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Abstract	27 

Species	identification	using	DNA	barcodes	has	revolutionized	biodiversity	sciences	and	28 
society	at	large.	However,	conventional	barcoding	methods	do	not	reflect	genomic	29 
complexity,	may	lack	sufficient	variation,	and	rely	on	limited	genomic	loci	that	are	not	30 
universal	across	the	Tree	of	Life.	Here,	we	develop	a	novel	barcoding	method	that	uses	31 
exceptionally	low-coverage	genome	skim	data	to	create	a	“varKode”,	a	two-dimensional	32 
image	representing	the	genomic	landscape	of	a	species.	Using	these	varKodes,	we	then	33 
train	neural	networks	for	precise	taxonomic	identification.	Applying	an	expertly	annotated	34 
genomic	dataset	including	hundreds	of	newly	sequenced	genomic	samples	from	the	plant	35 
clade	Malpighiales,	we	demonstrate	>91%	precision	when	identifying	species	or	genera.	36 
Remarkably,	high	accuracy	remains	despite	minimal	data	amounts	that	lead	to	failure	when	37 
applying	alternative	methods.	We	further	illustrate	the	broad	utility	of	varKodes	across	38 
several	focal	clades	of	eukaryotes	and	prokaryotes.	As	a	final	test,	we	classify	the	entire	39 
NCBI	eukaryote	sequence-read	archive	to	identify	its	861	constituent	families	with	>95%	40 
precision	despite	utilizing	less	than	10	Mbp	of	data	per	sample.	Enhanced	computational	41 
efficiency	and	scalability,	minimal	data	inputs	robust	to	degraded	DNA,	and	modularity	for	42 
further	development	make	varKoding	an	ideal	approach	for	biodiversity	science.	43 

	44 
Keywords:	biodiversity	science,	computer	vision,	DNA	barcoding,	Malpighiaceae,	natural	45 
history	collections,	neural	networks,	species	identification,	taxonomy	 	46 
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Introduction	47 

For	two	decades,	conventional	DNA	barcoding,	which	relies	on	standardized	short	48 
sequences	(400–800	bp)	for	species	identification1,	2,	3,	4,	5,	has	enabled	novel	and	massively	49 
scalable	science	spanning	evolution4,	6,	7,	8,	9;	ecology10,	11,	12,	13,	14	and	paleontology15,	16,	17,	18,	50 
19.	Practical	applications	of	barcoding	have	also	made	major	contributions	to	51 
environmental	health,	including	the	ability	to	authenticate	medicinal	plants20,	detect	52 
agricultural	pests21,	and	monitor	poaching	and	the	trade	of	endangered	species22,	23,	24,	25,	26,	53 
27.	Despite	these	remarkable	achievements,	however,	conventional	DNA	barcoding	suffers	54 
from	at	least	four	limitations.	First,	barcodes	are	customized	specifically	for	particular	55 
clades	of	organisms	(e.g.,	plants,	animals,	and	fungi),	and	therefore	are	not	universal—in	56 
many	cases	even	within	focal	clades.	For	example,	commonly	used	plant	barcodes	from	57 
chloroplast	genes	such	as	matK	and	rbcL	cannot	be	applied	as	barcodes	for	all	plants28,	29,	58 
or	for	animals	and	fungi.	Second,	conventional	barcode	loci	may	fail	to	distinguish	closely	59 
related	taxa,	a	pervasive	shortcoming	in	plants2,	30.	Third,	reliance	on	a	single	locus	may	60 
lead	to	spurious	results	in	the	case	of	complex	evolutionary	scenarios	such	as	hybridization	61 
in	deep	and	shallow	time31,	32,	33,	34.	And	fourth,	the	necessary	comparison	of	homologous	62 
genes	may	fail	when	PCR	primers	are	not	universal35,	the	source	DNA	is	fragmented27,	or	63 
paralogy	and	the	presence	of	pseudogenes	confounds	accurate	orthology	assessments36,	37.	64 

	65 

Newer	alternatives	to	conventional	barcoding	have	begun	to	address	these	challenges	by	66 
leveraging	two	technological	advancements:	high-throughput	sequencing	and	machine-67 
learning	applications	powered	by	neural	networks.	High-throughput	sequencing	facilitates	68 
more	comprehensive	assessments	of	total	genomic	space38,	39.	For	example,	69 
presence/absence	patterns	among	short	DNA	sequences	(k-mers)	from	low-coverage	reads	70 
(i.e.,	genome	skims)	can	estimate	overall	sequence	distances,	bypassing	genome	alignments	71 
entirely	as	implemented	in	Skmer40.	Machine	learning	enables	more	complex	sequence	72 
comparisons	than	do	more	conventional	methods	that	rely	on	homology	and	simple	73 
metrics41.	Machine-learning	models	can	cluster	DNA	sequences	correctly	without	74 
supervision42,	43	and	can	classify	sequences	based	on	reference	datasets44,	45,	46,	47.	In	75 
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particular,	neural	networks	are	exceptionally	powerful	for	sophisticated	computer-vision	76 
tasks,	such	as	image	classification48.	Thus,	the	combination	of	low-coverage	genome	77 
skimming	data	and	neural	networks	holds	enormous	promise	for	accurate	and	scalable	78 
DNA	barcoding,	but	its	potential	has	yet	to	be	fully	realized.	79 

		80 

Genomes	differ	substantially	in	many	features	beyond	the	simple	nucleotide	differences	81 
commonly	used	in	conventional	barcoding	(e.g.,	repeat	content),	but	these	differences	have	82 
been	overlooked	for	species	identification49,	50,	51,	52.	We	propose	that	i.)	relevant	genomic	83 
features	can	be	captured	by	nucleotide	composition	with	short	k-mer	counts	and	very	84 
small	sequence	coverage;	and	ii.)	these	counts	can	be	used	to	distinguish	species	and	85 
higher	taxa	efficiently	and	accurately	using	machine	learning.	Inspired	by	prior	work42,	44,	86 
53,	we	developed	a	novel	barcoding	method	(varKoding)	that	integrates	genome	skim	data	87 
with	machine-learning	models	trained	using	two-dimensional	images	representing	genome	88 
composition	(a	varKode)	(Figure	1A).	To	assess	the	utility	of	varKoding	for	accurate	89 
species	identification,	we	first	generated	a	de	novo	genome	skim	dataset	including	90 
hundreds	of	samples	derived	primarily	from	historical	herbarium	specimens	for	the	91 
diverse	plant	genus	Stigmaphyllon	(Malpighiaceae),	which	has	received	extensive	92 
phylogenetic	and	taxonomic	treatment54,	55,	56,	57,	58.	Upon	establishing	the	power	and	93 
robustness	of	our	tool	for	identifying	species	of	Stigmaphyllon,	we	explored	the	utility	of	94 
varKodes	at	greater	phylogenetic	depths	among	flowering	plant	families	and	genera	of	95 
species	spanning	three	diverse	clades	within	the	order	Malpighiales	(Malpighiaceae,	96 
Chrysobalanaceae,	and	Elatinaceae).	Finally,	we	demonstrate	the	generality	and	scalability	97 
of	varKoding	across	the	Tree	of	Life	by	testing	it	on	several	published	species-level	datasets	98 
from	fungi,	plants,	animals,	bacteria,	and	finally	from	a	massive	dataset	including	all	99 
families	of	eukaryotes	from	publicly	available	sequence	data.	100 
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	101 

Figure	1.	varKoding	and	training	data	overview.		(A)	varKode	generation	workflow.	varKode	images	are	102 
natively	grayscale,	but	here	they	are	mapped	to	a	rainbow	color	scale	for	increased	contrast.	(B)	Phylogeny	103 
and	example	varKodes	of	Stigmaphyllon	species.	(C)	Phylogeny	and	example	varKodes	of	Malpighiaceae	104 
genera	including	their	closest	outgroup	(Elatine,	Elatinaceae).	(D)	Examples	of	varKodes	from	across	plant	105 
families	of	Malpighiales,	and	(E)	across	kingdoms.	Chronograms	depicted	for	each	representative	set	with	106 
timelines	in	millions	of	years	(Myr)	at	the	bottom	of	B	and	C.		107 
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Results	and	Discussion	108 

varKodes	can	be	classified	with	neural	networks	109 

An	accurate	and	scalable	DNA-barcoding	method	using	neural	networks	has	not	previously	110 
been	developed	owing	to	two	widely	held	misconceptions:	i.)	accurate	barcoding	by	neural	111 
networks	requires	sufficiently	large	training	data	sets	that	they	would	be	impractical	for	112 
typical	applications59;	and	ii.)	existing	neural	network	architectures	for	image	classification	113 
are	inadequate	for	species	barcoding42.	In	contrast,	our	analysis	demonstrates	that	114 
carefully	designed	varKodes	analyzed	with	existing	neural	network	architectures	115 
optimized	for	image	classification	can	identify	taxa	with	very	high	accuracy	even	from	116 
modest	amounts	of	data.	varKodes	use	short	k-mer	counts	from	raw	sequencing	reads	to	117 
create	a	snapshot	of	the	total	genomic	landscape	for	a	given	sample.	Variation	in	varKodes	118 
can	be	small	but	remain	visually	perceptible	among	species	(e.,g.,	of	Stigmaphyllon,	Figure	119 
1B)	and	genera	(e.g.,	of	Malpighiaceae,	Figure	1C).	Variation	is	more	striking	among	higher	120 
levels	of	phylogenetic	divergence,	such	as	between	families	in	the	order	Malpighiales	121 
(Figure	1D)	or	different	kingdoms	of	eukaryotes	and	prokaryotes	(Figure	1E).	We	122 
expected,	therefore,	that	neural	network	architectures	developed	for	image	classification,	123 
(e.g.,	resnets60	or	vision	transformers61)	would	be	able	to	differentiate	varKodes.	124 

	125 

We	first	optimized	hyperparameters	and	training	conditions	to	maximize	accuracy	for	126 
species-level	identification	of	Stigmaphyllon.	We	identified	that	varkodes	depicting	k-mer	127 
length	=	7	struck	a	good	balance	between	accuracy	and	the	amount	of	input	sequence	data	128 
(Figure	2A).	Furthermore,	models	trained	with	augmented	data	from	several	subsampled	129 
images	drawn	from	each	individual	exhibited	substantially	better	performance	and	greater	130 
robustness	(Figure	2A).	A	linear	model	demonstrated	that	neural	network	architectures	131 
and	training	methods	designed	for	image	classification	of	photographs60,	62,	63,	64,	65	are	132 
extremely	useful	for	varKode-based	identification,	contrary	to	suggestions	that	133 
classification	of	similar	images	requires	specialized	architectures42.	Specifically,	we	134 
observed	increased	accuracy	with	more	parameter-rich	neural	network	architectures	135 
(ResNeXt10166,	among	those	tested),	augmentation	with	lighting	transformations,	CutMix65	136 
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and	MixUp64.	Label	smoothing67	and	pretraining	models	on	photographs	decreased	137 
accuracy	(Figure	3).	We	also	identified	that	these	approaches	enabled	training	with	very	138 
modest	datasets:	four	samples	per	taxon	was	sufficient	for	100%	median	accuracy	(Figure	139 
2B).	Errors	in	species	identification	were	concentrated	among	sequences	derived	from	140 
herbarium	samples	that	demonstrated	evidence	of	DNA	damage	as	is	sometimes	reported	141 
for	ancient	DNA68	(Figure	2B).	However,	we	identified	that	the	inclusion	of	low-quality	142 
training	samples	decreased	validation	accuracy	only	among	other	low-quality	samples	but	143 
not	among	high-quality	ones	(Figure	4).		144 

	145 

Figure	2.		Neural	network	training	of	varKodes	for	species	identification.	(A)	Effect	of	k-mer	length	and	146 
data	amount	used	to	produce	varKodes	on	validation	accuracy.	Longer	k-mers	increase	accuracy	when	more	147 
data	are	used.	Mixing	varKodes	subsampled	from	different	amounts	of	data	improves	accuracy.	Box	with	148 
dashed	line	(k-mer	length	=	7)	strikes	a	good	balance	between	model	accuracy	and	amount	of	required	data.	149 
(B)	Validation	accuracy	improves	with	increased	number	of	training	samples	per	species,	but	even	3–4	150 
samples	are	sufficient	in	most	cases	for	achieving	high	accuracy.	Each	solid	line	represents	one	sample,	151 
colored	by	DNA	quality	(i.e.,	variation	in	base	pair	frequencies).	Higher	rank	indicates	better	quality.	Dashed	152 
lines	represent	averages	across	all	samples.	153 
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	154 
Figure	3.	Marginal	effects	of	neural	network	model	and	training	options.	Dots	represent	individual	replicates,	155 
and	bars	depict	averages.	All	parameters	were	identified	to	be	significant	in	a	linear	model:	more	complex	156 
model	architectures,	lighting	transformations,	and	augmentation	methods	MixUp	and	CutMix	improved	157 
accuracy.	However,	pretraining	with	large	image	datasets	and	label	smoothing	decreased	accuracy.	158 
	159 

We	hypothesized	that	lower-quality	samples	shared	similar	sequences	resulting	from	160 
common	patterns	of	DNA	damage	and	greater	levels	of	microbial	or	human	contaminants,	161 
resulting	in	spurious	similarities	in	varKodes	(Figure	5).	Contaminants	are	thought	to	162 
increase	errors	in	genome	skim	methods69.	To	mitigate	this	problem,	we	applied	multi-163 
label	classification70	to	our	neural	network	models.	While	single-label	classification	models	164 
always	return	a	single	prediction	(that	is,	an	inferred	label),	multi-label	models	can	return	165 
zero	or	more	predictions,	resulting	in	higher	robustness	to	spurious	patterns	of	similarity.	166 
For	a	set	of	samples	with	known	labels	used	for	validation,	a	prediction	is	a	true	positive	if	167 
the	predicted	label	matches	the	actual	label,	and	a	false	positive	if	not.	Failure	to	predict	an	168 
actual	label	is	deemed	a	false	negative.	For	each	validation	sample,	we	summarized	169 
predictions	as	i.)	correct	(true	positives	only),	ii.)	incorrect	(false	positives	only),	iii.)	170 
ambiguous	(multiple	predictions,	including	true	and	false	positives),	or	iv.)	inconclusive	171 
(no	prediction).	For	each	test,	we	summarized	results	across	all	validation	samples	using	172 
two	metrics:	precision	(the	sum	of	all	true	positives	divided	by	the	sum	of	all	true	and	false	173 
positives)	and	recall	(the	sum	of	all	true	positives	divided	by	the	sum	of	all	true	positives	174 
and	negatives).	175 
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	176 
Figure	4.	Effect	of	the	inclusion	of	low-quality	training	samples,	inferred	from	variation	in	base	pair	content	177 
(A,	C)	or	insert	size	(B,	D).	Increasing	the	fraction	of	samples	in	the	training	set	that	were	low-quality	did	not	178 
strongly	affect	the	average	validation	accuracy,	but	it	increased	dispersion.	Low-quality	samples	are	the	four	179 
samples	with	highest	variation	in	base-pair	content	or	shortest	insert	size	in	raw	reads	for	each	species.	180 
Panels	B	and	D	show	the	correlation	of	each	quality	metric	with	DNA	extraction	yield.	181 
	182 

In	summary,	we	developed	and	tested	a	robust	and	scalable	method	of	DNA	barcoding	183 
capable	of	training	with	small	amounts	of	data,	and	implemented	it	in	the	varKoder	184 
software,	which	can	process	sequence	data	required	to	generate	varKodes,	train	an	image-185 
classification	neural	network	using	varKodes,	and	query	new	data	with	a	trained	neural	186 
network.	These	tasks	are	accomplished	with	widely	used	tools	for	sequence	processing71,	72,	187 
73,	74,	75	and	for	neural	network	training76,	77,	78.		188 

	 	189 
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	190 
Figure	5.	Low-quality	DNA	may	lead	to	spurious	patterns	of	similarity	in	varKodes.	Samples	with	lower	191 
quality	show	varKode	patterns	divergent	from	their	species	more	often	than	high-quality	ones.	These	192 
divergent	patterns	may	be	similar	between	low-quality	samples	across	species.	These	samples	also	show	193 
reduced	validation	accuracy	in	a	single-label	model.	For	each	sample,	we	show	the	varKodes	produced	from	194 
all	DNA	data	available.	Within	each	species,	samples	are	organized	from	lowest	(left)	to	highest	(right)	DNA	195 
quality.	Bounding	boxes	around	each	sample	indicate	the	average	validation	accuracy	across	30	random	196 
replicates	with	7	training	samples	per	species.	197 
	198 
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varKodes	are	highly	accurate	for	identification	of	species,	genera,	and	families.		203 

To	test	varKodes	under	a	real-world	scenario	with	heterogeneous	data	(e.g.,	large	numbers	204 
of	taxa,	multiple	replicates	per	taxon,	varying	sequence	depth	and	sample	quality),	our	de	205 
novo	assembled	genomic	data	set	included	287	accessions:	100	samples	of	Stigmaphyllon	206 
from	our	initial	development	outlined	above,	plus	additional	genera	in	the	families	207 
Malpighiaceae	(30	genera;	151	samples),	Chrysobalanaceae	(8	genera;	30	samples),	and	208 
Elatinaceae	(1	genus;	6	samples)	in	the	order	Malpighiales.	Using	these	data,	we	first	209 
demonstrated	high	cross-validation	accuracies	for	species	identity	of	Stigmaphyllon	(83.0–210 
93.4%	correct,	91.5%-95.7%	precision,	87%-96.7%	recall	depending	on	data	input	211 
amount;	Figure	6A).	Most	errors	were	inconclusive	or	ambiguous	predictions,	and	not	212 
incorrect	assignments.		213 

	214 
Figure	6.	Performance	of	varKoder	and	alternative	barcoding	methodologies	across	different	data	sets.	(A)	215 
Leave-one-out	cross-validation	to	identify	species	of	Malpighiales	using	different	approaches	and	amounts	of	216 
data	to	assemble	query	samples.	(B)	Same	as	(A),	but	for	genera.	(C)	Performance	for	species-level	217 
identification	across	different	publicly-available	datasets:	Bembidion	beetles,	Corallorhiza	orchids,	218 
Mycobacterium	tuberculosis	bacteria,	and	Xanthoparmelia	fungi.	All	query	samples	used	as	much	data	as	were	219 
available.	(D)	Performance	for	Eukaryote	family-level	identification	for	different	amounts	of	input	data.	220 
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varKoder	is	also	robust	to	the	amount	of	input	sequence	data	necessary	for	model	training,	221 
performing	well	even	at	the	lower	range	of	input	data	(Figure	6A).	Assuming	an	average	222 
genome	size	of	about	2	Gbp	for	Malpighiaceae79,	the	very	small	amount	of	genome	skim	223 
data	used	to	generate	varKodes	represented	coverages	of	less	than	~0.0002×–0.107×.	224 
Moreover,	when	compared	to	cross-validation	accuracies	of	existing	alternatives,	varKoder	225 
accuracy	is	higher	than	Skmer,	which	showed	46%	correct	predictions	(57.5%	precision,	226 
46%	recall)	with	minimal	data	amounts	and	peaked	at	79.1%	for	the	larger	data	amounts	227 
(80%	precision,	79.1%	recall,	Figure	6A).	On	the	other	hand,	traditional	barcodes	228 
including	individual	plastid	genes	and	nuclear	ribosomal	ITS	regions	performed	well	for	229 
both	BLAST-based	(25–97%	correct,	66.6–97.3%	precision,	25–97%	recall	depending	on	230 
the	gene)	and	phylogenetic-based	(94–95%	correct,	>99%	precision,	97.2–98.4%	recall	for	231 
concatenated	matrices)	approaches	when	at	least	50	Mbp	of	data	was	provided	(Figure	6A,	232 
Figure	7).	However,	these	results	were	much	worse	when	<50	Mbp	of	data	were	available	233 
(down	to	zero	correct	for	BLAST),	with	unsuccessful	locus	assembly	leading	to	inconclusive	234 
predictions	as	the	primary	reason	for	the	failure	(Figure	6A,	Figure	7).	In	summary,	235 
varKoder	reaches	much	higher	accuracy	for	species	determination	than	existing	methods	236 
for	unprecedentedly	small	amounts	of	data	and	demonstrates	similar	accuracies	for	237 
datasets	when	greater	amounts	of	sequence	data	are	available.		238 

	239 
Figure	7.	Accuracy	of	conventional	barcode	loci	for	species,	genera	and	families	within	the	Malpighiales.	240 
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Genus-level	identification	yielded	similar	high	accuracies	with	varKoder	(87.1–94.3%	241 
correct,	94.1%–97.4%	precision,	89.1%–95.4%	recall	depending	on	input	amount,	Figure	242 
6B),	but	with	a	higher	rate	of	inconclusive	predictions	(2.8–7.6%).	A	linear	model	243 
demonstrated	that	this	higher	uncertainty	can	be	attributed	to	two	factors:	i.)	samples	244 
exhibiting	higher	levels	of	DNA	damage	in	genera	other	than	Stigmaphyllon	and	ii.)	genera	245 
trained	with	fewer	replicates	(e.g.,	down	to	3	samples	for	some	genera;	Figure	8).	246 
Additionally,	samples	within	genera	share	fewer	genetic	similarities	than	samples	within	247 
species,	which	likely	poses	a	more	challenging	classification	problem.	However,	the	248 
incorrect	rate	is	very	small	in	all	cases	(1.4–3.1%)	with	most	errors	being	inconclusive	or	249 
ambiguous	predictions.	In	contrast,	Skmer	exhibited	better	performance	when	larger	250 
amounts	of	data	were	used	(99.2%	correct,	99.2%	precision,	99.2%	recall	for	200	Mbp),	251 
but	performed	poorly	for	lower	amounts	of	data	like	those	commonly	generated	from	252 
genome	skim	experiments	(58.2%	correct,	58.2%	precision,	58.2%	recall	for	500	Kbp)	253 
(Figure	6B).	Genus-level	identifications	using	conventional	barcodes	in	a	concatenated	254 
phylogeny	were	up	to	98.1%	correct	(99.2%	precision,	97.2%	recall)	when	a	large	amount	255 
of	data	(200	Mbp)	was	available	(Figure	6B).	But	like	its	application	at	species-level	256 
identification,	most	predictions	were	inconclusive	when	less	than	20	Mbp	reads	were	used	257 
(Figure	6B).	Although	genome	skimming	can	be	used	to	sequence	conventional	barcodes,	258 
they	are	more	often	obtained	with	amplicon	sequencing,	which	has	failure	rates	ranging	259 
from	15–75%	even	with	highly	optimized	protocols80.	Therefore,	conventional	barcodes	260 
have	a	high	number	of	inconclusive	predictions	also	with	amplicon	sequencing.	At	the	261 
family	level,	Skmer	and	varKoder	had	near-perfect	accuracy	across	all	data	amounts	(>97%	262 
correct),	while	conventional	varKodes	performed	well	when	there	was	sufficiently	large	263 
amounts	of	data	(Figures	7,	9).	We	note	that	135	of	our	287	de	novo	assembled	genome	264 
skim	samples	had	at	least	200Mbp	of	available	data	(Figure	8),	and	these	are	enriched	for	265 
specimens	that	performed	well	in	DNA	library	preparation	and	sequencing.	As	a	result,	the	266 
good	performance	across	methods	for	the	highest	data	amounts	may	result	partly	from	267 
higher-quality	DNA	yielding	more	reads	with	more	even	genome	coverage.	268 
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	269 
Figure	8.	Number	of	samples	available	for	different	data	amounts	in	each	dataset.	Arbitrary	colors	are	270 
assigned	to	individual	taxa.		271 
	272 

varKodes	are	universal	and	scalable	across	the	Tree	of	Life.		273 

To	further	test	the	universality	of	varKodes,	we	expanded	the	testing	of	our	tool	using	274 
published	data	from	diverse	clades	of	plants,	fungi,	animals,	and	bacteria	(Figure	6C).	275 
These	tests	included	species-level	identification	in	insects	(Bembidion	beetles81,	82)	and	276 
lichen-forming	fungi	(Xanthoparmelia83),	species	and	infra–specific	taxon	identification	in	277 
coralroot	orchids	(Corallorhiza84),	and	clinical	isolate	identification	of	evolved	strains	of	278 
human	pathogenic	bacteria	(Mycobacterium	tuberculosis85).	In	all	cases,	we	tested	the	279 
performance	of	varKoder	on	taxa	included	in	the	training	set	and	on	taxa	not	included	in	280 
the	training	set.	We	identified	perfect	species	identification	(100%	correct,	100%	precision,	281 
100%	recall)	for	beetles	and	coralroot	orchids	included	in	the	training	set.	For	bacteria,	282 
16%	of	the	validation	set	returned	ambiguous	assignments;	the	remaining	samples	were	283 
correctly	identified	(85.7%	precision,	100%	recall).	In	lichen-forming	fungi,	which	include	284 
DNA	from	both	the	fungal	and	algal	partners,	and	thus	are	more	challenging,	20%	of	the	285 
test	samples	returned	incorrect	assignments;	the	remainder	were	correct	(80%	precision,	286 
80%	recall).	For	all	cases,	species	or	varieties	not	included	in	the	training	set	generally	287 
resulted	in	inconclusive	results,	with	a	minority	yielding	incorrect	predictions	(Figure	6C).	288 
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	289 
Figure	9.	Comparison	of	varKoder,	Skmer,	and	conventional	barcode	accuracy	for	identifying	families	of	290 
Malpighiales.	291 
	292 

Finally,	we	tested	the	universality	and	scalability	of	varKodes	by	training	a	single	model	to	293 
identify	all	861	eukaryotic	families	from	at	least	three	accessions	per	family	compiled	from	294 
the	NCBI	Sequence	Read	Archive.	Owing	to	NCBI	download	bottlenecks,	we	restricted	295 
varKode	construction	to	a	more	restricted	amount	of	data	per	sample,	downloading	up	to	296 
only	10	Mbp	of	data.	This	exercise	achieved	a	rate	of	correct	predictions	of	62.1–79.6%	297 
across	all	kingdoms	when	families	were	included	in	the	training	set	(Figure	6D),	with	most	298 
errors	being	inconclusive	predictions	(14.2–33.3%).	Precision	varied	from	95%	to	97%	299 
and	recall	from	65%	to	78%.	Similarly	to	the	species-	and	variety-level	exercise,	families	300 
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not	included	in	the	training	set	often	yielded	inconclusive	predictions	(Figure	6D),	301 
suggesting	a	potential	for	varKoding	to	be	used	as	a	discovery	tool	when	reasonably	well-302 
sampled	training	data	sets	are	available.		303 

	304 

As	we	note	above,	a	single	model	classifying	all	eukaryotic	families	is	not	possible	with	305 
conventional	barcodes,	since	they	are	not	universal.	This	is	a	central	limitation	of	306 
conventional	barcodes.	Skmer,	the	state-of-the-art	genome	skimming	alternative,	cannot	be	307 
scaled	to	a	dataset	of	this	size:	our	attempt	to	apply	it	could	not	be	finished	after	more	than	308 
40	days	using	32	high-performance	computing	cores.	In	general,	conventional	barcodes,	309 
when	derived	from	genome	skimming	data,	require	memory-	and	processor-intensive	310 
sequence	assembly,	and	Skmer	relies	on	pairwise	all-by-all	sample	comparisons;	its	311 
computing	time	and	required	storage	both	increase	quadratically	with	the	number	of	312 
samples.	Neural	network	models,	on	the	other	hand,	have	a	fixed	size,	independent	of	the	313 
number	of	samples	used	in	training,	and	training	time	scales	linearly	with	the	number	of	314 
input	samples.	Our	most	complex	model,	trained	with	all	eukaryote	families,	has	about	315 
1.3GB	of	disk	size.	varKodes	images	also	are	tiny	(8.2	KB	on	average	for	k-mer	length	of	7)	316 
replacements	to	much	larger	genomic	data	sets	(on	average,	144	MB	per	sample	here).	A	317 
varKode	model	potentially	trained	on	millions	of	species	can	therefore	easily	be	ported	to	318 
devices	without	continuous	internet	access,	thus	allowing	for	more	widely	distributed	319 
applications	of	varKoding,	such	as	field-laboratory	environments	or	proposed	distributed	320 
genetic	databases86.	Hence,	varKodes	are	not	only	comparable	across	the	entire	Tree	of	Life	321 
but	also	can	leverage	existing	and	widely	available	computer	hardware	to	provide	accurate	322 
and	fast	identifications	commensurate	to	the	scale	of	Earth’s	biodiversity.		323 

	324 

Conclusions	325 

varKoding	represents	a	major	advance	in	inventorying	Earth’s	biodiversity.	They	are	326 
universal,	accurate,	efficient,	and	hold	tremendous	promise	for	scalability	and	adaptability.	327 
varKodes	are	applicable	to	organisms	with	simple	or	complex	genomes.	Although	our	focal	328 
test	clade	from	Malpighiaceae	specifically	is	known	to	exhibit	high	variation	in	ploidy	329 
across	the	family87,	88,	it	did	not	interfere	with	our	efforts.	Indeed,	further	exploration	may	330 
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reveal	that	these	sorts	of	macrostructural	genomic	properties	form	the	basis	of	key	331 
varKode	differences	between	some	clades.	In	particular,	varKodes	i.)	provide	accurate	332 
identification	with	far	less	data	than	existing	methods	that	use	next-generation	sequence	333 
data;	ii.)	are	universal	across	the	Tree	of	Life;	iii.)	demonstrate	enhanced	computational	334 
efficiency	and	scalability;	and	iv.)	are	modular	and	can	improve	with	time	alongside	335 
innovations	in	sequencing	technologies,	bioinformatics,	and	machine	learning.	Reference	336 
data	for	varKoding	will	be	increasingly	available	from	ambitious	efforts	including	the	Earth	337 
Biogenome	Project89,	the	African	Biogenome	Project90,	the	10,000	Plants	Genome	Project91,	338 
and	the	Vertebrates	Genome	Project92.	We	also	note	that	varKoding	is	much	easier	and	339 
cost-effective	to	obtain	from	low-coverage	genome	skims	than	high-quality	contiguous	340 

genomes.	For	example,	our	cost	for	a	3´	skim	of	herbarium	samples	is	about	$34	per	341 

sample,	versus	a	high-quality	genome	which	may	cost	tens-of-thousands	of	dollars	each.	342 
Although	varKodes	inevitably	will	benefit	from	the	aforementioned	large-scale	sequencing	343 
initiatives,	a	concerted	effort	to	obtain	genome	skims	from	museum	type	specimens	and	344 
other	representative	specimens	could	have	a	larger	impact	in	a	far	shorter	amount	of	time	345 
than	sequencing	high-quality	genomes.	For	example,	the	majority	of	our	Malpighiales	346 
samples	were	derived	from	herbarium	specimens,	some	more	than	110	years	old	and	347 
presently	less	suitable	for	chromosomal-level	genome	assembly.	Thus,	varKodes	show	348 
tremendous	promise	for	further	automating	species	identification	from	herbaria	and	other	349 
natural	history	collections93.	Such	multiomic	efforts	represent	a	new	frontier	of	350 
biodiversity	discovery	but	should	be	advanced	effectively	and	ethically	to	preserve	and	351 
protect	the	biodiversity	heritage	represented	in	global	natural	history	collections	for	future	352 
use94,	95.	353 

	354 

We	expect	that	varKoding	will	be	invaluable	to	the	biodiversity	science	community	in	355 
numerous	ways.	One	avenue	to	be	explored	is	its	utility	for	the	identification	of	samples	356 
with	poor-quality	and	degraded	DNA,	such	as	unidentified	fragmentary	fossil	and	subfossil	357 
remains	in	natural	history	collections96,	97.	Because	our	method	relies	on	counts	of	very	358 
short	k-mers	(7	bp),	they	are	well-suited	for	varKodes	while	other	barcoding	methods	are	359 
not	possible.	Moreover,	we	explicitly	labeled	and	classified	samples	based	on	their	360 
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taxonomic	identities,	but	varKodes	could	in	principle	be	used	to	classify	a	set	of	sequences	361 
based	on	any	kind	of	metadata,	as	long	as	sufficient	training	data	are	available.	For	362 
example,	varKodes	likely	will	be	useful	for	environmental	sampling	initiatives	in	which	the	363 
entire	genomic	composition	of	a	sample	spanning	multiple	species	can	be	characterized	364 
(varKoded),	even	if	varKoder	is	not	optimized	to	recognize	individual	species	or	genes	365 
within	a	mixed	sample.	For	example,	we	envisage	that	varKodes	could	be	useful	to	366 
correlate	aquatic	eDNA	samples	to	location	and	water	quality,	to	ascertain	the	origin	of	a	367 
sample	for	forensic	study,	or	to	or	help	trace	the	geographic	origin	of	organisms	seized	368 
during	transit	suspected	of	illegal	harvesting.	369 

Methods 370 

Data	371 

Taxon	sampling,	DNA	sequencing,	assembly,	and	annotation	for	newly	acquired	genetic	372 
data—Our	newly	generated	plant	data	set	included	three	flowering	plant	families,	all	373 
members	of	the	large	and	diverse	order	Malpighiales34:	Malpighiaceae,	Elatinaceae,	and	374 
Chrysobalanaceae.	The	Malpighiaceae	data	are	the	most	taxonomically	comprehensive	and	375 
include	251	accessions	representing	161	species,	which	were	sampled	from	248	herbarium	376 
specimens	and	three	silica-dried	field	collections.	These	represent	30	genera.	Among	these	377 
data,	Stigmaphyllon	has	the	most	comprehensive	species	sampling,	including	10	species	378 
and	10	accessions	sampled	per	species.	Elatinaceae	includes	6	samples	from	6	different	379 
species	in	the	genus	Elatine,	and	Chrysobalanaceae	includes	30	accessions	representing	30	380 
species	in	8	genera.	All	100	Stigmaphyllon	samples	were	sequenced	specifically	to	build,	381 
validate,	and	test	our	identification	models	at	shallower	phylogenetic	depths	and	were	382 
consequently	labeled	with	species,	genus,	and	family	names.	A	key	advantage	of	sampling	383 
Stigmaphyllon	is	that	its	taxonomy	has	been	extensively	revised	by	coauthor	C.	Anderson57,	384 
58.	Plants	exhibit	notoriously	complex	genomic	architectures98,	rendering	them	a	good	test	385 
case	for	our	investigation.	Moreover,	the	Stigmaphyllon	clade	represents	a	wide	array	of	386 
divergence	times	that	span	distantly-	(30.8	millions	of	years,	Myr)	to	very	closely-related	387 
(0.6	Myr)	species	(Figure	1).	The	focus	for	the	remainder	of	the	Malpighiaceae,	388 
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Chrysobalanaceae,	and	Elatinaceae	sampling	was	to	identify	a	given	sample	to	genus.	In	389 
this	case,	among	the	non-Stigmaphyllon	samples	we	included	3–9	species	per	genus	390 
representing	29	genera	of	Malpighiaceae,	eight	of	Chrysobalanaceae,	and	one	of	391 
Elatinaceae.	Each	generic	representative	was	labeled	with	its	corresponding	genus	and	392 
family	identification.	Unlike	Stigmaphyllon,	where	we	included	multiple	accessions	per	393 
species,	there	were	no	additional	replicates	per	species	for	our	genus-level	sampling.		394 

We	used	total	genomic	DNA	extractions	detailed	previously	for	our	newly	included	395 
Malpighiales	data54,	99.	Where	applicable,	we	isolated	total	genomic	DNA	from	0.01–0.02	g	396 
of	silica-dried	leaf	material	or,	more	commonly,	herbarium	collections	using	the	Maxwell®	397 
16	Tissue	DNA	Purification	Kit	(Promega	Corporation,	Inc.,	Madison,	WI,	USA).	Genomic	398 
libraries	were	prepared	using	ca.	70	ng	of	genomic	DNA	per	sample	where	possible.	For	399 
DNA	library	preparation	we	used	the	Kapa	HyperPlus	library	prep	(Kapa	Biosystems,	Inc.,	400 
MA,	USA)	with	Nextflex-Ht	barcodes	(Bioo	Scientific	Corporation,	TX,	USA)	and	IDT	401 
TrueSeq	barcodes	(Integrated	DNA	Technologies,	Inc.,	IO,	USA),	fragmenting	DNA	to	350–402 
400	base	pairs	(bp),	and	indexing	for	Illumina	multiplex	sequencing.	We	verified	the	DNA	403 
concentration	of	these	libraries,	and	fragment	sizes	using	the	Qubit	dsDNA	HS	Assay	Kit	on	404 
a	Qubit	2.0	Fluorometer	(Invitrogen,	Carlsbad,	CA,	USA),	and	the	Agilent	TapeStation	2200	405 
(Agilent	Technologies,	Inc.,	Waldbronn,	Germany).	All	total	genomic	DNA	libraries	were	406 
diluted	to	0.7	nM,	pooled,	and	sequenced	with	the	Illumina	Hi-Seq	2x125	on	the	Genome	407 
Analyzer	II	(Illumina,	Inc.,	San	Diego,	CA,	USA)	at	the	Bauer	Core	Genomics	Sequencing	Core	408 
Facility	at	Harvard	University,	MA,	USA.	The	genome	skimming	pipeline	we	applied	is	409 
described	by	Weitemier	et	al.100	and	has	been	extensively	applied	in	studies	by	members	of	410 
our	coauthor	group101,	102,	103.	411 

	412 

Public	genomic	data	compilation—To	further	understand	the	versatility	of	varKodes	more	413 
broadly	across	the	Tree	of	Life,	we	tested	species	identification	using	genome	skim	data	414 
sets	from	four	genera	of	plants,	animals,	fungi,	and	a	bacterial	species.	This	involved	a	plant	415 
data	set	from	coralroot	orchids	(genus	Corallorhiza),	a	well-delineated	clade	of	416 
mycoheterotrophic	orchids84.	This	data	set	allowed	us	to	assess	the	utility	of	varKodes	for	417 
identifying	infraspecific	taxa:	Corallorhiza	striata	includes	several	well-known	and	easily	418 
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identifiable	varieties.	For	animals,	we	assembled	a	Bembidion	beetle	data	set,	which	419 
includes	well-known	closely	related	cryptic	species81,	82.	For	fungi,	we	used	420 
Xanthoparmelia,	a	lichen-forming	genus	with	fungal	symbionts	whose	species	are	poorly	421 
understood	and	which	often	form	paraphyletic	species	groupings83.	Finally,	our	bacterial	422 
data	set	was	from	Mycobacterium	tuberculosis,	the	species	of	pathogenic	bacteria	that	423 
causes	tuberculosis.	This	genomic	data	set	consisted	of	clinical	isolates	from	five	distinct,	424 
monophyletic	lineages	of	M.	tuberculosis	and	enabled	us	to	understand	how	varKodes	425 
function	on	an	extremely	recently	diverged,	clinically	relevant	bacterial	lineage85.	This	data	426 
set	of	clinical	isolates	from	human-adapted	lineages	exhibited	99.9%	sequence	similarity	427 
despite	key	differences	in	phenotypes,	including	drug	resistance,	virulence,	and	428 
transmissibility85.	Mycobacterium	tuberculosis	has	diversified	quite	rapidly	in	humans,	with	429 
nine	monophyletic	lineages.	Divergence	time	estimates	for	the	most	recent	common	430 
ancestor	of	M.	tuberculosis	are	<6,000	years	ago104.	431 

In	all	the	above	cases,	we	included	taxa	with	at	least	two	samples	in	the	training	set	when	432 
using	publicly	available	data.	Our	validation	set	consisted	of	randomly	selected	samples	433 
from	these	taxa.	We	additionally	validated	the	model	on	samples	from	taxa	with	only	one	434 
sample	available,	and,	therefore,	not	included	in	the	training	set.	Each	of	these	four	data	435 
sets	were	downloaded	using	the	NCBI	Sequence	Read	Archive.	436 

In	addition	to	these	species-level	datasets,	we	used	NCBI	Entrez	to	query	all	of	the	data	437 
available	on	SRA	for	Eukaryotes.	We	then	filtered	this	list	to	accessions	generated	with	438 
Illumina	technology	and	containing	at	least	50	million	base	pairs.	From	this	filtered	list,	we	439 
selected	all	families	with	at	least	three	subtaxa	containing	sequences.	We	then	randomly	440 
selected	one	accession	per	subfamilial	taxon,	and	up	to	20	subtaxa	per	family.	We	used	441 
fastq-dump	(https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=software)	to	442 
download	up	to	500,000	spots	for	each	accession	and	used	these	to	generate	varKodes	443 
from	500kbp	to	10Mbp	of	data.	In	each	family,	80%	of	the	accessions	were	used	in	training	444 
and	the	remaining	20%	were	used	for	validation.	To	validate	model	behavior	for	taxa	not	445 
included	in	the	training	set,	we	downloaded	all	accessions	from	SRA	in	families	of	plants,	446 
animals,	and	fungi	excluded	from	the	training	set	but	containing	at	least	one	sample	with	at	447 
least	50	million	base	pairs	of	data.		448 

https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=software
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Initial	varKode	design	and	testing	450 

varKode	sequence	data	preprocessing—We	designed	images—varKodes—that	portray	451 
relative	frequencies	of	k-mers	from	low-coverage	raw	Illumina	reads.	These	are	similar	to	a	452 
‘chaos	game	representation’	sensu	Jeffrey53,	but	optimized	for	raw	reads	in	which	sequence	453 
orientation	is	unknown	(and	therefore	k-mers	and	their	reverse	complement	are	454 
indistinguishable).	We	call	these	varKodes	because	they	enCODE	the	VARiation	in	k-mer	455 
frequencies	in	a	sample.		456 

To	avoid	sequencing	artifacts,	raw	Illumina	reads	were	lightly	cleaned	prior	to	k-mer	457 
counting	and	involved	the	following	steps:	identical	reads	were	de-duplicated	using	458 
clumpify.sh	as	implemented	in	BBtools72,	105,	adapters	were	removed,	low-quality	tails	459 
trimmed,	and	overlapping	read	pairs	merged	using	fastp74.	Next,	we	randomly	selected	460 
subsets	of	cleaned	reads	with	predefined	data	amounts,	ranging	from	500	kbp	to	200	Mbp.	461 
These	data	subsets	were	used	to	generate	a	variety	of	input	varKodes	for	a	single	sample	462 
and	all	such	images	were	used	for	training	(see	main	text	and	Figure	2A).	Finally,	we	463 
applied	dsk73	to	count	k-mers	of	a	given	length	based	on	clean	raw	reads.	dsk	exhibits	good	464 
performance	with	low	memory	requirements,	which	is	ideal	for	potential	applications	465 
using	varKodes	on	low-memory	devices.	We	note	that	analyses	for	species-level	public	466 
datasets	have	low	compute	requirements	and	were	performed	on	an	Apple	MacBook	with	467 
ARM	processor	architecture.	Bioinformatics	and	image	classification	application	of	this	468 
nature	are	typically	thought	to	be	possible	only	in	more	resourced	computer	servers41,	but	469 
our	method	demonstrates	that	this	is	not	the	case.	470 

	471 

k-mer	to	image	mapping—We	developed	a	two-dimensional	mapping	of	k-mers	to	pixels	to	472 
create	the	varKode	image.	Each	unique	k-mer	has	a	unique	pixel	location	on	the	varKode.	A	473 
desirable	property	of	this	mapping	is	that	more	similar	k-mers	exhibit	greater	spatial	474 
adjacency.	We	first	began	by	listing	all	possible	canonical	k-mers	to	generate	the	mappings	475 
for	k-mer	lengths	between	5	to	9.	To	identify	which	k-mers	were	more	similar	to	each	476 
other,	we	counted,	for	each	k-mer,	the	occurrence	of	smaller	sub	k-mers	and	then	grouped	477 
them	based	on	greater	or	lesser	overall	similarity.	For	example,	each	possible	5-base-pair	478 
sequence	can	be	represented	uniquely	by	the	counts	of	subsequences	of	lengths	2	and	3	479 
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contained	within	it	and	compared	similarly	across	other	k-mers.	Likewise,	each	possible	9-480 
base-pair	sequence	can	be	represented	uniquely	by	the	counts	of	subsequences	of	lengths	481 
2,	3,	and	5.	Moreover,	since	our	method	works	with	raw	reads,	the	orientation	of	each	482 
sequence	is	unknown	and	therefore	each	k-mer	represents	itself	and	its	reverse	483 
complement.	For	this	reason,	we	averaged	counts	for	each	canonical	k-mer	and	its	reverse	484 
complement.		485 

Next,	we	applied	t-SNE106,	a	non-linear	dimensionality	reduction	method,	to	group	k-mers	486 
based	on	their	relative	similarity.	This	allowed	us	to	reduce	canonical	k-mer	representation	487 
into	a	two-dimensional	space.	We	noticed	from	this	output	that	t-SNE	separated	k-mers	488 
mainly	by	AT	richness,	so	we	rotated	coordinates	to	make	this	the	main	left-to-right	axis.	489 
Next,	we	transformed	these	data	mapped	in	continuous	space	to	pixels	in	a	square	grid	490 
forming	the	initial	varKode.	Our	square	grid	was	constructed	with	the	minimum	size	491 
required	to	fit	each	individual	canonical	k-mer	to	a	unique	grid	cell	(pixel).	After	rescaling	492 
continuous	t-SNE	coordinates,	we	assigned	each	k-mer	to	the	closest	available	pixel,	using	493 
randomization	in	the	cases	in	which	more	than	one	k-mer	overlapped	in	a	single	pixel.	This	494 
procedure	resulted	in	a	mapping	that	uniquely	assigns	each	k-mer	to	a	pixel	in	the	varKode.		495 

Once	we	established	the	two-dimensional	mapping	of	each	k-mer	to	the	varKode,	we	496 
developed	a	method	for	transcribing	k-mer	counts	to	be	represented	as	pixel	brightness.	To	497 
make	varKodes	as	compact	as	possible,	we	used	8-bit	grayscale	images.	As	a	result,	for	a	498 
typical	8-bit	grayscale	image	format,	we	have	256	possible	brightness	levels	per	pixel.	499 
Therefore,	raw	k-mer	counts	had	to	be	mapped	to	256	values	while	maintaining	relevant	500 
information	on	their	variation.	Because	k-mer	counts	vary	across	many	orders	of	501 
magnitude,	we	first	rank	k-mers	based	on	their	absolute	counts.	We	attempted	alternative	502 
data	transformations	with	the	same	goal	in	our	early	iterations,	including	log	and	square-503 
root,	but	these	were	less	successful	in	terms	of	final	model	accuracy.	The	ranks	were	504 
subsequently	sorted	into	256	bins,	and	these	represent	the	values	used	to	translate	ranks	505 
to	pixel	brightness	to	finalize	each	varKode.	The	varKode	image	is	saved	as	a	compressed	506 
png	file.	These	operations	use	python	libraries	numpy76	and	pillow107.	507 

	508 
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Testing	the	effect	of	k-mer	length	and	data	amount—We	chose	neural	network	models	to	509 
compare	varKodes	because	of	their	enhanced	ability	to	handle	images	and	identify	complex	510 
patterns	within	them.	We	employed	fastai78	for	this	purpose,	a	high-level	implementation	511 
of	neural	networks	based	on	pytorch77.	All	of	the	model	architectures	we	applied	are	image	512 
classification	models	available	from	the	timm	library108,	which	have	been	widely	tested	513 
using	a	variety	of	image	types.	To	identify	the	optimal	training	hyperparameters	for	our	514 
neural	network,	we	conducted	a	series	of	tests	using	our	species-level	data	set	for	the	515 
genus	Stigmaphyllon.	We	generated	varKodes	for	each	of	the	Stigmaphyllon	samples	using	516 
the	workflow	described	above.	We	first	tested	the	joint	effect	of	k-mer	length	and	input	517 
data	amount	for	neural	network	classification	accuracy	by	selecting	three	samples	per	518 
species	as	a	validation	set;	the	remaining	samples	were	used	to	train	neural	networks	using	519 
different	amounts	of	input	data	across	10	randomly	generated	training	sets.	As	input	data	520 
for	both	the	validation	and	training	sets,	we	randomly	subsampled	the	original	sequences	521 
into	fastq	files	containing	from	500	Kb	to	200	Mb	(equivalent	to	about	1,700	to	670,000	522 
2x150bp	Illumina	reads).	In	this	test,	we	only	included	samples	that	yielded	at	least	200	523 
million	base	pairs	after	cleaning.	We	also	tested	the	effect	of	combining	images	for	all	data	524 
amounts	in	training.	For	each	replicate,	we	applied	the	widely	used	image	classification	525 
neural	network	resnet50	architecture109	to	classify	varKodes	and	trained	models	for	30	526 
epochs.	We	visualized	the	distribution	of	validation	accuracy	for	each	combination	of	input	527 
data	amount	and	k-mer	lengths	to	find	a	good	balance	between	both.	528 

	529 

Neural	network	optimization—After	identifying	an	appropriate	k-mer	length	and	input	data	530 
used	to	produce	varKodes,	we	next	tested	a	series	of	neural	network	training	conditions.	531 
We	varied	the	neural	network	model	complexity,	choosing	from	seven	commonly	used	532 
architectures:	resnet50109,	resnet-D60	with	different	depths	(18,	50,	101),	a	wide	resnet5060,	533 
efficientnet-B4110,	and	ResNeXt10166.	We	also	tested	the	effect	of	the	following:	random	534 
initial	weights	vs	pretrained	weights	from	the	timm	library108,	presence	or	absence	of		535 
lighting	transforms,	presence	or	absence	of	label	smoothing,	and	presence	or	absence	of	536 
augmentation	strategies	(i.e.,	CutMix65	or	MixUp64).	Because	these	parameters	may	have	537 
complex	interactions,	we	tested	all	combinations	of	architecture,	pretraining,	transforms,	538 
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label	smoothing,	and	augmentation,	with	20	replicates	for	each	combination	of	conditions.	539 
In	each	replicate,	we	randomly	chose	20%	of	the	samples	for	each	species	of	Stigmaphyllon	540 
as	validation	and	trained	the	model	using	the	remainder	for	30	epochs.	Training	was	541 
performed	using	all	varKodes	available	for	each	sample	(from	500kbp	to	200Mbp).	For	542 
validation,	we	separately	evaluated	whether	each	varKode	with	a	different	amount	of	data	543 
was	correctly	identified.	For	each	replicate	and	amount	of	data	used	to	validate	varKodes,	544 
we	recorded	the	average	validation	accuracy	across	the	validation	set.	We	then	applied	a	545 
linear	model	to	predict	the	effect	of	all	training	parameters	and	amount	of	data	in	546 
validation	varKodes	on	the	arc-sin	transformed	validation	accuracy.	We	started	from	the	547 
full	model	containing	all	parameters	and	their	interactions	and	reduced	the	model	step-548 
wise	based	on	AIC	scores,	as	implemented	in	the	R	function	step.		549 

	550 

Testing	sample	number	requirements—A	legitimate	concern	with	complex	neural	networks	551 
is	that	they	require	vast	amounts	of	training	data	and	that	typical	skimming	data	sets	might	552 
be	insufficient	for	them	to	be	useful.	We	tested	the	robustness	of	our	models	to	the	effect	of	553 
the	number	of	samples	per	species	included	in	training	by	using	from	one	to	seven	samples	554 
per	species	as	training	set	and	the	remaining	as	validation,	with	50	replicates	per	number	555 
of	training	samples.	The	batch	size	used	in	training	was	adjusted	for	the	cases	with	very	556 
few	samples	included,	so	that	each	training	epoch	included	about	10	batches.	We	included	557 
varKodes	from	1Mbp	to	200Mbp	in	both	training	and	validation	sets.	In	this	case,	we	558 
applied	the	training	parameters	informed	by	our	previous	analyses:	a	resnext101	559 
architecture,	random	initial	weights,	CutMix	augmentation,	and	label	smoothing	for	30	560 
epochs.	We	visualized	the	effect	of	the	number	of	samples	by	plotting	the	average	561 
validation	accuracy	of	each	sample	against	the	number	of	training	samples	used	in	each	562 
case.		563 

	564 

Testing	the	effect	of	data	quality—Most	of	the	cases	with	low	accuracy	corresponded	to	565 
samples	with	low	DNA	yield	(Figure	2B).	We	identified	that	DNA	extraction	yield	was	566 
significantly	correlated	with	two	metrics	of	DNA	quality:	average	insert	size	and	variation	567 
in	nucleotide	composition	along	reads68	(Figure	4).	varKodes	produced	from	these	568 
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samples	may	be	visually	distinct	from	other	samples	of	the	same	species	(Figure	5).	For	569 
this	reason,	we	further	tested	whether	sample	quality	in	training	or	validation	impacted	570 
accuracy.	Using	both	quality	metrics,	we	identified	the	five	lowest	quality	samples	for	each	571 
species.	We	next	produced	training	sets	using	six	randomly	chosen	samples	per	species,	572 
varying	the	number	of	low-quality	samples	included	in	training	from	zero	to	four.	We	573 
included	varKodes	from	1Mbp	to	200Mbp	in	both	training	and	validation	sets.	We	repeated	574 
this	for	30	replicates	for	each	number	of	low-quality	samples.	Like	our	tests	with	varying	575 
sample	numbers,	we	applied	the	following	training	parameters:	a	resnext101	architecture,	576 
random	initial	weights,	CutMix	augmentation,	label	smoothing	for	30	epochs.	For	the	577 
validation	set,	we	separately	recorded	the	accuracy	for	high-	and	low-quality	samples.	We	578 
then	visualized	the	effect	of	inclusion	of	low-quality	samples	in	the	training	set	by	579 
observing	the	distribution	of	validation	accuracies	for	high-quality	and	low-quality	samples	580 
across	the	range	of	number	of	low-quality	samples	included	in	the	training	set.		581 

	582 

Implementation	of	varKoder—Following	all	of	the	tests	described	above,	we	implemented	583 
the	optimal	neural	network	training	strategies	in	a	python	program	named	varKoder.	584 
varKoder	can	process,	train	and	query	varKodes	and	is	freely	available	on	our	GitHub:	585 
https://github.com/brunoasm/varKoder.	Because	it	employs	standard	neural	network	586 
frameworks	(namely,	pytorch77,	fastai78,	and	timm108),	any	of	the	image	classification	587 
models	and	training	hyperparameters	available	now	or	in	the	future	via	these	libraries	can	588 
be	easily	adapted	and	applied	to	varKode	classification.	For	example,	since	our	initial	tests,	589 
we	have	identified	that	a	vision-transformer	architecture61	outperforms	convolutional	590 
neural	networks	in	varKode	classification.	This	was	also	observed	in	other	computer-vision	591 
tasks111.	Moreover,	we	have	implemented	a	multi-label	model	as	the	default	to	increase	592 
robustness	to	low-quality	varKodes	with	little	diagnostic	information	in	the	training	set.	593 
This	was	done	by	using	an	asymmetric	multi-label	loss	function70	instead	of	the	standard	594 
cross-entropy	loss	function	used	in	single-label	classification.	A	vision-transformer	595 
architecture	and	multi-label	classification	are	now	default	in	varKoder	v.0.8.0,	which	was	596 
used	in	all	subsequent	analyses.	597 
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varKoder	evaluation	and	comparison	to	alternatives		598 
using	a	de	novo	Malpighiales	genomic	dataset	599 

varKoder—To	test	varKoder	performance	in	a	complex	dataset	spanning	multiple	600 
taxonomic	levels	and	varying	phylogenetic	depths,	we	used	the	Malpighiales	dataset	601 
including	genera	in	Elatinaceae,	Chrysobalanaceae	and	Malpighiaceae.	Species	of	602 
Stigmaphyllon	(Malpighiaceae)	were	labeled	with	species,	genus,	and	family	names;	all	603 
other	samples	were	labeled	with	genus	and	family	names.	We	tested the	performance	of	604 
varKoder	in	each	sample	with	leave-one-out	cross-validation.	For	each	sample,	we	retained	605 
it	as	validation	and	trained	a	neural	network	using	all	of	the	other	samples.	In	preliminary	606 
assessments,	we	found	that	a	vision	transformer	architecture	combined	with	a	multi-label	607 
model	sometimes	led	to	instability	in	training	for	some	datasets.	For	that	reason,	we	used	a	608 
two-step	approach.	Models	were	pre-trained	for	20	epochs	as	single-label,	using	the	least	609 
inclusive	taxonomic	assignment	available	for	each	sample	and	a	base	learning	rate	of	0.05.	610 
Next,	we	trained	for	an	additional	10	epochs	using	the	pre-trained	weights	but	with	a	much	611 
smaller	learning	rate	(0.005)	and	a	multi-label	output.	Training	samples	included	varKodes	612 
from	500	Kbp	to	200	Mbp,	and	we	recorded	validation	accuracy	separately	for	varKodes	613 
produced	from	each	amount	of	data.	We	used	an	arbitrary	confidence	threshold	of	0.7	to	614 
make	predictions	in	the	multilabel	models.	For	validation	samples,	we	deemed	a	prediction	615 
correct	if	only	the	correct	taxon	was	predicted	for	each	taxonomic	rank	(i.e.,	species,	genus,	616 
family).	We	deemed	a	prediction	incorrect	if	one	or	more	predictions	passed	the	threshold	617 
for	a	taxonomic	rank,	but	none	match	the	actual	label.	When	predicted	labels	included	both	618 
the	correct	and	incorrect	taxa,	we	deemed	it	ambiguous.	If	the	output	prediction	included	619 
no	taxon	with	confidence	above	the	threshold,	we	considered	it	as	inconclusive.	As	metrics	620 
across	all	samples,	we	used	prediction	and	recall,	averaged	across	all	predictions.	We	621 
visualized	the	fraction	of	correct,	incorrect,	ambiguous,	and	inconclusive	samples	for	each	622 
taxonomic	rank	and	each	amount	of	data	used	to	produce	varKodes.		623 

	624 

Skmer—To	compare	varKoder	with	alternative	methods,	we	used	fastq	files	cleaned	and	625 
subsampled	by	varKoder	as	input	files	to	Skmer.	In	this	case,	we	also	used	leave-one-out	626 
cross-validation	to	evaluate	performance.	For	each	amount	of	input	data	(500Kbp	to	627 
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200Mbp),	we	cycled	through	all	samples,	constructing	a	Skmer	database	with	the	"skmer	628 
reference"	command	and	including	all	samples	but	one.	We	then	used	the	"skmer	query"	629 
command	on	the	sample	left	out	and	deemed	the	identification	as	correct	if	the	sample	in	630 
the	reference	database	with	closest	estimated	genetic	distance	had	the	correct	taxon	label.	631 
Because	Skmer	could	always	query	a	sample	and	there	is	no	objective	criterion	to	consider	632 
matches	beyond	the	best	match,	the	output	predictions	can	only	be	correct	or	incorrect,	but	633 
not	inconclusive	or	ambiguous.	We	visualized	the	results	similarly	as	we	did	with	varKoder.		634 

	635 

Conventional	plant	barcodes—To	infer	phylogenies	from	our	genome	skim	data	(Figure	1),	636 
we	applied	the	PhyloHerb	bioinformatic	pipeline112,	which	has	been	recently	applied	by	a	637 
variety	of	projects	from	algae	to	flowering	plants99,	101,	102.	Briefly,	this	pipeline	works	as	638 
follows:	for	plastid	loci,	PhyloHerb	maps	raw	short	reads	to	a	database	of	land	plant	plastid	639 
genomes.	Mapped	reads	are	then	assembled	into	scaffolds	using	SPAdes113	and	plastid	loci	640 
are	identified	using	nucleotide	BLAST	searches	with	a	default	e-value	threshold	of	1e-40.	641 
PhyloHerb	then	outputs	orthologous	plastid	genes	into	individual	FASTA	files,	which	are	fed	642 
directly	into	MAFFT	v7.407114	for	alignment.	Alignments	are	then	concatenated	into	a	643 
super	matrix	using	the	‘conc’	function	within	the	PhyloHerb	package.	Phylogenies	for	both	644 
individual	locus	and	the	concatenated	alignment	were	inferred	with	IQTREE	v2.0.6	using	645 
the	GTR+GAMMA	model	with	1000	ultrafast	bootstrap	replicates115.	646 

To	recover	the	traditional	plant	barcodes,	rbcL,	matK,	trnL-F,	ndhF,	and	ITS,	from	our	647 
Malpighiales	genome	skim	data,	we	applied	GetOrganelle	v1.7.7.0116	and	PhyloHerb	648 
v1.1.1112	to	automatically	assemble	and	extract	these	DNA	markers,	respectively.	Briefly,	649 
the	complete	or	subsampled	genome	skim	data	were	first	assembled	into	plastid	genomes	650 
or	nuclear	ribosomal	regions	using	GetOrganelle116	with	its	default	settings.	Next,	651 
PhyloHerb	was	applied	to	extract	the	relevant	barcode	genes	using	its	built-in	BLAST	652 
database.	To	test	whether	these	traditional	barcodes	provided	accurate	identification	to	653 
species,	genus,	and	family,	we	ran	an	all-by-all	BLASTn	analysis	for	each	individual	gene	654 
across	the	same	data	subsampling	schemes	as	Skmer	and	varKoder.	BLAST	targets	were	655 
always	drawn	from	assemblies	using	all	the	data	available	for	each	specimen,	whereas	656 
queries	included	assemblies	from	input	data	amounts	varying	from	500	Kbp	to	200	Mbp.	657 
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Within	each	BLAST	analysis	for	each	one	of	the	Malpighiales	accessions,	we	deemed	an	658 
identification	to	be	correct	if	the	best	non-self	BLAST	hit	came	from	the	same	taxon,	and	659 
incorrect	otherwise.	We	deemed	it	inconclusive	if	the	locus	could	not	be	assembled	for	that	660 
amount	of	data	or	BLAST	returned	no	results.	For	concatenated	barcodes,	we	produced	a	661 
phylogenetic	tree	for	each	amount	of	data,	and	deemed	an	identification	to	be	correct	if	the	662 
sample	with	lowest	patristic	distance	came	from	the	same	taxon.	We	deemed	it	to	be	663 
inconclusive	when	none	of	the	genes	in	the	concatenated	dataset	could	be	assembled	for	a	664 
sample.	We	visualized	results	similarly	to	varKoder,	separately	for	each	conventional	665 
barcoding	gene	and	for	the	concatenated	dataset.	666 

	667 

varKoder	application	in	diverse	published	datasets	668 

Species-level	identification	in	plants,	animals,	fungi,	and	bacteria—For	each	of	the	four	669 
organismal	clades,	we	trained	a	multi-label	model	that	included	five	species	with	at	least	670 
three	samples	per	species.	For	Bembidion,	we	included	five	species	with	five	samples	per	671 
species.	For	Corallorhiza,	we	included	five	species	(or	varieties)	with	at	least	five	samples	672 
per	species,	except	for	C.	striata	var.	vreelandii	and	C.	striata	var.	striata,	for	which	we	673 
included	six	and	seven	samples	each,	respectively.		For	Mycobacterium	tuberculosis,	we	674 
included	representatives	of	five	monophyletic	M.	tuberculosis	lineages	(L1,	L2,	L3,	675 
L4.1.i1.2.1,	and	L4.3.i2)	with	seven	clinical	isolates	per	lineage.	Samples	for	Bembidion,	676 
Corallorhiza,	and	M.	tuberculosis	isolates	all	formed	monophyletic	groups,	whereas	677 
Xanthoparmelia	species	did	not.	Since	the	Xanthoparmelia	species	were	paraphyletic,	we	678 
subsampled	only	monophyletic	groups	for	model	training.	In	this	case,	four	species	679 
included	three	samples	per	species	(X.	camtschadalis,	X.	mexicana,	X.	neocumberlandia,	and	680 
X.	coloradoensis)	and	one	species	included	five	samples	per	species	(X.	chlorochroa).	One	681 
potential	confounding	factor	for	the	Xanthoparmelia	model	is	that	Xanthoparmelia	is	a	682 
lichen-forming	fungus	and	thus	genome	skim	data	represents	a	chimera	of	fungal	and	algal	683 
genomes	representing	both	partners	in	this	unique	symbiosis.	Species	of	the	algal	symbiont	684 
Trebouxia	are	flexible	generalists	across	fungal	species	Xanthoparmelia.	Since	these	685 
genome	skims	are	a	mix	of	both	algal	photobiont	and	fungus,	we	hypothesize	the	accuracy	686 
of	our	model	decreased	because	of	the	more	generalist	nature	of	Trebouxia117.		687 
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For	all	four	test	cases,	we	applied	default	varKoder	v.0.8.0	parameters	for	generating	688 
varKode	images,	training	each	model,	and	testing	the	accuracy	of	the	trained	model	using	689 
the	‘query’	function.	In	all	cases,	we	included	all	the	available	data	for	each	training	or	690 
validation	sample.	To	test	if	trained	models	accurately	predicted	species	identity,	we	691 
queried	them	using	genome	skim	samples	not	used	for	training	but	from	the	same	species	692 
included	in	the	model.	We	also	tested	genome	skim	samples	of	species	within	the	same	693 
genus	but	not	used	in	model	training.	As	in	the	case	of	Malpighiales,	we	set	the	threshold	to	694 
make	a	prediction	to	0.7	and	used	the	same	criteria	to	consider	a	prediction	correct,	695 
incorrect,	inconclusive,	or	ambiguous.	We	separately	evaluated	results	for	taxa	with	696 
representatives	included	in	the	training	set	and	taxa	used	only	as	queries,	without	697 
conspecific	samples	in	the	training	set.		698 
	699 
All	eukaryotic	families	data	set	from	SRA—Each	accession	obtained	from	SRA	was	labeled	700 
with	its	family	identification	obtained	from	NCBI.	Because	of	the	larger	size	of	this	dataset,	701 
a	leave-one-out	cross-validation	approach	would	have	been	intractable.	Therefore,	we	702 
randomly	selected	80%	of	the	samples	in	each	family	as	the	training	set	and	used	the	703 
remainder	for	validation.	Similarly	to	Malpighiales,	we	used	a	two-step	training	method	by	704 
pre-training	as	a	single-label	model	and	finalizing	with	a	multi-label	model.	However,	705 
because	of	the	larger	size	of	this	dataset,	we	adjusted	the	base	learning	rate	and	batch	size	706 
to	accelerate	training.	Namely,	pre-training	was	done	with	a	learning	rate	of	0.1	and	a	batch	707 
size	of	300	for	30	epochs.	Final	training	was	done	with	the	same	batch	size	but	a	smaller	708 
base	learning	rate	of	0.01	in	5	epochs	with	frozen	body	weights	and	three	epochs	with	709 
unfrozen	weights.		710 
	 	711 
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