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Abstract  23 

The interconnecting links (edges) between individuals (nodes) in an animal social network are 24 

often defined by discrete, directed behaviours (interactions). However, where interactions are 25 

difficult to observe, a network edge is instead defined as individuals sharing space or overlapping 26 

in time (an association). Despite an increasingly accessible toolkit to assemble and analyse 27 

animal social networks, defining associations remains a challenge in behavioural ecology. While 28 

different study systems have used different ways to validate the definition of an association, an 29 

empirical comparison of how these different methods compare is lacking. Here, we apply three 30 

methods to define social associations, by 1) strict time-window, 2) co-occurrence in a group, and 31 

3) arrival-time, in four bird systems. We first test the ability of each method to detect individually 32 

repeatable social traits. Then we describe the structure of each network using Jaccard similarity 33 

and Mantel tests, and finally, we test the sensitivity of network structure to changing parameters 34 

within the three definitions. We found that the network structure was largely robust to changing 35 

how associations were defined, with subtle differences. We suggest that these differences are 36 

the result of an inappropriate definition of association in the context of experimental design and 37 

system ecology. Researchers in ecology and evolution should carefully consider the biological 38 

relevance of association definition prior to starting research into animal social behaviour.  39 

Keywords - Animal Behaviour, Gambit of the Group, Sociality, Social Network, RFID 40 
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Background  43 

Sociality - one’s propensity to socialise with others - has important consequences for life history 44 

and evolutionary processes (Wey et al. 2008; Maldonado-Chaparro et al. 2018). For example, 45 

sociable individuals experience increased survival or reproductive success (Silk et al. 2009; Oh 46 

and Badyaev 2010; Stanton and Mann 2012; Maldonado-Chaparro et al. 2018; Dunning et al. 47 

2023) and better access to resources (Aplin et al. 2012), than less sociable individuals. These 48 

links have been demonstrated across systems (in birds: Covas et al. 2006; McDonald 2007; Oh 49 

and Badyaev 2010; Firth, Sheldon, and Farine 2016, and mammals: reviewed in Silk 2007), 50 

commonly using social network analysis to capture connections between individual animals 51 

(Croft, James, and Krause 2008; Way et al 2008). Likewise, social network structure can have 52 

implications for a range of biological processes, from disease transmission to population ecology 53 

(Keeling and Eames 2005; McDonald et al. 2013; Kurvers et al. 2014; Albery et al, 2020; Albery 54 

et al 2021).  55 

Despite research interest, the terminology used to describe animal sociality varies. Throughout 56 

this manuscript, we use association to refer to any link between animals inferred from an overlap 57 

of two individuals in space and time (James, and Krause 2008; Wey et al. 2008). The properties 58 

of an association may vary in their intentionality, intensity and duration – e.g., moths gathering 59 

around a light are not intending to socialize (Tinbergen 1952), or in mixed-species groups (Hinde 60 

1952; Morse 1970, but also see Goodale, Beauchamp, and Ruxton 2017). We refer to non-social 61 

associations as aggregations (Krause and Ruxton 2002). Researchers often refer to social 62 

associations (defined above) as relationships when individuals repeatably associate through 63 

relevant behaviours, e.g., grooming (Siracusa et al. 2023) or eye-poking (Perry 2011). However, 64 

where interactions are difficult to observe (e.g. in passerine birds; Iserbyt et al. 2018), associations 65 

are often used as proxies for relationships. Thus, throughout this manuscript we use association 66 

in its social context, distinct from aggregation.  67 

The importance of distinguishing association from aggregation is dependent on the research 68 

objectives. For example, group sizes may be more relevant than the strength and identity of 69 

associations in diluting predation risk (e.g. Cresswell 1994; Krause and Ruxton 2002; Sorato et 70 

al. 2012; Voelkl, Firth, and Sheldon 2016). Whereas for other questions, e.g. on mate choice or 71 

information transmission, the identity of the associating individuals may be more important (Oh 72 

and Badyaev 2010; Beck, Wascher et al. 2015; Farine, and Kempenaers 2021; Dunning et al. 73 



2023). Hence, whether the distinction is important, and if so, how this distinction is made depends 74 

on the research question and study system.  75 

The most common method of building social networks in small birds (Aplin et al. 2012; Sánchez-76 

Tójar et al. 2017) and mammals that feed and shelter communally (Godsall, Coulson and Malo 77 

2014; Evans, Lindholm, and König 2021; Raulo et al 2021), is using the identity of PIT-tagged 78 

(Passive Integrated Transponder) animals visiting a static RFID antenna (Radio-frequency 79 

identification; Ringsby et al. 2009; Mariette et al. 2011; Farine 2017A; Sánchez-Tójar et al. 2017; 80 

Bandivadekar et al. 2018; Firth et al 2018; Broughton, Maziarz, and Hinsley 2019; Hillemann et 81 

al. 2020). This approach builds a data stream of temporal presence/absence at one location, from 82 

which associations can be inferred using different methods.  83 

Most recent methodological advances (Farine 2017A; Iserbyt et al. 2018; Bridge et al. 2019; 84 

Youngblood 2019; Hart et al 2021; Hart, Franks and Brent 2022) seek to define social associations 85 

through membership of discrete social groups – the gambit of the group method (Whitehead and 86 

Dufault 1999; Franks, Ruxton, and James 2010). This method assumes that individuals that 87 

overlap in space and time interact with each another, are socially associated. The first common 88 

approach is to use a time-window (Δt; Figure 1Aa) within which all individuals co-occurring at the 89 

same location and time are defined as socially associating. For example, associations have been 90 

defined between PIT-tagged house sparrows Passer domesticus foraging at the same RFID 91 

feeder within three seconds of each other (Plaza et al. 2019). However, if the time-window is too 92 

short, individuals that are socially associated may not be detected as belonging to the same 93 

group, yet, if the time-window is too long, associations are defined between aggregating 94 

individuals (Croft, James, and Krause 2008; Psorakis et al. 2015). This creates a problem in 95 

defining association between individuals, and the social network created will depend on how 96 

researchers define the time-window parameter. 97 

To solve this problem, an alternative approach was developed. Here, the second method for 98 

defining groups is to use a gaussian mixture model to identify discrete grouping events (GMM; 99 

Psorakis et al. 2012, 2015; Figure 1Ab). This GMM approach considers dynamically changing 100 

time-windows determined based on periods of increased activity automatically (Psorakis et al. 101 

2012) and was developed for the great tit (Parus major) study system. The publication of the 102 

associated R package “asnipe” (Farine 2013; Farine 2017A) has led to popular use across many 103 

bird (see, Madsen, Vander Meiden and Shizuka 2021; Moyers et al. 2018; Broughton, Maziarz, 104 



and Hinsley 2019; Evans and Morand-Ferron 2019; Whiteside et al. 2019; Taff, Zimmer and 105 

Vitousek 2019; Brandl et al. 2021; Beltrão, Gomes and Cardoso 2022), and non-bird systems 106 

(Findlay et al. 2016; Poirier and Festa-Bianchet 2018; Zeus, Reusch and Kerth 2018; Skinner and 107 

Miller 2020).  108 

Yet, the biological validity of the associations extracted using the GMM approach heavily depends 109 

on the biology and experimental design of the species and study system. E.g., great tits form 110 

small fission-fusion flocks of loose social groups over the non-breeding season. In contrast, house 111 

sparrows form very large nomadic, gregarious flocks with loose group-level social preferences, 112 

and aggregate at a feeder (Tóth et al. 2009; Havlı́ček, Riegert, and Fuchs 2022; Dunning et al. 113 

2023). In such gregarious systems, the power of the GMM approach may not be appropriate, 114 

because meaningful association is difficult to separate from random aggregation (e.g. to feed, 115 

rather than socialise; Dunning et al. 2022). In such systems, a third definition of association may 116 

be considered, based on variation in individual arrival time to a feeder (hereafter Arrival-time; 117 

Dunning et al 2022; Chan and Dunning 2023; Figure 1Ac). This approach assumes that strongly 118 

associated individuals are more likely to arrive together at a resource than those who are not 119 

(Atton et al. 2012; Hilleman et al. 2020). 120 

Evidently, different methodologies were developed for different study systems to collect similar 121 

data, and are often presented without validation. The definition of an association (a network edge) 122 

therefore poses a methodological challenge to behavioural ecologists interested in quantifying 123 

animal social networks (Carter, Lee, and Marshall 2015, Castles et al. 2014; Farine 2015; Farine 124 

and Whitehead 2015). Some studies have used randomizations (Farine 2014, 2017), or other 125 

biological observations to validate association definitions (Farine 2014; Boogert, Farine and 126 

Spencer 2014), e.g. when demography or familial ties inform social structures (Haddadi et al. 127 

2011; Davis, Crofoot and Farine et al. 2018; Ferreira et al. 2020; Gomes et al. 2021). However, 128 

in most studies where this is not possible, an association must be defined a priori, and in the 129 

context of the study species. Thus, the observed behaviour, and distinguishing intentional 130 

association from aggregation presents a challenge (Croft et al. 2008; 2011; Gomes et al. 2021).  131 

When direct observations are not possible, an alternative biological measure to validate 132 

association definition can be the repeatability of individual network traits. Individual social network 133 

metrics are an aspect of an individual’s animal personality and have been shown to be consistent 134 

across various study systems (Bell, Hankison, and Laskowski 2009; Aplin et al. 2015; Hillemann 135 



et al. 2019; Tkaczynski et al. 2020; Proops et al. 2021). Thus, we assume an appropriate definition 136 

of association should find repeatability of social traits over time. 137 

Here, we set out to empirically test how different definitions of associations affect the structure of 138 

social networks across four study systems, each with differing ecologies and experimental design. 139 

We compare the robustness of the global social network and individual network metrics, using 140 

three association definitions (1. time-window, 2. GMM, and 3. arrival-time). First, we compared 141 

the repeatability of individual social network metrics between definitions to describe the ability of 142 

each method to capture repeatable social behaviours. Next, we describe the similarity of the 143 

global social networks built using different association definitions. Finally, we explored the 144 

sensitivity of the parameterisation on the network structure. We hope our results will assist 145 

behavioural ecologists when making methodological choices for animal social behavioural 146 

studies.  147 

  148 



Materials and Methods 149 

Systems  150 

We collected data from wild PIT-tagged birds at four systems: Two house sparrow populations, 151 

at Broken Hill, Australia, and Lundy Island, UK; one sociable weaver population at Benfontein 152 

Nature reserve, South Africa; and a great tit population at Wytham woods, UK. In all four systems, 153 

RFID antennas were mounted at a bird feeder to record PIT tagged individuals (Figure 1B). 154 

Detailed experimental design and system ecology can be found in the supplementary methods. 155 

Social network construction using different association definitions. 156 

We built three networks for each system, one for each association definition (Figure 1), 1) time-157 

window (Figure 1Aa); 2) GMM (Psorakis et al. 2012, 2015; Farine 2017; Figure 1Ab); 3) arrival-158 

time definitions (Dunning et al 2022; Figure 1Ac). We build weighted, i.e. scaled using the simple 159 

ratio index (Farine and Whitehead, 2015) and undirected networks in R (R Core Team 2023). We 160 

applied these general parameters between systems:  161 

1) Strict time-window (Figure 1Aa): The time-window approach has a single overlap 162 

parameter (Δt), where two individuals visiting a feeder within Δt were defined as 163 

associates. In the current study, we hope to compare other methods with the strictest 164 

definition for association, so we defined Δt as one second to capture absolute physical 165 

and temporal proximity at the feeder (for example McCully and Rose 2023; Farine 2015). 166 

2) GMM (Figure 1Ab): We used the GMM function in the asnipe R package (Farine 2013; 167 

Farine 2017A) to detect groups. The GMM function detects the start and end point of 168 

gathering events and associates all individuals (Psorakis et al. 2012; 2015). We combined 169 

the date and location parameters within each system into a unique location to reduce 170 

processing time (Farine 2017A).     171 

3) Arrival-time (Figure 1Ac): We build arrival networks using a series of functions, (see Chan 172 

and Dunning 2023). We defined two parameters: 1) A time overlap to define two or more 173 

birds arriving and recorded at the RFID antenna for the first time (Δt). 2) A period of 174 

inactivity, after which a bird is considered to have left the feeder (Δi). We defined Δt as 175 

150 seconds and Δi as 300 seconds following Dunning et. al. (2022).  176 



We used the iGraph package in R (Csardi and Nepusz 2006) to extract three node-based network 177 

measures from the three association dataset for each of the four systems: degree, the number of 178 

unique associates connected to a focal individual; strength, the total number of associations 179 

between a focal individual and all associates; and betweenness, the number of geodesics 180 

(shortest paths between any nodes) that pass through a focal individual. We removed all 181 

individuals from networks who had a degree of 0, thus the number of individual vertices in each 182 

did not represent the number of individual birds recorded.  183 

Analysis 184 

Within-system comparisons in social network structure  185 

a) Repeatability of social traits 186 

We first constructed weekly sub-graphs across each recording period for each of our four 187 

systems. We extracted three network measures from each subgraph for each week, then z-188 

transformed to normalise the measures due to differences in network structure across weeks.  189 

We ran repeatability models using the R package MCMCglmm (Hadfield 2010), using default 190 

model parameters. We modelled each social trait as a response variable against the model 191 

intercept and with individual ID as a random effect. Repeatability was defined as the variance 192 

explained by individual ID over the total variance (Nakagawa and Schielzeth 2010). We 193 

interpreted repeatability in the context of three levels, low (< 0.3), medium (< 0.5) and high (> 0.5; 194 

following Bell, Hankison, and Laskowski 2009; Winney et al. 2018). Using these subgraphs, we 195 

also explored the correlation between individual network measures extracted using each 196 

association definition, by running Pearson’s correlation tests for each association definition pair 197 

for all bird individuals across all weeks.  198 

To test if our analyses could yield similar results from randomised data, we ran network 199 

permutations for the repeatability analysis (Farine 2017A). We created 1000 random networks by 200 

shuffling individual IDs within each weekly sub-graph, while maintaining network structure (Aplin 201 

et. al, 2014; Farine 2017A). We constructed a null distribution and extracted p-value for each 202 

repeatability estimate by calculating the proportion of data more extreme than the actual estimate. 203 

b) Similarity in network structures 204 



We described the cardinality of for each network for each association definition, i.e. the number 205 

of individuals (Vertices; V), and the number of associations (Edges, E), as well as the network 206 

density (D). The density of a network is defined by the number of observed edges over the 207 

maximum potential edges. Then, we used three Jaccard similarity indices to compare global 208 

network structures between all possible pairs of association definitions, within systems using the 209 

multinet R package (Magnani, Rossi, and Vega 2021). Following (Bródka et al. 2018; but see 210 

Emmert-Streib, Dehmer and Shi 2016): 1) Jaccard actors to compare the identity of individuals; 211 

2) Jaccard edges to compare common edges; and 3) Jaccard triangles as a measure of common 212 

clusters of individuals between networks. All Jaccard similarities range between 0 and 1, where 213 

0 denotes no overlap between networks, and 1 when networks are identical. We further interpret 214 

Jaccard similarities using equivalent qualitative terms to the repeatability analyses.  215 

Finally, we ran Mantel tests to account for similarity in network edge weights (Mantel 1967; Croft, 216 

James, and Krause 2008). Mantel tests account for network edge weights by comparing 217 

correlation of values between two matrices. We extracted the weighted adjacency matrices for 218 

each network and computed the Mantel coefficient using the Pearson correlation method and 999 219 

matrix permutations with the ‘Vegan’ R package (Dixon 2003). The results produce a correlation 220 

between network layers that varies between -1 and 1, representing matrices being negatively and 221 

positively correlated respectively. The p-value and 95% confidence intervals are computed using 222 

the null distribution obtained by the permutations.  223 

c) Sensitivity Analyses 224 

Finally, to test for how parameterisation affects resulting biological validity of networks 225 

constructed, we computed repeatability measures again but varying the Δt parameter from 1 to 226 

300 seconds for both the arrival and strict time-window methods. For arrival network, we 227 

maintained Δi at 300 seconds. We did not do this for GMM networks, since associations defined 228 

by GMM automatically set parameters within the detection algorithm.  229 

 230 

Results 231 

We built social networks using 286,669 RFID detections comprising of 118 individuals visiting 232 

feeders on Lundy Island, 27,456 detections of 66 individuals at Broken Hill, 402,255 detections of 233 

219 individuals at Wytham Woods and 197,857 detections of 62 individuals at Benfontein. The 234 



number of individuals (network nodes) and association (edges) and their centrality varied with 235 

association definition (Table 2). 236 

a) Repeatability of social traits  237 

We calculated repeatability over nine weeks at Broken Hill, Australia, fourteen weeks on Lundy 238 

Island (see Dunning et al. 2023), thirteen weeks at Benfontein Nature Reserve, South Africa; and 239 

fourteen weeks at Wytham woods (see Aplin et al. 2015). We found that three social traits, degree, 240 

strength and betweenness, are repeatable in all four systems, with little variation between 241 

association definitions (Figure 2). All three definitions displayed low repeatability in the Lundy 242 

systems; low-moderate repeatability in the Wytham system; and high repeatability for degree and 243 

strength, but low – moderate repeatability for betweenness in Broken Hill and Benfontein systems. 244 

We found significantly lower repeatability of degree and strength in the Wytham system when 245 

associations were defined by the strict time-window definition (Figure 2C). The arrival-time and 246 

GMM definitions performed equally across systems (Figure 2). All repeatability measures were 247 

statistically significant, except for betweenness in arrival definition in Benfontein (Table 1).  248 

b) Similarity in network structures 249 

Using the network metrics extracted from each weekly sub-graph, we show that degree and 250 

strength is strongly correlated across all systems, with weaker correlations for betweenness 251 

(Figure 3). Other than the house sparrows on Lundy Island (Figure 3A), the correlation coefficient 252 

between arrival and GMM were always highest for all the traits.  253 

Using Jaccard similarity indices and Mantel tests to compare similarities between networks, we 254 

show that network structures are robust to changing association definition (Table 2). Although, 255 

where the number (vertices; cardinality V) and identity (Jaccard actors, range 0.86 – 1) of 256 

individuals detected are similar between network pairs, metrics to capture clustering (Jaccard 257 

triangles; 0.01 – 0.77), dyad identity (Edges, cardinality E) and associated edge weights (Mantel 258 

coefficient; 0.46 – 0.92) varied more. We found the highest similarity scores between the GMM 259 

and arrival-time definitions (15 high/ 1 medium/ 0 low similarity scores), followed by GMM and 260 

strict time-window definitions (11 high/ 2 medium/ 3 low similarity scores), then strict time-window 261 

and arrival definitions (10 high/ 3 medium/ 3 low similarity scores). All definitions identified a 262 

similar number of individuals between networks, but the number of edges differed. Specifically, 263 



networks based on strict time-windows produced less dense networks, while using the arrival-264 

time definition resulted in denser networks. 265 

c) Sensitivity Analyses 266 

Finally, we explored how altering the time parameter (Δt) affected network structure within the 267 

arrival-time and strict time-window methods. For the arrival-time definition, our results show that 268 

social traits have low repeatability with a low Δt, but increased as Δt  increases, and finally 269 

plateaued. We report a similar plateau for the time-window method, without the initial increase in 270 

repeatability. The repeatability of betweenness was more sensitive to changes for both methods, 271 

especially in Broken Hill and Benfontein (Figure 4).  272 

 273 

Discussion 274 

In this study, we compared three association definitions applied to avian social networks in four 275 

study systems. These were strict time-window (Farine 2015), GMM (Psorakis et al. 2012, 2015), 276 

and arrival-time (Chan and Dunning 2023; Dunning et al. 2023). Our results suggest that 277 

association definitions were robust to the noise of visitations when applied to individuals attending 278 

a resource, with subtle differences. Hence before constructing animal social networks, it is 279 

important to consider which social association definition is appropriate for the study species, 280 

system and research question (Croft, James, and Krause 2008; Farine and Whitehead 2015) at 281 

hand. 282 

We found statistically significant and similar levels of repeatability, high level of correlation 283 

between traits, similar similarity indices and mantel coefficients within systems, between 284 

association definitions. We found that some association definitions resulted in more similar 285 

networks between systems with more similar ecologies, for example in the highly gregarious and 286 

open-access antenna systems at Lundy and Benfontein. Altering the arrival-time overlap (Δt) 287 

within arrival and time-window networks was also generally robust to the definition of Δt across 288 

systems. No single association definition we used resulted in significant change in network size, 289 

except for the use of strict time-window at Broken Hill. The similarity was expected, because each 290 

association method is trying to capture meaningful social associations from the same temporal 291 

data-stream. However, we show that methodological decisions can result in subtle differences 292 



explained by a mismatch between an appropriate association definition in the context of system 293 

ecology. Alternatively, association definitions may also capture subtly different behaviours, e.g. 294 

the propensity to aggregation or exploration of novel food patches.  295 

 296 

Our results also suggest that the design of RFID feeders can influence the obtained social 297 

networks using different association methods. When using the strict time-window definition, we 298 

observed lower repeatability of individual social traits in Wytham woods, but increased 299 

repeatability in Broken Hill and Benfontein. Since we used a strict threshold of 1 second to define 300 

the time-window, the method was likely not appropriate for RFID feeders in Wytham woods 301 

because birds can only visit feeders one or two birds at a time, in which case meaningful 302 

associates would have been lost. Similarly, the strict time-window definition in Broken Hill also 303 

resulted in smaller network sizes, since sparrows were only detected as they entered and left a 304 

feeding chamber, making detection of groups difficult. In the Broken Hill sparrows, a higher Δt 305 

value (e.g 5-10 s) might be more appropriate to capture physical and temporal proximity. On the 306 

other hand, shorter time-windows can be more appropriate for open RFID systems like in 307 

Benfontein and Lundy Island (Figure 1A), where multiple individuals can access the food resource 308 

at one time. Overall, GMM and arrival definitions captured more similar networks compared to 309 

strict time-window, probably because the latter is capturing physical and temporal proximity, while 310 

the two former are based on a the gambit of the group approach. Surprisingly, the pattern was 311 

not observed for house sparrows on Lundy Island, with more similar networks between GMM and 312 

strict-time window. This may reflect the inability of the GMM approach to identify group structures 313 

in large flocks visiting a feeder at one time.  314 

From our sensitivity analysis, we show that both approaches are robust against changes in 315 

parameters, where the values increase then plateau consistently across study systems. We also 316 

confirm that the choice of Δt =150 in the arrival-time method used in the current study was 317 

appropriate and can be a reasonable starting threshold for future researchers. 318 

A core limitation of our study is the inability to know the true social associations between 319 

individuals, because sociality measures are only ever a sample of a wider underlying behaviour, 320 

and there is often no directly observable social interaction between passerine birds, as opposed 321 

to other species like primates. The similarity in the networks observed may be attributed to the 322 

inherent noise of aggregation present in social data, but visitation rates of individuals can also  be 323 

influenced by several factors beyond a necessity to socialise, such as dominance (Oh and 324 



Badyaev 2010; Evans, Jones, and Morand-Ferron 2018) and behavioural preference (Aplin et al. 325 

2013, 2014, 2015; Culina, Firth, and Hinde 2020). For example, for individuals attending a 326 

resource and linked using time-window and GMM definitions, network edges (associations) may 327 

also capture a propensity to monopolise a resource.  328 

We suggest that future studies should define associations based on the specific ecology of their 329 

study system and sampling methodology. Key considerations are: 1) The gregariousness of the 330 

study system, or their propensity to aggregate (Krause and Ruxton 2002) at a resource. For 331 

example, where a social association is equivalent to group membership, the gambit of the group 332 

definitions is appropriate (Farine 2017; Psorakis et al. 2012, 2015). Whereas in highly gregarious 333 

systems, where social associations are masked by aggregation of individuals at a resource, time-334 

window or arrival-time are likely more appropriate (Ferreira et al. 2020; Dunning et al. 2023); 2) 335 

Sampling methodology, for example, in open-access systems where multiple individuals can 336 

access an RFID antenna at one time, gambit of the group definitions may be less appropriate, 337 

than in systems which limited access to the antenna. Where the concepts of social association 338 

are unclear, it may be beneficial to compare different definitions before hypothesis testing. 339 

Furthermore, we encourage researchers to report justification of association definition in 340 

published research, providing a biological justification on the choice when conducting animal 341 

social network studies. These could be empirically tested against another variable (e.g Ferreria 342 

2020) or based on observation of the study species (e.g Dunning et. al, 2023). While we show 343 

here that differing association definitions are generally robust and produces broadly similar 344 

networks, decisions that researchers make would nevertheless result in different network 345 

structures and may influence research outcomes.346 
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Figure 1A Three association definitions applied to sampled RFID data streams. Black lines denote individuals visiting a feeder 

where three are highlighted (one, two and three). The time-window definition (Aa) where individuals are considered associating 
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when they overlap in space within (Δt) of each other. The GMM (Ab) definition identifies the start and the end of gathering 

events, denoted here with red dotted lines. Finally, arrival-time (Ac) defines an association where individuals overlap by Δt of 

their arrival (first detection) at the RFID antenna. An individual can only be recorded as arriving again after a period of absence 

defined by Δi. 1B. Radio Frequency Identification (RFID) experimental set-up in four systems: a) open RFID antenna on Lundy 

Island, UK; b) RFID antenna at the entrance to a feeding chamber at Broken Hill, Australia; c) Great tit Parus major interacting 

with a single RFID antenna at Wytham woods, UK; d) Sociable weaver Philetairus socius visiting four RFID antenna mounted 

at Benfontein Nature Reserve,  South Africa.  

 



 



Figure 2. Between week repeatability for three individual social traits (degree, strength and betweenness), between three 

association definitions and in four systems: A) House sparrows from Lundy Island, UK, B) House sparrow data from Broken 

Hill, Australia; C) Great tits data from Wytham Woods, UK; and D) Sociable Weaver data from Benfontein National Park, South 

Africa. Points denote the mean repeatability, and error bars the 95% CIs. Dotted lines denote thresholds for low (< 0.3), 

medium ( < 0.5) and high (> 0.5) repeatabilities (also see Table 2). 

 

 

 



 



 

Figure 3: Correlations of three individual social network traits (z-transformed) extracted from weekly networks from four study 

systems using three association definitions. A) House sparrow data in Lundy Island, UK; B) House sparrow data in Broken Hill, 

Australia; C) Great tits data in Wytham Woods, UK; D) Sociable Weaver data in Benfontein National Park, South Africa. 

Correlations are denoted as value 1 vs. value 2: Arrival time vs. GMM (Purple), Arrival time vs. Strict time-window (Green) and 

GMM vs. Strict time-window (Yellow), with the value 1 on the x-axis and value 2 on the y-axis. R values represent the Pearson 

correlation coefficient, and p represents the p-value 

 



 

 

Figure 4. Sensitivity analysis of between week repeatability of individual metrics for arrival and time-window networks. For 

arrival time networks, we vary Δt from 0 to 300 seconds, and fixed Δi = 300s, and for time-window networks we varied Δt from 

0 to 300 seconds. For associations defined by A) arrival time and B) time window, across four systems: a) House sparrow data 



in Lundy Island, UK; b) House sparrow data in Broken Hill, Australia; c) Great tits data in Wytham Woods, UK; d) Sociable 

Weaver data in Benfontein National Park, South Africa. Repeatability was calculated for degree (number of edges per node; 

green), strength (weighted degree; yellow) and betweenness (number of shortest paths passing through a node; purple).  

 

Table 1: Repeatability and mean measures for three social network traits (Degree, Strength, Betweenness) across weeks in 4 

study systems (Lundy Island House Sparrows, Broken Hill House Sparrows, Wytham Woods Great tits, and Benfontein 

Sociable Weavers) using three association definitions. We calculated for each metric across all weeks within study systems, 

with standard deviation provided in parenthesis. P-values were obtained by running 1000 random permutations and calculating 

repeatability in the same way, then computing the proportion of data that is more extreme than the observed value. 

  



 

Table 2. We compared three network structures, built using three association definitions, for four systems: A) House sparrow 

on Lundy Island, UK. B) House sparrow in Broken Hill, Australia C) Great tits in Wytham Woods, UK: D) Sociable Weaver in 

Benfontein National Park, South Africa. 1)  We report the cardinality of each network in the first row as vertices (V; individuals 

in each network), edges (E; associations between individuals) and network density (D; the number of edges over the total 

number of potential edges); 2) We described three Jaccard similarity measures between network layers (upper matrix A-D): 

Actors (common vertices); Edges (common dyadic edges); Triangles (common clusters of triads). Finally, we used Mantel 

coefficients (lower matrix A-D), given as the correlation between two networks. P-values and 95% CI of the null distribution 

(given in parentheses) denote the extent to which comparisons differ from 999 random matrix permutations (where p <0.05 

denotes a significant difference from random).  
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