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Abstract

Estimating underlying cooccurrence relationships between pairs of species has long been a chal-
lenging task in ecology as the extent to which species actually cooccur is partially dependent
on their prevalence. While recent work has taken large steps towards solving this problem,
the next question is how to assess the factors that influence cooccurrence. Here I show that a
recently proposed cooccurrence metric can be improved upon by assigning Bayesian priors to
the latent cooccurrence relationships being estimated. In the context of analysing the factors
that affect cooccurrence relationships, I demonstrate the need for a generalised linear model
(GLM) that takes cooccurrences and species prevalence (not cooccurrence metrics) as its data.
Finally, I show the form that such a GLM should take in order to perform Bayesian inference
while accounting for non-independence of dyadic matrix data (e.g. distance and cooccurrence
matrices).

Introduction

The analysis of patterns of cooccurrence between taxa is an important and active area of
ecological research (Gotelli and McCabe 2002; Barberan et al. 2012; Williams, Howe, and
Hofmockel 2014; Kraan, Thrush, and Dormann 2020; Zhu et al. 2023). Mainali et al. (2022)
have recently shown that of the numerous ways of measuring cooccurrence relationships be-
tween species pairs (reviewed in (Mainali et al. 2022)) the correct and unbiased method is
to make use of Fisher’s noncentral hypergeometric distribution, as suggested by Veech (2013)
and Griffith et al. (2016). Mainali et al. (2022) derived a cooccurrence metric called affinity
(or &) based on this distribution. This is a significant step forward in the analysis of cooccur-
rence relationships. There are still several challenges remaining however. For instance, when
species pairs of very low or very high prevalence are analysed with this method they will often
be assigned very high or low affinity scores, but with low confidence (high p-value and wide
confidence interval). For downstream analysis then the researcher may (i) treat all data points
as equal, (ii) remove data above some high p-value threshold or (iii) devise a scheme to weight
data appropriately. (i) wastes information and can yield misleading results. (ii) again wastes
information and could severely bias results depending on the reasons for the differences in
prevalence/p-values. If an appropriate, unbiased scheme for (iii) should be devised, then this
would be a welcome development. However, adopting a Bayesian approach that builds upon
the work of Mainali et al. (2022) not only yields more accurate estimates of the affinity between
species, but also naturally propagates uncertainty through the analysis, i.e., it accounts for the



differing levels of confidence we have about the cooccurrence relationships between different
species pairs. In the present work I illustrate this point and provide the model description and
code to use this Bayesian method in practice.

A significant advantage of this framework is that it allows cooccurrence data to analysed
as a response data in a Bayesian general linear model (GLM). That is, by supplying species
occurrence data as the prevalence of individual species, the number of times a given species pair
cooccur and the total number of sites considered, it is now no more complicated to construct
a regression model (with a Fisher’s noncentral hypergeometric likelihood function) than it
would be to perform binomial regression with count data. Similarly, this method makes the
best use of all available information and weighs data points appropriately. Thus, just as it is
not appropriate to convert count data to proportions and conduct linear regression, it is no
longer best practice to summarize cooccurrence data as point estimates for linear regression.

Results

Mainali et al. (2022) show that the log of the odds ratio term in Fisher’s noncentral hypergeo-
metric distribution (a quantity they term «) can be used to appropriately describe the extent
to which two species will tend to cooccur more or less than would be expected based just on the
prevalence of the species. They go on to propose that the maximum likelihood estimate of this
parameter & or affinity should be used as a pairwise coocurrence metric. However, Maximum
likelihood estimates can yield values of positive or negative infinity. This causes difficulties for
downstream analyses (one cannot sensibly do something as simple as calculating the mean of a
set containing infinite values). Furthermore, we know a priori that an infinitely large or small
affinity is not sensible for most cases of interest to ecologists. Bayesian analysis uses prior
knowledge to avoid the estimation of physically or biologically implausible values. Mainali
et al. (2022) reassign these infinite estimates an absolute value of log(2N?), where N is the
total number of sample sites (from an argument made based on the Jeffreys’ prior for the beta
distribution). While this figure comes from sound argument, there are at least two problems
with this approach. Firstly, not all data are treated the same way, i.e., no regularisation is
applied to finite affinity estimates, only to these extreme values. Secondly, the value log(2N?)
is only a function of NV, not the species prevalence. Thus, it is not influenced by our actual
state of knowledge about the species in question.

To make these ideas more concrete and show the practical implications, I simulated species
pairs using the affinity model. For each pair there are N = 30 sites they can inhabit, species
A has a prevalence mA and species B has prevalence mB. The number of sites at which they
cooccurr k was drawn from a Fishers noncentral hypergeometric distribution

k ~ fnchypg(mA, N — mA, mB,e®),

with 10 draws per combination of mA and mB for each of 41 different values of a. Then,
given the values for N, k, mA and mB I estimated « using two methods. Firstly, I used



the original maximum likelihood estimate (MLE) of Mainali et al. (2022). Next I obtained
maximum a posteriori (MAP) estimates with a Gaussian prior N(0, 3) for . Note that these
are not strongly regularising priors as when exponentiated in the likelihood function a standard
deviation of 3 ~ 20 and two standard deviations 6 &~ 403 which is a very large odds ratio for
most applications. Priors used for analysing real data should be chosen after simulation, to
demonstrate that they do not bias against feasible parameter values for the specific research.
In order to compare the two methods, for each combination of mA and mB I calculated the
root mean squared error (RMSE) for each inference method.

Figure 1 shows that only when both mA and m B were equal to 15 was the RMSE approximately
equivalent between MLE and MAP methods. Whenever one or both species had a high or low
prevalence, and particularly as the absolute value of a became larger, the MLE method pro-
duced very poor estimates, and the extreme estimates were always the same log(2N?) = 7.496.
By contrast, for the MAP values, the prior provides regularisation which can be overcome by
increasing confidence in the data, which is a function of mA and mB. Thus, the models best
guess when mA = 15, mB = 5 and k = 5 is higher than the equivalent situation when mB = 1
and k = 1. Neither of these methods is perfect however. When asked for one, a model will give
you it’s best guess point estimate, but we can make better use of the data we have collected
if we can utilise not only the point estimates but also our uncertainty around them.
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Figure 1: Actual and estimated affinity values for a range of species prevalence. Blue circles
are estimates using the original maximum likelihood method and red squares are
maximum ¢ posteriori estimates. Black lines indicate the actual affinity values used
to generate the data. For each panel is shown the root mean squared error (RMSE)
for both types of estimate.



Often we do not simply wish to report cooccurrence relationships, but to measure how they
change with some other variables of interest. For many types of data there are well understood
and regularly used probability distributions which can be used in Bayesian and frequentist
GLMs. For cooccurrence data this has not been the case. Given the issues with deriving point
estimates highlighted above (Figure 1) it seems unlikely that simply fitting a linear model
to such point estimates of cooccurrence affinity will yield reliable results. Thus, rather than
supplying a second inference model with uninformative point estimates from a previous model,
we can provide our regression model with all the data on species prevalence and cooccurrences
instead. To demonstrate the impact of this I simulated 41 sets of predictor data Z, each
consisting of 30 draws from N(0, 1). Affinity values were obtained by multiplying the predictor
data by a regression coefficient 8. For each affinity value - species prevalence mA and mB
were chosen randomly between 1 and 29 inclusive and a k value was drawn from the Fisher’s
noncentral hypergeometric distribution as above. For each generated data set pairwise affinity
values were estimated by the MAP and MLE methods. Then linear regression analysis was
conducted on these point estimates o ~ 2. Additionally I obtained a maximum likelihood
estimate of a GLM of the form

a; =7 + /657,7
where %, mA and mB are vectors containing the values of k, mA and mB respectively and ~
is the intercept.

The results in Figure 2 show how poorly fitting a linear model to & point estimates does,
typically overestimating the absolute value of 8 by a large margin. Using MAP estimates of
« does better here, exhibiting the opposite behaviour of slightly underestimating the absolute
value of 8. However, by cutting out the step of generating point estimates for each pair the
GLM retains all pertinent information and accurately recaptures the parameters of the data
generating model. It is of course expected that the GLM should be able to discover the correct
parameter values, since they were generated by an identical model. What is important is the
way the other two models fail by comparison, and of course the fact that we now have the
correct likelihood function for such a cooccurrence GLM.



MLE MAP GLM

B estimate

B actual B actual B actual

Figure 2: Estimated regression coefficients 8 according to three different methods: fit linear
model to & values, fit linear model to MAP estimates of «, fit GLM to raw data.
Black lines indicate the true § values.

In many if not most cases when working with cooccurrence data it will be in the form of a
square cooccurrence matrix similar to the distance and dissimilarity matrices used to record
e.g. phylogenetic distances between species or community dissimilarities between sample sites.
As with these other types of matrices, if we wish to perform regression analysis treating each
entry in the matrix as data point, we must account for non-independence of data coming from
the same row or column, e.g. same site, species etc.. To deal with this we include a random
effect A for each species (Clarke, Rothery, and Raybould 2002; Gompert et al. 2014). Thus,
whereas the GLM above contains the term

a; =y + BT,

we would now have

Where X is a (possibly dissimilarity or distance) matrix in which element X, is a quantity of
interest relating species ¢ to species j. Given a similarly arranged matrix K which holds the
k values for all species pairs and a vector m containing species prevalence, our dyadic GLM
becomes

K;; ~ fachypg(m;, N — my;, m;, e®) @)



for each index ij in either the lower or upper triangle of K. While Maximum likelihood
estimates of the A and 8 parameters can be obtained, we still need a way to properly account
for our uncertainty in our estimates. Bayesian inference provides an intuitive framework for
this, grounded in probability theory. Thus, we can construct a Bayesian GLM by assigning
priors to the unknown parameters. Assuming Gaussian priors for all parameters we have

e

Kij ~ fnchypg(m;, N — mi’mﬂ" €
ﬂ ~ N(07 /80')
>\i ~ N(07 Aa’)

where 8, and A, are to be chosen according to the specifics of the system being analysed.

Discussion

Here, I have shown how to construct a Bayesian dyadic GLM for the analysis of cooccurrence
data. This builds on the work of Mainali et al. (2022) as well as Veech (2013) and Griffith et al.
(2016). The identification of Fisher’s noncentral hypergeometric distribution (or mathemati-
cally equivalent formulations) as the correct distribution for modelling cooccurrence led first
to null model approaches to cooccurrence analysis (Griffith, Veech, and Marsh 2016; Veech
2013), then to a useful cooccurrence metric (Mainali et al. 2022) and now to general model
capable of analysing raw cooccurrence data as a response variable even when data points are
not independent (which will generally be the case). It should be noted that the cooccurrence
relationships discussed here and in the works cited above are probablistic in nature, i.e., I
do not assume that either a high or low affinity between a pair of species implies significant
ecological interaction.

Part of the motivation for this work was the failure to recapture known regression coefficients
when fitting linear models to pairwise affinity estimates (Figure 2). There may be other ways
of combating this failure. For example, the removal of data points for which we have low
confidence may be an option. For instance if N = 30, mA = 29 and mB = 1, then a k of
1 tells us very little, since our null expectation is that k will very likely = 1. This will lead
to a high affinity estimate but with a wide confidence interval and a high p-value. Using a
cut-off threshold e.g. only using data for which p < 0.05 may lead to better results. However,
the potential pitfalls involved in removing data are numerous, nuanced and beyond the scope
of the present work. Suffice to say it is dangerous and unnecessary to risk the possible bias
associated with systematically removing data points when the Bayesian analysis framework
naturally accounts for differing levels of confidence between data.

The method proposed here provides ecologist with an important new tool for the analysis of
cooccurrence, and in particular discovering the relationships between cooccurrence and other
variables e.g. phylogenetic distance, which is an active area of research (Goberna et al. 2019)



and has been the subject of much research effort over the past few decades (Webb et al. 2002)
but only now has an analysis framework based on the simple application of probability theory
(McElreath 2018) with correct modelling of cooccurrence probabilities (Griffith, Veech, and
Marsh 2016; Veech 2013; Mainali et al. 2022) while accounting for non-independence of data
in matrices of pairwise species measurements (Clarke, Rothery, and Raybould 2002; Gompert
et al. 2014).

Methods

Maximum likelihood estimates of cooccurrence affinity were obtained using the R (R Core
Team 2021) package CooccurrenceAffinity (Mainali et al. 2022). All other analyses and
visualisations were carried out in Julia (Bezanson et al. 2017). All models were constructed
in the probablistic programming language Turing (Ge, Xu, and Ghahramani 2018) with MLE
estimates of regression coefficients fit to data using the Nelder-Mead method (Nelder and Mead
1965) and MAP estimates of « fit using L-BFGS (Liu and Nocedal 1989) implemented in Optim
(Mogensen and Riseth 2018) and results visualised in Makie (Danisch and Krumbiegel 2021).

Code availability

All code to produce the figures and the manuscript can be found at https://github.com/EvoArt/bayesian-
affinity.

Model implementations in Turing

Bayesian GLM

S fnchypg(n‘;Ai, N — W;Ai’ mB;, )
a; =7+ Bz,

B~ N<07 ﬁa)

v~ N(0,8,)

@model function reg(x, N, mA, mB, k, priors)
Yy ~ Normal(0,prior[1])
B ~ Normal(O,prior[2])

for i in eachindex(x)

o = vy + Bxx[1]

k[i] ~ FisherNoncentralHypergeometric(mA[i],N-mA[i],mB[i],exp(a))
end



end

Dyadic Bayesian GLM

K;; ~ tnchypg(m;, N — m;, mj, e*)
a;; =N+ A+ BX,;

6 ~ N(07 /60')

>‘i ~ N(07 AU‘)

@model function dyadic_glm(X, N, m, K, priors)
n = size(k,1)
B ~ Normal(@,prior[1])
A ~ filldist(Normal(0,prior[2]),n)
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for j in 1:n-1
mB = m[j]
for i in j+1:n
mA = m[i]
o = BxX[1,J] +A[i] +A[]]
K[i,j] ~ FisherNoncentralHypergeometric(mA,N-mA,mB,exp(a))
end
end
end
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