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Abstract

Aim.                                           
Population dynamics are usually assessed through linear trend analysis, quantifying their

general  direction.  However,  linear  trends may hide  substantial  variations  in  population

dynamics that could reconcile apparent discrepancies when quantifying the extent of the

biodiversity crisis. We seek to determine whether the use of non-linear methods and the

quantification of temporal variability can add value to the linear approach by offering a

more  complete  representation  of  global  population  changes.  In  addition,  we  seek  to

determine  how  these  components  are  distributed  among  biogeographical  regions  and

taxonomic groups.

Location.
Global.

Methods.
We analysed  6,437  population  time  series  from 1,257 species  from the  Living  Planet

Database over the period 1950-2020. We modeled populations through the use of second

order polynomials and classified trajectories according to their direction and acceleration.

We modeled and classified these same populations using a more common linear trend

analysis. We quantified temporal variability using three metrics, the coefficient of variation,

the mean squared error and the consecutive disparity index. We then used chi-squared

tests and linear mixed-effects models to test potential sources of heterogeneity in non-

linear trajectories and temporal variability.
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Results.
Non-linear models were a better fit for 44.8 % of the analyzed time series, and temporal

variability  was  higher  among  trajectories  classified  as  linear.  Linear  models  missed

meaningful  information  by  misclassifying  recent  declines  or  recovery  signals.  Marine

populations were highly variable, and all taxonomic groups or IUCN categories exhibited

variability in their degree of non-linearity and temporal variability.

Main conclusions.
Non-linearity  and  temporal  variability  reveal  usually  overlooked  dramatic  declines  or

recovery signals in global population dynamics. Thus, moving beyond linearity can help

reduce the risk of  misleading conclusions and better  inform conservation decisions.  In

particular, population usually classified as « stable »  can hide informative non-linear and

variable changes to integrate in more advanced global biodiversity assessment. 

Keywords: population dynamics, non-linearity, temporal variability, biodiversity crisis, 

conservation biogeography

                             

1 | Introduction
   

Quantifying  and  understanding  global  biodiversity  changes  are  critical  research

challenges. A commonly used approach to quantifying global biodiversity changes is to rely

on the linear trend in global indices derived from the combination and collation of local

monitoring data distributed across realms and groups (e.g. Living Planet Index (McRae et

al., 2017; WWF, 2022)). More recently, the widespread availability of open-access large

datasets  (e.g.  BiotTIME  (Dornelas  et  al.,  2018)),  has  revealed  contrasting  results

depending on the scale or metric considered (Blowes et al., 2019; Daskalova et al., 2020).

In  particular,  “no net  loss”  in  the number of  species or  “no net  change”  in  population

abundances have been reported (Vellend et al., 2013; Primack et al., 2018). While such

conclusions  raised  many  questions  and  caused  controversies  within  the  scientific

community (Cardinale, 2014; Gonzalez et al., 2016; Loreau et al., 2022; Kuczynski et al.,

2023), they revealed that global biodiversity changes are complex and heterogeneous,

and cannot be encapsulate in a single metric (Dornelas et al., 2023).  
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However, the majority of empirical studies tracking temporal changes in the abundance of

individuals of different species over time rely on linear regressions (Dornelas et al., 2019)

or assimilated models (e.g.  state-space models (Daskalova et  al.,  2020)).  By focusing

solely on the general direction of population trajectories (i.e. the sign of the slope) and its

magnitude (i.e. the value of the slope), these models could miss critical information for

describing population dynamics, such as how fast and when changes occur (Rigal et al.,

2020). For instance, a convex trajectory for the population size of a threatened species

(Fig. 1) can testify of a successful conservation strategy and a recent improvement of its

population status. On the contrary, an accelerated decrease in the population size of a

species  (Fig.  1)  can  indicate  an  increasingly  worsening  situation.  Such  non-linear

dynamics are expected to occur substantially in population dynamics given that the drivers

of population trajectories themselves follow non-linear patterns. For instance, many global

change pressures have accelerated synchronously in the 1980s, often labelled as a "great

acceleration" in the Anthropocene (Steffen et al., 2015). Besides, non-linearity has already

been  observed  at  large  spatial  and  temporal  scales  in  populations  of  arthropods

(Duchenne et al.,  2022),  birds(Rigal  et al.,  2020) or fishes  (Pélissié et al.,  2023) or in

community dynamics (Penny et al.,  2023). Yet, the extent and distribution of non-linear

trajectories of populations at global scale has been, to our knowledge, largely overlooked.

Besides non-linear trajectories, temporal variability is another overlooked aspect of global

biodiversity dynamics. Temporal variability is a common estimator of ecological stability, a

multifaceted  concept  with  many  alternative  definitions  including  resistance  to

environmental change and resilience (Pimm, 1984; McCann, 2000; Donohue et al., 2016).

Increase in variability has been long identified as a loss of stability in ecological systems

(Grimm and Wissel, 1997) or even a signature of abrupt ecological collapse (Scheffer et

al., 2009; Hughes et al., 2013). Thus, population variability was proposed as a proxy for

vulnerability (Mrowicki et al., 2016) yet is not captured by the slope or the shape of the

trajectory  (even  if  non-linear)  of  a  population.  For  instance,  an  apparent  absence  of

change  in  regard  of  the  overall  trajectory  may  mask  strong  variations  (Fig.  1),  and

therefore a potential risk of extinction, especially if the population's abundance is small and

exposed  to  demographic,  environmental  or  genetic  stochasticity  (Caughley,  1994).

Although  temporal  variability  has  been  studied  at  global  scale  (Leung  et  al.,  2017;

Capdevila et al., 2022), how it is coupled with non-linear population trajectories remains

unclear.
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Overall, a complete understanding of global biodiversity changes based upon the complete

description  of  trajectories  (beyond  usual  linear  trends)  and  their  associated  temporal

variability  (beyond  usual  estimates  of  model  fit)  is  missing.  Such  comprehensive

description could have implications for conservation biogeography. Testing which habitat

types,  geographical  regions  and/or  taxonomic  groups  are  facing  specific  patterns  of

change  in  population  abundance  over  time  could  provide  key  insights  for  improving

conservation prioritization. For instance, Global IUCN Red List Categories are often used

for conservation prioritization, yet they are based, among other factors, on simple linear

population trends (IUCN, 2022).  Global IUCN Red List  Categories could be refined by

integrating  recent  abrupt  changes  within  populations  dynamics  revealed  by  non-linear

models or strong temporal variability exposing specific species to increasing vulnerability. 

In this paper, we analyze population data from the Living Planet Database and describe

their non-linear trajectories and temporal variability. We test three predictions on those two

components. 1) We assume that there would be biogeographic patterns in population non-

linear trajectories and temporal variability across the planet’s habitat types, regions and

realms, in line with particular regions of the world experiencing high rates of environmental

change (e.g.,  tropical forests (Barlow et al.,  2007), Arctic (IPCC, 2021)).  The clustered

distribution of global change drivers in space has been proven to lead to hetereogeneous

patterns (Blowes et al., 2019; He et al., 2019), we therefore expect regions particularly

under pressure to express more non-linearity through accelerated declines and concave

trajectories, given that the rate at which the changes occur is not linear. Similarly, high

environmental  changes  are  expected  to  result  in  stronger  temporal  variability  in

populations (Lawson et al., 2015). 2) We expect populations from species with life history

traits related to high vulnerability to global  change to  express higher  non-linearity  and

variability.  Species  with  different  life  history  traits  may  respond  to  the  environment

differently or may intrinsically differ in a way that results in more non-linearity and more

variable population dynamics, and this may be seen in the different taxonomic groups. In

particular,  amphibians (Houlahan  et  al.,  2000;  Blaustein  et  al.,  2011)  are  expected to

express  more  non-linearity  and  temporal  variability  than  the  other  groups.  We expect

higher non-linearity and especially a higher diversity in its form, as non-linearity may be

expressed either through dramatic declines (accelerated declines or concave trajectories),

along  with  high  variability,  or  through  recovery  signals  (decelerated  declines,  convex

trajectories)  if  conservation  actions  were  implemented and successful.  3)  As for  more
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vulnerable taxonomic groups, we also expect populations from species with a high IUCN

Red List Category (being a proxy of high extinction risk) to be more likely to express non-

linearity and temporal variability than the populations of least concern species.

2 | Methods

2.1 | Ecological time series data
We used population time series from the Living Planet Database (LPD). The current public

version contains 32,211 population time series distributed worldwide, with populations that

were  monitored  using  different  metrics  of  abundance  or  proxy  of  abundances  (e.g.,

number of individuals vs. number of nests); and time series ranging from 1950 to 2020.

We omitted populations which had less than twenty time points of monitoring data, as

previous  studies  have  found  that  shorter  time  series  might  not  capture  biologically

meaningful directional trends in abundance (Wauchope et al., 2019). For each population

time  series,  habitat  type  (Terrestrial,  Marine  or  Freshwater),  region  (e.g.  Africa,  North

America, Europe) and taxonomic group (e.g. Birds, Mammals) is provided in the LPD.

Additionally,  we  extracted  IUCN  Red  List  Category  data  for  each  species  from  the

International Union for Conservation of Nature (IUCN).

 

2.2 | Modeling population dynamics
We  fitted  both  linear  and  non-linear  models  in  order  to  compare  the  resulting

classifications. Before analysis, we log transformed the abundance of each population in

order  to  make  them  comparable.  Ecological  data  are  often  log-transformed  prior  to

statistical analysis as variance has the tendency to increase with the mean abundance,

and because log-transformation allows the reduction of the outliers’ weight (Cottingham et

al., 2001).

We first fitted each population time series (log transformed abundance through time) with a

linear  regression  model  to  qualify  the  overall  linear  direction  of  the  trajectory.  We

distinguished increasing trajectories (significantly positive slope), decreasing trajectories

(significantly negative slope), and trajectories with no significant trend, classified as "no

trend". 
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For the main analysis (non-linear modeling), we adopted the framework proposed by Rigal

et al. (2020). We fitted each population time series with a second order polynomial model

to qualify the non-linear shape of the trajectory through:

Y (t )=α 0+α1 t+α2 t
2+ε ( t )

Where  Y  is  the log transformed abundance estimate (we added 1 to every population

count, to account for estimates of zero abundance in a given year), t  the time in years, and

the process error is represented by ε∼N (0 , σ2 ). We used orthogonal polynomials so that

the  correlation  between the  first  and second order  variables  is  removed (Rigal  et  al.,

2020). The significance of each coefficient (α 1 for first order and  α 2 for second order) is

therefore  used to  test  whether  the  second order  significantly  improves  the  regression

compared to the first order. Second order polynomials can discriminate trajectories with no

net  changes  –  stationary  processes  –  (if  α 1 and  α 2 are  not  significant);  linear  –  or

monotonous – trajectories (if only α 1 is significant); and non-linear – or non-monotonous –

trajectories (if α 2 is significant). 

2.2.1. Classifying population trajectories

We used the direction and the acceleration to classify the different types of trajectories.

The direction (increase, decrease or null) is null if there is no net changes, and equal to

α 1 if the trajectory is linear. If the trajectory is non-linear (if α 2 is significant), the direction is

determined by the slope of the tangent given by the linearisation around the center of the

time series. The acceleration is given either by the sign of the second order coefficient α 2

or by the sign of γ̇, the derivative of the curvature function. When the direction is null, the

acceleration refers to the convexity or concavity of the trajectory and only the sign of α 2 is

needed to  describe it  (convex if  α 2 > 0,  concave if  α 2 < 0).  When the direction is an

increase or a decline, the sign of γ̇(α 2) is used to determine if the process is accelerated ( γ̇

(α 2)<0) or decelerated ( γ̇(α 2)>0) (see Rigal et al., 2020 for details). Using the combination

of direction and acceleration, one can classify any trajectory as belonging to one of the

nine  following  trajectory  types:  linear  decrease,  accelerated  decrease,  decelerated

decrease,  no trend (linear),  concave (down),  convex (up),  linear  increase,  decelerated

increase and accelerated increase (Fig. 2 shows examples of each trajectory type).

6

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201



2.2.2. Estimating temporal variability

Once we fitted the non-linear models,  we statistically estimated the temporal variability

around the calculated trajectories. We considered the temporal variability of a population

to reflect the fluctuations around the overall trajectory (i.e. the second order polynomial),

that we assume to be the “equilibrium”. We then used three ways to estimate temporal

variability. Using the three metrics was necessary to cover different and complementary

aspects of variability:

a. The coefficient  of  variation (CV=standarddeviation∗mean− 1),  which  is  one of  the

most common metric used to assess temporal variability, despite being known to

present  several  drawbacks  (e.g.  mean  dependance,  insensitivity  to  the

chronological order of time series) (Fernández-Martínez et al., 2018). 

b. The mean squared error (MSE), measured as:

MSE=1
n∑t=1

n

(Y t−Ŷ t )
2

where Y t corresponds to the log transformed abundance value at time t  and Ŷ t to

the corresponding estimated value from the second order  polynomial  fit.  As the

MSE is calculated from the residuals of the fitted model, it allows to account for

variability around the main trajectory and presents therefore a reduced dependance

to the mean compared to the CV.

c. The  consecutive  disparity  index  (D),  introduced  by  Fernández-Martı́nez  et  al.

(2018), and previously used to estimate interannual climatic variability (Meseguer-

Ruiz et al., 2017) and population and community temporal variability (Dallas and

Kramer, 2022). It is measured as:

D= 1
n−1∑t=1

n− 1|ln(Y t+1+k
Y t+k )|  

where Y t corresponds to the log transformed abundance at time t , n is the length of

the time series, and k  is a constant used to reduce the influence of zeroes on the

calculation of D. As suggested in Fernández-Martı́nez et al. (2018), we considered k

to  be  1% of  the  time-series mean,  to  make estimates of  D comparable  across

different time series.  The D metric calculates temporal variability within each time
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step and is thus sensitive to the chronological order of the time series. Similarly to

the MSE,  it  presents  a reduced dependance to  the  mean compared to  the  CV

(Fernández-Martı́nez et al., 2018). 

2.3  |  Identifying  sources  of  variation  in  population  trajectories  and  temporal
variability
To  determine  if  non-linearity  was  expressed  differently  across  habitat  types,  regions,

realms, taxonomic groups, and IUCN Red List Categories, we performed chi-square tests

of independence for each factor (e.g. we ask if the habitat types influence the proportion of

non-linearity). When the chi-square tests showed significant variations among categories,

we performed two-proportions z-tests to test whether the proportions of non-linearity in

each category differed from the overall proportion of non-linearity in all populations. We

used the prop.test function from the “stats” package and compared the proportion within

each category (e.g. Marine habitats) to the calculated overall  proportion of non-linearity

among all populations.

To  determine  if  population  temporal  variability  varied  according  to  biogeographic  and

taxonomic patterns, we used a generalized linear mixed-effects model (GLMM) framework.

We took either the mean squared error (MSE),  the coefficient of  variation (CV) or the

consecutive  disparity  index  (D)  as  the  response  variables  and  habitat  types,  regions,

realms,  taxonomic  groups,  IUCN  Red  List  categories  and  trajectory  types  as  the

explanatory variables in separate models. We treated each factor individually and not all

together  to  account  for  the  effects  within  factors  and not  among factors.  Each model

included  species  as  a  random effect  to  account  for  the  possible  correlation  between

populations from the same species.  For example, the model  to test whether the MSE

varies among regions is structured as followed:

MSE i , j , k=β0+βkRegion i , j , k+μ0 , j+εi , j , k

where  MSE i , j , k is the mean squared error for the  it h population time series from the  jt h

species from the k t h region, Regioni , j , k is the geographic region of the it h time series from

the  jt h species,  β0 the global intercept,  βk the global slope estimates for the  k t h region

(fixed effect),  μ0 , j is the species-level departure from 0 (random effect), and  ε i , j , k is the

random error (unreliable measurements, random fluctuations).
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We examined the significance of fixed effect terms by examining the likelihood ratio of

including each term versus a null model (containing only the random effects terms). All

mixed-effect  models  were  fitted  using  maximum  likelihood  as  implemented  in  the  R

package “lme4” (Bates et al., 2015). When differences were detected, we performed post-

hoc tests  using  the  ghlt function  from the  “multcomp” package in  order  to  distinguish

groups that expressed significantly different temporal variability from others (Hothorn et al.,

2008). 

All tests outputs are presented in the appendix (SM3 and SM4).

3 | Results

3.1  |  Estimating  non-linear  trajectories  and  temporal  variability  among  global
population dynamics
We analyzed 6,437 population time series from 1,257 species extracted from the Living

Planet Database over the period between 1950 and 2020, which reflects almost 20% of

the entire database. The remaining 80% were not selected because of their small length

(<20 years). These time series represent repeated monitoring surveys of the number of

individuals in a given area (species’ abundance over time). The temporal, geographical

and taxonomic extents of the database we analyzed are presented in appendix SM1.

3.1.1. Classification of population dynamics into trajectory types

We applied both the linear and non-linear classification methods on 6,437 population time

series.  We  found  a  broad  spectrum  of  trends  and  trajectories  among  the  studied

populations. Across the time series we analyzed, 36% (2,338 time series) of populations

were declining, 34% (2,164 time series) were increasing and 30% (1,935 time series)

showed no trend in population change over time according to the linear framework. When

classifying the trajectories following the non-linear framework, we found that 3,550 were

linear  while  for  the other  2,887 (i.e.  44.8 % of  the 6,437 trajectories)  a  second order

polynomial was a better fit  (Fig. 2). However, the proportion of non-linearity found was

conditioned by the number of years sampled and the starting year of the time series used.

The detected proportion of non-linearity  seemed to  increase with the number of  years

sampled and to decrease with the starting year (see appendix SM2).
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Among the 2,887 non-linear trajectories, concave (curved downwards) and convex (curved

upwards) cases were the most represented, accounting for almost half of all  non-linear

trajectories (47.7%, 1,378 time series) (Fig. 2E, 2H). Non-linear declines and non-linear

increases were represented in similar proportions (respectively 26.6% and 25.6% of non-

linear  trajectories).  Among  the  6,437  population  trajectories,  1,939  (i.e.  30.1%)  were

classified as declining of which 554 were decelerated, 215 accelerated and 1,170 were

linear. 1,783 (i.e. 27.7%) were classified as increasing of which 276 were decelerated, 464

accelerated and 1,043 were linear. Finally, 2,715 (i.e. 42.2%) were neither declining or

increasing, of which 757 were concave, 621 were convex and 1,337 showed no trend.

3.1.2. Cross-comparison of linear and non-linear classifications

Interestingly, when comparing the linear vs. the non-linear classifications, we found that

among the 2,338 populations that were classified as decreasing according to the linear

framework, only 1,161 were classified as linearly decreasing according to the non-linear

framework (Fig. 3A). The other (representing 18% of the total) were classified either as (i)

decreasing  non-linearly  (N=768,  i.e.  32.8% of  the  2,338  classified  as  decreasing);  (ii)

concave trajectories (N=201, 8.6%), i.e. trajectories showing a recent decrease after an

increase;  or  (iii)  convex  trajectories  (N=203,  8.7%),  i.e.  trajectories  showing  a  recent

increase after  a  decrease (Fig.  3A).  Similarly,  among the 2,164 populations that  were

classified as increasing according to the linear framework, only 1,040 were classified as

linearly  increasing  according  to  the  non-linear  framework  (Fig.  3C).  The  others  were

showing a mix of non-linear decreases, concave and convex trajectories (Fig. 3C). Among

the 1,935 populations classified as “stable” by the linear framework, only 1,329 showed no

trend  according  to  the  non-linear  framework,  the  rest  606  (31%)  experiencing  mostly

concave or convex trajectories (Fig. 3B). 

3.1.3. Distribution of temporal variability among population trajectories

We investigated how temporal  variability was distributed among the different  trajectory

types through three different metrics. No matter the metric, temporal variability differed

among the different population trajectory types (MSE: χ2 = 116.89, df = 5, p-value < 0.001;

D:  χ2 = 400, df = 5, p-value < 0.001; CV:  χ2 = 472, df = 5, p-value < 0.001). Figure 4A

shows the variability of D values within the different trajectory types (results for CV and

MSE can be found in SM4). In particular,  Figure 4A shows that populations that were

categorized as “no trend linear” were having significantly higher temporal variability relative
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to the other trajectory types. The second group of trajectory that had a high temporal

variability was constituted of the linear trajectories (both increases and decreases) and of

the “no trend non-linear” trajectories. Non-linear increases and non-linear decreases had

the lowest temporal variability compared to other trajectory types. These results were also

consistent when the CV or the MSE were used as proxy for temporal variability (Fig. 4B).

Overall, populations whose trajectories were classified as “no trend linear” always showed

significantly  more  temporal  variability  than  populations  experiencing  other  types  of

trajectories, and linear trajectories expressed higher variability than non-linear ones.

3.2 | Biogeographical distribution of non-linear trajectories and temporal variability
in population dynamics
Overall  non-linearity  was  expressed  in  non-anectodic  proportions  across  habitats  and

regions (Fig. 5A, 5B). The proportion of non-linearity was significantly different from one

habitat type to another ( χ2 = 48.8, df = 2, p-value < 0.001) (Fig. 5A), with populations living

in marine environments showing a lower proportion of non-linearity (39.8%) than those in

terrestrial  (48.4%)  and  freshwater  (48.9%)  environments.  The  different  regions

represented in our dataset also showed varying proportions of non-linearity ( χ2 = 191.05,

df  =  7,  p-value  <  0.001)  (Fig.  5B).  There  was  a  very  low  proportion  of  non-linear

trajectories in the time series populations from Oceania (27.1%) compared to the overall

proportion (44.8%). In contrast, populations from North America, Europe and International

Waters showed significantly high proportions of non-linear trajectories compared to the

overall proportion (respectively 48.2, 49 and 56%). Beyond the variability in the percentage

of non-linearity, we observed variability in the relative proportions of the different trajectory

types  within  different  habitat  types  and  regions  (see  appendix  SM3).  In  particular,

terrestrial and freshwater habitats showed higher proportions of non-linear increases than

marine habitats (respectively, 16.5%, 16.9% and 4.4%); and marine populations exhibited

a majority of no trend trajectories, either linear (30.1% of marine populations) or non-linear

(26.7%). Among regions, North America had approximately equivalent proportions of each

trajectory type for instance, while Oceania had a large majority of trajectories with no trend

(44.2%) and concave or convex (18.9%).

Temporal variability also differed among the different habitat types, no matter the metric

(for  MSE:  χ2 =  47.6,  df  = 2,  p-value < 0.001)  (Fig.  5C).  Marine populations exhibited

significantly higher temporal variability than terrestrial and freshwater populations. Based
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on previous results, one might expect this propensity for high variability to be explained by

the high  proportion  of  “no  trend linear”  trajectories  in  marine  habitats,  since we have

shown that this type of trajectory is particularly prone to variability (Fig.  4A).  However,

when examining the variability between different habitat types within the different types of

trajectory taken separately, we found that in the majority of cases marine populations still

showed higher variability, even when comparing similar types of trajectories (see appendix

SM4). This confirms that time series retrieved from marine habitats are more variable than

in other habitat types. Differences existed among regions as well ( χ2= 101.99, df=7, p-

value  <  0.001),  in  particular  populations  monitored  in  Oceania  were  more  variable

compared to populations from other regions (Fig. 5D). Again, this could be linked to the

high proportion of “no trend linear” trajectories within populations monitored in Oceania

(44.2%, Fig. S3.1). 

3.3  |  Non-linearity  and  temporal  variability  among  taxonomic  groups  and  IUCN
categories

The proportion of non-linearity varied significantly among taxonomic groups ( χ2 = 26.5, df

= 5, p-value < 0.001) (Fig. 6A), with mammals being the only group showing a significantly

higher  proportion  of  non-linearity  than  the  overall  mean  (53.0%).  Even  though  the

proportion of non-linearity varied among IUCN Red List Categories ( χ2 = 88.49, df = 6, p-

value < 0.001), we did not detect a straightforward link between non-linearity and IUCN

Categories  (Fig.  6B).  For  instance,  “Least  Concern”  populations  showed  a  higher

proportion  of  non-linearity  (47.6%)  than  “Endangered”  populations  (34%).  Similarly  to

biogeographical  patterns,  the  proportions  of  each  type  of  trajectory  within  taxonomic

groups and IUCN categories were variable (see appendix SM3). The high proportion of

non-linearity in mammals’ populations was largely due to non-linear concave and convex

trajectories (28.8% of the 473 mammals populations analyzed) and to non-linear increases

(21.1%).  Amphibians  did  not  show any  non-linear  decreases  nor  a  high  proportion  of

concave or convex trajectories (16%), which we could have expected following a scenario

where  their  more  recent  dramatic  declines  or  recovery  would  be  visible  in  the  LPD

database.                                                                                                                  

Depending on the metric used, we found either differences or no differences in temporal

variability between the different taxonomic groups. In particular, the use of the MSE as
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temporal variability showed no differences between groups ( χ2 = 10.51, df = 5, p-value =

0.06), unlike the use of the CV ( χ2 = 12.12, df = 5, p-value = 0.03) or the D metric ( χ2 =

63.51,  df  =  5,  p-value  <  0.001).  Rather  than  major  differences  in  temporal  variability

between the different taxonomic groups, it seems that differences were expressed more

among  populations  within  the  different  groups  (Fig.  6C).  Even  though  the  temporal

variability differed among Red List Categories (for MSE: χ2 = 16.3, df = 5, p-value = 0.006),

it  did  not  increase with  the extinction risk (Fig.  6D).  Only the populations from “Least

Concern” species were less variable than populations from “Near Threatened” species, but

no significant differences in temporal variability was detected between higher Categories

(i.e. higher extinction risk). These results were consistant no matter the metric of temporal

variability that was used. 

4 | Discussion

In this work, we studied non-linear trajectories and temporal variability in the dynamics of

6,437  populations  in  the  last  70  years  across  the  globe,  representing  1,257  unique

species,  and  we  tested  how  these  two  components  of  populations  dynamics  were

distributed among habitats, regions, taxonomic groups and conservation status. Overall,

our findings reveal that adopting linear approaches and ignoring temporal  variability to

characterize  population  dynamics  could  mask  discrepancies  among  biogeographical

regions or habitats and taxonomic groups. 

4.1 | The need for integrating non-linearity and temporal variability in conservation
biogeography
We show that non-linear models better explain the trajectory patterns for almost 45% of all

analyzed  populations,  expressed  through  a  broad  range  of  patterns  -  decelerating,

accelerating, concave and convex. Cross-analysis of population classification (linear vs.

non-linear) reveals that the commonly-used linear approach misses some key information

from a conservation perspective. We show that almost 18% of populations showing linear

decreasing trends are in fact exhibiting recent flat or reversing curves, which may reflect

successful conservation strategies. Conversely, in numerous cases a linear approach fails

to  reflect  sharp  declines  in  populations,  such  as  accelerated  declines  or  concave

trajectories, which may require urgent conservation interventions.  
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Our  results  also  emphasize  that  temporal  variability  in  population  dynamics  is  a

complementary  component  to  characterize  populations’  status.  Temporal  variability  is

expressed differently across types of trajectories. In particular, population trajectories that

have  been  classified  as  “no  trend  linear”  show  more  variability  than  other  types  of

trajectories, and in general linear trajectories show more variability than non-linear ones.

We suspect this result to partly emerge from the difficulty to detect any type of trajectory in

highly noisy population time series. Yet, the absence of a trend within certain populations

does not necessarily imply high variability. In fact, our results indicate a wide range in the

magnitude  of  variability  within  populations  categorized  as  exhibiting  "no  trend  linear"

trajectories. Furthermore, even if we cannot 100% rule out that high variability could be

due to a statistical artefact, it is crucial to emphasize that, from a conservation point of

view, the mere fact that some populations show highly variable abundances over time

warrants special attention.

This reinforces the need to consider non-linearity and variability together in conservation

biogeography. Indeed, variability is expected to be a signal of instability or even a signal

preceding ecological collapse, being either at the population (Dai et al., 2012), community

(Carpenter et al., 2011), or ecosystem (Scheffer et al., 2009) level. As a result, considering

only  population  trajectories  through  their  trends  is  not  sufficient  to  detect  vulnerable

populations. For instance, populations with increasing but highly variable trajectories may

become extinct, if they fail to settle permanently. Moreover, the impact of environmental

stochasticity and the probability to be exposed to extinction increases when the population

sizes become smaller (Soulé, 1987). Therefore, instead of relying on unified approaches of

population trajectories for policy making, it’s more likely that a cautious intermixing of both

non-linear trajectories and temporal variability might well lead to improved conservation

strategies.

4.2 | Heterogeneous population dynamics at local scales can be masked by global
biogeographic or taxonomic groupings
Our results show that there is a wide range of variability across biogeographic regions,

testifying  to  the diversity  of  ways in  which  populations are  likely  to  respond to  global

change. In particular, marine populations are subject to greater fluctuations in abundance

over  time,  no  matter  the  types  of  trajectories  identified.  This  complements  previous

findings  where  the  marine  communities  emerged  as  a  hotspot  for  rapid  changes  in

14

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466



composition (Blowes et al., 2019). Contrary to our expectations, we have not found any

clear geographic or taxonomic patterns in global population changes, that we assumed

would reflect  regions and groups even more vulnerable to  global  changes.  The broad

groupings into major taxonomic groups and biogeographical regions on a global scale may

not reflect the drivers shaping the trajectories of the specific populations we studied (Brook

et al., 2006; Pereira et al., 2012), a warning that was also flagged by studies investigating

changes through linear analyses (e.g. Daskalova et al.,  2020). Alternatively, our results

show that dramatic declines and high variability are observed across diverse regions and

groups,  which  indicates  that  these particular  attributes  are  not  localized but  have  the

potential to impact all groups and regions.

Furthermore,  while  threatened species  tend to  be  the  focus of  conservation  initiatives

(Martín-López et  al.,  2011),  we  show that  at  local  scales  there  are  variations  in  how

populations are changing over  time,  in  isolation from their  overall  conservation status.

Species’ IUCN Red List  Categories are determined at species level  hence at a global

scale, meaning that IUCN status might be unrelated to the abundance trajectories and

temporal  variability  of  individual  populations  at  local  scales.  This  decoupling  further

highlights the heterogeneity in local-scale population trends. Plus, this scale dependency

has led to strong debates for particular groups (e.g for Storks (Gula et al., 2023b; Gula et

al., 2023a)). As a result, implementing global policies, such as the post-2020 Biodiversity

Framework, necessitates to focus on the diversity of responses not only at the level of

species and regions, but also at finer scales such as that of populations.

4.3 | Major weaknesses in global biodiversity changes assessments
Analyzing time series data presents caveats that are present across population data in

general,  including taxonomic and geographic gaps (Cordier  et  al.,  2021;  Tekwa et  al.,

2023).  The  lack  of  taxonomic  signals  might  undoubtedly  reflect  the  lack  of  long-term

information  on the  least  studied  taxa.  Indeed,  only  limited  numbers  of  amphibian  and

reptile populations were available in our data selection, and no invertebrate population was

recorded. The patterns we identify, either in the biogeographical or taxonomic distributions

of the dynamics, are likely influenced by the overrepresentation of certain groups (Birds)

and  regions  (Europe  and North  America)  and  do  not  extend to  the  overlooked  parts,

notably tropical populations which comprise the species that may be at the greatest risk of

decline and extinction (Butchart et al., 2010; WWF, 2022). The proportion of non-linearity

as the relative proportion of the different trajectories detected could be influenced as well
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by  how  long  populations  are  monitored  (White,  2019)  and  by  the  period  at  which

monitoring began (Mihoub et al., 2017; Duchenne et al., 2022). Our findings demonstrate

that  non-linear  models  were  more  likely  to  be  a  better  fit  for  time  series  with  longer

durations (see appendix SM2). Such result is consistent with previous studies showing that

trend estimates could be improved by increasing time series length (Wauchope et al.,

2019).  As  long-term  data  are  accumulating  worldwide,  this  stresses  even  more  the

importance of the non-linear assessment of population changes in future research. 

5 | Conclusion

This paper supports the view that the ongoing biodiversity crisis is far more complex than

just a global decline, but in no way refute the existence of global biodiversity erosion. The

same  way  it  has  been  shown  that  the  species  composition  of  natural  ecosystems  is

changing at  an  unprecedented rate  (Dornelas  et  al.,  2014),  we show that  biodiversity

dynamics at population level  are changing in complex ways. We urge to consider this

complexity, and to resist the temptation to over-interpret results showing equal amounts of

positive and negative trends as being positive or synonymous of an “equilibrium”. Our

intention  is  not  to  question  the  fundamental  value  of  the  numerous  studies  of  global

biodiversity changes using linear approaches. We rather claim that estimating non-linear

trajectories and quantifying the temporal variability of population dynamics can enhance

existing findings. Not only such approach clarifies how populations decline and how they

increase, it also refines our approach to population "stability".

Overall,  we  demonstrate  that  the  general  perception  that  a  population  is  "stable"  or

"healthy" when its dynamics cannot be characterized by a linear decline is misleading.

While declines are obviously a primary concern, our study reinforces the importance of

nuance and the need to take multiple parameters into account when studying species

status in conservation biogeography. Even apparently no-changing populations should not

be overlooked in conservation. Monitoring species locally, regardless of their global status,

should be of primary concern. Describing the full spectrum of complex population changes,

including  positive,  negative  and  stable  trends,  but  also  accelerating,  decelerating  and

variable trajectories,  will  improve our understanding of global  biodiversity  changes and

should help to capture the variety of ways in which climate change, land-use change, and

other anthropogenic pressures are altering global biodiversity.
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Data Accessibility Statement
Raw  data  are  available  from  the  following  websites :  for  population  time  series  —
https://www.livingplanetindex.org/data_portal,  for  IUCN  Red  List  Categories  —
https://www.iucnredlist.org.  Code  for  data  processing,  analyses  and  vizualisation  are
publicly  available  on  a  GitHub  respository  (https://github.com/MaelysBoennec/Non-
linearity-and-variability-in-global-population-dynamics/)  and  archived  on  Zenodo
(DOI:10.5281/zenodo.10406601).

Figures

                                                                                                                                             
Figure  1.  Illustrations  of  non-linearity  and  temporal  variability  in  hypothetised
population  dynamics.  Representation  of  different  possible  magnitude  of  temporal

variability within population linear or non-linear trajectories. Black solid lines represent the

trajectory of  the time series, which might be a linear or non-linear fit.  Solid grey lines

represent hypothetical abundance time series. Variability in populations may occur even

when the apparent trajectory is null or going upwards. 
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Figure  2.  Non-linear  trajectories  account  for  almost  45%  of  the  population
trajectories studied.  Classification of the 6,437 population trajectories (log transformed

abundances) from 1950 to 2020 into  nine possible  shape categories.  ‘N’ indicates the

number of  populations  within  each category.  The percentages are  relative  to  the total

number of population (6,437). Log transformed abundances are shown for one population

of each trajectory type by a gray line and best-fitted first or second order polynomials are

shown by a bold coloured line.
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Figure  3.  Cross-classification  of  population  trajectories  according  to  the  use  of
linear or non-linear classifications reveals potential misinterpretations of population
status.  Cross-classification of the populations classified as  (A) linear decrease,  (B) no

trend, and (C) linear increase according to the use of linear models. Within each column,

the same populations are classified according to the non-linear models. For example (A),

among the 2,338 populations classified as "decreasing" when fitting a linear regression,

only 1,161 are still classified as “linear decrease” when fitting second order polynomials.

215  are  classified  as  "decrease  accelerated",  553  as  "decrease  decelerated",  201  as

"concave" and 203 as "convex".
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Figure 4. Temporal variability in population change differs according to trajectory
types.  (A)  The  consecutive  disparity  index  (D)  is  used  here  as  a  proxy  of  temporal

variability.  Half  violins  represent  the  density  distribution  of  temporal  variability  in

populations  for  each  trajectory  type,  points  reprensent  the  raw  values,  boxplots  are

represented including the median, first and third quartiles. Letters indicate the significance

of  pairwise  comparisons,  calculated  with  post-hoc tests  after  running the  linear  mixed

effect  model.  Results  for  CV and MSE can be found in  SM4.  (B) shows the different

estimations of temporal  variability  depending on the metric used.  The estimated effect

sizes  (represented at  the centre of  error  bars)  and intervals  (standard errors)  are the

outputs  from  the  linear  mixed  effects  models  for  each  metric.  The  detailed  pairwise

comparisons for each metric are presented in appendix SM4.
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Figure 5. Non-linear trajectories and temporal variability in population dynamics are
heterogeneous among habitat types and geographical regions. (A) and (B) show the

proportion  of  non-linear  trajectories in  orange versus linear  trajectories  in  blue  among

habitat  types and geographical  regions respectively.  Exact numbers of populations are

written in white.  The vertical  dashed line represents the mean proportion of non-linear

trajectories among all  the populations we classified within our study (44,8%, i.e.  2,887

populations out of  the 6,437).  (C) and  (D) shows the different  estimations of  temporal

variability depending on the metric used among habitat types and geographical regions

respectively.  The  estimated  effect  sizes  (represented  at  the  centre  of  error  bars)  and

intervals (standard errors) are the outputs from the linear mixed effects models for each

metric. The detailed pairwise comparisons for each metric are presented in appendix SM4.
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Figure 6.  Non-linear  trajectories  and temporal  variability  in  population dynamics
vary more within taxonomic groups and IUCN Red List Categories than between
them. (A) and  (B) show the proportion of non-linear trajectories in orange versus linear

trajectories in blue among taxonomic groups and IUCN Red List Categories respectively.

Exact numbers of populations are written in white. The vertical dashed line represents the

mean proportion of non-linear trajectories among all the populations that were classified

within our study (44.8%, i.e. 2,887 populations out of the 6,437).  (C) and (D) shows the

different  estimations  of  temporal  variability  depending  on  the  metric  used  among

taxonomic groups and IUCN Red List Categories respectively. The estimated effect sizes

(represented at the centre of error bars) and intervals (standard errors) are the outputs

from the linear mixed effects models for each metric. The detailed pairwise comparisons

for each metric are presented in appendix SM4.
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