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Abstract 20 

1. Marine Heat Waves (MHWs) are episodes of anomalous warming in the ocean that can last 21 

from a few days to months. MHWs have different characteristics in terms of intensity, duration, 22 

and frequency and generate thermal stress on marine ecosystems. In reef ecosystems, they are 23 

one of the main causes of decreased presence and abundance of corals, invertebrates, and fish. 24 

The deleterious capacity of thermal stress often depends upon biotic factors such as resource 25 

availability (bottom-up control on predators) and predation (top-down control on prey). Despite 26 

the evidence of thermal stress and biotic factors affecting individual species, the combined 27 

effects of both stressors on the entire reef ecosystems are far less studied.  28 

2. Here, using a food-web modeling approach, we estimated the rate of change in species’ biomass 29 

due to different MHW scenarios based on their physical characteristics. Specifically, we 30 

modeled the mechanistic link between species’ consumption rate and seawater temperature 31 

(thermal stressor), simulating species’ biomass dynamics for different MHW scenarios under 32 

different trophic control assumptions (biotic factor).  33 
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3. We find that total reef ecosystem biomass declined by 10% ± 5% under MHWs with severe 34 

intensity and top-down control assumption. The bottom-up control assumption moderates the 35 

total ecosystem biomass reduction by 5% ± 5%. Irrespective of the MHW scenario and the 36 

trophic control assumption, the most substantial biomass changes occur among top, meso-37 

predators, and corals (5% to 20% ± 10%). 38 

4. Since habitat degradation may lead to reef ecosystems governed by top-down control on prey, 39 

our findings point to the critical importance of protecting reef ecosystems as a pivotal strategy 40 

to alleviate the impacts of thermal stress induced by MHWs. Overall, our results provide a 41 

unified understanding of the interplay between abiotic stressors and biotic factors in reef 42 

ecosystems under extreme thermal events, offering insights into present baselines and future 43 

ecological states for reef ecosystems.  44 

 45 

1. Introduction 46 

Marine Heat Waves (MHWs) are periods of unusually high ocean temperatures that last from 47 

a few days to several months. (Hobday et al., 2016). These extreme events have profound and 48 

widespread impacts on marine ecosystems services resulting in significant financial losses with 49 

associated socio-economic consequences  (Smith et al., 2021 and 2023; Olivier et al., 2021). 50 

In this sense, understanding the response of marine ecosystems to climate change, particularly 51 

MHWs, has been acknowledged as a major societal challenge to allocate conservation efforts 52 

(Smith et al., 2021). Indeed, due to their abrupt nature, MHWs can rapidly push ecosystems 53 

beyond their resilience limits, hindering species adaptation and acclimatization processes 54 

(Gruber et al., 2021). Therefore, these extreme events pose a more severe threat to living 55 

species than long-term global warming. Several studies show that MHW occurrence has 56 

increased over the past century and suggest that these trends will continue in the future (Oliver 57 

et al., 2018, Frölicher et al., 2018). It is not only the projected increase in the occurrence of 58 
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MHWs that is a concern for society and ecosystems but also their changes in characteristics  59 

such as duration, intensity and frequency (Gupta et al., 2020). In this context, there is still a 60 

need to better understand how marine ecosystems respond to specific characteristics of MHWs. 61 

The majority of studies report negative MHWs effects on reef ecosystems, especially on corals 62 

(IPCC, 2018). Coral death resulting from MHWs can lead to shifts in benthic community 63 

composition and alterations in ecosystem structure and functioning (Darling et al., 2019; 64 

Hughes et al., 2018; Ferrari et al., 2016). The severity and frequency of mass coral bleaching 65 

associated with MHWs have increased over the last decades, severely impacting shallow 66 

tropical reefs across the Pacific, Indian and Atlantic Oceans (Asner et al., 2022; Baum et al., 67 

2023; Ferreira et al., 2021; Mohanty et al., 2021). Moreover, the magnitude of these impacts 68 

varies among regions. Coral mortality in the tropical South Atlantic Ocean is approximately 69 

60% lower than in the Indo-Pacific and 50% lower than in the Caribbean sea (Mies et al., 2020). 70 

This observed spatial variability in the reef ecosystem responses indicates that biological 71 

factors modulate the thermal stress generated by MHWs.  72 

Indeed, the abiotic stress induced by MHWs can be aggravated or moderated by biotic factors 73 

such as trophic interactions (Miller et al. 2014). This is because the amount of food a species 74 

eats (i.e.,the species’ consumption rate) depends on sea water temperature, resource availability 75 

(bottom-up control on predators) and predation risk (top-down control on prey). For example, 76 

fish predator cues increase the effect of MHWs on copepod’s reproduction and consumption 77 

rate (Truong et al. 2020). Reef damselfish Stegastes nigricans scares corallivorous fishes by 78 

defending its food resources and so it provides physiological resistance against MHWs to corals 79 

(Honeycutt et al. 2023). However, each of these examples does not quantify the minimum level 80 

of predation risk and resource availability that generates negative effects of MHWs on marine 81 
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organisms. Thus there is an open area of research focusing on how biotic factors such as trophic 82 

interactions can modulate the MHWs negative impacts on marine organisms.  83 

In this work, we used a food web modeling approach to address the following question: How 84 

do Atlantic tropical reef ecosystems respond to different marine heat wave characteristics, such 85 

as intensity and duration under different ecosystem trophic control assumptions? We 86 

hypothesized that if the intensity and duration of MHWs increase, then species’ biomass would 87 

be negatively affected because an increase in sea water temperature negatively impacts species' 88 

consumption rate (Volkoff & Rønnestad, 2020). We expected that this reduction in species 89 

biomass would be more pronounced under a top-down trophic control assumption, because the 90 

effects of predation risk and elevated temperature are additive given that higher predation risk 91 

generates more physiological stress on prey (Miller et al. 2014, Global Change Biology). 92 

Moreover, we expected that MHW intensity would be the most detrimental MHW 93 

characteristic because intense MHWs induce extreme suboptimal temperature conditions 94 

impacting species' consumption rate (e.g. Smith et al., 2023 and Gruber et al., 2021).  95 

2. Material and Methods 96 

2.1 The Rocas Atoll reef ecosystem 97 

In this study we used the Rocas Atoll as a study case. The Rocas Atoll is located in the tropical 98 

Southwest Atlantic. It is a pristine volcanic island that offers a natural laboratory for 99 

understanding the impact of thermal stress on tropical reef ecosystems (Figure 1a). Its isolation 100 

and protection status shield it from direct anthropogenic impacts such as pollution, 101 

urbanization, and fishing, making it an ideal location for studying the effects of MHWs (Longo 102 

et al., 2015, Brandão et al., 2017). However, since it is a shallow and non-turbid reef, it is more 103 

susceptible than coastal reefs to bleaching due to thermal stress (Glynn, 1996; Takahashi et al., 104 
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2004). This susceptibility was evidenced in 2019 when severe marine heatwaves caused the 105 

highest recorded bleaching events in the Southwestern Atlantic, affecting reefs in Rocas Atoll, 106 

Abrolhos coral reefs, and São Paulo rocky reefs (Banha et al., 2019; Duarte et al., 2020). 107 

Despite this, Rocas Atoll remains one of the most effective marine protected areas in the 108 

Southwestern Atlantic with minimal local anthropogenic impacts and it can serve as a natural 109 

model system for evaluating the MHWs impacts on species’ biomass dynamics. 110 

 111 

Figure 1 (a) Location of the Rocas Atoll (indicated with a red star) near Brazil, Southwest 112 

Atlantic Ocean. The satellite image of the Rocas Atoll was retrieved from Google Maps through 113 

ggmap package in R. (b) Sea Surface Temperature (SST) over the past decade, with detected 114 

Marine Heat Waves (MHWs) indicated in red. The threshold corresponding to the 90th 115 

percentile is indicated in green. The climatological mean computed over the period 1981-2021 116 

is indicated in magenta. (c) Sea surface temperature time series used to force the ecosystem 117 

model under different scenarios of MHW events. 118 
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 119 

2.2  Marine heat waves detection using sea surface satellite data 120 

MHWs were identified using the definition proposed by Hobday et al. (2016). According to 121 

their definition, MHWs are discrete and prolonged events characterized by anomalously warm 122 

water temperatures that exceed the seasonally-varying 90th percentile for a duration of more 123 

than five days (Figure 1b). This definition has been incorporated into a freely available software 124 

tool in Matlab developed by Zhao and Marin (2019). 125 

The daily Sea Surface Temperature (SST) data utilized in this study were obtained from the 126 

National Oceanic and Atmospheric Administration Optimum Interpolation Sea Surface 127 

Temperature (NOAA OI SST V2.1; Reynolds et al., 2007). This data can be accessed freely on 128 

the NOAA website at https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-129 

interpolation/v2.1/access/avhrr/.  This data set is an interpolation of remotely sensed SSTs from 130 

the Advanced Very High-Resolution Radiometer (AVHRR) imager into a regular grid of 0.25° 131 

and daily temporal resolution from 1981 to the present. Our study focuses specifically on the 132 

period from 2012 to 2021, as in situ ecological information from Rocas Atoll is available from 133 

2012 onwards. However, for the purpose of identifying MHWs, the reference period used spans 134 

from 1981 to 2021. 135 

MHWs at Rocas Atoll have increased in intensity and duration since 2019 (Figure 1b). In 136 

particular, the year 2021 witnessed the longest mean MHW duration (90 days) and the most 137 

intense MHW event (1º above the climatological mean). We, therefore, focused on the period 138 

from 2019 to 2021 when analyzing the effects of past MHWs and defined scenarios considering 139 

the characteristics of the most extreme MHW of 2021 (see section 2.5). 140 

2.3 Food web modeling approach 141 



 

 6 

2.3.1 The Rocas Atoll Ecopath model 142 

The food web model of the Rocas Atoll reef ecosystem was implemented within Ecopath-143 

Ecosim software (EwE, v. 6.6.8 on Windows 11, https://ecopath.org/).  The temporal dynamic 144 

module, Ecosim, simulates changes in the biomass, production, consumption, and diets of 145 

species/functional groups using a previous defined Ecopath model. 146 

We updated the Rocas Atoll Ecopath model published by Capitani et al. (2021) by adding 13 147 

species/functional groups. These are: particulate organic matter, dissolved organic matter, 148 

opportunistic pathogens microbes, mutualist microbes, sponges, fleshy macroalgae, crustose 149 

corraline algae, polychaeta, nudibranchia, nematoda, echinoderms/large gastropods, the black 150 

triggerfish Melichthys niger and the butterflyfish Chaetodon spp. We added these 13 151 

components in order to provide a more realistic description of the trophic interactions present 152 

in the Rocas Atoll reef ecosystem. We aggregated several species into functional groups with 153 

other species of similar life history traits, diet composition and shared predators in the interest 154 

of keeping the model results easy to deal with. We refer the reader to the supplementary 155 

materials of this study and Capitani et al. (2021) for functional group composition and 156 

parameterization of the updated Rocas Atoll Ecopath model. Full details of the EwE modeling 157 

approach can be obtained from main references (Christensen and Walters 2004; Heymans et 158 

al., 2016). 159 

2.3.2 Species biomass simulations over time and trophic control assumptions 160 

The dynamic module Ecosim re-expresses the master equations of Ecopath as a system of 161 

differential equations to account for changes in species biomass, production and consumption 162 

over time due to changes in environmental parameters and mortality rates (Walters et al., 1997). 163 

In practice, the Rocas Atoll Ecopath model was used to set initial conditions for Ecosim 164 
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simulations, and it was used to provide estimates of some of the consumption-related and 165 

production-related parameters of the Ecosim model. The system of differential equations is 166 

solved using an Adams-Bashford integration routine. The Ecosim prediction for type-i prey 167 

biomass to type-j predators biomass is of the functional form: 168 

 169 

𝑑𝐵!
𝑑𝑡

= 𝑔! ⋅'𝑄"! −'𝑄!" + 𝐼! − (𝐹! +𝑀! + 𝑒!) ⋅ 𝐵!														(𝐸𝑞. 1)
""

 170 

where 𝐵! is the biomass of type-i prey; 𝑔! is growth efficiency of type-i prey; 𝑄"! is 171 

consumption rate of prey 𝑖; 𝑄!" is consumption rate by all predators 𝑗; 𝐼 is the immigration rate; 172 

𝐹 is fishing mortality and 𝑒	is the emigration rate. Consumption rates 𝑄	are estimated following 173 

the ‘foraging arena’ concept (Ahrens et al. 2012; Walters et al., 1997) where species’ biomass 174 

𝐵	is divided into two components, one vulnerable and other invulnerable to predation. For a 175 

given prey-predator couple (𝑖, 𝑗), the consumption rate 𝑄 of prey 𝑖	by predator 𝑗 is estimated as 176 

follows (Eq.2):  177 

𝑄!" =
(
𝑎!" ⋅ 𝑣!" ⋅ 𝐵! ⋅ 𝐵" ⋅ 𝑇! ⋅ 𝑇" ⋅ 𝑀!"

𝐷"
)

𝑣!" + 𝑣!" ⋅ 𝑇! ⋅ 𝑀!" + (
𝑎!" ⋅ 𝑀!" ⋅ 𝐵" ⋅ 𝑇"

𝐷"
)
	 ⋅ 𝑆!"𝑓(𝑒# , 𝑡)																																														(𝐸𝑞. 2) 178 

where, 𝑎!" is the effective search rate for 𝑖	by 𝑗, 𝑣!"is the vulnerability rate expressing how fast 179 

the prey biomass 𝑖	is available to predator 𝑗 (e.g. biotic factor tested); 𝐵!	is the prey biomass; 180 

𝐵"	is the predator biomass; 𝑇! and 𝑇" are the relative feeding time for prey and predator; 𝑀!"	is 181 

the mediation forcing effects;  Dj is the effects of handling time as a limit to consumption rate 182 

and 𝑆!" is a scalar multiplier (0 to 1) linked to a gaussian environmental response function 183 
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𝑓(𝑒# , 𝑡) to account for external abiotic stressors which change over time (e.g., sea water 184 

temperature).  185 

It is important to note that the vulnerability rate 𝑣!" is the main parameter related to the trophic 186 

control assumptions tested in this study. For values of 𝑣!" greater than 2, a large increase in the 187 

prey biomass 𝐵! results in a large increase in the predator consumption rate 𝑄!". Thus, for values 188 

of 𝑣!"  greater than 2, the quantity of prey 𝑖	biomass consumed by predator  is mainly influenced 189 

by predator 𝑗 biomass. The ecosystem is, then, under top-down trophic control. Conversely, 190 

when 𝑣!"  tends to 1, a large increase in prey biomass 𝐵!  has a lower impact on the predator 191 

consumption rate	𝑄!"; the ecosystem is, then, under bottom-up trophic control. Here we tested 192 

three trophic control assumptions: 𝑣!" 		= 1 as bottom-up control assumption, 𝑣!" 		= 2 as 193 

mixed trophic control assumption and 𝑣!" 		= 10 as top-down control assumption. 194 

2.3.3 Mechanistic link between sea water temperature and consumption rate in Ecosim 195 

We applied species’ thermal performance curves in Ecosim as gaussian environmental 196 

response functions. We used the thermal performance curves to modify the consumption rate 197 

	𝑄!" of each species/functional group, where the maximum consumption rate occurred at the 198 

optimum temperature, and consumption rates declined as temperature departed from the 199 

optimum (Eq. 2). For primary producers we used thermal performance curves to modify the 200 

primary producers' growth efficiency (𝑔, Eq. 1). We defined the intercept between each 201 

species-specific thermal performance curve and the monthly average sea water temperature to 202 

calculate a scalar factor 𝑆!" with a maximum multiplier of 1 for optimum temperature (Bentley 203 

et al.,  2017). The scalar factor 𝑆!"  by definition declines as the average sea water temperature 204 

deviates from the optimum at a rate determined by the thermal performance curve standard 205 

deviations (Bentley et al., 2017; Serpetti et al.,  2017; Corrales et al.,  2018).  206 
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We used species distribution data and abundance to produce thermal performance curves 207 

following steps described by Waldock et al. (2019). For each species we: (1) produced a 208 

distribution model using the s-jSDM algorithm (Pichler and Hartig, 2021) to estimate the upper 209 

and lower thermal occurrence limits (as the 2.5% and 97.5% percentiles), then (2) we used a 210 

linear model to filter out the effect of predictors other than temperature (bathymetry, salinity, 211 

primary productivity and available phytoplankton carbon) on abundance, and lastly (3) we 212 

applied an additive model with temperature as sole predictor in the linear model residuals to 213 

project which temperature produces the highest abundance (Waldock et. al. 2019). To avoid 214 

collinearity issues, we combined environmental descriptors used in the s-jSDM and the linear 215 

models using a spatial principal component analysis. Since nearly all species we assessed are 216 

restricted to reefs, we trimmed all variables to include only cells with depths ranging between 217 

0 and 30 m. We obtained reef fish biomass data (as abundance indicator) from Morais et al. 218 

(2017), percentage cover of sessiles organisms from Aued et al. (2018) and sea surface 219 

temperature rasters (alongside other environmental covariables used in the s-jSDM) from Bio-220 

ORACLE (Assis et al. 2018). As not all species and/or functional groups had available data on 221 

abundance, we resorted to Aquamaps distribution repository to construct thermal performance 222 

curves based on temperature quantile distribution (Kaschner et al., 2019). Thermal 223 

performance curves for each species/functional group are presented in the supplementary 224 

materials, Figure 3. 225 

2.3.4 MHWs scenarios 226 

We conducted multiple temporal simulations to examine the impacts of MHWS on species’ 227 

biomass. These simulations encompassed various scenarios of MHWs, including a scenario 228 

comprising MHWs with similar characteristics as the ones reported in the past (current MHW), 229 

one with longer lasting MHWs (long MHWs) and two with increased MHW intensity (ranging 230 
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from moderate to strong) (Figure 2a). Each scenario involved running the ecosystem model 231 

(Figure 2b) over the period from 2012 to 2042, using  temperature time series as the 232 

environmental driver (Eq. 2). The satellite-derived sea surface temperature time series for the 233 

period 2012-2021 was used in all the scenarios (Figure 1b), except for the control scenario. The 234 

sea surface temperature time series for this control scenario was built by removing the effects 235 

of MHWs: the sea surface temperature values during MHW events were replaced with 236 

climatological values (Figure 1c; black curve). Perturbations corresponding to each MHW 237 

scenario were introduced for the period 2022-2042. Details on the temperature time series for 238 

each scenario are provided in Table 1. For each scenario, the Ecosim model was run using the 239 

three trophic assumptions ( Figure 2c). 240 

Table 1 Marine Heat Waves (MHWs) scenarios used (see Fig. 3 for details about the 241 

methodological approach adopted). 242 

Scenario Temperature forcing 2012-2021 Temperature forcing 2022-2042 Color in 
Figure 
2c 

Control Satellite Sea Surface Temperature 
(SST) with MHWs removed: MHW 
temperature values replaced by the 
climatological mean 

Satellite SST from 2019-2021 with 
MHWS removed repeated 7 
consecutive times over the period 2022-
2042 

black 

Current  Satellite Sea Surface Temperature 
(SST) 

Satellite SST from 2019-2021 repeated 
7 consecutive times over the period 
2022-2042 

blue 

Long  Satellite Sea Surface Temperature 
(SST) 

Every year has a 10-month-long MHW  
with 1º above 90% percentile  threshold  

orange 

Moderate  Satellite Sea Surface Temperature 
(SST) 

Every year has a 3-month-long MHW  
with  2 º above the 90% percentile 
threshold 

yellow 

Strong Satellite Sea Surface Temperature 
(SST) 

Every year has a 3 month long MHW   
with 3 ° above the 90% percentiles 
threshold  

purple 

The model outputs were then used to compute the rate of change in biomass (R) for each species 243 

due to the occurrence of MHWs (Figure 2d and Eq. 3). This was accomplished by comparing 244 
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the biomass of each scenario to the biomass of the control scenario. The calculation of R is 245 

defined as follows: 246 

𝑅 =
𝐵𝑖𝑜𝑚𝑎𝑠𝑠(𝑆) − 𝐵𝑖𝑜𝑚𝑎𝑠𝑠(𝑐𝑜𝑛𝑡𝑟𝑜𝑙)

𝐵𝑖𝑜𝑚𝑎𝑠𝑠(𝑐𝑜𝑛𝑡𝑟𝑜𝑙)
∗ 100																																																									(𝐸𝑞. 3) 247 

    248 

where S refers to a particular scenario (current, long, moderate or strong). 249 

Species experiencing an increase in mean rate of change in biomass (positive R values) were 250 

considered as winners while those exhibiting a decrease (negative R values) were considered 251 

as losers.  252 

We examined the effects of MHWs over different time scales. To assess the past impact of 253 

MHWs, we calculated the averaged R-value over the period from 2019 to 2022. For  short-254 

term effects, we computed the average R-value over the years 2023 to 2025. Additionally, we 255 

analyzed the long-term or accumulated effects by comparing the mean R-value in 2022 with 256 

that in 2042 (Figure 2d).  257 

2.3.5 Ecosystem Indicators 258 

We intended to describe the overall impacts of MHWs on the Rocas Atoll’s reef ecosystem 259 

using four ecosystem indicators. We used Ecosim outputs to compute the relative changes of 260 

the four ecosystem indicators in the last year of the simulation (2042) with respect to 2022 261 

(Figure 2e). These ecosystem indicators are: 1) biomass ratio of consumers to primary 262 

producers, defined as biomass units of consumers without the microbial community per unit of 263 

primary producers biomass (phytoplankton, macroalgae, turf algae and crustose coralline 264 

algae); 2) biomass ratio of corals to algae defined as biomass units of scleractinian corals per 265 
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unit of benthic primary producers (macroalgae, turf algae and crustose coralline algae), 3) the 266 

biomass ratio of coral to sponges defined as biomass units of scleractinian corals per unit of 267 

sponges (i.e., phylum Porifera) and 4) total ecosystem biomass as the sum of primary producers 268 

and consumers biomass (excluding particulate organic matter and dissolved organic matter).  269 

 270 

Figure 2 Summary of the methodological approach used in this study. (a) Thermal forcing 271 

scenarios of Marine Heat Waves (MHWs), (b) the ecosystem model for the Rocas Atoll, (c) 272 

three trophic assumptions used for the parameterization of the predator–prey interactions in the 273 

Ecosim model, (d) the rate of change in species’ biomass due to MHWs averaged over different 274 

periods, and (e) the ecosystem indicators that were evaluated. 275 
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2.3.6 Uncertainty for species biomass simulations under MHWs scenarios 276 

The Monte Carlo routine in Ecosim was used to perform sensitivity analyses for species 277 

biomass simulations under MHWs scenarios. This routine tests the sensitivity of Ecosim’s 278 

output to Ecopath input parameters by drawing input parameters from a uniform distribution 279 

centered on the baseline Ecopath values with the coefficients of variation (CV) set to default 280 

0.1 (Christensen and Walters 2004; Steenbeek et al., 2018). In our study, we set coefficients of 281 

variation as 0.1 for B (biomass per unit area), P/B (Production/Biomass), Q/B 282 

(Consumption/Biomass) parameters. We set coefficients of variation as 0.05 for the diet 283 

composition parameter of each species/functional group. We ran 500 Monte Carlo simulations 284 

for each scenario based on coefficients of variation to determine the error in the rate of change 285 

in biomass (R ). We refer the reader to the “Error estimation of the rate of change in species’ 286 

biomass” section in the supplementary material.  287 

All statistical analyses were performed in R studio, an IDE for R v 4.3.1 (R Core Team, 2021) 288 

and Matlab (v R2017b). Within the R software, we used these packages for data aggregation 289 

and visualization tidyverse (v 2.0; Wickham et al., 2019).  For spatial data analysis we used 290 

rnaturaleart (v 0.3.4; Massicotte et al. 2023), ggmap (v 3.0; Kahle & Wickham, 2019), ggsn 291 

(v 0.5; Baquero, 2022) and ggspatial (v 1.1.9; Dunnington et al .2023). qgam (v 1.3.4; Fasiolo 292 

et al. 2021), sdmpredictors (v 0.2.15; Bosh et al. 2023), aquamapsdata (v 0.1.4; Kaschner et 293 

al. 2019) for species’ thermal performance curves. 294 

3. Results 295 

3.1 Marine heat waves impacts on species’ biomass 296 

3.1.1 Marine heat waves impact over the Past (2019-2021) 297 
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The largest changes in species’ biomass for the period 2019-2021 (in some cases larger than 298 

10%) occurred under the top-down control assumption (Figure 3). We found an increase in the 299 

mean rate of change of biomass of omnivore fish, herbivore fish, mutualistic microbes, and 300 

dissolved organic matter  under mixed and top-down trophic control assumptions  (Figure 3). 301 

The majority of the predicted changes were relatively small, not exceeding 5%, with error bars 302 

of similar magnitudes (Figure 3). 303 

 304 

Figure 3 Species’ biomass change under different ecosystem’s trophic control assumptions 305 

(bottom-up, mixed and top-down) for the period 2019-2021. Dots represent the mean and the 306 

bars represent the respective error. Species/functional groups in the y axis are ordered by 307 

trophic level. 308 

3.1.2 MHWs short-term impacts on species’ biomass  309 
 310 
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Under the bottom-up assumption, the short-term (2023-2025) mean rate of change in species’ 311 

biomass decreased by less than 17% (Figure 4a). Under the mixed trophic control assumption, 312 

dissolved organic matter, particulate organic matter, opportunistic microbes and sponges 313 

biomass increased across all MHW scenarios (Figure 5a and Figure 4 from Supplementary 314 

material). Under top-down assumption zooplankton and polychaeta increased in biomass 315 

(Figure 6a). Low-level predator fish Holocentrus adscensionis, nudibranchs, echinoderms and 316 

corals biomass decreased more than 40% under the long, moderate, and strong MHW scenarios, 317 

while opportunistic pathogens microbes biomass increased more than 50% ( Figure 6a). 318 

Irrespective of the trophic control assumption, the strong MHW scenario induced the largest 319 

changes in biomass, while the long and moderate scenarios induced changes of a similar order 320 

of magnitude. Across all scenarios, keystone species such as sea birds, the nurse shark 321 

Ginglymostoma cirratum and the mid-level predator Lujanus jocu decreased in biomass.  322 

 323 

Figure 4 Short-term (a) and long-term (b) species’ biomass change due to MHWs under the 324 

bottom-up trophic control assumption. Dots represent the mean and the bars the respective 325 
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error. Functional groups placed in the y axis are ordered by trophic level. Winners species are 326 

indicated with a black trophy.  327 

 328 

Figure 5 Short-term (a) and long-term (b) biomass’ rate of change due to MHWs under the 329 

Mixed trophic control assumption.  Dots represent the mean and the bars the respective error. 330 

Functional groups placed in the y axis are ordered by trophic level. Winners species are 331 

indicated with a black trophy.  332 

 333 
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Figure 6 Short-term (a) and long-term (b) biomass’s rate of change due to MHWs under the 334 

top-down trophic control assumption.  Dots represent the mean and the bars the respective 335 

error. Functional groups placed in the y axis are ordered by trophic level. Winners species are 336 

indicated with a black trophy.  337 

3.1.3 MHWs long-term impacts on species’ biomass  338 

The long-term impact of MHWs, considering the current scenario, is relatively small compared 339 

to the impacts induced by the strong, moderate, and long scenarios under all trophic control 340 

assumptions  (Figures 4b, 5b and 6b).  341 

 We observed that the most negatively impacted species are low, top and mid-level predators 342 

(Figure 4b, Figure 5b 6b and Figure 4 from supplementary material) with the largest changes 343 

obtained with the top-down assumption. Sea birds, the butterfish Cephalopholis fulva and the 344 

Noronha wrasse Thalassoma norohanum, experienced ~40% biomass reduction under top-345 

down control and the strong MHWs scenario (Fig. 7b).  346 

 We observed a general decline in species’ biomass due to the cumulative effect of MHWs 347 

under the bottom-up assumption (Figure 4b). However, some species showed a biomass 348 

increase such as primary producers, detritus and polychaeta (Figure 4b). These positive 349 

changes in biomass were less than 5% and of the same order of magnitude as the error except 350 

for phytoplankton and crustose coralline algae.  351 

Some species emerged as clear winners under specific MHWs scenarios under the mixed 352 

trophic control and top-down assumptions (Figure 5b and 6b). The majority of omnivores 353 

(except the black triggerfish Melichthys niger), primary producers and mutualistic microbes 354 

biomass increased by more than 7% (mixed trophic control) and 20 % (top-down control) 355 

(Figure 5b and 6b and Figure 4 supplementary material).  356 
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3.2 Relative changes in ecosystem indicators 357 
 358 
We registered a general decrease for the ecosystem indicators under the top-down trophic 359 

control assumption (Figure 7). An exception is the coral/sponges ratio that showed an increase 360 

of 2% and 9% under the moderate and long MHWs scenarios (Figure 7).  361 

MHWs with large intensity under the top-down control assumption lead to the most 362 

considerable changes in total ecosystem biomass (10%). Under bottom-up and mixed trophic 363 

control, total ecosystem biomass changes do not exceed 2%.  364 

 365 
Figure 7 Ecosystem indicators percent change for each trophic control assumption and Marine 366 

Heat Waves (MHW) scenarios. The vertical red line indicates the 0% change. 367 

4. Discussion  368 

This study represents a comprehensive modeling exercise of the combined effects of abiotic 369 

stressor (MHWs) and biotic factor (food web trophic control) on tropical Atlantic reef 370 
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ecosystems. Our results partially confirm our hypothesis that species’ biomass changes are 371 

negatively impacted by the direct effects of thermal stress (i.e. intensity and duration of MHWs) 372 

and the indirect effects mediated by resource availability and predation risk (i.e. food web 373 

trophic control). On the other hand, as expected, we find a more pronounced reduction in 374 

species’ biomass under the top-down trophic control assumption with, in particular, stronger 375 

MHWs. Overall, our results highlight that trophic interactions should be considered as an 376 

important biotic factor that conditions the resilience of reef ecosystems to the thermal stress in 377 

face of the expected increase in the number of MHWs.  378 

4.1 Mechanisms leading to winners 379 

Although the majority of species decline in biomass under the effect of MHWs regardless of 380 

their characteristics and the trophic control assumption, which agrees with our hypothesis, 381 

some species exhibit an increase in biomass and emerge as winners in particular circumstances. 382 

In fact, some studies have identified winners and losers in the Northeast Pacific after the 2013-383 

2015 MHWs (Cavole et al., 2016) and after the 2014-2016 MHW affecting the West Coast of 384 

Canada and US (Free et al., 2023). 385 

In most cases, we observed that these biomass increases are driven by trophic interactions. For 386 

instance, the short-term increase (over 2023-2025) in sponges biomass observed in all scenarios 387 

under the mixed trophic control assumption is probably due to the reduction of the main sponge 388 

predators, Nudibranchia and Polychaeta, as well as the increase in dissolved organic matter and 389 

zooplankton, which are the main components of the sponge's diet. However, in the long term, 390 

the rate of change in sponges' biomass is almost negligible. In the long term, primary producers 391 

emerge as winners in all scenarios under the bottom-up assumption, mainly because of the 392 

decrease in the biomass of herbivores  and the increase of detritus, which is a source of 393 

nutrients. Additionally, the zooplankton increase observed in all scenarios under the top-down 394 
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assumption is probably caused by the decrease in predators such as fish, corals, and sponges. 395 

4.2 General Long-term Impact of MHWs in the Ecosystem 396 

Under all MHWs scenarios and trophic control assumption, we observe a consistent decrease 397 

in the coral/algae indicator and consumer/producer indicator. The decrease in coral/algae 398 

indicator points at the ecosystem phase shift from coral to algae-dominated reef in all scenarios 399 

and under all trophic control assumptions. Since South Atlantic reef ecosystems are algae-400 

dominated, the decrease in the ratio coral/ algae confirms a reef state with less habitat 401 

complexity and more pathogen microbial biomass as shown by Nelson et al. 2023. This is also 402 

consistent with previous studies that have documented shifts from coral-dominated reefs to reef 403 

systems characterized by turf and fleshy macroalgae (Barott and Rohwer, 2012, Pawlik et al., 404 

2016). The model predicts that the transition towards algal dominance also results in a 405 

consistent increase in zooplankton.  406 

The decrease in the consumers/producers indicator suggests that more primary producers’ 407 

biomass is available to sustain consumers’ biomass but also implies a  decrease in consumers' 408 

biomass. The decrease in low, mid and top predators that occur under top-down and bottom-409 

up assumptions results in the decrease in producers/consumers indicator. This indicator may 410 

also be related to the magnitude of intra and inter-specific competition for primary resources 411 

leading to shifts in ecosystem’s trophic control (i.e.,  from bottom-up to top-down). 412 

Finally, the decrease in the coral/ sponges indicator observed in the majority of scenarios 413 

suggests more sponges’ biomass per reef unit area. The negative values associated with this 414 

indicator may be reflecting changes in the spatially competitive interactions between corals, 415 

sponges and algae. Moreover, this indicator may suggest an alteration in reef’s biogeochemical 416 

cycling since sponges play a key role in transferring the energy and nutrients from dissolved 417 

organic matter to higher trophic levels (Rix et al. 2016).  418 
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Overall, the long-term changes in biomass towards lower trophic level species suggest a 419 

shortening of trophic chains and simplification of the food web.  420 

4.3 Trophic control assumptions in the Rocas Atoll reef ecosystem 421 
 422 
Since the Rocas Atoll reef ecosystem is highly preserved we hypothesized that the ecosystem 423 

is dominated by a bottom-up  trophic control or by a mixed trophic control (Ahrens et al. 2012; 424 

Rehren et al., 2022). This means that in this ecosystem there is enough habitat heterogeneity to 425 

let prey hinder or escape from predators. In this sense, the relatively small changes that our 426 

food web model predicts under the bottom-up control are consistent with the changes reported 427 

in the literature for the Rocas Atoll under past MHW events (Gaspar et al., 2021). If a top-428 

down control is assumed, we expect larger and non-linear changes in species’ biomass. Indeed, 429 

under a top-down assumption, the amount of prey consumed by the predator is the product of 430 

𝑝𝑟𝑒𝑑𝑎𝑡𝑜𝑟	 ∗ prey	biomass, (i.e., the predator biomass impacts on how much of the prey is 431 

consumed). Such a situation may occur when prey has no refuge and it is always taken upon 432 

being encountered by a predator. This top-down assumption is consistent with less protected 433 

ecosystems with higher habitat degradation, where both biotic factors and abiotic stressors are 434 

more prevalent. Consequently, our findings strongly suggest that protecting reef ecosystems 435 

can significantly alleviate the impacts of thermal stress-induced by MHWs.  436 

4.4 Model limitations 437 

It is important to consider several caveats associated with our analysis. First and foremost, the 438 

outcomes obtained in terms of biomass responses are intricately linked to the thermal 439 

performance characteristics of the species, encompassing their shape and magnitude. While we 440 

dedicated significant efforts to accurately compute these thermal performances, it is crucial to 441 

acknowledge that additional studies are necessary to enhance the level of certainty surrounding 442 

our findings. 443 

Secondly, our model does not account for potential future acclimatization or adaptation 444 
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mechanisms that species might undergo. This consideration holds substantial relevance, as 445 

species may have certain ability to adjust to changing environmental conditions over time 446 

(Garant 2020). It is a facet that merits attention for a more comprehensive understanding of the 447 

dynamics at play. 448 

Lastly, a fundamental assumption underpinning our analysis is that the results hold validity  449 

predominantly for MHWs with extensive vertical and horizontal dimensions, thus potentially 450 

limiting species' capacity to seek out thermal refuges. However, it is worth noting that the 451 

applicability of our findings might differ in scenarios where MHWs exhibit distinct spatial 452 

characteristics. This, however, may be less relevant in our case study due to the shallower 453 

condition of our study area. 454 

 455 
4.5 How realistic are the simulated MHWs? 456 

Although climate models are known to have limitations in accurately reproducing extreme 457 

events near the coast and to have a too-coarse resolution, we investigate the projected 458 

temperature time series at Rocas Atoll using CMIP6 climate models (see Figure 5 in the 459 

Supplementary material) to assess the consistency of proposed scenarios with these model 460 

outputs. 461 

As shown in Figure 1c, the “scenario long” implies MHWs reaching temperature with peaks 462 

of 30°C, moderate peaks of 31°C and strong peaks of 32°C. The analysis of projected time 463 

series from CMIP6 indicates that these temperature values are within a reasonable range. 464 

Specifically, peaks of 30°C and 31°C are recurrent in the majority of the climate models from 465 

the beginning of 2022, and some climate models show occasional peaks of 32°C during the 466 

period from 2022 to 2042. Interestingly, beyond 2042, the CMIP6 time series show peaks 467 

exceeding 35°C by the end of the century. This suggests that the reported changes in biomass 468 
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described in this study could be far more extreme in the future. Despite the uncertainties 469 

associated with climate modeling, the CMIP6 time series raises important concerns about the 470 

potential impacts of such extreme temperatures on the marine ecosystem at Rocas Atoll. 471 
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