptual diagram of survival calculation over a MHW simulation using thermal 208 

death time (TDT) curves and dynamic tolerance model (Rezende et al., 2020). A) A simulated 209 

MHW displaying methods of parametrization using magnitude and duration (black dotted lines). 210 

Colored lines indicate MHW severity thresholds, colored areas the portion of the MHW profile 211 

within MHW categories. This MHW is considered ‘extreme’ under the Hobday definition. 212 

Climatology line (gray) indicates the historical time series over which thresholds are calculated. 213 

B) A TDT curve for a hypothetical species of CTmax= 46 °C, z =5.25. The line of fit is determined 214 

via linear regression on logarithmically transformed data. Points are simulated data (see 215 

Methods) C) The temperature time series from A) and the thermal tolerance landscape in B) are 216 

the inputs of a dynamic tolerance model that gives a single survival probability estimate of 217 

91.2% for that given MHW parametrization of magnitude and duration. Dotted vertical lines 218 

indicate the beginning and end of the MHW. This process is repeated for each simulated MHW.  219 
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Results 220 

The heatmap of survival between two hypothetical species revealed a substantial impact of 221 

different organismal adaptations on survival across simulated MHWs. The acute tolerator (high CTmax, 222 

high z) experienced higher mortality across all simulations compared to the chronic tolerator (low CTmax, 223 

low z) (Figure 2A).  The acute tolerator experienced a range of final mortalities within categories of 224 

MHWs, with extreme MHWs (four times above the 90th percentile) causing mortality ranging from 0% to 225 

56.3% (Figure 2B, left panel). The chronic tolerator experienced less variation in mortality within MHW 226 

categories, and comparatively experienced lower rates of mortality within more intense MHW categories 227 

than the acute tolerator categories (extreme MHW mortality range 0-18.8%) (Figure 2B, right panel). The 228 

acute tolerator experienced up to 10.7% total mortality outside of Hobday categorized MHWs, mostly 229 

over MHWs shorter than five days.    230 
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 231 

Figure 2A) Survival varies with magnitude and duration between two species and crosses over 232 

fixed-baseline MHW categories. Grid color indicates category of MHW, heatmap color the final 233 

survival prediction from each MHW. White isoclines connect MHW magnitude-duration 234 

combinations that resulted in equal survival. Vertical blue lines indicate the boundary between 235 

Hobday-defined MHWs and Marine Heat Spikes (< 5 days). Horizontal blue lines indicate the 236 

magnitude at which a temperature event becomes an MHW. B) Proportion of survival 237 

predictions, rounded to the nearest 0.05, within each MHW category for two different 238 

hypothetical species. Acute tolerator species CTmax =46°C , z = 5.25, chronic tolerator CTmax 239 

=45°C, z = 4.5.  240 
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Changing interannual variation did not impact the survival heatmap for the acute tolerator 241 

species examined, as this altered only the climatological history and thus where Hobday’s 90% 242 

thresholds were calculated (Figure 3A). The simulated MHW profiles over which dynamic tolerance 243 

models predict survival did not change. Decreasing interannual variation increased the number of MHW 244 

profiles that were categorized under more extreme categories (Figure 3A , +0.25 °C), while increasing 245 

variation decreased the number of MHW scenarios classified as such (Figure 3A, +1.5 °C). In low 246 

variation scenarios, the magnitude between MHW category thresholds were smaller than the magnitude 247 

steps in our simulations, and so no simulations were categorized as Moderate or Severe (Figure 3B, +0.25 248 

°CError! Reference source not found.). With increased annual variation (Figure 3B , +1.5°C), it became 249 

less likely that low mortality MHWs would be categorized as extreme for the acute tolerator.  250 

  251 
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 252 

Figure 3A) Heatmap of survival predictions for the acute tolerator exposed to simulated MHWs 253 

that occur in three distinct varying environments. Labels indicate the degrees above climatology 254 

at which the threshold of MHW classification starts. Grid line color indicates category of MHW, 255 

heatmap color the final survival prediction from each MHW. White isoclines connect MHW 256 

magnitude-duration combinations with equal survival. Vertical blue lines indicate the boundary 257 

between Hobday-defined MHWs and Marine Heat Spikes (< 5 days). Horizontal blue lines 258 

indicate the magnitude at which a temperature event becomes a Hobday categorized MHW. B) 259 

Proportion of survival predictions, rounded to nearest 0.05, within each MHW category for 260 

three different variable environments. The middle panels (+0.75°C) are the same as the left-side 261 

panels in Figure 2. 262 

Maximum mortality for the acute tolerator across all MHW simulations of magnitude was 263 

reached at the seasonal maxima (centered August 17th, Figure 4). Survival increased following the 264 

sinusoidal function composing the annual time series for a given magnitude (Supplementary Figure 3), 265 

with no mortality occurring after 70 days over even the highest magnitude MHWs.  266 
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 267 

Figure 4. Proportion of survival predictions within each MHW category, rounded to nearest 0.05, 268 

across eight seasonal occurrences ranging from 0 to 70 days post annual temperature 269 

maximum. Not shown are 80- and 90-day plots, which experienced no mortality over all MHW 270 

profiles.  271 

Discussion 272 

For the first time to our knowledge, we compared assessments of MHW strength using thermal 273 

tolerance landscapes and dynamic tolerance models (Rezende et al., 2020) and classifications of MHWs 274 

using climatology (Hobday et al., 2016) in tandem across a suite of simulated MHWs of varying 275 

magnitude and duration. As predicted, we found that a climatological approach to quantifying MHW 276 

strength (Hobday et al., 2018) can dramatically misclassify organismal effects, particularly over the 277 

strongest MHW categorizations. Further, strictly adhering to a five-day minimum threshold for classifying 278 

MHWs omits the potential for lethal effects during shorter ‘heat spike’ events. We attribute these 279 

mismatches between methods to the reliance on MHW magnitude, rather than the interaction between 280 

duration and magnitude, in the fixed-baseline oceanographic definition. We demonstrated that TDT 281 

curve shape and MHW seasonality can yield diverging survival estimates over MHWs within the same 282 
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Hobday category. Further, a climatological approach is sensitive to historical climatological variability and 283 

can over- or under-predict biological impacts.  284 

In our MHW simulations, mortality tended to be low in the least severe categories, but the range 285 

of survival became broader in more severe categories. In some cases, no mortality was predicted to 286 

occur in the most extreme MHWs, reflecting the gap between climatologically anomalous events and 287 

events that cause mortality. In other cases, mortality occurred in uncategorized temperature profiles, 288 

particularly during events shorter than five days that are otherwise ignored as MHWs. Application of the 289 

dynamic tolerance model to bivalves in the Venice Lagoon also found mismatches in the climatological 290 

categorization of MHWs and predicted survival. Clams experienced mortality during conditions that did 291 

not exceed the 90th percentile climatology threshold, and also a lack of mortality during conditions that 292 

did exceed this threshold (Bertolini & Pastres, 2021).  293 

A common result across manipulations was the underlying logarithmic shape of survival isoclines 294 

over the heatmap (Figures 2A and 3A). This is due to the shape of the TDT response curve reflected 295 

through our MHW simulations (Rezende et al., 2014). By connecting MHW scenarios with equal survival, 296 

we show that MHWs with different profiles can have similar biological effects. In particular, these 297 

isoclines indicate acute events (high magnitude-long duration) to have similar effects as chronic (low 298 

magnitude-long duration) events. However, survival over chronic events tends to be proportionally 299 

driven by the magnitude of the event, while survival during acute events is more proportionally 300 

governed by the duration of the event. While this may seem to support the approach of categorizing 301 

MHW impacts based on magnitude in isolation (especially for events longer than five days), short-302 

duration events are common in comparison to long-duration events (Bates et al., 2018; McClanahan et 303 

al., 2009; Pietri et al., 2021). The sensitivity of survival to even low durations further indicate the 304 

importance of studying acute heating events with parameters such as tidal and daylight cycles, which are 305 

neglected using magnitude-only metrics.  306 
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TDT curve variation and MHWs  307 

Our analysis simulating the effects of variable MHWs across both species end survival demonstrated that 308 

a putatively tolerant species when based on a single-tolerance measure (e.g. CTmax in isolation) actually 309 

experiences higher mortality across virtually all MHW scenarios tested (Figure 2). The acute tolerator 310 

(high CTmax, high z) would normally be considered a more tolerant species than the chronic tolerator (low 311 

CTmax, low z) due to its larger acute thermal limit. However, because the log-linear TDT models intersect 312 

and diverge (Supplementary Figure 2), the chronic tolerator is a more tolerant species over lower 313 

temperature exposure. Given species with intersecting TDT curves are likely part of the same local 314 

species assemblages, such as with marine bivalves and freshwater fish (Bertolini et al., 2023; Troia, 315 

2023), the scaling factor z likely plays a more significant role in comparing species and population 316 

sensitivities than CTmax when considering non-acute MHW events (Rezende et al., 2014). Overall, the role 317 

of trade-offs and adaptive strategies of CTmax/z is unstudied across taxa and prevents the generalization 318 

of organism survival to MHWs. We demonstrated that variation in these parameters has a significant role 319 

on organismal tolerance to MHWs, and different adaptive strategies will result in differential organismal 320 

outcomes to a shared MHW.  321 

Interannual variation and MHW Categorization 322 

Manipulating interannual seasonal variation did not have a direct impact on organism survival to our 323 

simulated MHWs. Instead, increasing climatological variation influences how the 90th percentile of 324 

climatology is calculated, and in turn how categories are assigned to MHWs (Hobday et al., 2018). We 325 

held the adaptive strategy (i.e. the CTmax and z parameters) of our hypothetical organism constant, and as 326 

a result the end survival over MHW simulations did not change despite this change in interannual 327 

variation. Increasing annual variation tended to mask events with lethal risk by downgrading their 328 

categorization. Decreasing variation had the opposite effect of upgrading MHW categorization, lumping 329 

MHWs with low and high survival together in extreme categories. These different scenarios should not 330 
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be interpreted as different potential climate futures; it is expected that variation itself will remain 331 

relatively constant with warming (Oliver et al., 2021; Witman et al., 2023). Rather, these different 332 

scenarios reflect how temperature variation is itself varied throughout the world’s oceans across 333 

latitudinal, depth, estuarine, and other gradients (Baumann & Doherty, 2013; Sunday et al., 2011; Thoral 334 

et al., 2022; Witman et al., 2023). Organisms in turn can evolve plasticity or adaptive strategies in 335 

variable environments or exhibit plasticity and change the shape of their TDT curves (Baumann & 336 

Conover, 2011; Somero, 2010; Stillman, 2003; Witman et al., 2023).  337 

Seasonal timing of MHWs 338 

Our analysis found mortality across all MHW simulations decreased with distance from the summer 339 

maximum, following the shape of the underlying sine wave describing seasonal temperature variation. 340 

Despite mortality essentially approaching zero by mid-October, the severity of MHWs as classified using 341 

a climatological approach remained the same. Since the timing of extreme events against the backdrop 342 

of the environment is an important modulator of how organisms experience and react to these events, 343 

the Hobday MHW framework may fail to approximate biological effects outside of annual extremes 344 

(Cinto Mejía & Wetzel, 2023; Ern et al., 2023). MHW timing can influence organism responses by their 345 

occurrence against cyclic environmental factors (e.g. seasons, tides) as well as against organism 346 

phenology and biological clocks (e.g. spawning, development) (Bernhardt et al., 2020; Giménez, 2023) . 347 

Organisms are more likely to experience sublethal effects from MHWs that do not occur over seasonal 348 

maxima, and which should be tolerable over moderate magnitudes and durations (Jentsch et al., 2007). 349 

Flattening of annual temperature cycles and the elongation of summers may reduce the importance of 350 

seasonal MHW timing and enlarge risky periods of stress for organisms (G. Wang & Dillon, 2014; J. Wang 351 

et al., 2021). Properly selected TDT data should overcome the sources of variation outlined above by 352 

accounting for the ways organisms interact with the timing of extreme events like MHWs. 353 
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Limitations and future directions 354 

As with any modelling framework, applying dynamic tolerance models of thermal tolerance to 355 

classifying MHWs has limitations. Thermal tolerance can vary across many contexts and organism states, 356 

including acclimation (Stillman, 2003; Terblanche et al., 2007), developmental plasticity (Pottier et al., 357 

2022), life stage and size (Cinto Mejía & Wetzel, 2023; Dahlke et al., 2020; Truebano et al., 2018) , 358 

intraspecific variation (Dwane et al., 2021), seasonal timing (Ern et al., 2023), metabolic state  (Guppy & 359 

Withers, 1999; Semsar-kazerouni et al., 2020; Vajedsamiei et al., 2021), and oxygen availability (H.-O. 360 

Pörtner, 2010; Verberk et al., 2016). Further, we assume mortality from a MHW event is directly 361 

attributable to temperature stress. Mortality may also occur due to multiple biotic and abiotic stressors 362 

co-occurring with temperature (Buckley & Kingsolver, 2021; Dowd et al., 2015; Ern et al., 2023; Litchman 363 

& Thomas, 2023). Even with perfectly chosen TDT curves, behavioral thermoregulation is likely to play a 364 

significant role in mediating organism mortality to MHWs (Chapperon & Seuront, 2011; Kearney et al., 365 

2009). Even relatively nonmobile organisms like clams can change their thermal exposure by burrowing 366 

deeper into cooler sediment (Domínguez et al., 2021; Macho et al., 2016). Mismatches between 367 

predictions and observations and mortality are therefore likely, but predictions of mortality from a single 368 

driver can serve as a null model over which stress synergies and covariance effects can be observed 369 

(Gerhard et al., 2023; Litchman & Thomas, 2023).  370 

In our MHW simulations, we did not include two additional parameters that are likely to mediate 371 

organism responses: rate of onset and frequency/return time (Hobday et al., 2016). MHW rate of onset, 372 

or ramping rate, is itself a function of magnitude-duration of temperature, and thus has an impact on 373 

stress accumulation within an organism (Kingsolver & Umbanhowar, 2018; Rezende et al., 2011, 2020). 374 

Further, we did not investigate event frequency, or return time, of MHWs, because dynamic tolerance 375 

models do not currently allow for hypothesized organism recovery between MHW events (Jørgensen et 376 
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al., 2021; Ørsted et al., 2022). Future work could examine the theoretical underpinnings of post-event 377 

recovery, as this will likely have a non-linear effect on mortality (Seuront et al., 2019).   378 

With these limitations in mind, the Hobday approach to categorizing MHWs requires less 379 

parameterization, and remains an important tool for rapidly assessing the potential for ecosystem effects 380 

of MHWs. Researchers and managers could consider their goal of assessing MHW strength and consider 381 

an alternative approach that considers organismal physiology if ecosystem and organism impacts are the 382 

main interest. A recent criticism of the fixed-baseline approach argues that with the ongoing press of 383 

warming, MHWs may be calculated to occur for much of the year (Amaya et al., 2023). Shifting the 384 

baseline to reflect the warming rate would correct the climatological approach to capture only true 385 

anomalous events. However, this approach departs from biological assessments of MHWs with ongoing 386 

warming and will not accurately predict ecological impacts.  387 

Finally, empirical evidence is needed to support the model results in this analysis. Simulating 388 

MHW exposure on an organism and comparing measured mortality with modelled mortality will help 389 

clarify the applicability of dynamic tolerance models across taxa and MHW profiles. Within our results, 390 

we identified survival isoclines that connect MHW profiles with equal survival. Testing these profiles 391 

experimentally and observing where divergences from this expectation occur will help identify any 392 

departures from the TDT framework, and ultimately its limitations. Continued work integrating dynamic 393 

tolerance models into population, species interaction, and ecosystem models will strengthen the 394 

mechanistic basis upon which MHW impacts are forecasted.  395 

Conclusions 396 

Building a mechanistic understanding of the physiological effects of MHWs can allow for 397 

predictions of MHW effects across scales of ecological organization (Twiname et al., 2020). As MHWs 398 

become more predictable (Jacox et al., 2022), forecasting of ecological impacts across scale using 399 
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workflows like the dynamic tolerance models presented here will become more feasible, thereby helping 400 

predict MMEs, population collapse, and species extinction events (Cerini et al., 2023; Verberk et al., 401 

2023). Developing predictive warning systems that can predict ecological climate can give individuals, 402 

communities, managers, and governments context-specific information and actionable avoidance, 403 

mitigation, or adaptation options.  404 
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Supplementary Information 690 

Dynamic Survival Models 691 

Two major dynamic survival models have been recently described that rely on two different methods of 692 

calculating the instantaneous rate of mortality for a timestep within the temperature time series. The 693 

Rezende method (also called Fundamental Kinetic Model, Rezende et al., 2020; Tang & Mitcham, 2007) 694 

iteratively calculates mortality from a series of cumulative survival curves parameterized from the spread 695 

of empirical time to death data. The Jørgensen method (also called Degree Minute Models; Jørgensen et 696 

al., 2021; Tang & Mitcham, 2007) treats temperatures above a critical temperature (Tc; loss of 697 

homeostasis) as a thermal dose correlating with injury accumulation. This method integrates beneath 698 

the exposure time series to arrive at a measure of area between the time series and Tc that corresponds 699 

to a level of injury accumulation for an organism. An important distinction between the two methods is 700 

that the Rezende method does not directly use the fitted log-linear model typically used to describe 701 

Thermal Death Time (TDT) curves while the Jørgensen method uses the fitted model directly. The 702 

Rezende method may more accurately predict death if different mechanisms are responsible for death at 703 

different time-temperature exposures (Ern et al., 2023; Rezende et al., 2014; Tang & Mitcham, 2007). 704 

However, since death is calculated from the spread of individual data points of time to death, this 705 

method is likely sensitive to precision error arising from methodology. Additionally, the Rezende method 706 

does not include the concept of critical temperature (Tc or Tcrit) that delineates organism lifespan and 707 

time-limited survival (mortality from heat stress) (Ern et al., 2023; Ørsted et al., 2022; Pörtner & Knust, 708 

2007). While the general mechanisms behind Tc remain unclear (Ørsted et al., 2022), omitting Tc likely 709 

results in overestimations of mortality at ecologically realistic temperatures for organism persistence 710 

when summed over long time spans. The Jørgensen method is not probability based, includes Tc, and 711 

assumes lethal stress is equally accumulated across temperature and time exposures. Therefore, while 712 
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the Rezende method requires higher sample sizes of empirical data at each temperature point, the 713 

Jørgensen method can be used with only the TDT curve, parameterized with a minimum of three data 714 

points. Both methods are supported by empirical data, although mostly through the experimental use of 715 

Drosophila. Future work should investigate the validity and limitations of both methods in tandem across 716 

non-model species.   717 
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 718 

Supplementary Figure 1. Array of 527 MHW simulations across 17 durations and 31 durations. Each 719 

individual triangle (represented by a single color in each subplot) represents one MHW simulation.  720 

  721 
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  722 

Supplementary Figure 2. Thermal death time curves for two hypothetical species that follow two 723 

divergent adaptation strategies. One species exhibits an acute tolerator strategy (higher CTmax = 46 °C, 724 

high z value 5.25) than the chronic tolerator (45 °C, 4.5). Because z is the negative inverse of slope, this 725 

translates to a high acute tolerance trading off with a slower rate of time to death increase with lower 726 

exposure temperatures. The intercept of these two points occurs at 16.9 min, 39.5 °C. The chronic 727 

tolerator would exhibit slower time to death than the acute tolerator at temperatures above 39.53°C. 728 
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  730 

Supplementary Figure 3A. MHWs of fixed duration (24 days) but variable magnitude (0-8°C ) were 731 

simulated across ten time points post annual maximum (white points). Each MHW was simulated onto 732 

the climatological curve in isolation for the analysis, but here are displayed stacked for visual purposes. 733 

B) Resulting end of MHW survival for the acute tolerator exposed to each MHW across magnitude-734 

seasonal occurrences.  735 
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