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Abstract	31 

Species	identification	using	DNA	barcodes	has	revolutionized	biodiversity	sciences	and	32 
society	at	large.	However,	conventional	barcoding	methods	may	lack	power	and	universal	33 
applicability	across	the	Tree	of	Life.	Alternative	methods	based	on	whole	genome	34 
sequencing	are	hard	to	scale	due	to	large	data	requirements.	Here,	we	develop	a	novel	35 
DNA-based	identification	method,	varKoding,	using	exceptionally	low-coverage	genome	36 
skim	data	to	create	two-dimensional	images	representing	the	genomic	signature	of	a	37 
species.	Using	these	representations,	we	train	neural	networks	for	taxonomic	38 
identification.	Applying	a	taxonomically	verified	novel	genomic	dataset	of	Malpighiales	39 
plant	accessions,	we	optimize	training	hyperparameters	and	find	the	highest	performance	40 
by	combining	a	transformer	architecture	with	a	new	modified	chaos	game	representation.	41 
Remarkably,	>91%	precision	is	achieved	despite	minimal	input	data,	exceeding	alternative	42 
methods	tested.	We	illustrate	the	broad	utility	of	varKoding	across	several	focal	clades	of	43 
eukaryotes	and	prokaryotes.	We	also	train	a	model	capable	of	identifying	all	species	in	44 
NCBI	SRA	using	less	than	10	Mbp	sequencing	data	with	96%	precision	and	95%	recall	and	45 
robust	to	sequencing	platforms.	Enhanced	computational	efficiency	and	scalability,	46 
minimal	data	inputs	robust	to	sequencing	details,	and	modularity	for	further	development	47 
make	varKoding	an	ideal	approach	for	biodiversity	science.	48 

	49 
Keywords:	biodiversity	science,	computer	vision,	DNA	barcoding,	DNA	signature,	50 
Malpighiaceae,	natural	history	collections,	neural	networks,	species	identification,	51 
taxonomy	 	52 
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	53 

Introduction	54 

For	two	decades,	conventional	DNA	barcoding,	which	relies	on	standardized	short	55 
sequences	(400–800	bp)	for	species	identification1–5,	has	enabled	novel	and	massively	56 
scalable	science	spanning	evolution4,6–9;	ecology10–14	and	paleontology15–19.	Practical	57 
applications	of	barcoding	have	also	made	major	contributions	to	environmental	health,	58 
including	the	ability	to	authenticate	medicinal	plants20,	detect	agricultural	pests21,	and	59 
monitor	poaching	and	the	trade	of	endangered	species22–27.	Despite	these	remarkable	60 
achievements,	conventional	DNA	barcoding	suffers	from	at	least	four	limitations.	First,	61 
barcodes	are	customized	specifically	for	a	taxon	(e.g.,	plants,	animals,	and	fungi),	and	62 
therefore	are	not	universal.	For	example,	commonly	used	plant	barcodes	from	chloroplast	63 
genes	such	as	matK	and	rbcL	cannot	be	applied	as	barcodes	for	all	plants28,29,	or	for	animals	64 
and	fungi.	Second,	conventional	barcode	loci	may	fail	to	distinguish	closely	related	taxa,	a	65 
pervasive	shortcoming	in	plants2,30.	Third,	reliance	on	a	single	locus	may	lead	to	spurious	66 
results	in	the	case	of	complex	evolutionary	scenarios	such	as	hybridization	in	deep	or	67 
shallow	time31–34.	And	fourth,	the	necessary	comparison	of	homologous	genes	may	fail	68 
when	PCR	primers	are	not	universal35,	the	source	DNA	is	fragmented27,	or	paralogy	and	the	69 
presence	of	pseudogenes	confounds	accurate	orthology	assessments36,37.	70 

	71 

Newer	alternatives	to	conventional	barcoding	have	begun	to	address	these	challenges	by	72 
leveraging	high-throughput	sequencing	and	machine-learning	powered	by	deep	neural	73 
networks.	High-throughput	sequencing	facilitates	more	comprehensive	assessments	of	74 
total	genomic	space38,39.	For	example,	presence	and	absence	patterns	among	short	DNA	75 
sequences	(k-mers)	from	low-coverage	reads	(i.e.,	genome	skims)	can	estimate	overall	76 
sequence	distances,	bypassing	genome	alignments	entirely	as	implemented	in	Skmer40.	77 
Machine	learning	enables	more	complex	sequence	comparisons	than	conventional	methods	78 
that	rely	on	homology	and	simple	metrics41.	Machine-learning	models	can	cluster	DNA	79 
sequences	without	supervision42,43	or	classify	sequences	based	on	reference	datasets44–49.	80 
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In	particular,	neural	networks	are	exceptionally	powerful	for	sophisticated	computer-81 
vision	tasks,	such	as	image	classification50.	Thus,	the	combination	of	low-coverage	genome	82 
skimming	data	and	neural	networks	holds	enormous	promise	for	accurate	and	scalable	83 
DNA	barcoding,	but	its	potential	has	yet	to	be	fully	realized39.	84 

		85 

Genomes	differ	substantially	in	many	features	beyond	the	simple	nucleotide	divergence	86 
commonly	used	in	conventional	barcoding,	but	these	genomic	features	have	been	87 
overlooked	in	species	identification51–55.	We	propose	that	(1)	relevant	genomic	features	88 
can	be	captured	by	nucleotide	composition	with	short	k-mer	counts	and	very	small	89 
sequence	coverage;	and	(2)	these	counts	can	be	used	to	distinguish	species	and	higher	taxa	90 
efficiently	and	accurately	using	machine	learning.	Prior	work	on	k-mer-based	91 
representations	of	genome	composition	(i.	e.	DNA	signatures)	has	shown	high	accuracy	can	92 
be	achieved	with	high-coverage	data	or	a	large	number	of	replicates	per	taxon,	particularly	93 
for	identification	at	higher	taxonomic	ranks42–47,56–63.	However,	given	the	millions	of	94 
existing	species	and	the	sparse	genetic	data	available,	a	practical	scalable	method	would	95 
require:	(1)	consistently	high	accuracy	despite	limited	evolutionary	divergence;	(2)	fast	96 
computations;	and	(3)	high	accuracy	with	small	training	datasets	(both	in	number	of	97 
samples	and	DNA	data	per	sample).	Here	we	developed	a	novel	DNA	signature	method,	98 
which	we	call	varKoding,	that	integrates	very	low-coverage	genome	skim	data	with	99 
optimized	training	of	machine-learning	models	using	two-dimensional	images	100 
representing	genome	composition	(Figure	1A).	To	develop	and	optimize	varKoding	for	101 
accurate	species	identification,	we	generated	a	de	novo	genome	skim	dataset	including	102 
hundreds	of	samples	derived	primarily	from	historical	herbarium	specimens	for	the	103 
diverse	plant	genus	Stigmaphyllon	(Malpighiaceae),	which	has	received	extensive	104 
phylogenetic	and	taxonomic	treatment64–68.	Next,	we	explored	the	utility	of	varKoding	and	105 
compared	it	to	alternatives	at	different	phylogenetic	depths	from	families	to	species	within	106 
the	flowering	plant	order	Malpighiales	(Malpighiaceae,	Chrysobalanaceae,	and	107 
Elatinaceae).	Finally,	we	demonstrate	the	scalability	of	varKoding	and	its	potential	108 
application	in	forensics	and	related	fields	by	testing	it	on	(1)	species-level	datasets	from	109 
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fungi,	plants,	animals,	and	bacteria;	(2)	massive	datasets	retrieved	from	the	NCBI	sequence	110 
read	archive	(SRA);	and	(3)	a	previously	published	environmental	DNA	(eDNA)	dataset.	111 
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	112 

Figure	1.	Overview	of	varKoding.		(A)	Image	generation	workflow,	depicting	varKodes.	Images	are	natively	113 
grayscale,	but	here	they	are	mapped	to	a	rainbow	color	scale	for	increased	contrast.	(B)	Phylogeny	and	114 
example	varKodes	of	Stigmaphyllon	species.	(C)	Phylogeny	and	example	varKodes	of	Malpighiaceae	genera	115 
including	their	closest	outgroup	(Elatine,	Elatinaceae).	Time	trees	in	1B	and	1C	(D)	Examples	of	varKodes	116 
from	across	plant	families	of	Malpighiales,	and	(E)	across	kingdoms.	Chronograms	depicted	for	each	117 
representative	set	with	timelines	in	millions	of	years	(Myr)	at	the	bottom	of	B	and	C.	These	were	derived	118 
from	an	ongoing	family-wide	phylogenomic	investigation	of	the	family	Malpighiaceae	(C.	C.	Davis	personal	119 
communication)	using	methods	and	fossil	constraints	described	in	Cai	et	al.65;	dates	inferred	are	consistent	120 
with	earlier	findings65	and	were	not	applied	in	this	study	for	quantitative	analyses.		121 
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Results	and	Discussion	122 

DNA	signature	images	can	be	classified	with	generalized	neural	networks	123 

We	first	generated	a	novel	kind	of	image	representation	of	a	DNA	signature,	which	we	124 
termed	a	varKode.	varKodes	map	k-mers	onto	pixels	of	a	2-D	image	based	on	their	125 
similarity	and	represent	ranked	k-mer	frequencies	as	pixel	brightness.	Variation	in	126 
varKodes	can	be	small	but	remain	visually	perceptible	among	species	(Figure	1B)	and	127 
genera	(Figure	1C).	Variation	is	more	striking	among	higher	levels	of	phylogenetic	128 
divergence,	such	as	between	families	in	the	order	Malpighiales	(Figure	1D)	or	different	129 
kingdoms	of	eukaryotes	and	prokaryotes	(Figure	1E).	We	expected,	therefore,	that	neural	130 
network	architectures	developed	for	image	classification,	(e.g.,	deep	residual	networks,	131 
resnets69	or	vision	transformers,	ViT70,71)	would	be	able	to	differentiate	varKodes.	132 

	133 

We	first	optimized	hyperparameters	and	training	conditions	to	maximize	accuracy	for	134 
species-level	identification	of	Stigmaphyllon.	We	identified	that	varKodes	depicting	k-mer	135 
length	=	7	struck	a	good	balance	between	accuracy	and	the	amount	of	input	sequence	data	136 
(Figure	2A).	Furthermore,	models	trained	with	augmented	data	from	several	subsampled	137 
sequences	drawn	from	each	individual	exhibited	substantially	better	performance	(Figure	138 
2A).	A	linear	model	demonstrated	that	neural	network	architectures	and	training	methods	139 
designed	for	image	classification	of	photographs69,72–75	are	extremely	useful	for	varKode-140 
based	identification.	Specifically,	we	observed	increased	accuracy	with	more	parameter-141 
rich	neural	network	architectures	(ResNeXt10176,	among	those	tested),	augmentation	with	142 
lighting	transformations,	CutMix75	and	MixUp74.	Label	smoothing77	and	pretraining	models	143 
on	generalized	photographs	decreased	accuracy	(Figure	3).	Contrary	to	the	widely	held	144 
idea	that	deep	neural	networks	require	very	large	training	datasets60,78, the	145 
aforementioned	approaches	enabled	training	with	very	modest	data	amounts:	four	146 
biological	replicates	per	taxon	was	sufficient	for	100%	median	accuracy	(Figure	2B).	147 
Errors	in	species-level	identification	were	concentrated	among	sequences	derived	from	148 
herbarium	samples	that	demonstrated	evidence	of	DNA	damage,	as	is	sometimes	reported	149 
for	ancient	DNA79	(Figure	2B).	However,	including	low-quality	training	samples	slightly	150 
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decreased	mean	validation	accuracy—from	73%	to	71%—for	low-quality	validation	151 
samples,	but	had	no	effect	on	high-quality	validation	samples	(89–90%	mean	accuracy,	152 
Figure	4A).		153 

	154 

Figure	2.		Neural	network	training	of	varKodes	for	species	identification.	(A)	Effect	of	k-mer	length	and	155 
input	data	amount	used	to	produce	varKodes	on	validation	accuracy.	Longer	k-mers	increase	accuracy	when	156 
more	data	are	used.	Mixing	varKodes	subsampled	from	different	amounts	of	data	improves	accuracy.	Box	157 
with	dashed	line	(k-mer	length	=	7)	strikes	a	good	balance	between	model	accuracy	and	amount	of	required	158 
data.	(B)	Validation	accuracy	improves	with	increased	number	of	training	samples	per	species,	but	even	3–4	159 
samples	are	sufficient	in	most	cases	for	achieving	high	accuracy.	Each	solid	line	represents	one	sample,	160 
colored	by	DNA	quality	(i.e.,	variation	in	base	pair	frequencies).	Higher	rank	indicates	better	quality.	Dashed	161 
lines	represent	averages	across	all	samples.	162 

	163 

	164 
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	165 
Figure	3.	Marginal	effects	of	neural	network	model	and	training	options.	Dots	represent	individual	replicates,	166 
and	bars	depict	averages.	All	parameters	were	identified	to	be	significant	in	a	linear	model:	more	complex	167 
model	architectures,	lighting	transformations,	and	augmentation	methods	MixUp	and	CutMix	improved	168 
accuracy.	However,	pretraining	with	large	image	datasets	and	label	smoothing	decreased	accuracy.	169 
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	170 
Figure	4.	Effect	of	the	inclusion	of	low-quality	training	samples,	inferred	from	variation	in	base	pair	content	171 
(A,	B)	or	insert	size	(C,	D).	Increasing	the	fraction	of	samples	in	the	training	set	that	were	low-quality	did	not	172 
strongly	affect	the	average	validation	accuracy,	but	it	increased	dispersion.	Low-quality	samples	are	the	four	173 
samples	with	highest	variation	in	base-pair	content	or	shortest	insert	size	in	raw	reads	for	each	species.	174 
Panels	B	and	D	show	the	correlation	of	each	quality	metric	with	DNA	extraction	yield.	175 
	176 
We	hypothesized	that	lower-quality	samples	shared	similar	sequences	resulting	from	177 
common	patterns	of	DNA	damage	and	greater	levels	of	microbial	or	human	contaminants,	178 
resulting	in	spurious	similarities	in	varKodes	(Figure	5).	Contaminants	also	are	thought	to	179 
increase	errors	in	other	genome	skim	methods80.	To	mitigate	this	problem,	we	applied	180 
multi-label	classification81	to	our	neural	network	models.	Although	single-label	181 
classification	models	always	return	a	single	prediction	(that	is,	an	inferred	label),	multi-182 
label	models	can	return	zero	or	more	predictions,	avoiding	spurious	results	when	there	is	183 
uncertainty.	For	a	set	of	samples	with	known	labels	used	for	validation,	a	prediction	is	a	184 
true	positive	if	the	predicted	label	matches	the	actual	label,	and	a	false	positive	if	not.	185 
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Failure	to	predict	an	actual	label	is	deemed	a	false	negative.	For	each	validation	sample,	we	186 
summarized	predictions	as	(1)	correct	(true	positives	only);	(2)	incorrect	(false	positives	187 
only);	(3)	ambiguous	(multiple	predictions,	including	true	and	false	positives);	or	(4)	188 
inconclusive	(i.	e.	no	prediction	above	the	confidence	threshold	of	0.7).	For	each	test,	we	189 
summarized	results	across	all	validation	samples	using	two	metrics:	precision	(the	sum	of	190 
all	true	positives	divided	by	the	sum	of	all	true	and	false	positives)	and	recall	(the	sum	of	all	191 
true	positives	divided	by	the	sum	of	all	true	positives	and	negatives).		192 

	193 
Figure	5.	Low-quality	DNA	may	lead	to	spurious	patterns	of	similarity	in	varKodes.	Samples	with	lower	194 
quality	show	varKode	patterns	divergent	from	their	species	more	often	than	high-quality	ones.	These	195 
divergent	patterns	may	be	similar	between	low-quality	samples	across	species.	These	samples	also	show	196 
reduced	validation	accuracy	in	a	single-label	model.	For	each	sample,	we	show	the	varKodes	produced	from	197 
all	DNA	data	available.	Within	each	species,	samples	are	organized	from	lowest	(left)	to	highest	(right)	DNA	198 
quality.	Bounding	boxes	around	each	sample	indicate	the	average	validation	accuracy	across	30	random	199 
replicates	with	7	training	samples	per	species.	200 
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	201 

After	optimizing	these	training	conditions,	we	directly	compared	varKodes	to	an	existing	202 
method	of	DNA	signature	representation:	the	frequency	chaos	game	representation	203 
(fCGR)56,59.	In	fCGRs,	k-mers	are	mapped	to	pixels	based	on	their	oriented	sequence	and	204 
pixel	brightness	represents	the	rescaled	k-mer	frequency.	To	isolate	the	effects	of	pixel	205 
mapping	and	brightness,	we	created	a	new	representation	combining	fCGR	mapping	with	206 
varKode	ranked	frequency	transformation	(rfCGR).	By	directly	comparing	these	3	kinds	of	207 
representation	combined	with	four	neural	network	architectures,	including	(1)	two	208 
previously	employed	with	fCGRs42,44,60,	(2)	the	optimal	architecture	in	our	initial	tests	209 
(ResNeXt10176),	and	(3)	a	Vision	Transformer	(ViT70,71),	we	found	that	ViT	combined	with	210 
rfCGR	representation	maximizes	performance	(Figure	6).	A	multilayer	perceptron,	as	211 
employed	in	previous	work42,60,	could	not	identify	any	species	correctly	here	(Figure	6).	212 
Similarly,	a	previously	employed	shallow	1D	convolutional	neural	network44	213 
underperformed	more	complex	architectures	(Figure	6).	fCGR	showed	much	higher	error	214 
rates	than	either	rfCGR	or	varKodes,	which	yielded	similar	results	but	with	slightly	higher	215 
accuracy	for	rfCGR	(Figure	6).	These	results	indicate	that	deep	complex	neural	networks,	216 
while	not	explicitly	developed	for	DNA	signature,	are	necessary	to	extract	features	from	217 
very	low-coverage	data	and	distinguish	closely	related	species.	Moreover,	the	method	of	k-218 
mer	frequency	data	transformation	seems	more	consequential	than	the	mapping	of	k-mers	219 
to	pixels	for	the	performance	of	different	image	representations.	Due	to	its	higher	220 
performance,	we	adopt	the	combination	of	ViT	and	rfCGRs	for	subsequent	tests.	221 
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	222 

Figure	6.	Effect	of	image	representation	and	neural	network	architecture	on	cross-validation	accuracy	of	223 
species	identification	in	Stigmaphyllon.	One	example	for	each	image	representation	is	shown,	drawn	from	the	224 
same	DNA	data	(SRA	accession	XXXX)	and	mapped	to	a	rainbow	color	scale	for	increased	contrast.	See	text	for	225 
details	on	architectures.	226 
	227 

In	summary,	we	developed	and	tested	a	robust	and	scalable	method	of	DNA	barcoding	228 
capable	of	training	with	small	amounts	of	data,	and	implemented	it	in	the	varKoder	229 
software,	which	can	process	sequence	data,	train	an	image-classification	neural	network	230 
using	varKodes	or	rfCGRs,	query	new	data	with	a	trained	neural	network,	and	convert	231 
between	the	alternative	k-mer	mappings.	These	tasks	are	accomplished	with	widely	used	232 
tools	for	sequence	processing82–86	and	for	neural	network	training87–90.		233 
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varKodes	are	highly	accurate	for	identification	of	species,	genera,	and	families		235 

To	test	varKoder	under	a	real-world	scenario	with	heterogeneous	data	(e.g.,	large	numbers	236 
of	taxa,	multiple	replicates	per	taxon,	varying	sequence	depth	and	sample	quality),	our	de	237 
novo	genomic	data	set	included	287	accessions:	100	samples	of	Stigmaphyllon	from	our	238 
initial	development	outlined	above,	plus	additional	genera	in	the	families	Malpighiaceae	239 
(31	genera;	151	samples),	Chrysobalanaceae	(8	genera;	30	samples),	and	Elatinaceae	(1	240 
genus;	6	samples)	in	the	order	Malpighiales.	We	found	high	cross-validation	accuracies	for	241 
species	identity	of	Stigmaphyllon	(87.0–96.7%	correct,	94.6%–98.9%	precision,	88.0%–242 
96.7%	recall	depending	on	data	input	amount;	Figure	7A).	Most	errors	were	inconclusive	243 
predictions	(2.2–10%),	instead	of	ambiguous	(0–3%)	or	incorrect	(1–4%)	predictions.	244 
varKoder	is	robust	to	the	amount	of	input	sequence	data	necessary	for	model	training,	245 
performing	well	even	at	the	lower	range	of	input	data	(Figure	7A).	Assuming	an	average	246 
genome	size	of	about	2	Gbp	for	the	average	species	of	Malpighiaceae91,	the	500Kbp–247 
200Mbp	of	data	used	here	represented	exceptionally	low	coverages	of	about	~0.0002×	–248 
0.107×.	Moreover,	when	compared	to	cross-validation	accuracies	of	alternative	barcoding	249 
methods,	varKoder	accuracy	is	higher	than	Skmer,	which	showed	46%	correct	predictions	250 
(57.5%	precision,	46%	recall)	with	minimal	data	amounts	and	peaked	at	79.1%	for	the	251 
larger	data	amounts	(80%	precision,	79.1%	recall,	Figure	7A).	On	the	other	hand,	252 
conventional	barcodes	including	individual	plastid	genes	and	nuclear	ribosomal	ITS	253 
regions	performed	well	for	both	BLAST-based	(25–97%	correct,	66.6–97.3%	precision,	25–254 
97%	recall	depending	on	the	gene)	and	phylogenetic-based	(94–95%	correct,	>99%	255 
precision,	97.2–98.4%	recall	for	concatenated	matrices)	approaches	when	at	least	50	Mbp	256 
of	data	was	provided	(Figure	7A,	Figure	8).	However,	these	results	were	much	worse	257 
when	<50	Mbp	of	data	were	available	(down	to	zero	correct	for	BLAST),	with	unsuccessful	258 
locus	assembly	leading	to	inconclusive	predictions	as	the	primary	reason	for	the	failure	259 
(Figure	7A,	Figure	8).	Finally,	an	unsupervised	clustering	method	based	on	neural	260 
networks	applied	to	fCGRs	(iDeLUCS92)	reached	24–60%	clustering	accuracy	depending	on	261 
input	data	amount	when	prompted	to	cluster	Stigmaphyllon	sequences	into	10	groups	262 
(Table	1).	In	summary,	varKoder	reaches	much	higher	accuracy	for	species	determination	263 
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than	existing	methods	for	unprecedentedly	small	amounts	of	data	and	demonstrates	264 
similar	accuracies	when	greater	amounts	of	sequence	data	are	available.		265 

	266 

	267 
Figure	7.	Performance	of	varKoder	and	alternative	barcoding	methodologies	across	different	data	sets.	(A)	268 
Leave-one-out	cross-validation	to	identify	species	of	Malpighiales	using	different	approaches	and	amounts	of	269 
data	to	assemble	query	samples.	(B)	Same	as	(A),	but	for	genera.	(C)	Performance	for	species-level	270 
identification	across	different	publicly-available	datasets:	Bembidion	beetles,	Corallorhiza	orchids,	271 
Mycobacterium	tuberculosis	bacteria,	and	Xanthoparmelia	fungi.	All	query	samples	used	as	much	data	as	were	272 
available.	(D)	Performance	for	Eukaryote	family-level	identification	for	different	amounts	of	input	data.	273 
	274 
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	275 
Figure	8.	Accuracy	of	conventional	barcode	loci	for	species,	genera	and	families	within	the	Malpighiales.	276 
	277 

	278 
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Table	1.	Accuracy	in	deuces	classification	by	data	amount	and	plastid	genes	included.	285 
 286 
Genus-level	identification	yielded	similar	high	accuracies	with	varKoder	(86.1–93.3%	287 
correct,	97.2%–97.7%	precision,	86.4%–94.7%	recall	depending	on	input	amount,	Figure	288 
7B),	but	with	a	higher	rate	of	inconclusive	predictions	(4.5–11.5%).	A	linear	model	289 
demonstrated	that	this	higher	uncertainty	can	be	attributed	to	two	factors:	(1)	samples	290 

Species

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

matK

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

ndhF

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

50
0 k

bp
1 M

bp
2 M

bp
5 M

bp

10
 M

bp

20
 M

bp

50
 M

bp

10
0 M

bp

20
0 M

bp

trnL−F

Genus

matK

ndhF

50
0 k

bp
1 M

bp
2 M

bp
5 M

bp

10
 M

bp

20
 M

bp

50
 M

bp

10
0 M

bp

20
0 M

bp

trnL−F

Family

matK

ndhF

50
0 k

bp
1 M

bp
2 M

bp
5 M

bp

10
 M

bp

20
 M

bp

50
 M

bp

10
0 M

bp

20
0 M

bp

trnL−F

result
correct
inconclusive
incorrect

Conventional barcode accuracy across different taxonomic levels
Fr

ac
tio

n 
of

 sa
m

pl
es

Base pairs in query images

Input	 rbcl+matK+ndhF+ITS	 plastid+ITS	full	assembly	
200	mb	 0.59	 0.24	
100	mb	 0.6	 0.25	
50	mb	 0.29	 0.26	
20	mb	 0.27	 0.23	
10	mb	 0.29	 0.27	
5	mb	 0.24	 0.28	
2	mb	 0.27	 0.53	



varKoder	manuscript.	18	

	
	

exhibiting	higher	levels	of	DNA	damage	in	genera	other	than	Stigmaphyllon;	and	(2)	genera	291 
trained	with	fewer	replicates	(e.g.,	down	to	3	samples	for	some	genera;	Figures	9–10).	292 
Despite	this	trend,	the	vast	majority	of	genera	with	fewer	replicates	and	lower	DNA	quality	293 
can	still	be	correctly	predicted,	resulting	in	the	>97%	prediction	and	>86%	recall	across	294 
the	whole	dataset.		Additionally,	samples	within	genera	share	fewer	genetic	similarities	295 
than	samples	within	species,	which	likely	poses	a	more	challenging	classification	problem.	296 
However,	the	incorrect	rate	was	very	small	in	all	cases	(0.7–2.1%),	with	most	errors	being	297 
inconclusive	or	ambiguous	predictions.	In	contrast,	Skmer	exhibited	better	performance	298 
when	larger	amounts	of	data	were	used	(99.2%	correct,	99.2%	precision,	99.2%	recall	for	299 
200	Mbp),	but	performed	poorly	for	lower	amounts	of	data	like	those	commonly	generated	300 
from	genome	skim	experiments	(58.2%	correct,	58.2%	precision,	58.2%	recall	for	500	301 
Kbp)	(Figure	7B).	Genus-level	identifications	using	conventional	barcodes	in	a	302 
concatenated	phylogeny	were	up	to	98.1%	correct	(99.2%	precision,	97.2%%	recall)	when	303 
a	large	amount	of	data	(200	Mbp)	was	available	(Figure	7B).	But	like	its	application	at	304 
species-level	identification,	most	predictions	were	inconclusive	when	less	than	20	Mbp	305 
reads	were	used	(Figure	7B).	Although	genome	skimming	can	be	used	to	sequence	306 
conventional	barcodes,	they	are	more	often	obtained	with	amplicon	sequencing,	which	has	307 
failure	rates	ranging	from	15–75%	even	with	highly	optimized	protocols93,	leading	to	an	308 
even	higher	number	of	inconclusive	predictions.	At	the	family	level,	Skmer	and	varKoder	309 
had	near-perfect	accuracy	across	all	data	amounts	(>97%	correct),	while	conventional	310 
barcodes	performed	well	when	there	were	sufficiently	large	amounts	of	data	(Figures	8,	311 
11).		312 
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	313 
Figure	9.	Predictors	of	confidence	in	correct	genus.	A)	Confidence	increases	with	more	training	samples	per	314 
genus.	B)	Amount	of	data	per	validation	image	has	little	effect.	C)	Validation	samples	with	low	quality	have	315 
lower	confidence.	316 
	317 

	318 
Figure	10.	Number	of	samples	available	for	different	data	amounts	in	the	Malpighiales	and	Eukaryote	319 
families	datasets.	Arbitrary	colors	are	assigned	to	individual	taxa.		320 
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	321 
Figure	11.	Comparison	of	varKoder,	Skmer,	and	conventional	barcode	accuracy	for	identifying	families	of	322 
Malpighiales.	323 
	324 

varKodes	are	universal	and	scalable	across	the	Tree	of	Life		325 

To	further	test	the	universality	of	varKodes,	we	expanded	to	sequencing	data	from	diverse	326 
clades	of	plants,	fungi,	animals,	and	bacteria	(Figure	7C).	These	tests	included	species-level	327 
identification	in	insects	(Bembidion	beetles54,94)	and	lichen-forming	fungi	328 
(Xanthoparmelia95),	species	and	infra–specific	taxon	identification	in	coralroot	orchids	329 
(Corallorhiza96),	and	clinical	isolate	identification	of	strains	of	human	pathogenic	bacteria	330 
(Mycobacterium	tuberculosis97).	In	all	cases,	we	tested	the	performance	of	varKoder	on	taxa	331 
included	in	the	training	set	and	on	taxa	not	included	in	the	training	set.	We	identified	332 
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perfect	species	identification	(100%	correct,	100%	precision,	100%	recall)	for	beetles	and	333 
coralroot	orchids	included	in	the	training	set.	For	bacteria,	5.6%	of	the	validation	set	334 
returned	ambiguous	predictions;	the	remaining	samples	were	correctly	identified	(94.7%	335 
precision,	100%	recall).	In	lichen-forming	fungi,	which	include	DNA	from	both	the	fungal	336 
and	algal	partners,	and	thus	are	more	challenging,	10%	of	the	test	samples	returned	337 
incorrect	predictions	and	another	10%	were	inclusive;	the	remainder	were	correct	(89%	338 
precision,	80%	recall).	For	all	cases,	species	or	varieties	not	included	in	the	training	set	339 
generally	resulted	in	inconclusive	results,	with	a	minority	yielding	incorrect	predictions	340 
(Figure	7C).		341 

	342 

Finally,	we	tested	the	scalability	of	varKodes	in	three	large-scale	datasets:	(1)	all	861	343 
eukaryotic	families	with	Illumina	data	on	NCBI	SRA,	(2)	all	taxa	with	multiple	accessions	on	344 
NCBI	SRA,	including	different	sequencing	platforms	and	library	strategies	(254,819	345 
accessions	and	14,151	taxa	across	all	taxonomic	ranks),	and	(3)	a	previously	published	346 
dataset	of	2916	soil	eDNA	samples	from	all	seven	continents98.	Owing	to	NCBI	download	347 
speed	bottlenecks,	we	restricted	varKode	construction	to	a	very	limited	maximum	of	10	348 
Mbp	of	DNA	data	in	the	former	2	cases.	The	family-level	eukaryote	data	achieved	a	rate	of	349 
correct	predictions	of	65.2–81.3%	across	all	kingdoms	when	families	were	included	in	the	350 
training	set	(Figure	7D),	with	most	errors	being	inconclusive	predictions	(17.5–33.1%).	351 
Precision	varied	from	95.3%	to	97.3%	and	recall	from	67.9%	to	78.3%.	Similarly	to	the	352 
species-	and	variety-level	exercise,	families	not	included	in	the	training	set	often	yielded	353 
inconclusive	predictions	(Figure	7D),	suggesting	a	potential	for	varKoding	to	be	used	as	a	354 
discovery	tool	when	reasonably	well-sampled	training	data	sets	are	available.	The	355 
expanded	data	with	all	taxa	from	NCBI	SRA	revealed	that	varKoding	is	robust	to	sequencing	356 
platform	and	library	preparation	method	(Figure	12).	Predictions	at	the	family	level	or	357 
pooled	for	all	the	taxonomic	hierarchy	are	accurate	regardless	of	sequencing	details	(>94%	358 
precision,	>86%	recall).	The	much	higher	accuracy	when	compared	to	the	dataset	based	on	359 
Eukaryotic	families	alone	may	be	an	effect	of	a	completely	random	validation	set	instead	of	360 
stratified	by	family,	resulting	in	higher	representation	of	commonly	sampled	families.	At	361 
the	genus	and	species	level,	results	are	more	dependent	on	the	sequencing	method	(Figure	362 
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12).	For	genera,	precision/recall	using	10Mbp	of	data	varies	from	90.8%/90.8%	with	363 
whole	genome	shotgun	libraries	in	PacBio	to	97.9%/97.6%	with	genotype-by-sequencing	364 
in	Illumina.	Finally,	the	eDNA	data	shows	promise	in	using	varKoding	to	identify	the	365 
geographical	origin	of	an	environmental	sample:	in	the	validation	set,	at	10Mbp	of	DNA	366 
data,	94.0%	of	the	samples	had	continent	correctly	identified,	with	2.6%	being	incorrect,	367 
1.9%	being	ambiguous,	and	1.5%	being	inconclusive	(84.7%	prediction,	84.5%	recall)	368 
(Figure	13).		369 

	370 
Figure	12.	varKoder	performance	in	predicting	taxonomy	for	all	data	on	SRA.	Sample	sizes	refer	to	the	371 
number	of	validation	accessions	available	for	each	combination	of	platform,	sequencing	strategy	and	372 
taxonomic	rank.	373 
	374 
	375 
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	376 
Figure	13.	Varkoder	performance	in	identifying	the	geographical	origin	of	a	soil	metabarcoding	sample.	A)	377 
Performance	across	the	whole	dataset.	B)	Performance	for	each	continent.	378 
	379 

A	single	model	classifying	all	of	life	is	not	possible	with	conventional	barcodes.	Skmer,	the	380 
state-of-the-art	genome	skimming	alternative,	cannot	be	scaled	to	a	dataset	of	this	size:	our	381 
attempt	to	apply	it	to	Eukaryote	families	could	not	be	finished	after	more	than	40	days	382 
using	32	high-performance	computing	cores.	In	general,	conventional	barcodes,	when	383 
derived	from	genome	skimming	data,	require	memory-	and	processor-intensive	sequence	384 
assembly,	and	Skmer	relies	on	pairwise	all-by-all	sample	comparisons;	its	computing	time	385 
and	required	storage	both	increase	quadratically	with	the	number	of	samples.	Neural	386 
network	models,	on	the	other	hand,	have	a	fixed	size,	independent	of	the	number	of	387 
samples	used	in	training,	and	training	time	scales	linearly	with	the	number	of	input	388 
samples.	Our	most	complex	model,	trained	on	all	taxa	available	from	the	NCBI	SRA,	has	389 
about	1.3GB	of	disk	size.	varKode	images	also	are	tiny	replacements	(8.2	KB	on	average	for	390 
k-mer	length	of	7)	for	much	larger	genomic	data	sets	(on	average,	144	MB	per	sample	391 
here).	Downloading	up	to	20Mb	of	sequence	data	for	over	250,000	accessions	from	the	392 
NCBI	SRA	was	the	bottleneck,	taking	over	70	days.	By	parallelizing	processing	over	40	393 
cores,	processing	this	data	into	varKodes	was	about	10	times	faster,	resulting	in	394 
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approximately	18GB	of	data	including	all	of	these	accessions.	Training	a	model	on	more	395 
than	1.3	million	images	took	about	45	hours	using	only	2	GPUs.	Although	training	on	large	396 
datasets	requires	powerful	GPUs	and	large	memory,	training	on	small	datasets	and	397 
querying	is	possible	on	personal	computers	in	a	few	seconds	to	minutes.	To	reduce	the	398 
computational	resources	required	for	training	new	datasets,	we	provide	a	pre-trained	399 
model	from	both	varKodes	and	rfCGRs	from	all	taxa	on	SRA	using	the	huggingface	hub	400 
(https://huggingface.co/brunoasm/vit_large_patch32_224.NCBI_SRA).	See	Asprino	et	al.99	401 
for	details	on	the	data	used	for	this	model.	Whenever	the	data	become	available,	a	model	402 
potentially	trained	on	millions	of	species	easily	can	be	ported	to	devices	without	403 
continuous	internet	access.	Moreover,	the	minimal	data	amounts	needed	for	identification	404 
could	be	generated	in	seconds	in	a	portable	Nanopore	device.	Finally,	the	library	405 
preparation	method	based	on	shotgun	sequencing	is	very	simple	and	can	be	automated	406 
with	portable	consumer	devices,	such	as	the	Nanopore	Voltrax.	Together,	these	properties	407 
allow	for	more	widely	distributed	applications	of	varKoding,	such	as	field-laboratory	408 
environments100	or	proposed	distributed	genetic	databases101.		409 

	410 

Conclusions	411 

varKoding	is	universal,	accurate,	efficient,	and	holds	tremendous	promise	for	documenting	412 
and	discovering	Earth’s	biodiversity.	It	achieves	accurate	identification	with	minimal	data	413 
compared	to	existing	next-generation	sequencing	methods,	while	maintaining	universal	414 
applicability	across	the	Tree	of	Life.	Its	modular	framework	can	evolve	alongside	advances	415 
in	sequencing	technologies,	bioinformatics,	and	machine	learning,	as	exemplified	here	by	416 
the	update	in	image	representation	(varKodes	to	rfCGRs)	and	neural	network	architecture	417 
(resnext	to	ViT)	after	initial	testing.	For	these	reasons,	we	expect	it	will	contribute	for	the	418 
wider	adoption	of	DNA	signatures	on	biodiversity	assessments	and	ecological	research,	419 
overcoming	current	challenges39.	Reference	data	for	varKoding	will	be	increasingly	420 
available	from	ambitious	efforts	in	genome	sequencing102–106.	However,	we	note	that	421 
reference	data	for	varKoding	is	much	easier	and	cost-effective	to	obtain	from	low-coverage	422 
genome	skims	than	high-quality	contiguous	genomes:	the	robustness	to	minimal	levels	of	423 

coverage	a	central	advantage	of	our	method.	For	example,	our	cost	for	a	3´	skim	of	424 
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herbarium	samples	is	about	$34	per	sample,	versus	a	high-quality	genome	which	may	cost	425 
tens-of-thousands	of	dollars	each.	Thus,	varKoding	shows	tremendous	promise	for	further	426 
automating	species	identification	from	natural	history	collections107–109.		427 

	428 

We	expect	that	varKoding	will	be	invaluable	to	the	biodiversity	science	community	in	429 
numerous	ways,	with	many	avenues	remaining	to	be	explored.	One	of	them	is	the	430 
identification	of	samples	with	poor-quality	and	degraded	DNA,	such	as	unidentified	431 
fragmentary	fossil	and	subfossil	remains	in	natural	history	collections107,110.	For	example,	432 
Malpighiales	samples	with	signs	of	DNA	damage	could	be	correctly	identified	using	433 
varKoder	to	species	or	genus	in	many	cases	and	to	family	in	almost	every	case.	Future	434 
research	could	explore	the	lower	limits	of	sample	quality	and	sequence	coverage	to	achieve	435 
accurate	identification	at	different	divergence	levels.	Finally,	we	expect	that	new	neural	436 
network	architectures	and	forms	of	DNA	representation	will	continue	to	be	explored.	One	437 
limitation	of	varKoding,	as	applied	here,	is	the	challenging	identification	of	samples	within	438 
mixed	components	such	as	lichens	or	environmental	DNA.	However,	with	long-read	439 
sequencing,	varKodes	and	rfCGRs	from	single	reads	could	potentially	include	sufficient	data	440 
for	that	end.	Moreover,	mixed	samples	could	be	useful	for	other	ends:	varKodes	could	be	441 
used	to	classify	a	set	of	sequences	based	on	any	kind	of	metadata,	beyond	taxonomy	as	442 
demonstrated	by	our	test	on	the	geographical	origin	of	a	soil	sample.		443 
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Online Methods 822 

Sequence data 823 

Taxon	sampling,	DNA	sequencing,	assembly,	and	annotation	for	newly	acquired	genetic	824 
data—The	newly	generated	plant	data	used	here	and	the	methods	to	obtain	these	data	are	825 
described	in	detail	in	a	data	descriptor	article99.	Briefly,	they	included	members	of	the	large	826 
and	diverse	order	Malpighiales34:	Malpighiaceae	(251	accessions	representing	31	genera),	827 
Elatinaceae	(6	accession	for	1	genus),	and	Chrysobalanaceae	(30	accessions	for	8	genera).	828 
Malpighiaceae	includes	Stigmaphyllon	with	the	most	comprehensive	species	sampling:	10	829 
species	and	10	accessions	sampled	per	species.	All	100	Stigmaphyllon	samples	were	830 
sequenced	specifically	to	build,	validate,	and	test	our	identification	models	at	shallower	831 
phylogenetic	depths,	since	their	taxonomy	has	been	extensively	revised	by	coauthor	C.	832 
Anderson67,68.	Each	of	these	samples	was	labeled	with	species,	genus,	and	family	names.	833 
The	focus	for	the	remainder	of	the	Malpighiaceae,	Chrysobalanaceae,	and	Elatinaceae	834 
sampling	was	to	identify	a	given	sample	to	genus.	In	this	case,	among	the	non-835 



varKoder	manuscript.	35	

	
	

Stigmaphyllon	samples	we	included	3–9	species	per	genus.	Each	accession	in	this	case	was	836 
labeled	with	its	corresponding	genus	and	family	identification.	Unlike	Stigmaphyllon,	where	837 
we	included	multiple	accessions	per	species,	there	were	no	additional	replicates	per	838 
species	for	our	genus-level	sampling.	For	this	dataset,	we	used	leave-one-out	cross	839 
validation	in	all	assessments,	and	therefore	there	are	no	train	and	validation	sets.	For	840 
additional	information	see	Asprino	et	al.99	.	841 

Public	genomic	data	compilation—To	further	understand	the	versatility	of	varKodes	more	842 
broadly	across	the	Tree	of	Life,	we	tested	species	identification	using	genome	skim	data	843 
sets	from	four	genera	of	plants,	animals,	fungi,	and	a	bacterial	species.	This	involved	a	plant	844 
data	set	from	coralroot	orchids	(genus	Corallorhiza)96,	a	beetle	data	set	in	the	genus	845 
Bembidion54,94,	a	lichen-forming	fungus	in	the	genus	Xanthoparmelia95,	and	a	bacterial	data	846 
set	of	clinical	isolates	from	Mycobacterium	tuberculosis,	the	species	of	pathogenic	bacteria	847 
that	causes	tuberculosis97.	In	all	these	cases,	we	labeled	samples	with	the	lowest-level	848 
taxonomic	identification	available	(species,	subspecies	or	isolates).	For	taxa	with	two	or	849 
more	samples	available,	20%	(with	a	minimum	of	1)	were	randomly	selected	for	the	850 
validation	set,	which	also	included	all	taxa	represented	by	a	single	sample	(therefore,	851 
absent	from	the	training	set).	The	remaining	accessions	were	used	in	the	training	set.	See	852 
Asprino	et	al.99	for	further	information.	853 
	854 
We	also	compiled	two	broad	datasets	from	the	NCBI	SRA.	The	first	consists	of	all	861	855 
eukaryotic	families	with	sufficient	sequence	read	data	using	the	Illumina	platform	and	856 
whole	genome	shotgun	sequencing.	We	labeled	samples	with	family	name	only	and	857 
included	taxa	with	at	least	two	associated	accessions	in	the	training	set.	Our	validation	set	858 
consisted	of	20%	randomly	selected	accessions	from	each	family	(with	a	minimum	of	one),	859 
plus	all	accessions	in	families	with	a	single	accession	available	(therefore	not	part	of	the	860 
training	set).	The	second	broad-scale	dataset	includes	all	taxa	on	NCBI	SRA	that	could	be	861 
represented	by	at	least	3	independent	accessions.	In	this	case,	we	included	different	862 
sequencing	platforms	(Illumina,	PacBio,	Nanopore,	BGIseq)	and	library	preparation	863 
methods	(whole	genome	shotgun,	RADseq,	GBS).	For	taxa	with	too	many	sequences	(such	864 
as	humans,	crops,	etc.),	we	randomly	chose	up	to	20	accessions	for	each	combination	of	865 
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sequencing	platform	and	library	preparation	method.	Accessions	were	labeled	with	all	866 
NCBI	taxonomy	ranks	available	for	a	sample,	the	library	preparation	method,	and	the	867 
sequencing	platform.	The	validation	set,	in	this	case,	consisted	of	a	random	selection	of	868 
10%	of	all	samples,	not	stratified	by	taxon.		869 
	870 
Our	final	dataset	was	assembled	with	the	aim	to	extend	varKoder	beyond	taxonomic	871 
identification.		We	compiled	a	global	soil	metagenome	eDNA	dataset	labeled	with	continent	872 
of	origin	from	Ma	et	al.98	We	filtered	out	any	metagenomic	sample	which	lacked	873 
information	on	continent	in	the	Ma	et	al.	metadata.	This	yielded	2916	soil	metagenome	874 
samples	across	all	seven	continents.		We	downloaded	10Mbp	DNA	data	for	each	sample	875 
directly	from	NCBI.	All	metadata	for	the	samples	and	code	used	to	download	and	analyze	876 
these	data	can	be	found	in	the	GitHub	repository	for	our	study.	877 
	878 

varKode design and testing 879 

Sequence	data	preprocessing—Prior	to	the	construction	of	images,	raw	reads	were	lightly	880 
cleaned	using	the	following	steps:	identical	reads	were	de-duplicated	using	clumpify.sh	as	881 
implemented	in	BBtools83,111,	adapters	were	removed,	low-quality	tails	trimmed,	and	882 
overlapping	read	pairs	merged	using	fastp85	with	options	"--detect_adapter_for_pe",	"--883 
dedup",	"--dup_calc_accuracy	1",	"--disable_quality_filtering",	"--disable_length_filtering",	"--884 
trim_poly_g",	“--merge",	"--include_unmerged",	.	Next,	we	randomly	selected	subsets	of	885 
cleaned	reads	with	predefined	data	amounts,	ranging	from	500	kbp	to	200	Mbp,	with	886 
BBtools.	These	data	subsets	were	used	to	generate	a	variety	of	input	varKodes	for	a	single	887 
sample	and	all	such	images	were	used	for	training	(see	main	text	and	Figure	2A).	Finally,	888 
we	applied	dsk84	to	count	k-mers	of	a	given	length	based	on	clean	raw	reads	(i.	e.	k-mers	889 
are	counted	for	each	read	and	their	frequencies	are	pooled	across	reads).	dsk	exhibits	good	890 
performance	with	low	memory	requirements,	which	is	ideal	for	potential	applications	891 
using	varKodes	on	low-memory	devices.	We	note	that	analyses	for	species-level	public	892 
datasets	have	low	computational	requirements	and	were	performed	on	an	Apple	MacBook	893 
with	ARM	processor	architecture.		894 
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varKode	and	rfCGR	construction—	We	designed	novel	images—varKodes—that	portray	895 
relative	frequencies	of	k-mers	from	low-coverage	raw	Illumina	reads.	These	are	similar	to	a	896 
frequency	chaos	game	representation	(fCGR)	sensu	Jeffrey53,	but	optimized	for	raw	reads	in	897 
which	sequence	orientation	is	unknown,	and	therefore	canonical	k-mers	and	their	reverse	898 
complement	are	indistinguishable.	This	averaging	of	canonical	k-mer	frequencies	and	their	899 
reverse	complements	is	widely	used	in	the	context	of	raw	reads40,61,62,112,113.	We	call	these	900 
images	varKodes	because	they	enCODE	the	VARiation	in	k-mer	frequencies	in	a	sample.	We	901 
name	our	method	varKoding	after	varKodes,	but	notice	that	it	is	modular	and	can	use	902 
other	kinds	of	DNA	image	representation.	They	are	meant	to	represent	a	DNA	signature	by	903 
mapping	k-mer	identity	to	pixel	position	in	an	image,	such	that	k-mers	with	more	similar	904 
composition	are	closer	together.	Additionally,	the	brightness	of	these	pixels	represents	the	905 
abundance	of	the	associated	k-mer,	but	we	use	ranks	instead	of	raw	frequencies	to	906 
decrease	the	effect	of	overabundant	and	artifactual	k-mers.	In	summary,	varKodes	are	907 
produced	by	mapping	k-mer	counts	onto	a	pre-computed	map	of	k-mers	to	pixels,	and	908 
transforming	frequency	data	to	pixel	brightness.	varKode	design	employed	t-SNE114	and	909 
the	python	libraries	numpy87	and	pillow115.	In	addition	to	varKodes,	here	we	also	developed	910 
a	new	image	representation	that	uses	the	same	pixel	mapping	as	fCGRs	but	represents	k-911 
mer	abundance	as	ranks	instead	of	raw	frequencies.	We	named	these	ranked	frequency	912 
chaos	game	representation	(rfCGR).	Both	varKodes	and	fCGRs	are	saved	as	8-bit	PNG	913 
images	including	labels	as	exif	metadata.		914 

Testing	k-mer	length	and	data	amount—We	employed	fastai89	for,	a	high-level	915 
implementation	of	neural	networks	based	on	pytorch88	for	training	and	prediction.	All	the	916 
model	architectures	we	applied	are	image	classification	models	available	from	the	timm	917 
library90,	which	have	been	widely	tested	using	a	variety	of	image	types.	To	identify	the	918 
optimal	training	hyperparameters	for	our	neural	network,	we	conducted	a	series	of	tests	919 
using	the	species-level	data	set	for	the	genus	Stigmaphyllon.	We	generated	varKodes	for	920 
each	of	the	Stigmaphyllon	samples.	We	first	tested	the	joint	effect	of	k-mer	length	and	input	921 
data	amount	for	neural	network	classification	accuracy	by	selecting	three	samples	per	922 
species	as	a	validation	set;	the	remaining	samples	were	used	to	train	neural	networks	using	923 
different	amounts	of	input	data	across	10	randomly	generated	training	sets.	As	input	data	924 
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for	both	the	validation	and	training	sets,	we	randomly	subsampled	the	original	sequences	925 
into	fastq	files	containing	from	500	Kb	to	200	Mb	(equivalent	to	about	1,700	to	670,000	926 
2x150bp	Illumina	reads).	In	this	test,	we	only	included	samples	that	yielded	at	least	200	927 
million	base	pairs	after	cleaning.	We	also	tested	the	effect	of	including	images	for	all	data	928 
amounts	during	training.	For	each	replicate,	we	applied	the	widely	used	image	929 
classification	neural	network	resnet50	architecture116	to	classify	varKodes	and	trained	930 
models	for	30	epochs.	We	visualized	the	distribution	of	validation	accuracy	for	each	931 
combination	of	input	data	amount	and	k-mer	lengths	to	find	a	good	balance	between	both.	932 
Visualizations	and	code	applied	for	training	and	evaluation	is	available	in	our	GitHub	933 
repository.	934 

Neural	network	optimization—After	identifying	an	appropriate	k-mer	length	and	input	data	935 
used	to	produce	varKodes	(Figure	2),	we	next	tested	a	series	of	neural	network	training	936 
conditions.	We	varied	the	neural	network	model	complexity,	choosing	from	seven	937 
commonly	used	architectures:	resnet50116,	resnet-D69	with	different	depths	(18,	50,	101),	a	938 
wide	resnet5069,	efficientnet-B4117,	and	ResNeXt10176.	We	also	tested	the	effect	of	the	939 
following:	random	initial	weights	vs.	pretrained	weights	from	the	timm	library90,	presence	940 
or	absence	of		lighting	transforms,	presence	or	absence	of	label	smoothing,	and	presence	or	941 
absence	of	augmentation	strategies	(i.e.,	CutMix75	or	MixUp74).	Because	these	parameters	942 
may	have	complex	interactions,	we	tested	all	combinations	of	architecture,	pretraining,	943 
transforms,	label	smoothing,	and	augmentation,	with	20	replicates	for	each	combination	of	944 
conditions.	In	each	replicate,	we	randomly	chose	20%	of	the	samples	for	each	species	of	945 
Stigmaphyllon	as	validation	and	trained	the	model	using	the	remainder	for	30	epochs.	946 
Training	was	performed	using	all	varKodes	available	for	each	sample	(from	500kbp	to	947 
200Mbp).	For	validation,	we	separately	evaluated	whether	each	varKode	with	a	different	948 
amount	of	data	was	correctly	identified.	For	each	replicate	and	amount	of	data	used	to	949 
validate	varKodes,	we	recorded	the	average	validation	accuracy	across	the	validation	set.	950 
We	then	applied	a	linear	model	to	predict	the	effect	of	all	training	parameters	and	amount	951 
of	data	in	varKodes	in	the	validation	set	on	validation	accuracy.	Validation	accuracy	in	this	952 
case	was	arc-sin	transformed	for	linear	modeling	due	to	its	bounded	range	of	0–1.	We	953 
started	from	the	full	model	containing	all	parameters	and	their	interactions	and	reduced	954 
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the	model	step-wise	based	on	AIC	scores	(i.	e.	Akaike	Information	Criteria),	as	implemented	955 
in	the	R	function	step.	Visualizations	and	code	applied	for	training	and	evaluation	is	956 
available	in	our	GitHub	repository.	957 

	958 

Testing	sample	number	requirements—A	legitimate	concern	with	complex	neural	networks	959 
is	that	they	may	require	vast	amounts	of	training	data	and	that	typical	skimming	data	sets	960 
might	be	insufficient	for	them	to	be	useful.	We	tested	the	robustness	of	our	models	to	the	961 
effect	of	the	number	of	samples	per	species	included	in	training	by	using	from	one	to	seven	962 
samples	per	species	as	training	set	and	the	remaining	as	validation,	with	50	replicates	per	963 
number	of	training	samples.	The	batch	size	used	in	training	was	adjusted	for	the	cases	with	964 
very	few	samples	included,	so	that	each	training	epoch	included	about	10	batches.	We	965 
included	varKodes	from	1Mbp	to	200Mbp	in	both	training	and	validation	sets.	In	this	case,	966 
we	applied	the	training	parameters	informed	by	our	previous	analyses:	a	resnext101	967 
architecture,	random	initial	weights,	CutMix	augmentation,	and	label	smoothing	for	30	968 
epochs.	We	visualized	the	effect	of	the	number	of	samples	by	plotting	the	average	969 
validation	accuracy	of	each	sample	against	the	number	of	training	samples	used	in	each	970 
case.	Visualizations	and	code	applied	for	training	and	evaluation	is	available	in	our	GitHub	971 
repository.	972 

	973 

Testing	the	effect	of	data	quality—Most	of	the	cases	with	low	accuracy	corresponded	to	974 
samples	with	low	DNA	yield	(Figure	2B).	We	identified	that	DNA	extraction	yield	was	975 
significantly	correlated	with	two	metrics	of	DNA	quality:	average	insert	size	and	variation	976 
in	nucleotide	composition	along	reads79	(Figure	4).	varKodes	produced	from	these	samples	977 
may	be	visually	distinct	from	other	samples	of	the	same	species	(Figure	5).	For	this	reason,	978 
we	further	tested	whether	sample	quality	in	training	or	validation	impacted	accuracy.	979 
Using	both	quality	metrics,	we	identified	the	five	lowest	quality	samples	for	each	species.	980 
We	next	produced	training	sets	using	six	randomly	chosen	samples	per	species,	varying	the	981 
number	of	low-quality	samples	included	in	training	from	zero	to	four.	We	included	982 
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varKodes	from	1Mbp	to	200Mbp	in	both	training	and	validation	sets.	We	repeated	this	for	983 
30	replicates	for	each	number	of	low-quality	samples.	Like	our	tests	with	varying	sample	984 
numbers,	we	applied	the	following	training	parameters:	a	resnext101	architecture,	random	985 
initial	weights,	CutMix	augmentation,	label	smoothing	for	30	epochs.	For	the	validation	set,	986 
we	separately	recorded	the	accuracy	for	high-	and	low-quality	samples.	We	then	visualized	987 
the	effect	of	inclusion	of	low-quality	samples	in	the	training	set	by	observing	the	988 
distribution	of	validation	accuracies	for	high-quality	and	low-quality	samples	across	the	989 
range	of	number	of	low-quality	samples	included	in	the	training	set.	Visualizations	and	990 
code	applied	for	training	and	evaluation	is	available	in	our	GitHub	repository.	991 

	992 

Implementation	of	varKoder—Following	all	the	tests	described	above,	we	implemented	the	993 
optimal	neural	network	training	strategies	in	a	python	program	named	varKoder.	994 
varKoder	can	process,	train	and	query	varKodes	and	is	freely	available	on	our	GitHub:	995 
https://github.com/brunoasm/varKoder.	Because	it	employs	standard	neural	network	996 
frameworks	(namely,	pytorch88,	fastai89,	and	timm90),	any	of	the	image	classification	models	997 
and	training	hyperparamenters	available	now	or	in	the	future	via	these	libraries	can	be	998 
easily	adapted	and	applied	to	varKode	classification.	Moreover,	we	have	implemented	a	999 
multi-label	model	as	the	default	to	increase	robustness	to	low-quality	varKodes	with	little	1000 
diagnostic	information	in	the	training	set.	This	was	done	by	using	an	asymmetric	multi-1001 
label	loss	function81	instead	of	the	standard	cross-entropy	loss	function	used	in	single-label	1002 
classification.	Analyses	used	development	versions	of	varKoder	starting	with	v.0.8.0.	1003 
Improvements	suggested	during	the	peer-review	process	are	now	implemented	in	1004 
varKoder	v.1.1.0.	1005 

varKoder evaluation and comparison to alternatives 1006 

varKoder—To	test	varKoder	performance	on	a	complex	dataset	spanning	multiple	1007 
taxonomic	levels	and	varying	phylogenetic	depths,	we	used	the	Malpighiales	dataset	1008 
including	genera	in	Elatinaceae,	Chrysobalanaceae	and	Malpighiaceae.	Species	of	1009 
Stigmaphyllon	(Malpighiaceae)	were	labeled	with	species,	genus,	and	family	names;	all	1010 
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other	samples	were	labeled	with	genus	and	family	names.	We	tested the	performance	of	1011 
varKoder	in	each	sample	with	leave-one-out	cross-validation.	For	each	sample,	we	retained	1012 
it	as	validation	and	trained	a	neural	network	using	all	the	other	samples.	In	preliminary	1013 
assessments,	we	found	that	a	ViT71	architecture	combined	with	a	multi-label	model	1014 
sometimes	led	to	instability	in	training	for	some	datasets.	For	that	reason,	we	used	a	two-1015 
step	approach.	Models	first	were	pre-trained	for	20	epochs	as	single-label,	using	the	least	1016 
inclusive	taxonomic	assignment	available	for	each	sample	and	a	base	learning	rate	of	0.05.	1017 
Next,	we	trained	for	an	additional	10	epochs	using	the	pre-trained	weights	but	with	a	much	1018 
smaller	learning	rate	(0.005)	and	a	multi-label	output.	Training	samples	included	varKodes	1019 
from	500	Kbp	to	200	Mbp,	and	we	recorded	validation	accuracy	separately	for	varKodes	1020 
produced	from	each	amount	of	data.	We	used	an	arbitrary	confidence	threshold	of	0.7	to	1021 
make	predictions	in	the	multilabel	models.	For	validation	samples,	we	deemed	a	prediction	1022 
correct	if	only	the	correct	taxon	was	predicted	for	each	taxonomic	rank	(i.e.,	species,	genus,	1023 
family).	We	deemed	a	prediction	incorrect	if	one	or	more	predictions	passed	the	threshold	1024 
for	a	taxonomic	rank,	but	none	match	the	actual	label.	When	predicted	labels	included	both	1025 
the	correct	and	incorrect	taxa,	we	deemed	it	ambiguous.	If	the	output	prediction	included	1026 
no	taxon	with	confidence	above	the	threshold,	we	considered	it	as	inconclusive.	As	metrics	1027 
across	all	samples,	we	used	prediction	and	recall,	averaged	across	all	predictions.	We	1028 
visualized	the	fraction	of	correct,	incorrect,	ambiguous,	and	inconclusive	samples	for	each	1029 
taxonomic	rank	and	each	amount	of	data	used	to	produce	varKodes.	The	code	to	reproduce	1030 
training	conditions	and	evaluation	tests	is	available	on	GitHub.	1031 

To	test	the	joint	effect	of	neural	network	architecture	and	image	representation	method,	1032 
we	applied	this	cross-validation	approach	to	all	combinations	of	three	image	1033 
representations	and	four	neural	network	architectures.	The	architectures	tested	included:	1034 
(1)	ResNeXt10176,	the	optimal	convolutional	neural	network	architecture	in	our	initial	tests,	1035 
(2)	ViT71,	a	transformer-based	architecture	that	became	available	after	our	initial	testing,	1036 
(3)	a	neural	network	with	two	convolutional	layers	processing	vectorized	k-mer	counts,	1037 
following	Fiannaca	et	al44	and	(4)	a	multi-layer	perceptron	formed	by	a	series	of	fully	1038 
connected	layers	as	specified	in	Millán	Arias	et	al42.	The	two	latter	have	been	previously	1039 
employed	for	fCGR	data.	The	three	representations	tested	include	varKodes	and	rfCGRs	as	1040 
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developed	here,	and	fCGRs	as	estimated	by	iDeLUCS92.	In	the	latter	case,	we	used	iDeLUCS	1041 
functions	to	produce	fCGRs	as	2D	python	arrays	of	k-mer	counts.	Next,	we	rescaled	these	1042 
counts	to	the	range	of	0–255	and	rounded	them	to	the	nearest	integer.	These	arrays	were	1043 
then	saved	as	8-bit	png	images.	All	code	used	in	varKoder	analyses	is	available	on	GitHub.	1044 

Skmer—To	compare	varKoder	with	alternative	methods,	we	used	fastq	files	cleaned	and	1045 
subsampled	by	varKoder	as	input	files	to	Skmer.	In	this	case,	we	also	used	leave-one-out	1046 
cross-validation	to	evaluate	performance.	For	each	amount	of	input	data	(500Kbp	to	1047 
200Mbp),	we	cycled	through	all	samples,	constructing	a	Skmer	database	with	the	"skmer	1048 
reference"	command	and	including	all	samples	but	one	and	default	settings.	We	then	used	1049 
the	"skmer	query"	command	with	default	settings	on	the	sample	left	out	and	deemed	the	1050 
identification	as	correct	if	the	sample	in	the	reference	database	with	closest	estimated	1051 
genetic	distance	had	the	correct	taxon	label.	Because	Skmer	could	always	query	a	sample	1052 
and	there	is	no	objective	criterion	to	consider	matches	beyond	the	best	match,	the	output	1053 
predictions	can	only	be	correct	or	incorrect,	but	not	inconclusive	or	ambiguous.	We	1054 
visualized	the	results	similarly	as	we	did	with	varKoder.	The	code	to	reproduce	Skmer	1055 
analyses	is	available	on	GitHub.	1056 

Conventional	plant	barcodes	—To	infer	phylogenies	from	our	genome	skim	data	(Figure	1),	1057 
we	applied	the	PhyloHerb	bioinformatic	pipeline118,	which	has	been	applied	recently	to	a	1058 
taxa	ranging	from	algae	to	flowering	plants119–121.	Briefly,	this	pipeline	works	as	follows:	for	1059 
plastid	loci,	PhyloHerb	maps	raw	short	reads	to	a	database	of	land	plant	plastid	genomes.	1060 
Mapped	reads	are	then	assembled	into	scaffolds	using	SPAdes122	and	plastid	loci	are	1061 
identified	using	nucleotide	BLAST	searches	with	a	default	e-value	threshold	of	1e-40.	1062 
PhyloHerb	then	outputs	orthologous	plastid	genes	into	individual	FASTA	files,	which	are	fed	1063 
directly	into	MAFFT	v7.407123	for	alignment.	Alignments	are	then	concatenated	into	a	1064 
super	matrix	using	the	‘conc’	function	within	the	PhyloHerb	package.	Phylogenies	for	both	1065 
individual	locus	and	the	concatenated	alignment	were	inferred	with	IQTREE	v2.0.6	using	1066 
the	GTR+GAMMA	model	with	1000	ultrafast	bootstrap	replicates124.	1067 

To	recover	the	traditional	plant	barcodes,	rbcL,	matK,	trnL-F,	ndhF,	and	ITS,	from	our	1068 
Malpighiales	genome	skim	data,	we	applied	GetOrganelle	v1.7.7.0125	and	PhyloHerb	1069 



varKoder	manuscript.	43	

	
	

v1.1.1118	to	automatically	assemble	and	extract	these	DNA	markers,	respectively.	Briefly,	1070 
the	complete	or	subsampled	genome	skim	data	were	first	assembled	into	plastid	genomes	1071 
or	nuclear	ribosomal	regions	using	GetOrganelle	with	its	default	settings.	Next,	PhyloHerb	1072 
was	applied	to	extract	the	relevant	barcode	genes	using	its	built-in	BLAST	database.	To	test	1073 
whether	these	traditional	barcodes	provided	accurate	identification	to	species,	genus,	and	1074 
family,	we	ran	an	all-by-all	BLASTn	analysis	for	each	individual	gene	across	the	same	data	1075 
subsampling	schemes	as	Skmer	and	varKoder.	BLAST	targets	were	always	drawn	from	1076 
assemblies	using	all	the	data	available	for	each	specimen,	whereas	queries	included	1077 
assemblies	from	input	data	amounts	varying	from	500	Kbp	to	200	Mbp.	Within	each	BLAST	1078 
analysis	for	each	one	of	the	Malpighiales	accessions,	we	deemed	an	identification	to	be	1079 
correct	if	the	best	non-self	BLAST	hit	came	from	the	same	taxon,	and	incorrect	otherwise.	1080 
We	deemed	it	inconclusive	if	the	locus	could	not	be	assembled	for	that	amount	of	data.	For	1081 
concatenated	barcodes,	we	produced	a	phylogenetic	tree	for	each	amount	of	data	and	1082 
deemed	an	identification	to	be	correct	if	the	sample	with	lowest	patristic	distance	came	1083 
from	the	same	taxon.	We	deemed	it	to	be	inconclusive	when	none	of	the	genes	in	the	1084 
concatenated	dataset	could	be	assembled	for	a	sample.	We	visualized	results	similarly	to	1085 
varKoder,	separately	for	each	conventional	barcoding	gene	and	for	the	concatenated	1086 
dataset.	The	code	to	reproduce	conventional	barcode	analyses	is	available	on	GitHub.	1087 

iDeLUCS—To	evaluate	the	performance	of	varKoder	with	another	deep	learning	based	1088 
sequence	classifier,	we	applied	the	sequences	assembled	from	the	PhyloHerb	pipeline	to	1089 
iDeLUCS92.	We	first	used	concatenated	sequences	of	five	traditional	plant	barcodes	(rbcL,	1090 
matK,	trnL-F,	ndhF,	and	ITS)	assembled	from	input	reads	varying	from	500	Kbp	to	200	1091 
Mbp.	iDeLUCS	was	run	with	k-mer	length	of	6,	100	training	epochs,	100	data	augmentations	1092 
per	sequence,	and	the	SGD	algorithm	for	neural	network	optimization.	All	input	sequences	1093 
were	set	to	be	clustered	into	10	groups	(equal	to	the	total	number	of	species)	and	the	1094 
accuracy	was	evaluated	with	the	cluster_acc	function	implemented	in	iDeLUCS.	We	also	1095 
applied	the	entire	plastid	genome	and	the	nuclear	ribosomal	sequence	assemblies	1096 
(ETS+18S+ITS1+5.8S+ITS2+28S)	in	iDeLUCS	with	the	same	parameters	to	evaluate	the	1097 
impact	of	input	data	quality.	1098 



varKoder	manuscript.	44	

	
	

Application in diverse taxa 1099 
Species-level	identification	in	plants,	animals,	fungi,	and	bacteria—For	each	of	the	four	1100 
organismal	clades,	we	trained	a	multi-label	model	that	included	five	species	with	at	least	1101 
three	samples	per	species.	For	Bembidion,	we	included	five	species	with	five	samples	per	1102 
species.	For	Corallorhiza,	we	included	five	species	(or	varieties)	with	at	least	five	samples	1103 
per	species,	except	for	C.	striata	var.	vreelandii	and	C.	striata	var.	striata,	for	which	we	1104 
included	six	and	seven	samples	each,	respectively.		For	Mycobacterium	tuberculosis,	we	1105 
included	representatives	of	five	monophyletic	M.	tuberculosis	lineages	(L1,	L2,	L3,	1106 
L4.1.i1.2.1,	and	L4.3.i2)	with	seven	clinical	isolates	per	lineage.	Samples	for	Bembidion,	1107 
Corallorhiza,	and	M.	tuberculosis	isolates	all	formed	monophyletic	groups,	whereas	1108 
Xanthoparmelia	species	did	not.	Since	the	Xanthoparmelia	species	were	paraphyletic,	we	1109 
subsampled	only	monophyletic	groups	for	model	training.	In	this	case,	four	species	1110 
included	three	samples	per	species	(X.	camtschadalis,	X.	mexicana,	X.	neocumberlandia,	and	1111 
X.	coloradoensis)	and	one	species	included	five	samples	per	species	(X.	chlorochroa).	One	1112 
potential	confounding	factor	for	the	Xanthoparmelia	model	is	that	Xanthoparmelia	is	a	1113 
lichen-forming	fungus	and	thus	genome	skim	data	represents	a	chimera	of	fungal	and	algal	1114 
genomes	representing	both	partners	in	this	unique	symbiosis.	Species	of	the	algal	symbiont	1115 
Trebouxia	are	flexible	generalists	across	fungal	species	Xanthoparmelia.	Since	these	1116 
genome	skims	are	a	mix	of	both	algal	photobiont	and	fungus,	we	hypothesize	that	the	1117 
accuracy	of	our	model	decreased	because	of	the	more	generalist	nature	of	Trebouxia126.		1118 
  1119 
For	all	four	test	cases,	we	applied	default	varKoder	v.0.8.0	parameters	for	generating	rfCGR	1120 
images,	training	each	model,	and	testing	the	accuracy	of	the	trained	model	using	the	‘query’	1121 
function.	In	all	cases,	we	included	all	the	available	data	for	each	training	or	validation	1122 
sample.	To	test	if	trained	models	accurately	predicted	species	identity,	we	queried	them	1123 
using	extra	genome	skim	samples	not	used	for	training	but	from	the	same	species	included	1124 
in	the	model.	We	also	tested	genome	skim	test	samples	of	species	within	the	same	genus	1125 
not	used	in	model	training.	As	in	the	case	of	Malpighiales,	we	set	the	threshold	to	make	a	1126 
prediction	equal	to	0.7	and	used	the	same	criteria	to	consider	a	prediction	correct,	1127 
incorrect,	inconclusive,	or	ambiguous.	We	separately	evaluated	results	for	taxa	with	1128 
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representatives	included	in	the	training	set	and	taxa	used	only	as	queries,	without	1129 
conspecific	samples	in	the	training	set.	The	code	to	reproduce	these	analyses	is	available	on	1130 
GitHub.	1131 
	1132 
All	eukaryotic	families	data	set	from	SRA—Each	accession	was	labeled	with	its	family	1133 
identification	obtained	from	NCBI.	Because	of	the	larger	size	of	this	dataset,	a	leave-one-out	1134 
cross-validation	approach	would	have	been	intractable.	Therefore,	we	randomly	selected	1135 
80%	of	the	samples	in	each	family	as	the	training	set	and	used	the	remainder	for	validation.	1136 
Similarly	to	Malpighiales,	we	used	a	two-step	training	method	by	pre-training	as	a	single-1137 
label	model	and	finalizing	with	a	multi-label	model.	Pre-training	was	done	with	a	learning	1138 
rate	of	0.1	and	a	batch	size	of	300	for	30	epochs.	Final	training	was	done	with	the	same	1139 
batch	size	but	a	smaller	base	learning	rate	of	0.01	in	5	epochs	with	frozen	body	weights	and	1140 
three	epochs	with	unfrozen	weights.	The	code	to	reproduce	these	analyses	is	available	on	1141 
GitHub.	1142 
	1143 
All	taxa	from	SRA—For	each	accession,	we	created	rfCGRs	from	500Kbp	to	10Mbp	of	data.	1144 
Each	accession	was	labeled	with	all	the	taxa	in	its	taxonomic	tree,	as	well	as	library	strategy	1145 
(RAD,	GBS	or	WGS)	and	sequencing	platform	(Illumina,	PACBIO,	Nanopore	or	BGISEQ).	We	1146 
randomly	selected	10%	of	the	samples	as	validation	set,	and	eliminated	from	validation	1147 
samples	all	labels	absent	from	the	training	set.	We	used	a	two-step	training	method.	First,	1148 
we	pre-trained	using	a	single-label	strategy,	using	as	labels	the	concatenation	of	library	1149 
strategy,	sequencing	platform,	kingdom,	family	and	genus.	For	pretraining,	we	used	a	1150 
learning	rate	of	0.1,	a	batch	size	of	500	and	30	epochs.	We	then	used	the	weights	of	this	1151 
pre-trained	model	as	starting	weights	for	a	multi-label	model	including	all	labels.	We	1152 
trained	the	model	for	additional	50	epochs	with	unfrozen	body	weights	and	10	epochs	with	1153 
frozen	weights,	learning	rate	of	0.05	and	batch	size	of	600.	The	code	to	reproduce	these	1154 
analyses	is	available	on	GitHub.	1155 
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Environmental	metagenome	global	identification—The	downloaded	soil	metagenomes	from	1157 
Ma	et	al.98	were	labeled	by	source	continent.	Similarly	to	the	eukaryotic	family	data	set	1158 
from	SRA,	we	randomly	selected	80%	of	the	samples	as	the	training	set	and	used	the	1159 



varKoder	manuscript.	46	

	
	

remaining	20%	as	the	validation	set.	We	used	a	two-step	training	method	by	pre-training	1160 
as	a	single-label	model	and	finalizing	with	a	multi-label	model.	Pre-training	was	done	with	1161 
a	learning	rate	of	0.1	and	a	batch	size	of	64	for	30	epochs.	Final	training	was	done	with	the	1162 
same	batch	size	but	a	smaller	base	learning	rate	of	0.01	in	5	epochs	with	frozen	body	1163 
weights	and	three	epochs	with	unfrozen	weights.	The	code	to	reproduce	all	these	analyses	1164 
is	available	on	GitHub.	1165 
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