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Challenges and opportunities in applying AI to evolutionary morphology 
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AI for evolutionary morphology 

 

Abstract 

Artificial intelligence (AI) is poised to transform many aspects of society, and the study of 

evolutionary morphology is no exception. Machine learning-grade methods of AI such as 

Principal Component Analysis (PCA) and Cluster Analysis have been commonplace in 

evolutionary morphology for decades, but the last decade has seen increasing application of 

Deep Learning to ecology and evolutionary biology, opening up the potential to circumvent 

longstanding barriers to rapid, big data analysis of phenotype. Here we review the current state 

of AI methods available for the study of evolutionary morphology and discuss the prospectus for 

near-term advances in specific subfields of this research area, including the potential of new AI 

methods that have not yet been applied to the study of morphological evolution. We introduce 

the main available AI techniques, categorising them into three stages based on their order of 

appearance: (i) Machine Learning, (ii) Deep Learning with neural networks and (iii) the most 

recent advancements in large-scale models and multimodal learning. Next, we present existing 

AI approaches and case studies using AI for evolutionary morphology, including image capture 

and segmentation, feature recognition, morphometrics, phylogenetics, and biomechanics. 

Finally, we discuss areas where there is potential, but no current application of AI to key areas 

in evolutionary morphology. Combined, these advancements and potential developments have 

the capacity to transform the evolutionary analysis of organismal phenotype into evolutionary 

phenomics, launch it fully in the “Big Data'' sphere, and align it with genomics and other areas of 

bioinformatics.  
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Introduction 1 

The rapid proliferation of tools using artificial intelligence (AI) has highlighted both its immense 2 

potential and the numerous challenges its implementation faces in the biological sciences. 3 

Traditional AI methods (i.e. Machine Learning) have been widely used in biology for decades; 4 

indeed, common analytical methods such as Principal Component Analysis (PCA) and Cluster 5 

Analysis are both types of Machine Learning (ML). Deep Learning (DL) has gained significant 6 

traction since the early 2010s and is increasingly applied to biological problems, including image 7 

analysis (Akçakaya et al., 2022; Angermueller et al., 2016; Hallou et al., 2021; Li et al., 2023; 8 

Zhichao Liu et al., 2021; Moen et al., 2019; Pratapa et al., 2021; Ravindran, 2022; “What’s next 9 

for bioimage analysis?,” 2023), molecular analysis (Atz et al., 2021; Audagnotto et al., 2022; 10 

Korfmann et al., 2023; Kuhn et al., 2021; Kwon et al., 2021), and a broad range of topics in 11 

ecology and evolutionary biology (Borowiec et al., 2022; Lürig et al., 2021; Pichler and Hartig, 12 

2023). 13 

One key area overlapping with many topics in evolutionary biology, is the field of evolutionary 14 

morphology, which aims to characterise and reconstruct the evolution of organismal 15 

phenotypes. The scope of evolutionary morphology is huge, encompassing pattern, process, 16 

and mechanism, from cellular to macroevolutionary levels, across the entire 3.7-billion-year 17 

history of life on Earth and, consequently, often involves massive datasets. Due to the sheer 18 

quantity of potentially informative data, some of the most significant challenges evolutionary 19 

morphologists face is the ability to collect, process and analyse this data in a reasonable time 20 

frame whilst limiting computational cost. Researchers often face a trade-off between the breadth 21 

and depth of their study, as, typically, high-resolution morphological datasets must sacrifice 22 

taxonomic, ecological or chronological coverage owing to time- and computational limitations. AI 23 

offers an unparalleled opportunity to bridge this breadth-depth gap and thus transform the field 24 

into “Big Data” science, thereby supporting the development of evolutionary phenomics. By 25 

making big data analysis more feasible, integrating AI into this field will ultimately allow a better 26 

understanding of the drivers and mechanisms of morphological evolution.  27 

Here, we focus on the applications of AI to the study of evolutionary morphology, exploring not 28 

only existing uses but also the potential of recent AI methods that have not yet been applied to 29 

the study of morphological evolution. We introduce the main available AI techniques, 30 

categorising them into three groups based on their order of appearance: (i) Machine Learning, 31 

(ii) Deep Learning with Neural Networks, and (iii) Recent advancements from Transformers to 32 

large-scale models. Next, we present existing AI approaches in the order of a common lifecycle 33 

of evolutionary morphological studies: (i) Data Acquisition, (ii) Image Data Processing, (iii) 34 

Phenomics, (iv) Evolutionary applications. We also focus on six case studies in which AI can 35 

benefit evolutionary morphological studies. Finally, we discuss areas where there is potential 36 

but no current application of AI to key areas in evolutionary morphology.  37 

 38 
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Evolution of AI methods 39 

Here, we outline the major stages in the evolution of AI relevant to the study of evolutionary 40 

morphology.  We categorise them into three imperfect groupings based on their order of 41 

appearance: (i) Machine Learning, (ii) Deep Learning with Neural Networks, and (iii) Recent 42 

advancements from Transformers to large-scale models.   43 

We begin by providing the key definitions necessary for a base level understanding of this 44 

review. These primarily centre on the nested relationships of AI, ML, and DL (Figure 1), but also 45 

include the adjacent and overlapping field of computer vision. Because AI applications for 46 

evolutionary morphology primarily involve the analysis of images or text, computer vision is 47 

often an integral part of AI applications to evolutionary morphology, including most of those 48 

discussed here. However, it is worth noting that computer vision is not limited to AI but also 49 

present in numerous applications for image data that do not involve AI (Samoili et al., 2020).  50 

Further methodological definitions are provided where required in the main text. 51 

Artificial intelligence, or AI, concerns intelligent machines capable of mimicking human-like 52 

cognitive functions. It is, however, particularly challenging to specifically define AI as its scope is 53 

extremely broad. The European AI strategy (European Commission, 2018) provides a definition 54 

as follows: "Artificial Intelligence refers to systems that display intelligent behaviour by analysing 55 

their environment and taking action — with some degree of autonomy — to achieve specific 56 

goals", leaving the interpretation of intelligent behaviour open to the reader. Russel and Norvig 57 

(2021) try to provide a more operative definition of AI, as a system that can either ‘reason’ or act 58 

human-like, or reason or act rationally. 59 

Machine learning, or ML, is a subset of AI, and can be defined as "the ability of systems to 60 

automatically learn, decide, predict, adapt, and react to changes, improving from experience 61 

and data, without being explicitly programmed" (Amalfitano et al., 2024).  62 

Deep learning, or DL, is, in turn, a subset of ML wherein learning is achieved through complex 63 

neural networks designed to simulate the cognitive architecture of the brain. Fine-grained tasks 64 

on complex data can be achieved using vast amounts of data and with limited human 65 

intervention. 66 

Computer vision is a multidisciplinary field of computer science that enables machines to 67 

interpret, analyse, and understand visual information from the world, mimicking human vision 68 

capabilities through image and video processing algorithms. It refers to using computers for 69 

object-class recognition, where objects or individuals can be identified in 2D and 3D digital 70 

media. While many applications of computer vision for evolutionary morphology involve AI, it is 71 

not limited to AI and is applied in diverse fields.   72 
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 73 

Figure 1: Broad definitions, relationships, and differences between artificial intelligence (AI), 74 

Machine Learning (ML) and Deep Learning (DL), the sequential development of each 75 

successive subset, and their broad introductions over time (Carbonell et al., 1983; Goodfellow et 76 

al., 2016). 77 

Machine Learning in Computer Vision 78 

Classical (prior to DL) computer vision pipelines were composed of two separate computational 79 

steps. The first involved the extraction of local or global characteristics (features) that were 80 

deemed useful for a task from images. This meant that, for example, the borders and edges of 81 

an image needed to be identified, and subsequently, an object could be detected based on the 82 

edges, as in the active contours (Kass et al., 1988) and level sets methods (Chan and Vese, 83 

1999; Osher and Sethian, 1988). The extracted features were then used as inputs to ML 84 

algorithms that were optimised for structured data, e.g. tabular data.  85 

Subsequent efforts were then devoted to the design of methods to extract relevant features, i.e. 86 

features that were able to capture the relevant structures within an image, such as Haar 87 

features (Papageorgiou et al., 1998), Scale-Invariant Feature Transform (SIFT) (Lowe, 2004), 88 
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Histogram of Oriented Gradients (HOG) (Dalal and Triggs, 2005) Fisher kernels (Perronnin et 89 

al., 2010; Perronnin and Dance, 2007), and curvelets (Candès et al., 2006). These engineered 90 

(or hand-crafted, or heuristic) features were then often used as inputs for ML methods, which 91 

can be broadly classified into the following approaches: predictive methods, classification, 92 

clustering, and dimension reduction (Breiman, 2001; Cortes and Vapnik, 1995; Jolliffe and 93 

Cadima, 2016; Lloyd, 1982). Although DL architectures and convolutional neural networks 94 

(CNNs) had already been proposed in the early 1990s (LeCun et al., 1989), their success was 95 

limited due to a lack of computational power and the availability of large datasets needed to fully 96 

exploit their capabilities. However, there were some attempts to design ML systems that could 97 

learn the extraction of optimal linear features for the downstream task (classification, detection, 98 

clustering, reduction) within a boosting framework (Vedaldi et al., 2007). 99 

Deep Learning 100 

Although artificial neurons (McCulloch and Pitts, 1943) and then artificial neural networks were 101 

introduced several decades ago (Rosenblatt, 1958), they were often outperformed by other 102 

methods, especially ensembles of decision trees like Random Forests (Breiman, 2001) or 103 

boosted trees (Chen and Guestrin, 2016) across a variety of tasks. This failure was mainly due 104 

to the difficulty in training fully connected networks (networks in which the neurons of each layer 105 

are connected to all neurons in the following layer) with more than few layers. Even when 106 

shared-weights approaches and CNNs were introduced (Fukushima, 1980; LeCun et al., 1989), 107 

they remained on the fringe of the computer vision community, with the primary bottlenecks 108 

being the computational power required to build networks with multiple layers and the amount of 109 

data needed to train such systems.  110 

As the availability of data and the performance of computer hardware improved, especially with 111 

the advent of graphics processing units (GPUs), deep CNNs rose to prominence in the field of 112 

computer vision. The year 2012 represents a key turning point, when a deep CNN achieved the 113 

best result in the ImageNet Large Scale Visual Recognition Challenge (classifying millions of 114 

images into 1000 classes) (Krizhevsky et al., 2012). Ever since, computer vision tasks have 115 

been dominated by solutions using deep artificial neural networks, to the extent that learning 116 

with deep neural networks (DL) is now generally referred to as AI, a name formerly used only for 117 

methods trying to solve general intelligence tasks, rather than specific tasks. In recent years, DL 118 

has undergone significant expansion into diverse domains, demonstrating its adaptability and 119 

offering promising solutions to challenges in various fields such as physics, medicine, and even 120 

gaming (Poon et al., 2023; Raissi et al., 2019; Shallue and Vanderburg, 2018; Silver et al., 121 

2016).  122 

Around the same time, neural network-based methods such as recurrent neural network (RNN) 123 

(Graves et al., 2013) and Long-Short-Term-Memory (LSTM) (Hochreiter and Schmidhuber, 124 

1996) have been applied to sequential data, and have shown great results for handling text and 125 

time series data. These methods have then been widely used in natural language processing 126 

(NLP) tasks. 127 
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The difficulty of gathering a big enough dataset to fully train a DL model for a specific task can 128 

be mitigated by the assumption that many low-level features learned by large models are 129 

generally enough for most tasks. Under this assumption, the features learnt for a task can also 130 

be used (transferred) in a different task. A technique frequently used in DL is the use of pre-131 

trained models that are then fine-tuned (the entire model adapts to the new task) or used for 132 

transfer learning (only the final layers of the models are trained). Using pre-trained models 133 

reduces the need for large datasets, often improves model performance, and saves training 134 

time and resources. A common example is the use of models pre-trained with the ImageNet 135 

dataset for downstream tasks (Chen et al., 2017; Ren et al., 2016), such as in Sun et al. (2018), 136 

where the ImageNet-based model was used for object detection from underwater videos in 137 

marine ecology.  138 

Transformer, large-scale AI models, and Multimodal Learning 139 

In 2017, a model architecture known as the Transformer was developed to address many NLP 140 

tasks, such as translation (Vaswani et al., 2017; Vydana et al., 2021). Transformer uses a self-141 

attention mechanism, allowing each token (i.e., words, phrases, sentences, etc.) to interact with 142 

other tokens during training. Transformer can handle more information than RNNs and LSTM, 143 

can analyse contextual information, and is also better at parallelisation. Since Transformer’s 144 

introduction, it has become the state-of-the-art for many NLP tasks (Ahmed et al., 2017; Baevski 145 

and Auli, 2019). 146 

By 2020, most vision models were using CNN-based methods. Transformer has started being 147 

implemented as the backbone architecture for vision models (Dosovitskiy et al., 2021; Ze Liu et 148 

al., 2021). A common method is to divide an image into patches, which are treated as 149 

sequential inputs similar to tokens in NLP tasks. When Transformer is applied, models can 150 

recognise patterns and relationships between different parts of the image.  151 

Research has shown that having large and diverse datasets allows models to generalise well 152 

and perform more accurately (Goodfellow et al., 2016; Russakovsky et al., 2015). Supervised 153 

learning is a common learning strategy that requires all training data to be manually labelled. 154 

However, gathering a large amount of labelled data is extremely labour-intensive. Different 155 

training strategies are applied to tackle this problem (Figure 2). Semi-supervised learning uses 156 

both labelled and unlabelled data for training (Zhu and Goldberg, 2022). Weakly-supervised 157 

learning uses less accurately labelled data for training (Lin et al., 2016). Self-supervised 158 

learning only uses unlabelled data. These strategies allow DL models to leverage as much data 159 

as possible without the need for extensive manual work. 160 

Self-supervised learning has been widely used in NLP studies. One example uses parts of 161 

sentences as input data to predict entire sentences, thereby allowing all the unlabelled text to be 162 

considered as training data (Devlin et al., 2019). Models trained with masked sentences can be 163 

used as powerful pre-trained models for fine-tuning downstream tasks. With access to more 164 

training data and larger model architectures, generative models like the Generative Pre-trained 165 

Transformer (GPT) family were developed (Brown et al., 2020; Radford et al., 2019, 2018). 166 

Recent GPT models (e.g., GPT-3.5 and GPT-4) are capable of performing exceptionally well on 167 
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many NLP tasks, even when doing zero-shot (no training needed for new tasks) or few-shot 168 

(only a few training samples needed) learning. 169 

Contrastive learning is one of the self-supervised learning strategies that is widely used in 170 

computer vision (Oord et al., 2019; Wu et al., 2018). The idea of contrastive learning is to train a 171 

model to map similar instances (e.g., a different view of the same image) close together, while 172 

mapping dissimilar images farther apart in the feature space. Although different ways have been 173 

designed to map similar/dissimilar instances (Chen et al., 2020; He et al., 2020), the 174 

fundamental concept remains the same. As a result, contrastive learning enables models to 175 

capture intricate visual patterns and semantics from data without the need for labelled data, 176 

thereby improving performance on downstream tasks. Later, masked images (where parts of 177 

images are obscured) have been used to predict original images and have been shown to 178 

achieve promising results (He et al., 2021).  179 

These learning strategies have opened new avenues for training models, which enable the 180 

training of large models using unlabelled or a small set of labelled data, which is particularly 181 

applicable to biological sciences given the wealth of data available in natural history collections. 182 

Additionally, AI has been successfully applied to process various data modalities, including text, 183 

images, and videos. Multimodal learning can be implemented by combining features extracted 184 

from different data modalities into one feature space. Multimodal learning enables tasks such as 185 

generating images with text descriptions or generating descriptions for images (Radford et al., 186 

2021). With more data available (e.g., through self-supervised learning) and the advancement of 187 

AI models (e.g., Transformer), the field of multimodal learning is rapidly evolving. In evolutionary 188 

morphology, multimodal learning can effectively process diverse data modalities, such as 189 

photographs, micro-computed tomography (micro-CT) scans, and 3D mesh models (Figure 3). 190 

 191 

 192 



 

 

10 
 

 193 

Figure 2: An overview of existing learning strategies and the levels of labelling used in these 194 

strategies.  195 
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 196 

Figure 3: An example of a multimodal search. By inputting a photograph, a multimodal search 197 

model will find the mesh models and Micro-CT scans that share similar features with the input 198 

photograph. 199 

 200 

Here, we have only briefly reviewed three major stages in the development of AI. A full review is 201 

beyond the scope of this paper, and there are numerous other subfields of AI not explicitly 202 

reviewed in this section, such as robotics and graph neural networks. Nonetheless, these 203 

methods hold substantial potential for the study of evolutionary morphology and, where 204 

appropriate, will be noted in the subsequent sections focused on current usage and future 205 

applications in this field.  206 
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AI for Evolutionary Morphology 207 

In this next section, we pivot towards a goal-oriented review and prospectus of applications of AI 208 

in evolutionary morphology, with accompanying case studies. We present the overview of 209 

currently available AI tools for evolutionary morphology studies in four sections: Data 210 

Acquisition, Image Data Processing, Phenomics, and Applications to Research in Evolutionary 211 

Morphology. We introduce these methods with a schematic of generalised AI workflows (Figure 212 

4) which are expanded up in the sections that follow.  213 

 214 

 215 

Figure 4: Schematic of a common workflow using manual and AI approaches for evolutionary 216 

morphological analysis involving 3D images. Manually annotated caecilian and theropod skulls 217 

from Bardua et al. (2019) and Felice et al. (2020), Shape information and evolutionary patterns 218 

figures from Goswami et al. (2022). Ecological analysis figure from Foister and Felice (2021)  219 

Data Acquisition 220 

The first step of acquiring data is to collect the relevant samples which are to be used in the 221 

subsequent investigation in an appropriate and ethical way. For analysis of evolutionary 222 

morphology this includes not only obtaining the data that is being measured but also the 223 

corresponding metadata such as details about museum collections. The suitability, quality, and 224 

quantity of data are of critical importance to the development and implementation of AI models. 225 

Data should be diverse and clean; fulfilling these requirements can make a larger difference 226 

than model choice, and without data that conform to these requirements, good models will 227 

perform badly (Whang et al., 2023). The diversity of data refers to including enough examples of 228 

each class of interest. Cleaning data is the process of minimising error from training datasets. 229 

Preprocessing a dataset increases the suitability of the data for training and can include contrast 230 

enhancement, noise reduction and masking, where a portion of the image is designated for 231 

further analysis (Lürig et al., 2021). Determining how much data is enough depends on the 232 

specific problem at hand. Scarce data can be expanded using existing databases or by 233 

employing pre-trained networks for transfer learning (Sharif Razavian et al., 2014). However, DL 234 

models can be successful on small training sets. Few-shot learning is a form of transfer learning 235 

that uses training data where 1-20 examples of each class are available (Y. Wang et al., 2021). 236 

Scarce data for a small number of classes is commonly referred to as the long-tail problem. 237 

Where there is imbalance between the presence of classes in the dataset, the model may find it 238 
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difficult to discriminate the scarcely represented classes and perform unreliably (Schneider et 239 

al., 2020). 240 

Data scarcity and imbalance can be improved by additional data collection, or artificial data 241 

expansion, e.g. augmentation. Alternatively, imbalance can be tackled by explicitly accounting 242 

for biases in the training algorithm (Buda et al., 2018). Augmentation effectively increases the 243 

size of the training set without new data collection, by distorting images to create ‘new’ images 244 

from the existing data. This can be achieved by rotating, mirroring, scaling or by altering the 245 

pixel values (Shorten and Khoshgoftaar, 2019). This process must be controlled with the aim of 246 

the model in mind. For example, for planktonic foraminifera, the chirality of a species can be 247 

important in species classification, meaning augmentation by mirroring distorts the labelled 248 

image into a facsimile of a different species (Hsiang et al., 2019). 249 

 250 

Identifying and cataloguing specimen data 251 

Many, perhaps even most, studies of evolutionary morphology are based primarily on data 252 

housed within museum collections. However, museum collections are rarely fully catalogued 253 

and even then it is difficult to search for a specific specimen or representatives of specific 254 

groups. This difficulty is because data is often inconsistent in quality and structure, particularly in 255 

large collections (Dutia and Stack, 2021). AI can play a key role in this, particularly when it 256 

comes to tasks of identifying, cataloguing, and locating specimens within collections. Some of 257 

the key challenges to solve within that topic include recognising species and extracting 258 

taxonomic and metadata to enable effective searches.  259 

DL has recently been applied to many types of biological specimens and collections (e.g. Soltis 260 

et al., 2020). These methods have been developed and applied extensively for recognising 261 

species, metadata, traits, and even life history stages of digitised specimens (Case Study 1). 262 

This is most established in the botanical sciences, where flat herbarium sheets are easily 263 

digitised in large numbers, likely due to their relative ease of digitisation. In some instances, 264 

albeit to a lesser degree, species identification methods have also been applied to digitised 265 

photographs of animal collections  (e.g., Ling et al 2023; Macleod 2017). Applications to species 266 

identification of both plants and animals from photographs have been greatly enhanced by 267 

citizen science, resulting in useful online tools such as iNaturalist and Pl@ntNet (Goëau et al., 268 

2013; Unger et al., 2021). CNN algorithms have borne promising results and can correctly 269 

distinguish morphologically similar species (Feng et al., 2021; Hollister et al., 2023). Other 270 

machine-learning methods, such as those described by Wilson et al. (2023), have also been 271 

applied to rescaling and increasing the quality of, and extracting metadata from, images of 272 

museum specimens, allowing for automatic feeding of this information into databases.  273 

Beyond images of the specimens themselves, AI approaches to capturing information of 274 

specimen labels is a critical aspect of cataloguing specimens and making key data searchable. 275 

Case Study 1b outlines the approach by which ML can be used to identify labels and transcribe 276 

them for databases, saving vast amounts of manual effort. Together, species identification and 277 

taxonomic and meta-data extraction methods from images represent a powerful tool for 278 

unlocking the full potential of natural history collections. These approaches can make data more 279 
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discoverable and usable for documenting biodiversity both in collections and in the field 280 

(Karnani et al., 2022; Schuettpelz et al., 2017; Wäldchen and Mäder, 2018; White et al., 2020). 281 

Information on specimens is not limited to museum catalogues, but is also available in the 282 

wealth of scientific publications detailing and imaging specimens for varied purposes. However, 283 

extracting taxonomic data from the literature to describe or identify living and fossil species is a 284 

time-consuming task. Often it is also difficult to find the first appearance of a species name and 285 

correctly identify all synonyms for a taxon, as well as accounting for more recent taxonomic 286 

reclassifications. Recently, a few research groups have attempted to tackle this problem using 287 

ML, with both NLP and other Deep Neural Network (DNN) algorithms having been successfully 288 

applied to extract scientific terms and taxonomic names from scientific articles. This is a 289 

relatively new application of ML and more work is required to train models on a variety of 290 

sources, including articles in different languages and historic publications (Le Guillarme and 291 

Thuiller, 2022).  292 

Once these data are captured, we need effective tools for searching for connected specimens. 293 

ML has not yet been adopted on a large enough scale to allow searching global natural history 294 

collections and connecting specimens. Dutia and Stack (2021) recommend ‘Heritage 295 

Connector’, a framework and software for using ML to allow better connecting specimens in 296 

collections and publications. This software achieved a precision score of greater than 85% with 297 

science museum group records. If refined or applied on a wider scale to natural history 298 

collections, it will certainly ease access to the vast specimen data available in global collections. 299 

 300 

 301 

Case Study 1: Machine Learning within Museum Digitisation and data 302 

collection 303 

The digitisation of museum specimens is vital for the future of collections, and their datasets 304 

undoubtedly play a significant role in scientific research in many fields, such as evolutionary 305 

morphology. In recent years, institutions have increasingly begun to incorporate recent 306 

technologies and recent ML tools within their digitisation pipelines. These implementations have 307 

led to a range of advances from speeding up digitisation processes, enabling the digitisation of 308 

items that were once difficult to digitise, to unlocking novel data from post-processing digitised 309 

items. 310 

Example 1a: Machine Learning & Robotics for Specimen Digitisation 311 

At its most basic definition, digitisation involves the creation of digital objects from physical 312 

items, and, within museums, this is often attributed to the photographing, scanning, or filming of 313 

physical specimens. However, traditional ways of digitising artefacts, such as digitising each 314 

specimen individually, can undoubtedly be invasive to the specimen, highly time-consuming and 315 

not very cost effective. This has led to a series of innovations that can help advance museum 316 

digitisation, from drawer scanning (Schmidt et al., 2012), which enables multiple specimens to 317 

be digitised at once, to special rotating platforms that, when combined with photogrammetry 318 

techniques allow for the 3D scanning of specimens, whilst avoiding the use of more expensive 319 
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or time-consuming scanning techniques (Medina et al., 2020). ML can lend a hand to these 320 

innovations to advance digitisation even more, such as the use of computer vision techniques 321 

and CNNs to segment individual specimens from whole-drawer scans (Blagoderov et al., 2012; 322 

Hansen et al., 2020; Hudson et al., 2015). 323 

Another technological advancement that can aid digitisation is robotics. Robots are indeed 324 

already in use in other sectors such as book scanning at libraries (Dumiak, 2008). Though 325 

usually highly expensive, prices of robotic arms have been decreasing, and one can now 326 

purchase a robotic arm for less than £20,000 (Stanford University, 2022). This has enabled 327 

digitisation teams within museums such as the Natural History Museum, London, to start 328 

exploring robotics for digitisation research (Scott et al., 2023). Here, the goal is to have a 329 

collaborative robot (cobot) aid a digitiser in the mass digitisation of certain specimens (Figure 5). 330 

By implementing CNN algorithms and/or turning to reinforcement learning (RL), a robotic arm 331 

can lead to a pipeline that can enable digitisation teams to mass digitise multitudes of 332 

specimens, even possibly overnight, hence revolutionising museum digitisation work.  333 

 334 

 335 

 336 

Figure 5: A Techman 500 robotic arm in action at the Natural History Museum, London, placing 337 

down a sample pinned specimen from a Lepidoptera collection. Here, the robotic arm has been 338 

trained to locate the specimen from the drawer, and then pick it up and place it on a board in 339 

order to scan the specimen. 340 

 341 
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 342 

Example 1b: Label Extraction within Digitisation Pipelines 343 

There is a wealth of data contained within or alongside museum specimens. Specimen labels 344 

are a good example of an attribute that is often just as vital in digitisation as the specimen itself. 345 

ML tools along with the latest digitisation innovations, have allowed for the development of 346 

techniques that enable digitisers to automatically extract information from labels whilst digitising 347 

specimens. For example, a cost-effective and efficient pinned insect digitisation process was 348 

introduced by Price et al. (2018), which involved placing the specimen within a light box and 349 

capturing a handful of photographs simultaneously with multiple cameras from varying angles. 350 

The framework described there and in Salili-James et al. (2022b) shows how one can turn to ML 351 

to merge labels together from the differently angled images in order to obtain clean, 352 

unobstructed images of labels and hence automatically extract textual information from them for 353 

digitisation purposes (Figure 6). The first step in this process is reliant on DL tools such as 354 

CNNs to locate labels from the multiple images of the specimen. Next, various mathematical 355 

and computer vision tools are used to stitch the found labels together, in order to have one clear 356 

image of each label. These labels can then be fed into an Optical Character Recognition (OCR) 357 

and then an NLP algorithm to transcribe the text and to automatically obtain trait information. 358 

This leads to a streamlined, automated pipeline to extract label information that helps speed up 359 

digitisation efforts. 360 

In general, ML allows for trait extraction to be more easily embedded within digitisation 361 

pipelines. One area where this is proving highly effective is in automatic trait extraction from 362 

digitised herbarium specimens (Walker et al., 2022), with pilot studies have shown promising 363 

results on different types of plants. For example, in LeafMachine (Weaver et al., 2020), a CNN 364 

algorithm was trained to measure leaf area and perimeter from low-quality images, with a 365 

success rate of 60%. In another study, a different CNN algorithm (ResNet50) was shown to be 366 

capable of discriminating between growth shoot and vegetative structures in tropical plants from 367 

French Guyana (Goëau et al., 2022). While this study showed a high false positive rate of 20% 368 

when identifying growth shoots, it performed well given the complexity and variability of these 369 

structures. Overall, these methods have been shown to be able to quickly identify important 370 

ecological and evolutionary parameters from herbarium specimens, while still holding a large 371 

potential for improvement by expanding the training dataset and refining the algorithms.  372 

As well as the actual plant specimen, herbarium sheets can contain multitudes of data including 373 

textual information about the specimen such as location, collector, date, and morphological and 374 

colour information if scale and colour bars are included. Text data extraction in particular can be 375 

very helpful for digitisation, as the information is embedded with the photograph when digitised 376 

onto the database - and this is often done by a digitiser performing manual transcriptions. ML 377 

methods can now be used to help speed up the digitisation process of herbarium sheets, for 378 

example, by using a combination of different models to automatically extract and categorise 379 

textual information during the digitisation process. Another example of ML related to herbarium 380 

sheet digitisation involves knowledge graphs. Knowledge graphs (KGs) are an exciting tool in 381 

DL that broadly enable a representation of data structured in a graph, with interlinking entities. 382 

This allows users to define relationships between different items in datasets. Furthermore, 383 
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knowledge graphs can then be used to form knowledge bases which can help model large 384 

datasets and hopefully one day allow for the creation of a planetary knowledge base (Gu et al., 385 

2023). Beginning with datasets of herbarium sheets, one can build on knowledge graphs (Gu et 386 

al., 2022) and create a knowledge base as seen in Gu et al. (2023) that can help the digitisation 387 

of Herbarium sheets from filling-in missing textual data and to automating transcription tasks. 388 

 389 

 390 

Figure 6: An example of the workflow described in Salili-James et al. (2022b). With the ALICE 391 

setup introduced in Price et al. (2018), the algorithm uses a CNN model to segment all labels 392 

found on each of the four images of the specimen. For each label, it then merges the four layers 393 

together in order to have one version of each label, which can be fed into an automatic 394 

transcription algorithm (with OCR tools). On the bottom right we see an example of a merged 395 

label, with a sample of the automatically transcripted text above it. 396 

 397 

 398 

Image & scan data collection 399 

While we refer to the use of images for specimen cataloguing above, here we focus on the 400 

details of image data collection and analysis. The use of images is central to the study of 401 

evolutionary morphology, from simple drawings and photographs to 3D computed tomography 402 

(CT) scans (Cunningham et al., 2014). The ability to generate high-resolution images has 403 

increased exponentially in recent years, particularly with initiatives for mass-scanning of 404 

collections and databases for open sharing of image data (e.g. Phenome10K, Goswami, 2015; 405 

Morphosource, Boyer et al., 2016; and DigiMorph, Rowe, 2002). Two-dimensional digitisation of 406 

collections often involves photographing collections (i.e., specimens, drawers, etc.), to create 407 

digital copies of the data. These photographic images can then undergo segmentation or region 408 
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identification and extraction, where specific components are identified and separated from the 409 

image for further processing or evaluation.  410 

Present-day efforts to digitise specimens with two-dimensional images for large-scale data 411 

acquisition and utilisation often involve some automated processes, which can streamline both 412 

digitisation and the interpretation of data overall. Recent studies (Salili-James et al., 2022b; 413 

Scott and Livermore, 2021) describe software that uses ML models to identify regions of interest 414 

in two-dimensional images. Once trained, ML and DL software can capture photographs, 415 

segment regions of interest (ROIs), and complete other tasks for large collections datasets. This 416 

streamlines the overall acquisition and processing of digital data. Over time, ML software 417 

becomes more accurate as it learns through training datasets. This means that efficiency and 418 

accuracy can increase as the software is exposed to more data. 419 

The use of automated robotics for digitisation and high-throughput data collection has 420 

historically been applied to two-dimensional methods such as photography (e.g., Case Study 1). 421 

Three-dimensional data, such as micro-CT data, can also be collected with new robotic 422 

technologies like autoloaders (Rau et al., 2021). Autoloaders allow users to set up multiple 423 

specimens for micro-CT and synchrotron scanning, set distinct parameters for each scan, and 424 

subsequently run the autoloader without supervision. The autoloader processes specimens in a 425 

queue, pulling each from the stand using a robotic arm, and setting up distinct parameters for 426 

each (Rau et al., 2021). This fully-automated process results in greater efficiency of acquisition, 427 

as the number of specimens digitised via this method increases when digitisation can occur 428 

without technician supervision. Whilst use of robotic technology to digitise collections could 429 

greatly increase the efficiency of image collection, the improvements are more than mechanical. 430 

Robots can learn behaviours through Reinforcement Learning (trial and error, as well as 431 

rewarding and/or punishing). By interacting with the environment (e.g., the digitisation room), 432 

robots can learn optimal actions that maximise rewards (e.g., successfully imaging a specimen). 433 

Novel and potentially more efficient scanning methods are continuously emerging. For instance, 434 

Neural Radiance Fields (NeRF) is a fully-connected neural network that can generate a 3D scan 435 

of an object by inputting photos of it from different viewpoints (Martin-Brualla et al., 2021). 436 

Compared with traditional photogrammetry and CT-scanning, this method is able to compute 437 

three-dimensional scans based only on sparse images (Yu et al., 2021). While the resolution 438 

and accuracy are typically inferior to a full 3D scan, it can make 3D data capture more 439 

accessible and faster for some objects (e.g., extremely large specimens). 440 

Image Data Processing 441 

Image data capture has become increasingly available in recent years, with large programmes 442 

focused on mass scanning of natural history collections (Hedrick et al., 2020). The bottleneck 443 

has now shifted to processing images in order to obtain usable data on phenotype. Here, we 444 

focus on the two major aspects of image data processing: feature extraction and element 445 

isolation, and segmentation.  446 
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Extracting features and isolating elements 447 

Image segmentation refers to dividing an image into meaningful areas or objects and extracting 448 

ROIs, allowing for targeted analysis and understanding of visual content (Yu et al., 2023). 449 

Segmentation facilitates numerous computer vision tasks, including object recognition by 450 

isolating objects or regions within an image (Garcia-Garcia et al., 2018; Jin et al., 2022), object 451 

tracking (Zhao et al., 2021), and interpreting a scene with multiple objects (Byeon et al., 2015). 452 

This process has traditionally been performed manually; however, it remains  subjective 453 

(Schmelzle et al., 2017) and time-intensive (Hughes et al., 2022). ML techniques offer a useful 454 

way of overcoming these issues.  455 

Numerous automated image segmentation algorithms have been developed in the past 456 

decades that do not require DL (Boykov et al., 1999; Dhanachandra et al., 2015; Minaee and 457 

Wang, 2019; Najman and Schmitt, 1994; Nock and Nielsen, 2004; Otsu, 1979). Yet, in recent 458 

years, DL has introduced novel methods linked to high-performing models able to achieve high 459 

accuracy rates on common benchmarks (Kale and Thorat, 2021; LeCun et al., 2015; Luo et al., 460 

2021; Yu et al., 2022; Zhao et al., 2021). DL-based segmentation methods are the state-of-the-461 

art for many image segmentation challenges and often outcompete other automated methods. 462 

For example, Sashimi, a toolkit developed by Schwartz & Alfaro (2021), was introduced to 463 

simplify high-throughput organismal image segmentation using DL. The toolkit underwent 464 

testing by automatically segmenting the target fish images from photos with both standardised 465 

and complex, noisy backgrounds. By utilising advanced DL techniques, such as the meta-466 

algorithm Mask R-CNN, it aims to improve the efficiency and precision of image segmentation, 467 

ultimately leading to significant progress in image analysis and classification.  468 

Beyond extracting a complete representation of a specimen from an image, most biological 469 

applications will need to identify specific features, whether individual traits or entire elements. 470 

Perhaps more than any other aspect, this step is overwhelmingly manual at present and as 471 

such represents the primary bottleneck for big data phenomic analyses from comparative 472 

datasets. Automated approaches to identifying and isolating features, traits, and elements, 473 

however, is perhaps the most important area to develop, as it would potentially allow for 474 

continuity of information on biological homology in large-scale comparative analyses and for 475 

removal of subjective decisions in trait descriptions. For example, methods that could extract 476 

individual elements of a larger structure could then allow one to conduct quantitative analyses of 477 

just those isolated structures, or analyses of the relationships among structures (i.e. phenotypic 478 

integration and modularity (Zelditch and Goswami, 2021)), where existing automated 479 

morphometric methods typically are homology-free and capture overall shape but cannot 480 

identify which elements are actually changing in a multi-element structure.  481 

For image data, most efforts at feature extraction have focused on 2D images, extracting 482 

features such as size and shape, or using pixel intensity and edge characteristics to extract a 483 

plurality of features that are then subjected to dimensionality reduction by identifying those that 484 

are most relevant for the particular task. This reduction can select features based on impact of 485 

downstream results (e.g., classification), or by using PCA or similar approaches to identify the 486 

major components of variation across a dataset (Grys et al., 2017). Along these lines, there are 487 
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established applications of AI approaches to the recognition of phenotypes and phenomics in 488 

medical research, for instance in mining health records (Frey, 2018). These approaches have 489 

also been used to identify known phenotypes associated with specific genetic variants (Zhang et 490 

al., 2022) or experimental treatments, as in Latent Space Phenotyping, a novel image analysis 491 

method that allows the automated recognition of the response to treatments from sequences of 492 

images, e.g. different growing conditions of crops (Ubbens et al., 2020). DL has also been 493 

applied to feature recognition relating to movement, such as in human foot bone morphology 494 

(Ma and Zhi, 2022). These approaches are less common for interspecific datasets; however, 495 

they have been applied to recognize and categorise fossil samples. Elsayed (2023) developed 496 

an automated approach for identifying and classifying tooth fossils from various animals, 497 

including sharks, elephants, hyrax, and primates. Deep-learning algorithms, such as CNN and 498 

deep CNN, were trained to recognize, classify, and extract pertinent details from 2D images of 499 

teeth fossils. The proposed methods were verified and can be used in various morphology and 500 

palaeontology research settings. 501 

  502 

Segmentation 503 

ML and DL approaches to image segmentation are also routinely applied to images forming a 504 

3D stack and achieves accurate results with processing scans from CT (Ait Skourt et al., 2018) 505 

and magnetic resonance imaging (MRI) (Lösel and Heuveline, 2017) (Case Study 2). Due to the 506 

special characteristics of these types of imaging, such as greyscale and volumetric images with 507 

depth information, specific ML and DL models have been developed, particularly for medical 508 

images (Milletari et al., 2016; Ronneberger et al., 2015). These methods allow for greater 509 

consistency amongst measurements and allow for scalable studies (Willers et al., 2021). In 510 

addition, user-friendly tools for segmenting medical images have been developed that offer 511 

built-in features for automatic image segmentation such as Dragonfly (Comet Technologies 512 

Canada Inc., 2022) and Biomedisa (Lösel et al., 2020). These have since been applied to 513 

biological systems (Lösel et al., 2023; Mulqueeney et al., 2024). 514 

 515 

 516 

Case study 2: Image segmentation for volume rendering  517 

DL tools such as Biomedisa (Lösel et al., 2020) have emerged as powerful solutions for 518 

automating feature extraction from 3D images (Figure 7). Additionally, semi-automated batch-519 

processing pipeline MiTiSegmenter can bulk segment and label around 200 samples from 520 

microCT data (Kendrick et al., 2022). They offer an efficient alternative to labour-intensive and 521 

potentially biased manual image segmentation methods. In the study by Mulqueeney et al. 522 

(2024) the efficacy of these neural networks is shown to be influenced by the quality of input 523 

data and the size of the selected training set. In the context of this case study, this is reflected in 524 

the ability for different networks to extract specific traits. In the smaller training sets, predicting 525 

the volumetric and shape measurements for internal structures presents a greater challenge 526 
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compared to the external structure, primarily due to sediment infill (Zarkogiannis et al., 2020b, 527 

2020a). However, by increasing the training set and applying data augmentation, this problem is 528 

mitigated. This reaffirms the principle that expanding the training set leads to the production of 529 

better DL models (Bardis et al., 2020; Narayana et al., 2020), albeit with diminishing returns as 530 

accuracy approaches 100% (Kavzoglu, 2009). These findings help to highlight how training sets 531 

can be designed for optimal use in precise image segmentation that is applicable for obtaining a 532 

wide range of traits. 533 

 534 

Figure 7: Workflow for producing training data and applying a deep convolutional neural network 535 

(CNN) to perform automated image segmentation. The workflow includes (a) the creation of 536 

training data for the input into Biomedisa and (b) an example application of the trained CNN to 537 

automate the process of generating segmentation (label) data. 538 

 539 

 540 

Beyond increasing efficiency of segmentation over manual thresholding, DL-assisted 541 

segmentation may be beneficial whenever thresholding ROIs is not possible. For example, 542 

when specimens being scanned are very dense, scans may not have a consistent perceived 543 

density (e.g. Alathari, 2015; Furat et al., 2019). Objects of similar densities may not be displayed 544 

at the same greyscale value through the scan, though the structural properties of the material 545 

will be evident. Scans like these are often also very noisy as a result of the high power of the 546 

beam needed to penetrate them, this frequently results in artefacts and irregularities within 547 

images (Das et al., 2022). Hence, thresholding cannot always obtain a clear segmentation, 548 

leaving manual segmentation as the only recourse prior to these models being implemented. A 549 

DL segmentation model however can be trained to segment scans based on visual patterns 550 

when a minimal number of slices are pre-labelled (Tuladhar et al., 2020). Noteworthy uses of 551 
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this approach include distinguishing fossils from rock matrices with a comparable composition 552 

within CT images (Edie et al., 2023; Yu et al., 2022), a common problem when imaging 553 

palaeontological specimens. In their recent study, Yu et al. (2022) addressed the difficulties of 554 

labelling and segmenting CT images, specifically in dinosaur fossils. Traditional manual 555 

segmentation methods can be time-consuming and prone to errors due to subjective judgments. 556 

To overcome these limitations, the authors employed DL techniques, specifically CNNs, to 557 

automate and improve the accuracy of CT image segmentation.  558 

Another case where DL segmentation may be useful for CT data is when attempting to segment 559 

regions of an object made of the same material (i.e., if an object of a single material ossifies as 560 

a single structure but has varying patterns of ossification along the structure) or when multiple 561 

objects have similar densities. DL segmentation models have also shown to accurately segment 562 

these objects into different ROIs based purely on pattern. Improvements in the quality of image 563 

data acquisition (Withers et al., 2021) alongside the increasing selection of good models (L. 564 

Wang et al., 2021) and training sets (Nikolados et al., 2022) for biological data are further 565 

assisting in mitigating these common issues in image segmentation with DL approaches.  566 

The ability to easily separate discrete modules has the potential to greatly simplify workflows 567 

that are currently mostly manual. An application of these automated or semi-automated 568 

segmentation procedures is the isolation of complex biological features or structures that are 569 

both time-consuming and difficult to extract manually, such as vertebrate skeletal systems. For 570 

instance, skulls are made up of several distinct, overlapping bones–sometimes including other 571 

elements such as horns and teeth–the challenge of separating these elements efficiently would 572 

be greatly simplified by the application of these methods (Case Study 3). Additionally, this would 573 

allow the segmentation of morphological features enclosed within or defined by the interaction 574 

between bones, such as endocasts and closed cavities within bones, as well as open-ended 575 

sutures. More work in this area will be critical for AI approaches to evolutionary morphology. 576 

Beyond file types, the majority of current methods use human sculpted 3D elements as 577 

benchmarks (Chen et al., 2009). These 3D models are generally very low polygon count and 578 

manifold, and as a result do not reflect the majority of real-world examples. Work by Schneider 579 

et al. (2021) attempted to address this by developing a segmentation pipeline able to process 580 

higher-polygon and non-manifold meshes. This is ideal for geometric morphometrics, where 581 

variations in morphology of focal specimens are only discernible when meshes have sufficient 582 

polygons to properly map their topology.  583 

Finally, while identifying known phenotypes from supervised learning is relatively 584 

straightforward, although practical limitations of computational power can hinder 3D image data 585 

analyses, it is less clear whether unknown or novel phenotypes are similarly recognisable, or if 586 

trained models can accommodate large amounts of variation, both of which will be common in 587 

analyses of evolutionary morphology. Nonetheless, employing AI to identify new or cryptic 588 

features, and by extension, new species, has great potential, particularly in light of promising 589 

applications of unsupervised learning to discover unknown phenotypes, for example in cell 590 

morphology (Choi et al., 2021). 591 

 592 
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 593 

 594 

Case Study 3: Feature extraction and region/specimen isolation via 595 

Parcellation 596 

When employing automated shape analysis tools, it is often required to extract features from the 597 

entire mesh. For instance, in the context of 3D geometric morphometrics applied to the skulls of 598 

antlered animals, it is currently necessary to exclude the antlers and teeth from the specimen, 599 

as historical landmarked data has. These regions exhibit significantly higher morphological 600 

variation when contrasted with the skulls themselves. Moreover, the antlers and teeth might 601 

warrant their own shape analysis, independent from the skull. 602 

Below are outlined the major steps for a case study of segmenting antlers and teeth from the 603 

skull (Figure 8). We utilise Blender, an open-source 3D software, along with its Python scripting 604 

tools for this purpose. Initially, we import the meshes as PLY files and, optionally, centre them to 605 

the origin. If you choose to centre the mesh, it is crucial to export it to ensure that the new 606 

coordinates align with the subsequent segmentation. Once centred, access the "scripting" 607 

workspace at the top of the window. Run the first script to initialise the vertex groups. Change 608 

the 3D view to “edit mode” and the select mode to “edge selection”. Begin selecting the edges 609 

of specific classes and assigning them to the associated vertex group. After assigning a cluster 610 

of edges run the second script to update the colour of the mesh to match the new vertex 611 

groupings. Because vertices can be assigned to more than one group, the antlers and the teeth 612 

were assigned first to prevent overlapping specific edges. The third script is then run to assign 613 

all unassigned vertices to the skull group, this ensures no edge is assigned to more than one 614 

group. Open the system console under the window tab then run the fourth script, this will check 615 

that all vertices are assigned and mutually exclusive. Finally, run the script to export the edges. 616 

There are numerous practical issues to solve in extracting features and traits from 3D image 617 

data. As in image segmentation, one of the foremost challenges in feature or trait extraction 618 

emerges when differentiating tissues or objects exhibiting low contrast disparities, often arising 619 

from either similar material densities or the specific imaging techniques employed (Tuladhar et 620 

al., 2020). As noted above, conventional methods such as thresholding or region-growing face 621 

difficulties in precisely discerning objects under such conditions. To address these limitations, 622 

contemporary solutions harness the power of DL. Similarly, DL also finds application in 623 

extracting distinct parts of biological anatomy, utilising either semantic segmentation techniques 624 

(Hou et al., 2021) or well-crafted training sets (Lösel et al., 2023), even in scenarios where 625 

density values closely resemble each other (Case Study 4). Although these methods currently 626 

require some manual intervention, they undeniably contribute to substantial reductions in 627 

processing times. Challenges may still arise, particularly in the presence of artefacts or 628 

irregularities in images (Das et al., 2022) or when dealing with damaged samples (Zhang et al., 629 

2022). Nevertheless, ongoing advancements in these techniques indicate a trend of continual 630 

improvement and broader application, and we highlight some recent examples here. 631 
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Different AI algorithms have proven capable of classifying taxa from CT images using feature 632 

extraction. For example, Hou et al. (2020) introduced the ADMorph dataset, which trained and 633 

evaluated DL models for the morphological analysis of 3D digital microfossils. The study 634 

focused on enhancing the accuracy of DL models by testing the segmentation performance of 635 

multiview convolutional neural networks, PointNet, and VoxNet. The dataset aims to facilitate 636 

developing and evaluating DL algorithms for the precise analysis and classification of 637 

microfossil structures. Hou et al. (2021) further expand the prior study by highlighting the 638 

potential of DL to automate segmentation and accurately delineate and classify about 500 fish 639 

microfossils within CT images.  640 

 641 

Figure 8: Workflow for segmenting antlers and teeth from a skull using Blender 642 

 643 

 644 

As noted above, parcellation of segmented elements allows for more in-depth analysis of 645 

specific areas of focus. In 2D analysis, these methods are present in behavioural ecology and 646 

neuroscience, where limb tracking of segmented species in video footage is used to infer 647 

behaviour of individuals (Marks et al., 2022; Mathis et al., 2018). Similar to 2D, 3D semantic 648 

segmentation using CNNs has started gaining traction, notably in the field of pathology 649 

(Rezaeitaleshmahalleh et al., 2023; Schneider et al., 2021), engineering (Bhowmick et al., 2020; 650 

Kong and Li, 2018) and materials science (Holm et al., 2020; Zhu et al., 2020), and is similarly 651 

useful for evolutionary morphology. For example, extracting individual structures, such as 652 

sutures, from micro-CT scans of whole crania allows detailed analysis of their morphology and 653 

the factors driving their evolution (Case Study 4).  654 

This approach, however, comes with some important challenges when applied to 3D data. First, 655 

the high diversity of data types and extensions in which 3D reconstructions can be stored (e.g., 656 

.ply, .vol) poses problems to the homogenisation of automated segmentation procedures. 657 

Second, the quality of 3D data can also be an issue. Current methods normally employ human-658 

sculpted 3D elements as benchmarks (Chen et al., 2009), which tend to have low polygon 659 

counts and thus do not reflect most biological datasets. As a result, semantic segmentation of 660 

3D reconstructions has proven challenging, with various methods attempting to overcome 661 

quality issues in the CT data (Schneider et al., 2021; Shu et al., 2022; Sun et al., 2023).  662 

 663 

 664 

 665 
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Case study 4: Image segmentation for feature recognition and automatic 666 

trait extraction   667 

Instead of parcellating scans, segmentation can be used directly as phenotypic features. This 668 

section focuses on a use case of the segmentation of cranial sutures for phenotypic analysis. 669 

Cranial sutures are fibrous bands of connective tissue that form the joints between the cranial 670 

bones of vertebrates (White et al., 2021). These features are bounded on two sides by the 671 

bones that they connect, but, unless fused, they are open-ended dorsally and ventrally (Lenton 672 

et al., 2005). This presents an issue in that their digital isolation (segmentation) is a highly time-673 

consuming and skill-intensive task, which makes building large datasets for biological 674 

comparisons very challenging. We propose a pipeline to address this methodological challenge 675 

using DL (Figure 9), summarised as follows: 676 

(1) Create training data: As sutures are difficult and time-consuming to label, we 677 

segment one out of every 100 slices (or a specified number of slices) to include as 678 

many scans in the training set as possible. Additionally, a test set is created with 679 

sutures segmented throughout the entire stack for a few scans, which can ensure the 680 

evaluation is more robust. 681 

(2) Train models: We use the training set to train DL models. To address the class 682 

imbalance issue, which is caused by sutures normally being small regions, we 683 

implemented specific sampling and weighting techniques. We then evaluate the 684 

model performance on the test set.  685 

(3) Predict: Sutures for the rest of the scans can be predicted using a well-performing 686 

model from the training. These predictions can be reviewed by experts to generate 687 

high-quality suture segmentation. The resulting segmentations can be used as a new 688 

training set to enhance model performance, or used for downstream analysis. 689 

After this pipeline, we expect to segment sutures from skull CT-scans efficiently. Subsequently, 690 

we can use computational methods such as Fourier transform and alpha-shape analysis and 691 

landmark-free geometric morphometrics to quantify characteristics of the sutures. 692 

Beyond sutures, such a pipeline would be applicable to segmenting (both in 2D and 3D) any 693 

open- or close-ended structure, biological or not, that is defined by the interactions between 694 

other structures (i.e., cranial endocasts, chambers in mollusc shells, cracks in bones and other 695 

materials, junctions between cells). 696 
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 697 

Figure 9: A workflow for extracting sutures on Micro-CT scans. This workflow includes (a) 698 

segmenting sutures on Micro-CT scans of mammal skulls. Segmented sutures are used to 699 

generate (b) 3D reconstructions, which can then be used to calculate (c) suture measurements. 700 

(c) shows an example of using alpha-shapes to quantify the complexity of 3D suture 701 

reconstructions following method of Gardiner et al. (2018). 702 

 703 

 704 

Phenomics 705 

Phenotype encompasses morphology, behaviour, development, and physiology, all of which 706 

mediate an organism’s interactions with other species and its habitat. Phenomics extends 707 

phenotype to its genetic, epigenetic, and environmental drivers. Analysis of phenomes thus 708 

entails a variety of traits, all of which are essential to be able to understand the dynamics of 709 

organismal evolution, yet the resolution as to which we can currently measure is limited. Here, 710 

we discuss how AI techniques can be used to more effectively describe phenotypic traits 711 

specific to morphology, with sections related to discrete and meristic traits, univariate measures, 712 

shape (including linear and geometric morphometrics), colour, and pose estimation.  713 

Discrete and Meristic Traits 714 

Morphological traits underpin the study of phenotypic evolution within phylogenetic systematics 715 

(Hennig, 1966). Nonetheless, morphological traits for phylogenetic applications have many 716 

limitations (Lee and Palci, 2015). Discrete traits manually scored by each researcher or meristic 717 

traits such as element counts collected from specimens have proven time-consuming and 718 

difficult to collect due to personal interpretations and potential errors (Wiens, 2001). Despite 719 

this, discrete traits are critical for diverse aspects of evolutionary study; for example, they are 720 

essential to time-calibrate molecular phylogenies and to reconstruct phylogenetic relations 721 

among extinct taxa (Lee and Palci, 2015; Smith and Turner, 2005). Discrete and meristic data 722 

are also useful for evolutionary analyses of morphology, evidenced by foundational works of 723 

morphological disparity (Foote, 1997, 1993; see Goswami and Clavel, 2024 for a full review). 724 
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AI tools have shown potential in recognising and extracting discrete and meristic traits to build 725 

morphological matrices for phylogenetic analysis in a quicker and more robust way. Deep 726 

learning neural networks, including CNNs have been successfully applied on small training 727 

datasets to recognise species and extract both discrete and meristic traits (Wäldchen and 728 

Mäder, 2018). Other examples include using ML tools to extract, classify and count reproductive 729 

structures (Goëau et al., 2022; Love et al., 2021), as well as to produce basic measurements 730 

such as leaf size (Hussein et al., 2021; Weaver et al., 2020). These methods have also been 731 

shown to work on x-ray scans of fossil leaves (Wilf et al., 2021), including counting stomatal and 732 

epidermal cells for palaeoclimatic analysis (Zhang et al., 2023). A similar CNN algorithm has 733 

also been successfully applied to classify freshwater fish by genera from the Amazon region 734 

using photos of museum specimens, for which, traits were recognised with 97% confidence 735 

(Robillard et al., 2023). In animal species traits identification, Random Forest algorithms have 736 

also shown promising results. For example, they performed better than traditional Linear 737 

Discriminant Analysis in delimiting between species of snakes from field photos when given a 738 

set of morphological traits (Smart et al., 2021).  739 

Overall, each of these algorithms have the potential to be used in morphological trait extraction 740 

and phylogenetic analysis by training them to classify new images for a set of traits and using a 741 

training dataset representing the variation in the species or genus for the traits of interest.  742 

Univariate Measures  743 

Morphometrics, the quantification of biological form, allows for direct comparison of size and 744 

shape across structures or organisms. Univariate metrics have dominated morphometrics for 745 

centuries, but the extraction of univariate traits from a substantial pool of individuals has 746 

historically been a laborious and time-consuming process, imposing limitations on available data 747 

(Fenberg et al., 2016). Addressing this challenge, AI tools have emerged as effective solutions, 748 

streamlining the extraction of univariate traits, including lengths, mass, and size, particularly in 749 

2D images. For instance, neural networks have proven adept at extracting linear 750 

measurements, as illustrated by the accurate forewing length extraction of 17,000 specimens of 751 

butterflies (Wilson et al., 2023). Moreover, these AI techniques have extended their capabilities 752 

beyond simple length measures, such as by measuring plant leaf areas (Kishor Kumar et al., 753 

2017; Mohammadi et al., 2021). Advanced techniques have further facilitated the measurement 754 

of length across individual anatomical regions, offering a more nuanced understanding than 755 

traditional whole-body length measures (Ariede et al., 2023). These techniques have also 756 

enabled the extraction of shape proxies, such as ellipticity (Freitas et al., 2023), and the 757 

simultaneous analysis of multiple univariate traits (Fernandes et al., 2020). 758 

AI methodologies have seamlessly extended their proficiency from extracting 2D univariate 759 

traits to 3D, by employing analogous methods to obtain linear measurements of both length and 760 

width within 3D images (Hu et al., 2020; Lu et al., 2023). Similar to the techniques applied to 761 

their 2D counterparts, these methods can concurrently extract multiple traits from individual 762 

images (Wu et al., 2021) and tally features across diverse regions in 3D images (Yu et al., 763 

2021). Moreover, they are capable of providing volumetric measures of multiple components 764 
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through the application of image segmentation (Lösel et al., 2023; Mulqueeney et al., 2024). 765 

This advancement represents a notable stride in using AI to extract intricate 3D data.  766 

Shape  767 

Univariate or linear morphometrics has been a tool in evolutionary morphological analysis for 768 

centuries, but recent years have seen an explosion of geometric (landmark-based) and surface 769 

morphometrics, greatly increasing the scope for capturing and quantifying organismal shape. 770 

While surface methods are relatively new, they are expanding rapidly, and geometric methods 771 

are well established and offer great potential to increase understanding of evolutionary 772 

dynamics (Mitteroecker and Schaefer, 2022). Below we discuss various approaches to 773 

multivariate shape analysis and existing AI applications.  774 

Geometric morphometrics 775 

One of the most common ways to quantify and analyse evolutionary morphology at present is 776 

by applying geometric morphometrics. This inherently multivariate methodology requires the 777 

placement of landmarks that produce two-dimensional or three-dimensional coordinates by 778 

labelling homologous anatomical loci to describe biological shapes (Adams et al., 2004; 779 

Mitteroecker and Schaefer, 2022). Raw coordinates are then transformed using a 780 

superimposition method, commonly Procrustes analysis, which uses scaling, rotation and 781 

transformation to register objects to a common reference frame so that only biological variation 782 

remains (Bookstein, 1997). The main advantages of geometric morphometrics include the ability 783 

to densely sample complex shapes in three dimensions, the ability to localise variation, the 784 

retention of information on biological homology, and the utility of coordinate data for numerous 785 

downstream analyses, from macroevolutionary to biomechanical analysis. However, geometric 786 

morphometric methods are time-consuming, prone to observer bias, and lack repeatability 787 

(Shearer et al., 2017). Moreover, current methods are limited in their scope, in particular 788 

because they rely on homologous points of comparison. As a result, they quickly lose 789 

explanatory value with increasingly disparate taxa, as homologous points become more difficult 790 

to identify and thus fewer in number. As a result, geometric morphometrics is still a largely 791 

manual endeavour for comparative datasets, with even semi-automated tools requiring 792 

extensive manual effort (Bardua et al., 2019). The introduction of new automated approaches 793 

for the analysis of shape may allow us to overcome some of these issues, though the need for 794 

grounding in homology will always be a constraint, as well as a critical requirement for 795 

maintaining biological meaningfulness, of this approach. 796 

Two distinct groups of approaches have been developed to circumvent the manual effort of 797 

geometric morphometrics: automated landmarking and 'landmark-free' or 'homology-free' 798 

methods. The former is based on the same principles as geometric morphometrics, but seeks to 799 

minimise the user's workload by automating placement of homologous landmarks. These 800 

methods frequently rely on image registration to propagate landmarks from one set of 801 

individuals, or a generic template, to another (Maga et al., 2017; Young and Maga, 2015). 802 

These often lack precision in identifying anatomical loci, even in closely related taxa; therefore, 803 

to improve the obtained results, others have attempted to use DL and computer vision to the 804 

problem of landmark annotation. In 2D images there is the capacity to automatically place 805 
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landmarks (Porto and Voje, 2020; Case Study 5), while those available for 3D images at present 806 

use AI to optimise landmark position after placement, thereby improving accuracy after mapping 807 

of landmarks from a template to specimens (Devine et al., 2020). Landmark placement tools are 808 

currently only available for 2D images (Porto and Voje, 2020), but these methods have been 809 

shown to reduce both data collection time and error and increase repeatability, thereby 810 

supporting phenomic-scale data collection for large data sets. Unfortunately, some 811 

implementations are computationally demanding to apply, particularly when using 3D data, and 812 

all applications at present behave poorly with even a moderate amount of variation, effectively 813 

limiting applications to analysis of conspecifics or congeneric species.   814 

 815 

 816 

Case study 5: Geometric morphometrics - automated landmarking  817 

Geometric morphometrics is a powerful tool for quantifying and comparing morphology across 818 

organisms and has become the dominant approach for morphometric analysis over the past few 819 

decades. However, identifying and placing landmarks and semilandmarks on 2D or 3D images 820 

remains a largely manual and thus time-consuming process, as well as being prone to human 821 

error and interuser variation. Thus far, AI has been successfully applied to landmark and 822 

semilandmark data capture within species and among congeners, ranging from fruit flies (Porto 823 

and Voje, 2020; Salifu et al., 2022), to bryozoan colonies (Porto and Voje, 2020), to mice 824 

(Devine et al., 2020; Porto et al., 2021). 3D applications at present use image registration and 825 

map landmarks from an atlas onto specimens, and then integrate DL for optimization of 826 

landmark placement (Devine et al., 2020). Perhaps the most advanced implementation of DL for 827 

landmarks placement at present uses a supervised learning approach combining object 828 

detection and shape prediction to annotate landmarks (Figure 10) (Porto and Voje, 2020). 829 

Object detection, using a histogram of gradients features rather than the more common but less 830 

efficient CNN approach, was used to first identify the structure of interest, followed by shape 831 

prediction to annotate landmarks. This approach was successfully applied to three datasets of 832 

varying complexity, with object detection in particular performing well for all datasets. While only 833 

implemented for 2D images at present, the speed of data collection achieved in that study is 834 

remarkable (e.g., >13,000 bryozoan zooids annotated in three minutes, approximately the same 835 

needed to manually annotate one zooid; Porto and Voje, 2020) and demonstrates the great 836 

potential of AI applications to geometric morphometrics and the need to develop 837 

implementations for 3D data.   838 
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 839 

 840 

Figure 10: Workflow for automated landmarking in Porto and Voje (2020), showing (a) the object 841 

detection framework where a training set is used to first extract features and then perform 842 

classification and (b) perform shape prediction using a cascade shape regression model to 843 

refine the landmark predictions.   844 

 845 

 846 

Landmark-free morphometrics 847 

Landmark or homology-free methods seek to remove the placement of landmarks altogether; 848 

instead, they focus on describing the entire shape of the selected specimens. There are several 849 

methods within this family and most do not directly use AI at present, but we note a few of them 850 

as they are promising areas of current development. The most common approaches either 851 

decimate a mesh into a large number of pseudolandmarks (i.e., points without any homology) 852 

(Boyer et al., 2015; Pomidor et al., 2016) or use an atlas-based diffeomorphic approach 853 

(Durrleman et al., 2014; Toussaint et al., 2021). Both of these approaches allow shapes that do 854 

not share homology to be compared and limit the loss of geometric information, but they may be 855 

prone to sensitivity to factors outside of just shape, including alignment and scaling. 856 

Nonetheless, they offer a potentially rich source of data for AI applications, as we discuss here 857 

with particular emphasis on diffeomorphic methods. 858 

Broadly, diffeomorphic methods involve a shape on a deformable grid that can be stretched and 859 

compressed, with mathematical tools called diffeomorphisms, to resemble other shapes. These 860 

methods, often referred to as methods of elastic shape analysis due to the elastic nature of 861 

them, can be used to quantify dissimilarities between shapes, register (match) shapes together, 862 

and analyse morphometry, all without requiring landmarking. Techniques that incorporate these 863 

methods include Large Deformation Diffeomorphic Metric Mapping (LDDMM) (Beg et al., 2005), 864 

the Square Root Velocity Framework (Srivastava et al., 2011), and Currents (Benn et al., 2019). 865 

One way elastic landmark-free techniques are proving increasingly useful is when analysing 866 
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morphometry in a two-dimensional sense, for example, when studying the boundaries of objects 867 

seen in images. Here, instead of requiring landmarks on the boundaries, the boundary curve is 868 

analysed as a whole. Importantly, this also allows for possible invariances to be handled. For 869 

example, the metrics within methods can be made to be invariant to shape-preserving 870 

transformations, such as scaling, translation, rotation, and/or reparametrization (i.e., where on 871 

the boundary, the curve starts/ends).  872 

There are some diffeomorphic methods that can be expanded into higher dimensions as seen 873 

with open curves (Lahiri et al., 2015) and closed curves (Klassen and Srivastava, 2006) - this 874 

can prove particularly useful in the analysis of curves on surfaces in evolutionary datasets. 875 

There has also been recent research on elastic methods focused on surfaces (Hartman et al., 876 

2023; Jermyn et al., 2017; Pierson et al., 2021). As described in Hartman et al. (2023), the 877 

techniques here can be categorised into two sections, those that apply to parameterized 878 

surfaces and those on unparametrized surfaces (i.e. containing no known point landmarks).  879 

Methods of elastic shape analysis can play an important role in ML, whether this is with classical 880 

methods or combined with the latest DL tools. These applications can broadly be split into the 881 

following three categories: 882 

1. Elastic Shape Analysis as a classical machine learning tool: One motivation for the 883 

use of elastic shape analysis is that it allows us to consider the space of the objects we 884 

wish to analyse and define our metrics with respect to this space; therefore not 885 

assuming linearity of spaces (unlike traditional landmark-based methods). This enables 886 

us to create a framework to compute statistics, analogous to standard tools on linear 887 

spaces. One such analogue is Principal Component Analysis (PCA), which is a standard 888 

tool for dimension reduction in classical ML. This can be done in various ways, from 889 

defining ways to work directly on the space of objects or a tangent space to that space 890 

(as it is often mathematically and computationally simpler, as described in Srivastava et 891 

al. (2011)), or by transforming the original objects into a linear space, and then 892 

performing standard PCA, as can be done with the framework seen in Benn et al. 893 

(2019). 894 

2. Elastic methods as a pre-processing technique for machine learning: In recent 895 

years we have seen elastic diffeomorphic methods applied to real-world datasets and 896 

then combined with ML algorithms to provide tools to analyse morphological data. This 897 

technique is particularly helpful when a distance matrix can simply be incorporated within 898 

a ML algorithm. For example, in Salili-James et al. (Salili-James et al., 2022a), 899 

diffeomorphic metrics were used to quantify differences between the shapes of natural 900 

objects such as boundary curves of gastropods and leaves and then combined with a 901 

classical supervised ML algorithm (namely, K-Nearest Neighbour) to classify genus and 902 

species, based purely on the morphology of the object. 903 

3. Machine Learning algorithms with elastic metrics. ML algorithms will often have a 904 

distance metric embedded within them. These are especially apparent in classical 905 

(statistical) methods of classification (which is SVM) and clustering (which is K-means), 906 

where a metric is used to compare the relative position of two points in a dataset. The 907 

choice of metric here can sometimes greatly affect the results, and naturally there are 908 
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times where a landmark-free elastic (e.g., geodesic) metric can be better suited to the 909 

algorithm than standard (often linear) metrics. Furthermore, there have recently been 910 

studies that have incorporated DL techniques with elastic metrics, such as in Hartman et 911 

al. (2021). Here, a Siamese neural network was trained to predict square root velocity 912 

distances between curves, such as the boundary curves of leaves from the notable 913 

Swedish Leaf Dataset (Söderkvist, 2016, 2001). Thus, it is justifiable to expect more 914 

studies showing DL methods combined with elastic metrics in the near future. 915 

 916 

Another family of approaches mathematically describe the surface of the selected objects using 917 

integral geometry (L. Wang et al., 2021). These surface descriptors can describe the shape of 918 

structures independently and may not suffer from issues of invariance and alignment to the 919 

same extent as the landmark-free approaches noted above. However, some applications 920 

remain limited, and they have not been widely tested with diverse biological datasets; thus, their 921 

efficacy remains to be established. Additionally, all of these approaches have drawn some 922 

concerns over ignoring homology (Mitteroecker and Schaefer, 2022), though there is great 923 

potential for reintroducing homology by combining these approaches with AI tools for feature or 924 

trait extraction, as described above and demonstrated in Case Study 3. These approaches 925 

could potentially be used not only to study the shape of specific homologous elements, but also 926 

could accelerate studies of modularity and integration (Zelditch and Goswami, 2022), which rely 927 

on large sample sizes to assess the relationships among structures, how those relationships 928 

reflect genetic, developmental and functional associations among traits, and how they influence 929 

the evolution of morphology over shallow to deep time scales.  930 

Thus, despite the attention being paid to new AI techniques and its great potential for 931 

automating the quantification of shape, there are at present few applications to datasets above 932 

the species-level. The methods remain technical and difficult to apply, due to the need for 933 

advanced coding knowledge and access to good hardware such as high-memory GPUs or high-934 

performance computing (HPC) systems. Developments are, therefore, required to make these 935 

methods more widely accessible and to allow for greater understanding and addressing of their 936 

capabilities and limitations.  937 

Colour 938 

Colour and patterning are key evolutionary components in taxa as diverse as insects, fishes, 939 

birds, and reptiles because of their importance in crypsis, aposematism, mimicry, 940 

communication, and sexual selection (Cuthill et al., 2017). Understanding how these patterns 941 

evolve is, therefore, crucial for understanding broader evolutionary themes such as natural and 942 

sexual selection, convergence, parallel evolution, and character displacement. Colour patterning 943 

can help researchers to recognise and discriminate between species and is commonly used in 944 

taxonomic, behavioural, and ecological studies. Traditionally, studies have been limited to 945 

qualitative descriptions, which has restricted analyses to relatively small sample sizes due to the 946 

difficulty of manually comparing large numbers of diverse and complex patterns and colour 947 

combinations. Quantitative analyses of colour patterning have become more common in recent 948 

years, with important large-scale studies being carried out in birds (Cooney et al., 2019; Dale et 949 
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al., 2015) and butterflies (Van Der Bijl et al., 2020). Furthermore, automated and semi-950 

automated methods have been developed to segment colour from images (Weller et al., 2022) 951 

and to quantify and analyse colour patterns (Maia et al., 2019). 952 

Such methods have helped address the limitations of manually processing data, but there are 953 

limits to automated procedures. Automated methods are much faster and less subjective than 954 

manual methods for colour segmentation, but are less flexible. Van der Bijl et al. (2020) used a 955 

colour profiling approach to assess sexual dimorphism in 369 species of butterflies, using a 956 

pixelated image to produce a linear sequence of coordinates containing lightness and colour 957 

values. This method is effective but time consuming because each specimen must be 958 

photographed, with images manipulated and standardised by hand. As a result, although 959 

containing an impressive sample size, the total number of species analysed in this study 960 

represents only 2% of the estimated 18,500 extant species of butterflies. 961 

ML offers a potential solution to this bottleneck by combining the capacity to process vast 962 

amounts of data and to use large datasets to train and refine its approach. Large image 963 

datasets of museum specimens are increasingly being made available for researchers and can 964 

act as both training datasets and as comprehensive samples for analysis. ML uses feature 965 

extraction and classification to process images in species identification (Wäldchen and Mäder, 966 

2018), and this can be translated into comparing and contrasting colour patterning, by 967 

quantifying both spectral (i.e., colour and luminance) and spatial (i.e., the distribution of pattern 968 

elements) properties of colour patterns across multiple specimens. With this approach, ML 969 

methods can identify individual specimens from photographs, reducing the workload by 970 

removing the need to manually process images (Maia et al., 2019). One successful 971 

implementation is the analysis of camera trap images, with one study focussing on Serengeti 972 

images having a 96% success rate compared with a crowdsourced team of human volunteers 973 

(Norouzzadeh et al., 2018). ML has further been used to identify individuals within species of 974 

small birds (Ferreira et al., 2020), pandas (Hou et al., 2020), and primates (Guo et al., 2020), 975 

based on only minute differences in colour pattern.  976 

Furthermore, the preparation and analysis of data workflows can be greatly improved with the 977 

use of AI and some of the most significant progress in this area has been conducted on 978 

museum bird specimens. DL methods have been applied to segment and extract plumage from 979 

images which greatly enhances the speed at which images can be processed and colour 980 

information extracted (He et al., 2022; see Case Study 6). This approach has been taken to 981 

even higher levels of specificity by applying pose estimation methods to identify specific points 982 

of bird anatomy regions to improve the efficiency of the pipeline for extracting colour information 983 

from specimens (He et al., 2023).  984 

 985 

 986 

Case study 6: Colour 987 

Studying macroevolution of morphological traits often requires extensive measurements from 988 

digitised specimens. This can become extremely inefficient in large clades such as in the case 989 
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of birds where there are an estimated 8,000 extant species globally. Understanding the 990 

evolution of avian species, therefore, necessitates extensive datasets of specimens even before 991 

factors such as sexual dimorphism have been considered. Several recent studies have 992 

employed DL models to assess plumage in birds on a global scale (Cooney et al., 2022; He et 993 

al., 2022). DL was applied to segment the whole plumage area from photographs of over 994 

120,000 bird photos across more than 7,500 bird species (Figure 11). The colour and ultraviolet 995 

(UV) reflectance of the plumage were extracted from the segmentations. These measurements 996 

were then used to study the signalling traits among Passerine birds (> 4,500 species). Findings 997 

revealed that UV reflectance is widespread across Passerine birds and is strongly 998 

phylogenetically conserved, and the light environment plays a significant role in the evolution of 999 

UV reflection (He et al., 2022). Another observation was that both male and female tropical 1000 

Passerine species tend to be more colourful than their temperate counterparts (Cooney et al., 1001 

2022). These findings highlight the potential of AI-generated predictions in biological analyses, 1002 

addressing questions and hypotheses that could not have been answered previously due to 1003 

limitations in the efficiency of manual methods.  1004 

 1005 

Figure 11: An example of using AI-generated segmentation to study bird plumage colours, 1006 

modified from He et al. (2022).  1007 

 1008 

 1009 

Pose estimation 1010 

One of the major avenues of the use of ML, particularly computer vision, in the biological 1011 

sciences has been pose estimation (Pereira et al., 2019). This approach estimates the relative 1012 

position of body parts to each other and is used to recognise different animal poses and their 1013 
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changes during locomotion. While estimation is usually conducted on static images, these 1014 

capabilities have also been adapted to recognise and quantify movement. Indeed, parsing 1015 

kinematic patterns from videos has become the hallmark of locomotion, biomechanic, and 1016 

behavioural studies, contributing to the rapid transformation of these fields. Pose estimation is a 1017 

relatively simple computer vision problem, based on the annotation of training sets from images 1018 

(Mathis et al., 2018). Originally, algorithms were unable to recognise parts that were not 1019 

sufficiently distinct from the background, an issue called the ‘background problem’ (Diaz et al., 1020 

2013), and mitigating this required the placement of markers on the moving parts prior to 1021 

filming. This problem was amplified in video estimation, as motion blur also constituted a 1022 

significant challenge, requiring the use of extensive and highly specific training datasets (Nath et 1023 

al., 2019). In light of these issues, the main element of novelty in the field has been the 1024 

development of computer vision algorithms able to handle video analyses requiring smaller 1025 

datasets without markers, such as that offered by the recently introduced DeepLabCut toolbox 1026 

(Mathis et al., 2018; Nath et al., 2019), which has quickly become the standard tool used for 1027 

marker-free 3D pose estimation (Figure 12). Its capabilities are based on transfer learning: the 1028 

neural network it is based upon was pre-trained with large datasets, allowing the application of 1029 

DL to much smaller supervised datasets (Mathis et al., 2018).  1030 

Efforts are being made within the field of pose estimation to bridge gaps between biological and 1031 

computer science expertise. This is increasingly evident in the games and animation industries 1032 

where there is a need to model animal behaviours for games and films. Manually editing each 1033 

keyframe can be a painstaking task for animators, thus physics-based models have been 1034 

employed for years, such as for automatically animating horse gaits (Huang et al., 2013). In 1035 

recent years, ML tools have been incorporated to automate the process further, such as in the 1036 

software, WeightShift, which combines full-body physics-based animation with AI to animate 1037 

characters (Chapman et al., 2020), or in animating the locomotion of quadrupeds using neural 1038 

networks (Zhang et al., 2018). Another area of pose estimation which has recently benefited 1039 

from ML is via natural language. AmadeusGPT is a natural language interface for DeepLabCut, 1040 

which integrates pose estimation and object segmentation (Kirillov et al., 2023). With this the 1041 

end-user can describe a query and get outputs without needing to code (Ye et al., 2023). 1042 

 1043 

Figure 12: Simplified pipeline for markerless motion tracking and pose estimation from videos 1044 

using DeepLabCut (Mathis et al., 2018). Limb-reduced skinks (Camaiti et al., 2023) are here 1045 

used as an example of locomotion tracking. 1046 
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Applications to Research in Evolutionary Morphology 1047 

AI has the capacity to transform our ability to capture morphology for evolutionary analysis, as 1048 

detailed above. We are already seeing the implementation of AI approaches for diverse 1049 

questions in evolutionary biology, but these barely scratch the surface of the potential 1050 

applications of AI across the field. Below we discuss a range of topics within evolutionary 1051 

morphology that have already benefited from AI applications, and identify key areas in 1052 

evolutionary morphology that are ripe for development. In addition to the case studies above 1053 

that demonstrate how AI is currently being used, we provide a table of tools (Table 1) that are 1054 

already available for applying AI to evolutionary morphology.  1055 

 1056 

Table 1. Currently available tools using AI for evolutionary morphology 1057 

This table will be regularly updated on [https://phAInomics.github.io/] 1058 

Tool name / 

Library 

Capabilities Supported 

Data types 

Program

ming 

languag

e 

Reference 

Acquiring Textual Data 

NLTK, spaCy 

(python libraries) 

Natural language 

processing (NLP). For 

example, it can be used 

for  extracting scientific 

words/taxonomic names 

from Journal articles 

Text Python (Bird et al., 2009) 

 

 

TaxoNERD  

 

(python library) 

Extracts scientific 

names, common names, 

and name abbreviations. 

Can link taxa mentioned 

to a reference taxonomy 

(e.g. NCBI Taxonomy, 

GBIF Backbone and 

TAXREF) 

Tabular data, 

text, images 

Python 

or R 

(Le Guillarme and 

Thuiller, 2022) 
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pytesseract 

 

(python library) 

Optical character 

recognition (OCR) to turn 

images to text. 

Images Python  

Google Vision Deep Learning 

Application Programming 

Interface to perform 

OCR. 

Images N/A  

Deep Learning 

PyTorch, 

TensorFlow,  

 

(python libraries) 

DL frameworks. Tabular data 

(arrays, 

matrices etc) 

Image based 

data 

Text 

Audio 

Python (Martín Abadi et 
al., 2015; Paszke 
et al., 2019) 

Scikit-learn 

 

(python library) 

Tools for classical ML. 

Classification methods 

(e.g. Support Vector 

Machines), clustering 

methods (e.g., K-means 

clustering), dimension 

reduction (e.g. PCA). 

A variety of 

datatypes, 

from tabular 

data, to image 

and sound 

data etc. 

Python (Pedregosa et al., 
2011) 

PIL, scikit-

image, open-cv-

python  

 

(python libraries) 

Image processing and 

computer vision tools. 

For example, 

thresholding, contour 

extraction with Snakes 

(Active Contour). 

Images Python (van der Walt et 
al., 2014) 
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Monai, 

Biomedisa 

 

(python libraries) 

DL tools that are 

designed for processing 

medical images 

Images, 

especially 

medical 

images 

Python (Cardoso et al., 
2022; Lösel et al., 
2020) 

 

Image processing software 

ORS Dragonfly, 

Avizo-Amira, 

VGSTUDIO 

MAX 

 

Softwares for processing 

and segmenting medical 

and cross-sectional 

images. AI-based 

segmentation methods 

are also supported. 

Medical 

images 

The 

software 

is not 

open-

source; 

but it 

supports 

Python 

scripting

.  

(Dragonfly: Comet 

Technologies 

Canada Inc., 

2022; Avizo: 

Thermo Fisher 

Scientific, 2021) 

 

 

3D Slicer, 

Imagej 

Open-source softwares 

for processing medical 

and cross-sectional 

images. Users can add 

extensions such as 

SlicerMorph, or build 

their own extensions 

Medical 

images 

C++, 

Python, 

Qt 

(Kikinis et al., 

2013; Rolfe et al., 

2021; Schneider 

et al., 2012) 

 

Tools can be used in evolutionary morphology 

MeshCNN Mesh classification and 

segmentation 

Can be used for 

segmenting 3D mesh 

models of specimens 

3D mesh 

models 

Python (Hanocka et al., 

2019) 

Detectron2 ML 

library 

Object detection Images Python (Wu and Kirillov, 

2019) 
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Can be used for 

identifying a specimen in 

an image. 

 

Segment 

Anything 

A pre-trained 

segmentation tool that 

can generate decent 

segmentation results  

Images Python (Kirillov et al., 

2023) 

Pl@ntNet Species ID through 

identification of traits for 

plants 

Images N/A, 

input 

images 

directly 

to online 

tool 

(identify.

plantnet.

org) 

(“Pl@ntNet IPT,” 

2023; “Pl@ntNet,” 
2023) 

FloraIncognita Species ID and 

identification of traits for 

plants 

Images N/A, 

input 

images 

directly 

to online 

tool 

(florainc

ognita.c

om) 

(Mäder et al., 

2021) 

Fishial.ai  Species ID and feature 

recognition for fish 

Images N/A 

input 

images 

directly 

to web 

portal 

(portal.fi

shial.ai) 

(“Fishial.ai,” 2019) 

fishial.ai 
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Merlin Bird ID Species ID for birds from 

descriptions, 

photographs, and sound 

recordings 

Images  

Audio 

N/A, 

input 

images 

directly 

to 

mobile 

app 

(merlin.

allabout

birds.or

g) 

(Cornell Lab of 

Ornithology, 2024) 

 

Wolfram 

Mathematica 

Identifying type of 

specimen in an image 

Categorising traits of 

specimens from images 

Images Wolfram 

Langua

ge, 

C/C++, 

Java 

(Wolfram 

Research, Inc., 

2024) 

Wolfram 

Research, 2024 

MaxEnt Modelling taxa’s 

ecological niches 

Species 

occurrence 

data, 

environmental 

rasters 

Java (Phillips et al., 

2024) 

 1059 

Clustering and classification  1060 

Genetic data is commonly used in constructing phylogenies for extant species; however, this is 1061 

not possible in certain circumstances, including the majority of extinct taxa. Due to these 1062 

shortcomings, ML techniques using images have become widespread in the classification of 1063 

individuals into distinct species (Barré et al., 2017; Hsiang et al., 2019; Valan et al., 2019; 1064 

Wäldchen and Mäder, 2018). Current research predominantly employs CNNs (Krizhevsky et al., 1065 

2012), which excel at extracting features from images and providing probability estimates to 1066 

assign images to specific species classes. These methods, however, only classify the species 1067 

and do not describe the relationships between classes.  1068 

Some AI-based image recognition methods have sought to overcome this issue and possess 1069 

potential for phylogenetic applications, but studies so far are limited. Kiel (2021) describes a 1070 

method combining DL and computer vision approaches to train a CNN to categorise images of 1071 

bivalve species into family groupings based on “known” taxonomy. For each species image, the 1072 

algorithm estimates the probability that it belongs to one family rather than another. These 1073 
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probability scores are used as a proxy for morphological similarity and to construct a distance 1074 

matrix, which is in turn used to cluster the families and infer a topology. Whilst this method did 1075 

find significantly more bivalve families clustering with members of their “known” subclasses than 1076 

expected by chance, the resulting phylogeny did indicate many “unlikely” placements. When 1077 

multiple CNNs trained at different taxonomic levels were combined, the resulting phylogeny 1078 

more closely matched the expected clustering based on existing taxonomic standing. 1079 

Morphometric data is also available for use in species identification, and in recent years ML 1080 

techniques such as Artificial Neural Networks (ANNs) have been employed to accurately 1081 

classify species (Salifu et al., 2022). These may be a better source of information to reconstruct 1082 

the evolutionary origins of entire clades as they are able to quantitatively measure the degree of 1083 

difference amongst individuals. However, like the image classification methods, they rely on 1084 

supervised training with taxonomic labels to assign species, introducing an inherent assumption 1085 

of phylogeny.  1086 

Each of these techniques must identify distinct morphological attributes for grouping, posing 1087 

challenges for species-level phylogenies, especially for fossil taxa with limited individual 1088 

samples. Lastly, using morphological similarity as a proxy for phylogenetic placement, without a 1089 

specified model, may be prone to the effects of homoplasy and convergent evolution. Despite 1090 

these constraints, the ability to use ML algorithms to differentiate taxa based on morphology 1091 

may be useful to infer relatedness based on morphological similarity/dissimilarity. 1092 

Species delimitation 1093 

Species delimitation, opposed to classification, requires the ability to identify whether individuals 1094 

belong to a population, which in some cases may lead to new species being introduced. The 1095 

limitations of image clustering methods makes them ill-suited for this task. Instead emerging 1096 

techniques in one-class classification systems (Perera and Patel, 2019) or open set recognition 1097 

(Geng et al., 2021) offer promising avenues for extending species identification beyond initial 1098 

classifications done through image analysis. However, inherent challenges remain; these 1099 

techniques are currently used for outlier detection and would need to be adapted to establish 1100 

species.  1101 

An alternative approach would be to use phenotypic traits as a basis for delimitation. Individuals 1102 

can be grouped into self-similar clusters by analysing phenotypic traits, forming the basis for 1103 

delineating populations and species (Ezard et al., 2010). Traditionally, Gaussian mixture models 1104 

(GMMs) employing a Maximum Likelihood approach have been utilised (Fraley and Raftery, 1105 

2002). However, the advent of deep Gaussian mixture models (Viroli and McLachlan, 2019), 1106 

which incorporate ML techniques, may be more suitable. These models show heightened levels 1107 

of complexity, enabling them to capture intricate relationships within data. These approaches, 1108 

combined with the increasing ability to acquire image or trait data rapidly, may allow for a more 1109 

nuanced and comprehensive understanding of taxonomy.  1110 

A number of genomic species delimitation methods have been extensively used in the last 1111 

decade, including Bayesian species delimitation (BPP), which has been cited over 600 times 1112 

(Yang, 2015). In addition, unsupervised ML algorithms have been employed  on genomic data 1113 

to predict clusters of individuals (Derkarabetian et al., 2019). More recently, convolutional neural 1114 
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networks have been utilised to build a morphology-molecule network [MMNet] that integrates 1115 

morphological and molecular data for species identification (Yang et al., 2022). However, 1116 

despite their widespread adoption and increasing applications in taxonomy, these methods do 1117 

not work when faced with species that are not present in the training set, which renders them 1118 

ineffective for identifying novel or undiscovered species. 1119 

Nonetheless, DL tools can be used to detect anomalies both in labels and in species 1120 

classification. From a practical level, this can be used to assist curators in adding correct 1121 

information (as with the Knowledge Bases; Gu et al., 2023), and even one day detect new 1122 

species. One application is to use a well-trained classifier model to classify taxonomic 1123 

information (e.g., genus or species) of specimens that are being digitised. Then by comparing 1124 

the predictions and actual specimen labels, potential missing or incorrect labels can be flagged. 1125 

Similarly, this approach has been applied to the classification of species from digitised 1126 

specimens, as in Hansen et al. (2020) where CNNs were used to classify beetles from images 1127 

of digitised museum specimens. These models, particularly when combined with further 1128 

classification and clustering tools, such as with heatmap analysis (Hollister et al., 2023), can 1129 

one day be used to identify new species by simply scanning digitised museum collections. 1130 

Similar to the accumulation of image data, many more genomic markers and whole genomes 1131 

are being sequenced today. Consequently, unsupervised or semi-supervised AI-based 1132 

integrative taxonomic tools have the potential to play a key role in furthering species discovery. 1133 

In addition to phenotypic traits and genomes, researchers are obtaining additional suites of 1134 

organismal data such as acoustics, behaviour, and ecology. AI will be key to bringing these 1135 

complex datasets together for a biologically meaningful interpretation of a ‘species’.  1136 

Phylogenies - Building Trees 1137 

Evolutionary studies frequently involve tree data structures, especially phylogenetic trees. The 1138 

use of machine learning (ML) methods remains relatively uncommon in phylogenetic inference, 1139 

and research into this area is still in its infancy. Despite recent progress and potential to address 1140 

limitations of traditional methods, the extent of ML's accuracy and scalability remains uncertain. 1141 

ML algorithms can mitigate the computational costs associated with Maximum Likelihood and 1142 

Bayesian approaches, are flexible, and do not necessarily require explicit specification of 1143 

models. However, a significant obstacle for supervised methods is the scarcity of training data 1144 

for tree inference. A ‘true’ phylogeny is fundamentally unknowable, leading to reliance on 1145 

simulated data that may not accurately reflect evolutionary relationships. Recent reviews of ML 1146 

approaches for tree building (Mo et al., 2023; Sapoval et al., 2022) have predominantly focused 1147 

on molecular phylogenetics, leaving morphology-based phylogenetics relatively unexplored 1148 

despite its unique opportunities (e.g. incorporating fossils) and unresolved challenges. Currently 1149 

available models of morphological evolution are generally more simplistic than those that exist 1150 

for molecular evolution (Lee and Palci, 2015), though are likely more complex in reality. 1151 

However, ML could be applied to developing morphological models of evolution through 1152 

automated assessment of trait covariations (which could also be applied to studies of modularity 1153 

and integration, as noted above), changes through time using existing phylogenies, and 1154 

probabilities of key innovations versus gradual variations. This is a key area for development; at 1155 

present there are no published attempts to apply AI methods to morphology-based phylogenetic 1156 



 

 

43 
 

inference, or to build models to estimate morphological change through time to aid in building 1157 

those phylogenies.  1158 

Molecular phylogenetics 1159 

There are currently far more studies focused on applying ML methods to genetic data than to 1160 

morphological data. However, a number of approaches being tested using sequence data may 1161 

have potential for future application to morphological data. CNNs and RNNs have been 1162 

employed to infer quartet (4 taxa) topologies using simulated sequence alignments and protein 1163 

data (Suvorov et al., 2020; Zou et al., 2020). These methods can be trained to deal with 1164 

instances of extreme model violation where traditional statistical methods such as Maximum 1165 

Likelihood might fall short, and once trained, tree estimation can be very fast (Zaharias et al., 1166 

2022). Simulated quartet experiments have been shown to outperform methods like Maximum 1167 

Likelihood, with particular success in scenarios of high substitution heterogeneities, which many 1168 

standard models struggle to account for (Zou et al., 2020). However, more recent analyses 1169 

contest this, and traditional methods have outperformed neural network methods when the 1170 

taxon number is increased above four (Zaharias et al., 2022). 1171 

These methods have mostly been applied to individual sequences, but applying them to species 1172 

trees involves further complexities such as incomplete lineage sorting and introgression 1173 

(Degnan and Rosenberg, 2009; Maddison and Knowles, 2006; Suvorov et al., 2020). 1174 

Restrictions of limited taxa and the complexity of species tree inference are emerging areas of 1175 

research, such as in a recent study applying generative adversarial networks (GANs) to 1176 

simulated data and seven species of fungi (Smith and Hahn, 2023). The proposed phyloGAN 1177 

model uses two networks: a generator that suggests new topologies, and a discriminator trained 1178 

to differentiate real and generated data, effectively deciding how “realistic” a proposed topology 1179 

and alignment might be. This method imitates the heuristic search employed by many traditional 1180 

methods to explore tree space for more optimal trees. PhyloGAN shows an improvement in the 1181 

number of taxa that can be considered compared to previously mentioned methods, but is still 1182 

limited compared to traditional methods, and hampered by lengthy computational times (Smith 1183 

and Hahn, 2023).  1184 

Another molecular ML tree building approach is Phyloformer which computes distances 1185 

between molecular sequences in a multiple sequence alignment (MSA) (Nesterenko et al., 1186 

2022). This method simulates trees, then uses probabilistic models of sequence evolution, 1187 

working backwards to simulate MSAs. Supervised learning is then used to train a ML algorithm 1188 

to reverse engineer the phylogeny based on an associated MSA. In the case of Phyloformer, 1189 

the algorithm estimates pairs of evolutionary distances between sequences that can then be 1190 

used to infer a tree using traditional methods such as Neighbour Joining (NJ). Phyloformer was 1191 

found to outperform standard distance-based methods, and also performed competitively 1192 

against Maximum Likelihood whilst being significantly faster. 1193 

The methods described here use different degrees of ML to estimate evolutionary relationships, 1194 

either by approximating distances between taxa or by directly inferring topologies. It is not yet 1195 

clear whether they will be applicable to morphological data. Methods such as Phyloformer still 1196 

rely on models of sequence evolution. Such models are lacking in the field of morphometrics 1197 
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due to increased complexity and the lack of clearly defined smallest units of change across the 1198 

tree of life. This presents a challenge to the application of this framework of methods, although 1199 

morphological data could be coded into such analyses as matrices.   1200 

Model selection, heuristic searches, and missing data 1201 

One of the most important considerations for phylogenetics is the type of model used. However, 1202 

identifying the optimal model can be challenging. ML algorithms have recently been applied to 1203 

improve model selection methods. ModelTeller (Abadi et al., 2020) and ModelRevelator 1204 

(Burgstaller-Muehlbacher et al., 2023) are two such approaches that focus specifically on 1205 

identifying the most appropriate substitution models for a particular analysis or dataset. Whilst 1206 

both focus on molecular substitution models, their existence opens the possibility of developing 1207 

new systems for selecting morphological evolutionary models. 1208 

Many phylogenetic methods (including Maximum Likelihood and Bayesian) employ heuristic 1209 

searches, where model parameters (such as tree topology and branch length) are adjusted and 1210 

the likelihood calculated for each adjustment. This method essentially explores tree space for a 1211 

set number of iterations, aiming to identify parameter combinations of increasingly higher 1212 

likelihoods. Such methods are limited by how extensive their tree search is, and as a result can 1213 

become extremely computationally expensive. ML methods are now being applied to improve 1214 

the efficiency of this process by predicting which neighbouring trees will increase the likelihood 1215 

without actually calculating the value, thereby reducing computational expense (Azouri et al., 1216 

2023, 2021).  1217 

Finally, a major challenge in both molecular and morphological phylogenetic studies is the 1218 

impact of missing data. This is particularly impactful for distance-based methods where 1219 

calculating a distance matrix is complicated by the presence of missing data in the alignments. 1220 

In the case of molecular phylogenetic studies, this refers to missing bases in sequences. For 1221 

morphological data this could be a result of incomplete specimens where certain traits or 1222 

biological structures are missing or difficult to measure or score. Previous studies have shown 1223 

that missing data negatively affects the accuracy of tree inference methods (Roure et al., 2013; 1224 

Wiens, 2006). ML methods such as PhyloMissForest (Pinheiro et al., 2022), which uses a 1225 

Random Forest approach, and two methods proposed by Bhattacharjee & Bayzid (2020), use 1226 

ML to estimate missing distance values within a distance matrix and may outperform traditional 1227 

statistical methods.  1228 

Phylogenetic comparative methods and evolutionary modelling 1229 

Using a phylogenetic framework to estimate the evolution of clades and traits has become a 1230 

core part of evolutionary morphology over the past few decades (Adams and Collyer 2019; 1231 

Felsenstein 1985). Analysis of trait variation across phylogenies and through time relies on the 1232 

availability of well-supported topologies and time calibration. Recent advances in genome 1233 

sequencing and big-data approaches to taxonomic sampling and trait data collection have 1234 

increased the availability of time-calibrated phylogenies. In turn, this has enhanced our ability to 1235 

reliably map the evolution of traits on phylogenies and consider phylogenetic relations when 1236 

examining relationships between traits across multiple taxa.  1237 
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The potential applications of AI in reconstructing trait evolution using a phylogenetic framework 1238 

have been documented theoretically. These applications include character evolution model 1239 

choice and the reliable and efficient encoding of phylogenetic information. For example, Ho et 1240 

al. (2019) demonstrated the theoretical application of ML to ancestral estimation of phenotypic 1241 

traits using a multi-task learning approach applied to Brownian Motion models of continuous 1242 

biological traits. A multi-task learning approach is an ML framework that pools data from 1243 

different tasks (Ruder, 2017). This takes the form of an algorithm able to reduce the variance of 1244 

estimators, using a penalty term that draws models closer to each other, allowing the estimation 1245 

of ancestral states of multiple characters simultaneously. This approach improved ancestral 1246 

estimations compared with Maximum Likelihood models at the expense of a slight bias 1247 

introduced in the phylogenetic estimates (Ho et al., 2019).  1248 

Despite theoretical advances, there are currently no practical applications of ML approaches to 1249 

estimate trait evolution. A known issue that would benefit from an AI-based modelling approach 1250 

is the assignment of distinct rates of character evolution to different parts of a given 1251 

phylogenetic tree (i.e., King and Lee, 2015). ML would enable the simultaneous pooling of 1252 

multiple data sources, including distributions of states at the tips of phylogenetic trees, branch 1253 

lengths, node ages, uncertainty in node resolution, and hidden states, and consideration of a 1254 

wide variety of complex models that may better reflect phenomic datasets (Goswami and 1255 

Clavel, 2024). ML approaches could also facilitate the comparison of simulations across trees. 1256 

Furthermore, AI methods could account for phylogenetic relatedness in analyses of trait 1257 

correlations. In the field of bioinformatics, using DNN and Convolutional Graph Network (CGN) 1258 

architectures in phylogenetic profiling for protein interactions improved predictions (Moi and 1259 

Dessimoz, 2022). In particular, combining CGN with a graphical representation of tree topology 1260 

allowed for prediction across multiple species and could be used to predict pairwise interaction 1261 

across time. Using these deep neural network algorithms in conjunction with phylogenetic 1262 

information is currently exploratory but could potentially streamline and improve multiple aspects 1263 

of estimating trait evolution and ancestral states, allowing better modelling of the complex 1264 

factors underlying evolution on a phenomic scale.  1265 

Function and Adaptive landscapes 1266 

In evolutionary biology, adaptive landscapes are conceptual frameworks that illustrate the 1267 

relationship between the phenotype of an organism and its fitness within a specific ecological 1268 

context (Arnold, 2003; McGhee, 1999, 1980; Simpson, 1984). They provide a visual 1269 

representation of natural selection-driven trait space across the blanket of an adaptive 1270 

landscape, where peaks of specific traits reflect higher fitness compared to putative trait space 1271 

across the landscape. Over evolutionary time, genetic variation, mutation, recombination, and 1272 

natural selection drive the population towards regions of higher fitness. Utilising models of trait 1273 

diversification can be helpful in tracing adaptive peaks of species through time, adapting to 1274 

different ecological niches or responding to environmental shifts. The study of adaptive 1275 

landscapes is key both to understanding the evolutionary adaptive mechanisms giving rise to 1276 

biodiversity and predicting the future adaptive potential of species in light of anthropogenic-1277 

driven habitat loss and climate change.  1278 
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Functional adaptive landscape analysis (FEA) uses the morphology and function of skeletal 1279 

elements to model landscapes (Dickson and Pierce, 2019; Jones et al., 2021; Polly et al., 2016; 1280 

Tseng et al., 2023). In palaeontology, functional adaptive landscapes commonly employ FEA as 1281 

a functional metric (Deakin et al., 2022; Polly et al., 2016). ML algorithms can replace FEA to 1282 

predict the behaviour of a beam in a one-dimensional system if the algorithms are first trained 1283 

on initial FEA. ANNs have been suggested to provide more accurate FEA results than boosting 1284 

regression trees or Random Forest ML algorithms (Vurtur Badarinath et al., 2021). Furthermore, 1285 

ML algorithms could assist in the morphometrics (Baylac et al., 2003; Punyasena et al., 2012) 1286 

used in adaptive landscapes in addition to modelling adaptive landscapes through evolutionary 1287 

time.  1288 

Additionally, AI has been increasingly applied to FEA-based biomechanical modelling 1289 

(Galbusera et al., 2020; Mouloodi et al., 2021). These techniques can be applied to data 1290 

extracted from static images, 3D-image data (Galbusera et al., 2020), and even motion capture 1291 

(Mouloodi et al., 2021). The isolation of distinct features (image segmentation) and the capture 1292 

of locomotory information (e.g. through pose estimation) can both be automated through 1293 

computer vision, which allows the identification of parts of interest and their spatial relationships 1294 

to one another. Once features have been extracted, AI can be used to simulate their behaviour 1295 

in relation to one another under a given set of physical constraints (e.g. Liu, 2019). This is 1296 

particularly useful for the creation of models of the range of appendicular motion, relationships 1297 

between internal organs, and even models of cytokinesis (Huiskes and Hollister, 1993; Ross, 1298 

2005; Shi et al., 2010).  1299 

Phenome-environment and ecometrics 1300 

One of the most established areas of phenotypic analysis is quantification of relationships 1301 

between phenomes of organisms (the sum of their phenotypic traits) and the environmental 1302 

context in which they evolved. The end goal of many studies using this approach is to assign an 1303 

ecomorphological characterisation to phenotypic traits and to parse their ecological signal (Barr, 1304 

2018). AI has been implemented in this field through the use of algorithms that infer present and 1305 

past ecomorphologies by reducing the dimensionality of ecomorphological data through ML 1306 

pipelines such as Random Forest analyses (Mahendiran et al., 2022; Rabinovich, 2021; Sosiak 1307 

and Barden, 2021; Spradley et al., 2019). Similarly, ML procedures have been used to 1308 

discriminate and sort phenotypes (especially morphology) based on their belonging to specific 1309 

ecomorphs or ecological guilds (MacLeod et al., 2022). These studies have highlighted the 1310 

advantages of AI-based approaches compared to standard procedures used to test the links 1311 

between morphology and ecology, such as Canonical Variate Analysis (Albrecht, 1980). 1312 

The related field of ecometrics is a taxon-free approach to quantifying the distribution of 1313 

functional traits across space and time (Eronen et al., 2010). Ecometric correspondence 1314 

between environmental and phenotypic data is used to develop transfer functions which can be 1315 

used to reconstruct paleoenvironments or incorporate Species Distribution Modelling (SDM) to 1316 

model future spatial distributions of phenotypes given predicted climatic scenarios (Parker et al., 1317 

2023; Vermillion et al., 2018). Existing work uses linear and maximum likelihood approaches to 1318 

ecometric modelling. These approaches have a limit of one or two climate inputs, normally 1319 

limiting analyses to consider only annual precipitation and mean annual temperature (Parker et 1320 
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al., 2023). However, a Random Forest approach would enable the model to use any number of 1321 

climatic variables. Similarly, SDMs can be built using CNNs, capturing non-linear 1322 

transformations across multiple variables (Botella et al., 2018). DL approaches to quantifying 1323 

phenome-environment would enable models to better approach the complex factors contributing 1324 

to climate and trait distribution, as in studies of trait evolution. 1325 

Niches and Niche Evolution 1326 

ML algorithms, including Boosted Regression Tree and Random Forest, have become standard 1327 

methodologies for modelling the ecological niches of taxa and, by extension, their potential 1328 

spatial distribution. Over the past decade, research has extensively focussed on predicting the 1329 

ecological effects of climate change by using ecological niche modelling (Deb et al., 2020; 1330 

Karuppaiah et al., 2023; Qin et al., 2017; Tang et al., 2021). The most prominent ML model in 1331 

this area is the ‘maximum entropy modelling method (MaxEnt), which has been applied in 1332 

thousands of studies since its description in 2006 (Phillips et al., 2006; Merow et al., 2013).  1333 

MaxEnt’s ubiquity in scientific literature is in part due to the algorithm requiring relatively few 1334 

inputs (only species occurrences and geographic data) and relying on biologically reasonable 1335 

assumptions. It assumes that a taxon will occupy as large an area as possible (maximum 1336 

distribution entropy; Elith et al., 2011; Phillips et al., 2006). These limitations have also produced 1337 

an abundance of literature critiquing and subsequently optimising MaxEnt’s statistical 1338 

assumptions and processes (Campos et al., 2023; Cobos et al., 2019; Low et al., 2021; Sillero 1339 

and Barbosa, 2021). 1340 

Studies that use MaxEnt or other ML methods tend to consider niches as static entities, with 1341 

many publications ‘projecting’ the same niche onto environmental rasters representing distinct 1342 

points in time, sometimes thousands or millions of years ago (Saupe et al., 2019). Niche 1343 

evolution studies have instead relied on measuring the contemporary niche overlap of different 1344 

taxa (usually via the methodology of Broennimann et al., 2012), considering the similarities and 1345 

differences within a phylogenetic context (Doré et al., 2023; Padilla‐García et al., 2023; 1346 

Vasconcelos et al., 2023). While both approaches are useful in understanding ecological 1347 

evolution across time, they are limited by their discrete temporal sampling – niches change 1348 

continuously across space and time, and an individual niche of a taxon may also change over 1349 

time. 1350 

ML methods could be developed to identify and accommodate niches changing over time. 1351 

Taxon occurrences sometimes have associated temporal metadata, which could be used by an 1352 

AI tool to predict the continuous changes in a niche in the recent past or near future. This could 1353 

prove especially invaluable in studying the effects of climate change at a higher resolution. 1354 

Considering a geological timescale, the predicted ecological niches of fossil taxa (modelled with 1355 

environmental data representing periods in deep time) could be used to calibrate and, thus, 1356 

further validate continuous niche evolution models across phylogenetic trees. 1357 

Prospectus 1358 

The scope of evolutionary biology is immense, involving the history of life on Earth over the past 1359 

>3 billion years. For the vast majority of species that ever lived, the only available data is 1360 
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morphological in nature; thus, studying morphology is crucial for understanding the evolution of 1361 

organisms. Yet, methods for capturing morphological data remain largely manual, presenting a 1362 

bottleneck for the study of morphological evolution, particularly in comparison to other biological 1363 

fields with mature methods for ‘Omics’ level analyses. The use of AI is bringing about a massive 1364 

transformation in the field of evolutionary morphology, both for data capture and analysis. 1365 

Integrating AI techniques into this area will become increasingly important as the field continues 1366 

to move towards larger-scale analyses and bigger data. 1367 

As we have discussed, AI has been successfully applied to a range of data acquisition for 1368 

evolutionary morphology, and AI applications are only increasing in the pace of development 1369 

and accessibility for non-experts. For example, AI is already making it quicker to generate, 1370 

refine, and access image data of larger quantities and/or greater resolutions than ever before. 1371 

Large gaps remain, however, including discriminating features or regions of interest, extracting 1372 

discrete traits or 3D morphometric data in datasets with large amounts of variation (which are 1373 

common in comparative evolutionary analysis), and in applying AI for improving evolutionary 1374 

models for morphological data. These areas should be the focus of efforts over the coming 1375 

years. While we have detailed applications of AI to several research areas involving 1376 

morphological evolution, there are many more for which AI has yet to make a significant impact. 1377 

Below, we note a few subfields of evolutionary morphology that have clear pathways for 1378 

improvement through AI. Finally, we close with some considerations on the accessibility and 1379 

environmental effects of AI.  1380 

Emerging fields 1381 

Retrodeformation - Several studies have demonstrated that fossil data are critical for 1382 

accurately estimating phenotypic evolution through deep time (Slater et al. 2012; Goswami and 1383 

Clavel, 2024 and references therein). A common challenge in palaeontology is encountering 1384 

fossils which have undergone taphonomic distortion via brittle or plastic deformation (Kammerer 1385 

et al., 2020; Schlager et al., 2018). This can severely hamper attempts to assess and quantify 1386 

intra- and interspecific shape by introducing non-biological variation, and for this reason, as well 1387 

as the lack of integration in phylogenetic analyses as noted above, fossil data are often 1388 

excluded from comparative analyses. Retrodeformation is the process of restoring the original 1389 

shape of an object by reversing this taphonomic distortion (Herbst et al., 2022; Lautenschlager, 1390 

2016). While landmark- and symmetry-based procedures to manually perform these operations 1391 

are available (e.g. Morpho, Schlager et al., 2018), they are time-consuming and can only be 1392 

applied to relatively small datasets, restricting the taxonomic breadth of studies. AI provides an 1393 

opportunity to automate and enhance this process. ML models, such as neural networks, can be 1394 

trained to recognize and correct specific types of deformations. These models can learn 1395 

patterns of distortion and apply appropriate corrections. In the future, AI may aid in the 1396 

reconstruction of 3D objects or scans of distorted or even completely flattened fossils, helping to 1397 

recover valuable 3D morphology. Once models have been trained on a dataset of naturally 1398 

distorted fossils and manually performed retrodeformation simulations, they can be integrated 1399 

into software applications or embedded in hardware systems for real-time correction and 1400 

analysis. The choice of AI techniques and algorithms will depend on the specific application and 1401 
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the nature of the deformations to be corrected. For instance, de Oliveira Coelho (2015) used 1402 

logistic model trees to predict the temperature at which human bone was burnt. Likewise, Zeng 1403 

et al. (2021) used a support vector machine algorithm to detect small geological faults. Such 1404 

methods could be co-opted to estimate the extent of brittle and ductile deformation a fossil has 1405 

undergone, which then enables evolutionary morphologists to apply the opposite forces to 1406 

correct the distortion.  1407 

Histology - Histology examines the microscopic structure and morphology of tissues, including 1408 

fossil tissues in palaeohistology. Palaeohistology has historically informed on growth, 1409 

physiology, and development, but is also increasingly used to investigate the form and function 1410 

of tissues (e.g. the function of duck-billed dinosaur dental batteries; Bailleul et al., 2019, 2012). 1411 

AI tools have greatly advanced histology, especially in the sub-field of histo-pathology, to better 1412 

cancer recognition and clinical oncology (reviewed in Shmatko et al., 2022). AI has been 1413 

proposed to be a promising avenue to increase throughput for pattern recognition. Some areas 1414 

where AI pattern recognition has already been explored in biological research are in quality 1415 

assessment of histological images (Haghighat et al., 2022) and herbivore diet characterisation 1416 

through micro-histological analysis (Filella et al., 2023). Additionally, DNNs have been used to 1417 

identify primary and secondary osteon regions and create segmented maps of different osteon 1418 

regions. This osteon segmentation was combined with phylogenetics to elucidate the 1419 

developmental pathway towards miniaturisation in the theropod dinosaurs Alvarezsauria (Z. Qin 1420 

et al., 2022). There is significant potential for the use of AI in histological studies in the context 1421 

of evolutionary morphology and is therefore an avenue for future exploration.  1422 

Genome-phenome mapping - AI has been applied in two main areas of genome phenome 1423 

association (GPA): the medical sciences, and food production. This is not surprising, as both 1424 

are umbrella areas of research with high societal impact. Deep matrix factorization (DMF)-based 1425 

methods developed to handle multi-omics data have been successfully applied to improve 1426 

genome-wide mapping and genome-wide association studies in the context of molecular 1427 

phenomes. These include disease susceptibility (Long et al., 2023; Mieth et al., 2021), drug 1428 

efficiency (Mongia and Majumdar, 2020), crop phenotype prediction (Islam et al., 2023), and 1429 

microbe-disease association (Y. Liu et al., 2021). More recently, a multi-omics data fusion-1430 

based approach (Weighted Deep Matrix Genome Phenome Association) has been proposed to 1431 

incorporate different kinds of omics data and to predict potential nonlinear GPAs with functional 1432 

traits (Tan et al., 2022). However, for non-model organisms and evolutionary research, AI is 1433 

underutilised either through GPAs or genome-wide association studies (GWAS). These fields 1434 

are rapidly evolving with the increasing amounts of data collected worldwide, and therefore 1435 

provide promising avenues for implementing new AI algorithms in the near future. 1436 

Evo-devo - ML has been successfully applied to the study of gene expression in embryonic 1437 

development of model organisms (Čapek et al., 2023; Feltes et al., 2018; Naert et al., 2021). 1438 

Algorithms have also been developed to aid in phenotyping and staging embryos and to 1439 

recognize diseases and malformations (e.g. Al-Saaidah et al., 2017; Jeanray et al., 2015). In 1440 

evolutionary developmental biology (evo-devo), phenotype identification is a recent 1441 

development. A few pilot studies have been conducted using both images and morphometrics 1442 

data on human cells, model organisms and plants (Cai and Ge, 2017; Chen et al., 2020; 1443 
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Masaeli et al., 2016). CNNs have been used to extract visual patterns from images, to aid 1444 

embryo staging, and to analyse changes in phenotype during ontogeny (Feltes et al., 2018; 1445 

Naert et al., 2021). 1446 

Accessibility and Considerations 1447 

Until very recently, most AI models were built and applied using Python libraries such as Caffe, 1448 

TensorFlow, and PyTorch (Jia et al., 2014; Martín Abadi et al., 2015; Paszke et al., 2019), 1449 

requiring both AI and programming knowledge. Additionally, running these models required 1450 

specialised, expensive hardware, such as GPUs, which are commonly used in training AI 1451 

models. Consequently, the required level of expert understanding of AI and costly hardware 1452 

restricted the accessibility of AI for many researchers in the biological sciences. 1453 

As AI continues to advance, it is becoming increasingly accessible to non-experts and more 1454 

affordable to implement due to several factors. (i) Increasingly user-friendly software has 1455 

reduced the need for in-depth AI-related knowledge. (ii) The growth of open-source and pre-1456 

trained models has significantly reduced the computational resources, data, and time required 1457 

to develop AI models. (iii) The advent of cloud-based AI services has allowed researchers to 1458 

access powerful AI without investing in local GPUs. In addition, the cost of robotic arms 1459 

decreases annually (Zhang et al., 2022), meaning that large datasets capturing phenotype with 1460 

high resolution are increasingly available. 1461 

Despite these advancements, there are certain aspects that require a degree of caution. AI 1462 

outputs are derived from the data used for training. If the data is biased or unrefined, it could 1463 

lead to similarly inaccurate and biased results (Mehrabi et al., 2021; Zhang et al., 2022), 1464 

therefore, attention must be given to data cleaning and preprocessing. 1465 

Additionally, the environmental impact of AI cannot be overlooked, particularly as many studies 1466 

in our fields aim to protect the natural world and limit human-caused climate change and 1467 

destruction of biodiversity. Evolutionary morphology studies increasingly involve the collection 1468 

and storage of large quantities of image data. These datasets are currently limited by the hours 1469 

of manual input required, but will only increase in size as AI approaches allow for more efficient 1470 

processing and analysis, leading to larger, more complex studies that in turn require increased 1471 

hardware and energy input. Training large-scale models can consume substantial amounts of 1472 

energy, contributing to carbon emissions, although admittedly the models trained and used in 1473 

evolutionary biology are unlikely to be as large as those from tech giants like Google, Meta and 1474 

OpenAI. Some studies using large scale genetic datasets have estimated the carbon footprint of 1475 

their computational analyses (Philippe et al., 2019; Y. Qin et al., 2022). More formal approaches 1476 

to sustainable computer science are being developed in the form of emission calculation tools 1477 

(Lacoste et al., 2019; Lannelongue et al., 2021), assessments of their suitability for various 1478 

approaches (Bouza et al., 2023), and proposed principles for greener computational science in 1479 

the future (Lannelongue et al., 2023). As the scale of AI models and the demand for AI continue 1480 

to grow, it will be increasingly important for us to evaluate the environmental impact of future 1481 

studies in evolutionary morphology. 1482 
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To conclude, we have here provided an introduction and overview of the current and potential 1483 

future applications of AI to evolutionary morphology. As AI becomes more accessible and 1484 

tailored towards applications central to the study of evolutionary biology, we expect that it will 1485 

transform the study of evolutionary morphology. By accelerating and improving capture and 1486 

analysis of “Big Data” on phenotype for diverse comparative datasets, AI will allow the 1487 

realisation of evolutionary phenomics and launch a new phase in the study of past and present 1488 

biodiversity. 1489 
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