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Summary 35 

Amphibians are the most threatened vertebrates, yet their resilience to rising temperatures 36 

remains poorly understood1,2. This is primarily because knowledge of thermal tolerance is 37 

taxonomically and geographically biased3, compromising global climate vulnerability 38 

assessments. Here, we employed a phylogenetically-informed data imputation approach to 39 

predict the heat tolerance of 60% of amphibian species and assessed their vulnerability to daily 40 

temperature variation in thermal refugia. We found that 104 out of 5203 species (2%) are currently 41 

exposed to overheating events in shaded terrestrial conditions. Despite accounting for heat 42 

tolerance plasticity, a 4°C global temperature increase would create a step-change in impact 43 

severity, pushing 7.5% of species beyond their physiological limits. In the Southern Hemisphere, 44 

tropical species encounter disproportionally more overheating events, while non-tropical species 45 

are more susceptible in the Northern Hemisphere. These findings challenge evidence for a 46 

general latitudinal gradient in overheating risk4–6 and underscore the importance of considering 47 

climatic variability in vulnerability assessments. We provide conservative estimates assuming 48 

access to cool shaded microenvironments. Therefore, the impacts of global warming will likely 49 

exceed our projections. Our microclimate-explicit analyses demonstrate that vegetation and water 50 

bodies are critical in buffering amphibians during heat waves. Immediate action is needed to 51 

preserve and manage these microhabitat features. 52 

Keywords 53 

Anura, Caudata, critical thermal maximum, behavioral thermoregulation, behavioural 54 
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margin, warming tolerance, extreme heat events, climate change. 56 
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Main text 58 

Climate change has pervasive impacts on biodiversity, yet the extent and consequences of this 59 

environmental crisis vary spatially and taxonomically7,8. For ectothermic species, such as 60 

amphibians, the link between climate warming and body temperature is clear, with immediate 61 

effects on physiological processes9. Over 40% of amphibian species are currently listed as 62 

threatened, and additional pressures due to escalating thermal extremes may further increase 63 

their extinction risk2,10. Therefore, it is vital to assess the resilience of amphibians to climate 64 

change to prioritise where and how conservation actions are taken.  65 

Accurate assessments of resilience to climate change require adequate data on thermal 66 

tolerance and environmental exposure5,6,11. However, the most exhaustive dataset on 67 

amphibian heat tolerance limits only covers 7.5% of known species and is geographically 68 

biased towards temperate regions3 (Fig. 1). This discrepancy is problematic, considering the 69 

high species richness in the tropics and the mounting evidence that tropical ectotherms are 70 

most susceptible to rising temperatures4–6,12,13. Such sampling biases call into question the 71 

reliability of inferences in under-sampled areas and have implications for conservation 72 

strategies. Given the rapid pace of climate change and the finite resources available for 73 

research, acquiring sufficient empirical data to fill these knowledge gaps within a realistic 74 

timeframe is increasingly untenable14,15. Therefore, alternative methods to identify the 75 

populations and areas most susceptible to thermal stress are critically needed in a rapidly 76 

warming climate.  77 

Climate vulnerability assessments also require environmental data with high spatial and 78 

temporal resolution, particularly because extreme heat is more likely to trigger overheating 79 

events than increased mean temperatures16–18. When heat tolerance limits are known, cutting-80 

edge approaches in biophysical ecology allow fine-scale vulnerability assessments that account 81 

for morphology, behaviour, and microhabitat setting in both historical and future climate 82 

projections19,20. While broadly applicable, biophysically informed analyses are particularly 83 

relevant for amphibians, whose body temperatures depend on evaporative heat loss and whose 84 
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microhabitat use span terrestrial, aquatic, and arboreal environments. Because 85 

microenvironmental features are essential for behavioural thermoregulation21,22, modelling 86 

microhabitats allow assessments of the effectiveness of different thermal refugia in buffering the 87 

impacts of extreme heat events. 88 

Here, we assess the global vulnerability of amphibians to extreme heat events in 89 

different climatic scenarios and thermal refugia. By integrating predicted thermal limits for 60% 90 

of amphibian species with daily operative body temperatures, our study offers the first 91 

comprehensive evaluation of the impact of heat extremes on the physiological viability of 92 

amphibians in nature. 93 

Thermal limits and environmental exposure 94 

We first developed an approach to predict standardised thermal limits for 5,203 amphibian 95 

species using data imputation based on phylogenetic niche clustering (Pagel’s λ = 0.95 [0.91 – 96 

0.98]) and known correlations between critical thermal limits (CTmax) and other variables (n = 97 

2,661 estimates measured in 524 species; Fig. S2; Methods). Our phylogenetic model-based 98 

imputation approach has expanded our understanding of amphibian thermal tolerance by 99 

generating testable predictions for 4,679 unstudied species, particularly in biodiversity hotspots 100 

(Fig. 1-2). We confirmed our imputation approach was accurate and unbiased by demonstrating 101 

a strong congruence between experimental and imputed data in cross-validations (experimental 102 

mean ± standard deviation = 36.19 ± 2.67; imputed mean = 35.93 ± 2.54; n = 375; r = 0.86; 103 

Extended Data Fig. 2a,b), though, as expected, the uncertainty in imputed predictions was 104 

higher in understudied clades (Extended Data Fig. 2c). 105 

We then integrated predicted thermal limits with daily maximum operative body 106 

temperature fluctuations estimated from biophysical models to evaluate the sensitivity of 107 

amphibians to extreme heat events in terrestrial, aquatic, and arboreal microhabitats (Extended 108 

Data Fig. 1; Methods). Operative body temperatures are the steady-state body temperatures 109 

that organisms would achieve in a given microenvironment, which can diverge significantly from 110 

ambient air temperatures due to, for example, radiative and evaporative heat exchange 111 
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processes19,20. For each microhabitat, we modelled daily operative body temperatures during 112 

the warmest quarters of 2006-2015 and across the distribution range of each species 113 

(Methods). We also used projected future climate data from TerraClimate23 to generate 114 

projections assuming 2°C or 4°C of global warming above pre-industrial levels. These 115 

temperatures are within the range projected by the end of the century under low and 116 

intermediate/high greenhouse gas emission scenarios, respectively24. Notably, recent historical 117 

CO2 emissions most closely align with high warming scenarios25 (i.e., 4.3°C of predicted 118 

warming by 2100). All microenvironmental projections assumed access to 85% of shade and 119 

sufficient humidity to maintain wet skin to simulate amphibians in thermal refugia (Methods).  120 

We estimated the vulnerability of amphibians by estimating daily differences between 121 

predicted thermal limits and maximum hourly operative body temperatures (Extended Data Fig. 122 

1; Methods). We also adjusted daily thermal limits to assume that species were, on any given 123 

day, acclimated to local mean weekly operative body temperatures, effectively accounting for 124 

plasticity throughout species' distribution ranges (Methods). In total, we predicted vulnerability 125 

metrics for 203,853 local species occurrences (individual species in 1° x 1° grid cells) in 126 

terrestrial conditions (5,177 species), 204,808 local species occurrences in water bodies (5,203 127 

species); and 56,210 local species occurrences (1,771 species) in above-ground vegetation, for 128 

each warming scenario. The number of species examined in arboreal conditions was lower to 129 

reflect morphological adaptations required for climbing in above-ground vegetation. These 130 

estimates were then grouped into assemblages (all species occurring in 1° x 1° grid cells), 131 

tallying 14,090 and 14,091 assemblages for terrestrial and aquatic species and 6,614 132 

assemblages for arboreal species, respectively.  133 

 134 
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 135 

Fig. 1 | Contrast between the geographical locations at which experimental data were 136 
collected and patterns in species richness. Pink points denote experimental data (587 137 
species), while the colour gradients refer to species richness calculated in 1 x 1 ° grid cells in 138 
the imputed data (5,203 species). Density plots on the right panel represent the distribution of 139 
experimental data (pink) and the number of species inhabiting these areas (blue) across 140 
latitudes. Dashed lines represent the equator and tropics.  141 

 142 

 143 
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144 
Fig. 2 | Phylogenetic coverage and taxonomic variation in climate vulnerability. Heat 145 
maps show heat tolerance limits (CTmax) and thermal safety margins (TSM), while histograms 146 
show the number of overheating events (days) averaged across each species’ distribution 147 
range (n = 5,177 species). Pink bars refer to species with prior knowledge (n = 521), while grey 148 
bars refer to entirely imputed species (n = 4,656). This figure was constructed assuming 149 
ground-level microclimates occurring under 4°C of global warming above pre-industrial levels. 150 
Phylogeny is based on the consensus of 10,000 trees sampled from a posterior distribution (see 151 
26 for details). Highlighted species starting from the right side, anti-clockwise: Neurergus kaiseri, 152 
Plethodon kiamichi, Bolitoglossa altamazonica, Cophixalus aenigma, Tomaptera cryptotis, 153 
Lithobates palustris, Allobates subfolionidificans, Phyzelaphryne miriamae, Barycholos ternetzi, 154 
Pristimantis carvalhoi, Pristimantis ockendeni, Boana curupi, Teratohyla adenocheira, Atelopus 155 
spumarius.  156 

 157 

 158 
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Vulnerability to historical and future heat 159 

We first calculated thermal safety margins (TSM, sensu 6) as the weighted mean difference 160 

between heat tolerance limits (CTmax) and the maximum daily body temperatures of the warmest 161 

quarters of 2006-2015 for each local species occurrence. Thermal safety margins averaged 162 

from long-term climatology are routinely used in climate vulnerability analyses27–29. We found 163 

evidence for a decline in TSM towards mid to low latitudes in all microhabitats, a pattern 164 

maintained across warming scenarios (Fig. 3, Extended Data Fig. 3). However, warming 165 

substantially reduce TSM at all latitudes (Fig. 3), likely reflecting the contrast between weak 166 

plastic responses in CTmax across latitudes11,15 (Extended Data Fig. 3; Fig. S3) and large 167 

variation in environmental temperatures (Extended Data Fig. 3). Across all conditions simulated, 168 

TSM is always positive, even in the highest warming scenario (Fig. 3, Extended Data Fig. 3). 169 

The mean TSM is lower for terrestrial (mean [95% confidence intervals]; current = 11.69 [8.86 – 170 

14.43]; +4°C = 9.41 [6.53 – 12.09]) and arboreal conditions (current = 12.23 [9.40 – 14.96]; 171 

+4°C = 10.07 [7.23 – 12.80]) than for water bodies (current = 13.60 [10.71 – 16.28]; +4°C = 172 

11.68 [8.80 – 14.36]; Fig. 3; Extended Data Table 1).  173 

 174 
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175 
Fig. 3 | Assemblage-level patterns in thermal safety margin for amphibians in terrestrial 176 
(a), aquatic (b) or arboreal (c) microhabitats. Thermal safety margins (TSM) were calculated 177 
as the weighted mean difference between CTmax and the predicted operative body temperature 178 
in full shade during the warmest quarters of 2006-2015 in each assemblage (1-degree grid cell). 179 
Black colour depicts areas with no data. The right panel depicts latitudinal patterns in TSM in 180 
current climates (blue) or assuming 4°C of global warming above pre-industrial levels (pink), as 181 
predicted from generalised additive mixed models. Point estimates are scaled by precision 182 
(1/s.e.). Dashed lines represent the equator and tropics. 183 

Because extreme heat events are more likely to trigger overheating events than mean 184 

temperatures5,6,11, we also calculated the binary probability (0/1) that operative body 185 

temperatures exceeded CTmax for at least one day across the warmest quarters of 2006-2015 186 

(i.e., overheating risk). Overall, overheating risk is low, although numerous species are 187 

predicted to face overheating events locally (Fig. 4, Extended Data Table 2). In terrestrial 188 

conditions, we predict that 104 species (836 local species occurrences from 253 assemblages) 189 

are likely to experience overheating events in current microclimates (Fig. 4-5). However, under 190 

4°C of warming, 391 species (4,248 local species occurrences from 1,328 assemblages) are 191 

expected to overheat, which represents nearly a four-fold increase relative to current conditions 192 

(Fig. 4-5; Extended Data Table 2-3). The number of species predicted to overheat in each grid 193 

cell also increases with warming; each assemblage comprises up to 18 vulnerable species in 194 

current climates (mean [95% confidence intervals] = 3.19 [0.60 – 6.88] species) and up to 37 195 

vulnerable species with 4°C of global warming (3.08 [0.62 – 6.56]; Fig. 4; Extended Data Table 196 
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3). In addition, the proportion of species predicted to experience overheating events in each 197 

assemblage varies geographically and between warming scenarios (Extended Data Fig. 5; 198 

Extended Data Table 4). The proportion of species at risk is high in some areas with high 199 

species richness (e.g., Northern Australia, Southeastern United States) and not linearly 200 

predicted by latitude (Extended Data Fig. 5). 201 

In current conditions for species that can shelter in trees (arboreal), 74 assemblages 202 

(comprising 1-6 species; 1.93 [0.05 – 5.05] species) are predicted to overheat, while 285 203 

assemblages (comprising 1-11 species; 2.51 [0.31 – 5.69] species) are predicted to overheat 204 

assuming 4°C of global warming (Fig. 4; Extended Data Table 3). While the overheating risk is 205 

lower in arboreal conditions, considerably fewer species were examined than in terrestrial 206 

conditions (1,771 vs. 5,177 species). In fact, comparing the responses of arboreal species in 207 

different microhabitats revealed that occupying above-ground vegetation is only partially 208 

beneficial (Extended Data Fig. 4). In current climates, up to 15 arboreal species (320 local 209 

species occurrences) are predicted to experience overheating events in terrestrial conditions, 210 

whereas 13 arboreal species (152 local species occurrences) are predicted to overheat in 211 

above-ground vegetation (Extended Data Fig. 4). Furthermore, under 4°C of warming, 83 212 

arboreal species (1,137 local species occurrences) are predicted to overheat in terrestrial 213 

conditions, while retreating to above-ground vegetation only reduces the number of species 214 

exposed to overheating events by 32.5% (56 species, 748 local species occurrences) 215 

(Extended Data Fig. 4). Contrary to terrestrial and arboreal conditions, no amphibian 216 

populations are predicted to overheat in water bodies in current or intermediate climate warming 217 

scenarios due to the thermal buffering properties of water. However, assuming 4°C of climate 218 

warming, we predict that 11 species (56 local species occurrences from 48 assemblages) will 219 

exceed their physiological limits in aquatic microhabitats (Fig. 4). 220 

 221 
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222 
Fig. 4 | Number of species predicted to experience overheating events in terrestrial (a), 223 
aquatic (b), and arboreal (c) microhabitats. The number of species overheating was 224 
assessed as the sum of species overheating for at least one day in the period surveyed 225 
(warmest quarters of 2006-2015) in each assemblage (1-degree grid cell). Black colour depicts 226 
areas with no data, and grey colour assemblage without species at risk of overheating. The right 227 
panel depicts latitudinal patterns in the number of species predicted to overheat in current 228 
climates (blue) or assuming 4°C of global warming above pre-industrial levels (pink). Dashed 229 
lines represent the equator and tropics.  230 

Finally, we quantified the number of days (out of 910 simulated days across the warmest 231 

quarters of 2006-2015) each species was predicted to locally exceed their plasticity-adjusted 232 

heat tolerance limits. This metric fully integrates the frequency at which amphibians are 233 

predicted to experience temperatures beyond their thermal limits. For current climates, we 234 

found that species rarely experience overheating events in shaded terrestrial conditions (overall 235 

mean overheating days [95% confidence intervals] = 0.01 [0.01 – 0.08]; mean among 236 

overheating species = 2.15 [0.24 – 5.26] days); but these figures increase considerably with 237 

global warming (Fig. 5; Extended Data Table 2). Under 4°C of warming, species are predicted 238 

to overheat on as many as 207.18 [182.39 – 231.97] days, representing up to 22.8% of the 239 

warmest days of the year (overall mean = 0.15 [0.05 – 0.46] days; mean among overheating 240 

species = 6.75 [3.14 – 11.38] days; Fig. 5; Extended Data Table 2). This is noticeably more than 241 

what is predicted under 2°C of warming (overall mean = 0.02 [0.01 – 0.13] days; mean among 242 

overheating species = 2.58 [0.41 – 5.86] days; Fig. 5; Extended Data Table 2). In above-ground 243 
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vegetation, the frequency of overheating events is lower, as expected. Under current climates, 244 

arboreal species are predicted to overheat on up to 5.65 [1.00 – 10.29] days in total (overall 245 

mean = 0.01 [0.01 – 0.04] days; mean among overheating species = 1.62 [0.03 – 4.43] days; 246 

Fig. 5; Tab. Extended Data Table 2). Under 4 degrees of warming, arboreal species are 247 

predicted to overheat on up to 76.17 [59.79 – 92.54] days (overall mean = 0.08 [0.01 – 0.23] 248 

days; mean among overheating species = 5.08 [1.81 – 9.39] days; Fig. 5; Extended Data Table 249 

2). Arboreal species retreating to above-ground vegetation are predicted to experience fewer 250 

overheating events than those in terrestrial conditions (Extended Data Fig. 4). Interestingly, we 251 

found that species predicted to overheat locally have TSMs well above zero, although some are 252 

living particularly close to their heat tolerance limits during the warmest months in both 253 

terrestrial (mean [95% confidence intervals]; current = 8.20 [6.91 – 9.98], range: 3.02 – 12.19; 254 

+4°C = 6.30 [5.02 – 8.09], range: 0.97 – 11.27) and above-ground conditions (current = 8.71 255 

[7.20 – 10.28], range: 3.70 – 9.76; +4°C = 6.73 [5.44 – 8.48], range: 1.75 – 8.70; Fig. 5c,d). 256 

Finally, we found a strong non-linear negative association between the number of overheating 257 

events and the thermal safety margin, with stark contrasts between warming scenarios (Fig. 258 

5c,d; Extended Data Table 5). In particular, overheating days increase rapidly as thermal safety 259 

margins fall below 5°C (Figure 5c,d).  260 

 261 
 262 
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263 
Fig. 5 | Latitudinal variation in the number of overheating events in terrestrial (a,c) and 264 
arboreal (b,d) microhabitats as a function of latitude (a,b) and thermal safety margin (c,d). 265 
The number of overheating events (days) were calculated based on the mean probability that 266 
daily maximum temperatures exceeded CTmax during the warmest quarters of 2006-2015 for 267 
each species in each grid cell. Blue points depict the number of overheating events in current 268 
microclimates, while orange and pink points depict the number of overheating events assuming 269 
2°C and 4°C of global warming above pre-industrial levels, respectively. For clarity, only the 270 
species predicted to experience at least one overheating event are depicted across latitudes 271 
(a,b).  272 

 273 

The mounting impacts of global warming  274 

Quantifying the resilience of biodiversity to a changing climate is one of the most pressing 275 

challenges for contemporary science7,8. Here, we show that over a hundred species may 276 

already experience hourly temperatures that would likely result in death over minutes or hours 277 

of exposure in thermal refugia. This pattern is only predicted to worsen (Fig. 4-5). Assuming 4°C 278 

of global warming, the number of species and assemblages exposed to overheating events 279 

would be four to five times higher than currently, totalling 391 out of 5,203 species studied 280 

(7.5%; Fig. 4-5).  281 
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We also found striking disparities in overheating risk between the 2°C and 4°C warming 282 

projections (Fig. 5; Extended Data Table 1), which are anticipated by the end of the century 283 

under low and high greenhouse gas emission scenarios, respectively24. The more extreme 284 

warming scenario considerably increased the number overheating events experienced by 285 

amphibian populations (Fig. 5), highlighting the escalating and abrupt impacts of global 286 

warming7,30. Such an increase is attributable to the contrast between the rapid pace at which 287 

temperatures are increasing and the low ability of amphibians to acclimate to new thermal 288 

environments via plasticity (Extended Data Fig. 3; Fig. S3). Our study clearly demonstrates, as 289 

others have suggested18,28,31,32, that physiological plasticity is not a sufficient mechanism to 290 

buffer many populations from the impacts of rapidly rising temperatures.  291 

Extreme heat events drive vulnerability 292 

We found large spatial heterogeneity in the vulnerability of amphibians. In tropical areas, most 293 

vulnerable species are concentrated in South America and Australia, whereas fewer species 294 

are impacted in the African and Asian tropics (Fig. 4). Tropical species also experience 295 

disproportionately more overheating events in the Southern Hemisphere, while non-tropical 296 

species are more susceptible in the Northern Hemisphere (Fig. 5). Furthermore, the proportion 297 

of species experiencing overheating events in each assemblage was not predicted by latitude 298 

(Extended Data Fig. 5). Therefore, our findings are inconsistent with the expectation of a 299 

general latitudinal gradient in overheating risk based on thermal safety margins4–6,13. In fact, the 300 

overheating risk does not increase linearly with TSM (Fig. 5c,d), and species with seemingly 301 

comparable TSMs can have markedly different probabilities of overheating due to varying 302 

exposure to daily temperature fluctuations (Fig. 5c,d). Therefore, TSMs alone hide critical 303 

tipping points for thermal stress (Fig. 5c,d).  304 

Our study questions the reliability of thermal safety margins and other climate 305 

vulnerability metrics when averaged across large time scales (e.g., using the maximum 306 

temperature of the warmest quarter) for detecting species most vulnerable to thermal extremes. 307 

It also challenges the general notion that low-latitude species are uniformly most vulnerable to 308 
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warming4–6,13, revealing a far more nuanced pattern of climate vulnerability across latitudes. 309 

While the reliability of TSM-based assessments has been questioned in previous studies11, our 310 

work further emphasises the need to consider natural climatic variability and extreme hourly 311 

temperatures4,16–18 when evaluating the vulnerability of ectotherms to global warming. 312 

Considering alternative metrics, such as the number of predicted overheating events, may 313 

prove particularly useful in identifying the most vulnerable species and populations. 314 

The vital yet limited role of thermal retreats  315 

Our study highlights the critical yet sometimes insufficient role that thermal retreats play in 316 

buffering the impacts of warming on amphibians. Most amphibian species are predicted not to 317 

experience overheating events in full shade (Fig. 4), and the availability of water bodies allows 318 

nearly all amphibians to maintain their body temperatures below critical levels, apart from 11 319 

species in the most extreme warming scenario investigated. This is attributable to the higher 320 

specific heat capacity of water relative to air, delaying rapid temperature rises and affording a 321 

more stable environment during heat waves33. Our findings add to the growing evidence that 322 

finding access to cooler microhabitats is the main strategy amphibians and other ectotherms 323 

can use to maintain sub-lethal body temperatures6,21,34.  324 

However, it is crucial to emphasise that vegetated terrestrial conditions in full shade offer 325 

inadequate protection to 7.5% of species, and many arboreal species predicted to overheat at 326 

ground level face similar risks in above-ground vegetation (Fig. 4-5, Extended Data Fig. 4). In 327 

fact, although reducing the frequency of overheating events (Extended Data Fig. 4), access to 328 

shaded above-ground vegetation only reduces the number of vulnerable species by 32.5%. 329 

Moreover, although burrows offer cooler microclimates (see Fig. S9), the ability to use 330 

underground spaces is not universal among amphibians and can greatly restrict activity, 331 

reproduction, and foraging opportunities.  332 
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Warming impacts may exceed projections 333 

Our predictions are largely conservative, and likely overestimate the resilience of amphibians to 334 

global warming in two main ways. First, we assume that microhabitats such as shaded ground-335 

level substrates, above-ground vegetation, and water bodies are available throughout a species’ 336 

range, and that amphibians can maintain wet skin. These assumptions will often be violated as 337 

habitats are degraded. Deforestation and urbanization are diminishing vital shaded areas35,36, 338 

while increased frequencies of droughts will cause water bodies to evaporate37,38. These 339 

changes compromise not only habitat integrity but also local humidity levels – key for effective 340 

thermoregulation39,40. Consequently, amphibians will likely experience higher body temperatures 341 

and desiccation stress events than our models predict due to inconsistent access to cooler 342 

microhabitats41, particularly in degraded systems. 343 

Second, ectotherms can experience deleterious effects from heat stress before reaching 344 

their heat tolerance limits. Prolonged exposure to sub-lethal temperatures can lead to altered 345 

activity windows42,43, disruptions to phenology44,45, reduced reproductive fitness (fertility and 346 

fecundity)29,46,47, and death48,49. Although comprehensive data on thermal incapacitation times 347 

and fertility impacts are sparse in amphibians, integrating both the duration and intensity of 348 

thermal stress49–51 will likely point to more extreme vulnerability estimates. This represents a 349 

vital avenue for future research, albeit one requiring a large collection of empirical data. 350 

Alternatively, species that can retreat underground during heat events are likely to 351 

experience fewer overheating events than our models predict (see Fig. S9), and prolonged 352 

exposure to high temperatures in the permissive range (sensu 48) can enhance performance 353 

and fitness, thereby reducing the impacts of extreme heat on natural populations. In addition, 354 

some species may adapt to changing temperatures. However, evidence for slow rates of 355 

evolution and physiological constraints on thermal tolerance52,53 challenges the likelihood of 356 

local adaptation to occur in rapidly warming climates. 357 
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The power of data imputation  358 

Our imputation approach has generated testable predictions of the thermal limits of 5,203 359 

species, expanding the scope of previous research3 (Fig. 2). We also addressed geographical 360 

biases by generating predictions in under-sampled but ecologically critical regions of Africa, 361 

Asia, and South America (Fig. 2). We found that these understudied regions frequently harbor 362 

species exhibiting the highest susceptibility to extreme heat events (Fig. 1,4-5), with 74% (288 363 

out of 391) of vulnerable species remaining unstudied. Targeted research efforts in these 364 

vulnerability hotspots are instrumental in validating our model predictions and advancing our 365 

understanding of amphibian thermal physiology to inform their conservation. Though undeniable 366 

logistical and financial challenges exist in accessing some of these remote locations, 367 

collaboration with local scientists could expedite data collection and result in timely conservation 368 

measures. Exemplary initiatives to sample numerous species in South America (e.g., 22,54,55) are 369 

promising steps in this direction, and we hope our findings will catalyse research activity in 370 

these regions.  371 

Amphibian biodiversity in a warming world 372 

Our study highlights the dire consequences of global warming on amphibians. Yet it is crucial to 373 

differentiate between global extinction and local extirpations – the latter being confined 374 

extinctions within specific geographic areas. Most species will not experience overheating 375 

events throughout their entire range, and these overheating events may not occur 376 

simultaneously. Hence, most species are likely to only experience local extirpation due to 377 

overheating, according to our models. Nevertheless, local extirpations carry their own sets of 378 

ecological repercussions, such as reshuffling community compositions and eroding genetic and 379 

ecological diversity56,57. 380 

Some amphibian populations may also undergo range shifts, permanently or transiently 381 

relocating to habitats with more hospitable weather patterns58. However, this is only possible if 382 

suitable habitats are available for establishment. Given the low dispersal rates of some 383 

amphibians and their common reliance on water bodies for reproduction and thermoregulation, 384 
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opportunities for range shifts are likely to be rare for many species. Identifying which species at 385 

high risk of overheating are simultaneously predicted to have limited ability to extend their range 386 

is an interesting avenue for research. In addition, we stress that amphibians living close to their 387 

physiological limits for extended times at the warm edge of their distribution are likely to 388 

experience heat stress that could hamper activity, foraging opportunities, and reproductive 389 

success, adding layers of complexity to their survival challenges and potentially leading to 390 

population declines42,48.  391 

Overall, our study contributes to the evidence that climate change is a mounting threat to 392 

amphibians2,10 and emphasises the importance of limiting global temperature rises below 2°C to 393 

minimise the risk of overheating to amphibian populations. A 4°C temperature rise would not 394 

just increase these risks but create a step-change in impact severity (e.g., Fig. 5c). The 395 

mechanistic basis of our species- and habitat-specific predictions also leads to clear 396 

management priorities. Particularly, our analyses revealed the critical importance of preserving 397 

dense vegetation cover and water bodies. These microhabitats provide conditions with cooler 398 

and more stable temperatures and increase the potential for amphibians and other ectothermic 399 

species to disperse to more suitable microhabitats. Establishing protected areas and 400 

undertaking habitat restoration initiatives may support amphibians in a changing climate and 401 

buffer additional anthropogenic threats, in turn mitigating amphibian population declines2,10,59. 402 

These actions are critical for the amphibians at risk and the ecosystems they support60 in a 403 

planet undergoing perilous climatic changes.  404 

  405 
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Methods 545 

Reporting 546 

We report author contributions using the CRediT (Contributor Roles Taxonomy) statement61 and 547 

MeRIT (Method Reporting with Initials for Transparency) guidelines62. We also crafted the study 548 

title, abstract and keywords to maximise indexing in search engines and databases63. All 549 

analyses were performed using R statistical software64 (v. 4.3.0), and most computations used 550 

the computational cluster Katana supported by Research Technology Services at UNSW 551 

Sydney. 552 

Amphibian heat tolerance limits  553 

We leveraged the most comprehensive compilation of amphibian heat tolerance limits3 for our 554 

analyses (Extended Data Fig. 1). Briefly, these data were collated by systematically reviewing 555 

the literature in five databases and seven languages, comprising 3,095 heat tolerance limits 556 

from 616 amphibian species. To facilitate the comparability and analysis of heat tolerance limits, 557 

we only included data matching four specific criteria. First, we only included heat tolerance limits 558 

measured using a dynamic methodology (i.e., temperature at which animals lose their motor 559 

coordination when exposed to ramping temperatures, critical thermal maximum CTmax
65) 560 

because it was the most used and comparable metric. Second, we only selected data for which 561 

the laboratory acclimation temperature, or the field temperature during the month of capture, 562 

was recorded. Third, we only included data from species listed in the phylogeny from 26. Fourth, 563 

we only included species for which their geographical range was reported in the International 564 

Union for the Conservation of Nature red list66 (accessed in January 2023).  565 

These criteria were chosen to perform phylogenetically, climatically, and spatially informed 566 

analyses. In total, we selected 2,661 heat tolerance limits estimates with metadata for 524 567 

amphibian species (mean = 5.08; range = 1 - 146 estimates per species; 287 species with more 568 

than one estimate). We also complemented this dataset with ecotypic data for each species. 569 

Amphibians were grouped into six major ecotypes according to 41:  ground-dwelling, fossorial, 570 
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aquatic, semi-aquatic, stream-dwelling and arboreal. Cave specialists were excluded because 571 

they experience unique microclimatic conditions. 572 

Data-deficient species 573 

Our objective was to assess the thermal tolerance of amphibians globally. However, the data 574 

compiled in 3 are geographically and taxonomically biased. Therefore, we employed a data 575 

imputation procedure to infer the thermal tolerance of data-deficient species, totalling 5,203 576 

species at a broad geographical coverage (524 species + 4,679 data-deficient species; ~60% of 577 

all described amphibian species, amphibiaweb.org; accessed in December 2023). We selected 578 

data-deficient species from a species list that matched the phylogeny from 26 (7,238 species), 579 

was listed in the IUCN red list66 along with geographic distribution data (5,792 species), and for 580 

which ecotypes were known (6,245 species). We did not consider Caecilians (order 581 

Gymnophiona) because, to our knowledge, heat tolerance limits are unknown for all Caecilian 582 

species3. Of the 5,792 species for which we had distribution and phylogenetic data, 5,268 were 583 

data-deficient for CTmax, of which 4,822 had a known ecotype. After removing Caecilians, we 584 

were left with 4,679 species to impute. We also supplemented our dataset with published body 585 

mass data retrieved from literature sources or estimated based on length-mass 586 

allometries41,67,68. We then estimated the geographical coordinates at which all extant species 587 

occurred in their IUCN distribution range at a 1° x 1° resolution to use for biophysical modelling 588 

(Extended Data Fig. 1).  589 

Data imputation 590 

We developed a phylogenetic imputation procedure, here named Bayesian Augmentation with 591 

Chained Equations (BACE). The BACE procedure combines the powers of Bayesian data 592 

augmentation and multiple imputation with chain equations (MICE69). Briefly, we ran multiple 593 

iterative models using MCMCglmm70 (v. 2.34) and supporting functions from the hmi package71. 594 

In the first cycle, missing data was either taken as the arithmetic mean for continuous 595 

predictors, or randomly sampled from existing values for (semi)categorical predictors. Predicted 596 
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(augmented) values from the models were then extracted from the response variables and used 597 

as predictor variables in the next models to predict other response variables. Ultimately, heat 598 

tolerance limits were predicted using augmented data from all predictors. We ran 5 cycles 599 

where the data from one cycle was iteratively used in the next cycle, and estimations converged 600 

after the first cycle (Fig. S1). Although the proportion of missing data was large (89.9%), 601 

imputations based on large amounts of missing data are common13,72, and although estimate 602 

uncertainty increases with the proportion of missing data, as expected, simulation studies have 603 

shown estimations remain unbiased73,74. Note, however, that although our approach took the 604 

uncertainty of missing data in the response or variable of interest (CTmax) into account, we used 605 

the most likely values for the predictors. While such an approach could underestimate the 606 

uncertainty in the response, point estimates should not be biased. In fact, our cross-validation 607 

approach demonstrated the ability of our models to predict back known experimental estimates 608 

with reasonable error (experimental mean ± standard deviation = 36.19 ± 2.67; imputed mean = 609 

35.93 ± 2.54; r = 0.86; Extended Data Fig. 2).  610 

Heat tolerance limits were imputed based on the species’ acclimation temperatures, the 611 

duration of acclimation, the ramping rate and endpoint used in assays, the medium used for 612 

measuring heat tolerance limits (i.e., ambient temperatures, water/body temperatures), and the 613 

life stage of the animals (adults or larvae), and their ecotype. These variables were correlated 614 

with amphibian heat tolerance limits (Fig. S2) and were fitted as covariates in Bayesian linear 615 

mixed models. We also weighted heat tolerance estimates based on the inverse of their 616 

sampling variance, accounted for phylogenetic non-independence using a correlation matrix of 617 

phylogenetic relatedness, and fitted random intercepts for species-specific effects and 618 

phylogenetic effects, as well as their correlation with acclimation temperatures (i.e., random 619 

slopes). In other words, we modelled species-specific slopes (plasticity; see Fig. S2) and 620 

partitioned the variance among phylogenetic and non-phylogenetic effects. We imputed data for 621 

adult amphibians assuming they were acclimated to the median, 5th, or 95th percentile operative 622 

body temperatures experienced across their geographical range (see Microenvironmental data 623 
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and biophysical modelling) for a duration of 10 days, tested using a ramping rate of 1°C/min in a 624 

container filled with water, and for which thermal tolerance endpoint was recorded as the onset 625 

of spasms. These methodological parameters were the median values in the experimental 626 

dataset, or the most common values (mode). This allowed standardization of heat tolerance 627 

limits for the comparative analysis75–77. In amphibians, the onset of spasms usually occurs after 628 

the loss of righting response78, meaning that our estimates are conservative. While we did 629 

include data from larvae in the training data, we only imputed data for adults to increase the 630 

comparability of our estimates.  631 

For both known species and data-deficient species, we generated three ecologically relevant 632 

and standardised heat tolerance estimates, and all analyses were built upon these standardised 633 

imputed estimates. In total, we generated data for 5,203 species of amphibians (Extended Data 634 

Fig. 1-2). Notably, our imputed estimates are accompanied by standard errors, which provide 635 

estimates of uncertainty in the imputation, and errors were propagated throughout our analyses 636 

(see Climate vulnerability analysis). 637 

Microenvironmental data and biophysical modelling 638 

We used the package NicheMapR79,80 (v. 3.2.1) to estimate microenvironmental temperatures 639 

and hourly operative body temperatures in current (2006-2015) and projected climatic 640 

conditions (2°C or 4°C of global warming above pre-industrial levels). Operative body 641 

temperatures are the steady-state body temperatures that organisms would achieve in a given 642 

microenvironment, which can diverge significantly from ambient air temperatures due to, for 643 

example, radiative and evaporative heat exchange processes19,20,81–86.  644 

For each geographic location, we generated microclimatic temperatures experienced by 645 

amphibians on i) a vegetated ground-level substrate (i.e., terrestrial), ii) in above-ground 646 

vegetation (i.e., arboreal), or iii) in a water body (i.e., aquatic) (Extended Data Fig, 1). For 647 

terrestrial and aquatic species, we simulated microenvironmental temperatures 1 cm above the 648 

surface. For arboreal species, we simulated microenvironmental temperatures 2 meters above 649 
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ground, applied a reduction of 80% in windspeed to account for reduced wind due to 650 

vegetation87, and assumed that 90% of the solar radiation was diffused due to canopy cover88. 651 

All microenvironmental projections were made using 85% shade to simulate animals in thermal 652 

refugia, i.e., the microhabitats in which animals would retreat during the hottest times of the day. 653 

We did not model temperatures in the sun because ectothermic species most likely 654 

behaviourally thermoregulate by retreating to thermal refugia during extreme heat events21. Our 655 

calculations thus represent conservative estimates of the vulnerability of amphibians to extreme 656 

temperature events.  657 

For microclimatic temperature estimates, we used the micro_ncep function from NicheMapR79 658 

(v. 3.2.1), which integrates 6-hourly macroclimatic data from the National Center for 659 

Environmental Predictions (NCEP). This function also inputs from the microclima package89 (v. 660 

0.1.0) to predict microclimatic temperatures after accounting for variation in radiation, wind 661 

speed, altitude, albedo, vegetation, and topography. These data are downscaled to an hourly 662 

resolution, producing high-resolution microclimatic data. We used projected future monthly 663 

climate data from TerraClimate23 to generate hourly projections assuming 2°C or 4°C of global 664 

warming above pre-industrial levels. These temperatures are within the range projected by the 665 

end of the century under low (Shared Socioeconomic Pathway SSP 1-2.6 to SSP 2-4.5) and 666 

high (SSP 3-7.0 to SSP 5-8.5) greenhouse gas emission scenarios, respectively24. TerraClimate 667 

projections use monthly data on precipitation, minimum temperature, maximum temperature, 668 

wind speed, vapor pressure deficit, soil moisture, and downward surface shortwave radiation. 669 

These projections impose monthly climate projections from 23 CMIP5 global circulation models, 670 

as described in 90. The micro_ncep function then downscales monthly TerraClimate inputs to 671 

hourly by imposing a diurnal cycle to the data and imposes TerraClimate offsets onto the 672 

climatic data from NCEP. Because the TerraClimate data is already bias-corrected, adding 673 

future climate projections onto the NCEP data did not require further bias correction. We ran all 674 

microclimatic estimations between 2005 and 2015 to match the range of pseudo-years available 675 

for TerraClimate future climate projections. We did not use a larger range of historical records 676 
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and only used climate projections available in TerraClimate (i.e., 2°C and 4°C) to reduce 677 

computational demands.  678 

We then used microclimate estimates to generate hourly operative body temperatures using the 679 

ectotherm function in NicheMapR80. This modelling system has been extensively validated with 680 

field observations91–93 (see also Fig. S12). We modelled an adult amphibian in the shape of the 681 

leopard frog Lithobates pipiens, positioned 1 cm above ground (or 2 m for arboreal species), 682 

and assumed that 80% of the skin acted as a free water surface (wet skin). Estimating body 683 

mass-specific operative body temperatures for each grid cell, species, and microhabitat was too 684 

computationally extensive, given the geographic and taxonomic scale of our study (464,871 685 

local species occurrences). Therefore, we ran the ectotherm models using the median body 686 

mass of the species assemblage in each geographical coordinate. When body mass was 687 

unknown, we ran models assuming a body mass of 8.4 grams, the median assemblage-level 688 

body mass. Given that most amphibians in our dataset are small (median = 1.4 g, mean = 27.5 689 

g), body temperatures equilibrate quickly with the environment, and operative body 690 

temperatures are likely representative of core body temperatures.  691 

To model operative body temperatures in water bodies (e.g., ponds or wetlands), we used the 692 

container model from NicheMapR. Unlike previously mentioned calculations predicting steady-693 

state temperatures, this approach accounts for transient temperature changes, capturing lags 694 

due to thermal inertia (i.e., transient heat budget model94,95). For pond simulations, we modelled 695 

a container permanently filled with water (12 m width and 1.5 m-depth) and decreased direct 696 

solar radiation to zero to simulate full shade. This modelling approach serves as a proxy for 697 

estimating the body temperature of ectotherms submerged in water bodies such as ponds or 698 

wetlands, which was validated with field measurements (e.g., 40,92). Ground-level and water 699 

temperatures were modelled for all species regardless of their ecotype (apart from 700 

paedomorphic salamanders that were only assessed in aquatic environments) because 701 

arboreal and terrestrial species may retreat on land or in water occasionally. Temperatures in 702 

above-ground vegetation were only estimated for arboreal and semi-arboreal species as 703 
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reaching 2 meters height in vegetation requires a morphology adapted to climbing. Our 704 

biophysical models assume that shaded microhabitats are available to species throughout their 705 

range. While this may not hold true, fine-scaled distribution of these microenvironments are not 706 

available at global scales. Moreover, assuming that these microenvironments are available 707 

serves a functional role; it provides a best-case scenario that is useful for comparative analyses 708 

and offers actionable insights for conservation. For instance, reduced exposure to overheating 709 

events in aquatic relative to terrestrial environments would suggest that preserving ponds and 710 

wetlands may be critical in buffering the impacts of climate change on amphibians. 711 

We then estimated, for each geographical coordinate, the maximum daily body temperature and 712 

the mean and maximum weekly maximum body temperature experienced in the 7 days prior to 713 

each given day to account for acclimation responses and to assess climate vulnerability 714 

metrics18 (see Climate vulnerability analyses). We only used data for the 91 warmest days (i.e., 715 

warmest quarter) of each year, as we were interested in the responses of amphibians to 716 

extreme heat events18. Note that data from the year 2005 was excluded a posteriori as a burn-in 717 

to remove the effects of initial conditions on soil temperature, soil moisture, and pond 718 

calculations. Therefore, our analyses are based on 910 days (91 days per year in the range 719 

2006-2015) for each climatic scenario (current climate, 2°C above pre-industrial levels, 4°C 720 

above pre-industrial levels). 721 

We also used maximum daily body temperatures on terrestrial conditions to calculate the 722 

median, 5th percentile and 95th percentile maximum body temperature experienced by each 723 

species across their range of distribution. These values were used as acclimation temperatures 724 

in the training data to calibrate the data imputation with ecologically-relevant environmental 725 

temperatures (see Data imputation); while maximizing the range of temperatures used to infer 726 

the plasticity of heat tolerance limits (see Climate vulnerability analysis). 727 
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Climate vulnerability analysis 728 

Using the imputed data, we fitted an individual meta-analytic model for each species to estimate 729 

the plasticity of imputed heat tolerance limits (CTmax) to changes in operative body temperatures 730 

using the metafor package96 (v. 4.2-0). CTmax was used as the response variable, acclimation 731 

temperature (i.e., median, 5th percentile, or 95th percentile daily maximum body temperature 732 

experienced by a species across its distribution range) was used as the predictor variable, and 733 

imputed estimates were weighted based on their standard error. From these models, we used 734 

out-of-sample model predictions (using the predict function) to estimate the CTmax of each 735 

species in each 1° x 1° grid cell across their distribution range in different warming scenarios, 736 

based on predicted mean weekly body temperatures. Specifically, we assumed that species 737 

were, on any given day, acclimated to the mean daily body temperature experienced in the 7 738 

days prior18. Therefore, CTmax was simulated as a plastic trait, which varied daily, as animals 739 

acclimate to new environmental conditions (Extended Data Fig. 1). While evidence in small 740 

amphibians suggests the full acclimation potential is reached within 3-4 days97–99, other 741 

evidence points to some variation after longer periods100. Therefore, we chose 7 days to reflect 742 

that some amphibians may require longer to acclimate. Because we used out-of-sample model 743 

predictions, we propagated errors from the imputation when estimating the predicted CTmax 744 

across geographical coordinates. Predicted CTmax values and their associated standard errors 745 

thus reflect variation in both the imputation procedure and the estimation of plastic responses.  746 

Our approach to accounting for plasticity assumes that plasticity is homogeneous within species 747 

and ignores the possible influence of local adaptation. However, given the low variability in 748 

plasticity among species (Fig. S2-3), lack of evidence for latitudinal variation in plasticity 749 

(28,31,101), high phylogenetic signal in thermal tolerance (Pagel’s λ102 = 0.95 [0.91 – 0.98]; see 750 

Sensitivity Analyses), and evidence for slow rates of evolution and physiological constraints on 751 

CTmax
52,53, geographic variation in thermal tolerance and plasticity is unlikely to have a major 752 

influence on our results. 753 
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We then estimated the vulnerability of amphibians to global warming using three metrics 754 

(Extended Data Fig. 1). First, we calculated the difference between CTmax and the maximum 755 

daily body temperature, i.e., the thermal safety margin (i.e., TSM, sensu 6). We calculated 756 

weighted means and standard errors (sensu 103) of thermal safety margins across years to 757 

estimate the mean difference between CTmax and the maximum temperature during the warmest 758 

quarters. Using TSM averaged from the maximum temperature of the warmest quarter is 759 

common in the literature27–29. Second, we calculated the number of days the maximum daily 760 

operative body temperature exceeded CTmax across the warmest quarters of 2006-2015, i.e., 761 

the number of overheating events. To propagate the uncertainty, we calculated the mean 762 

probability that daily operative body temperatures exceeded the predicted distribution of CTmax 763 

(using the dnorm function). Note that the standard error (standard deviation of estimates) of 764 

simulated CTmax distributions were restricted to one (i.e., simulating distributions within ~3°C of 765 

the mean) to avoid inflating overheating probabilities due to large imputation uncertainty (cf 72; 766 

see also Sensitivity analyses; Fig. S8). We then multiplied the mean overheating probability by 767 

the total number of simulated days (910) to estimate the number of overheating events and their 768 

associated standard error using properties of the binomial distribution. Third, we calculated the 769 

binary probability (0/1) that species overheat for at least one day across the 910 days surveyed 770 

(warmest quarters of 2006-2015). The latter two metrics provide a finer resolution than TSMs, 771 

as they capture daily temperature fluctuations and potential overheating events18.  772 

Macroecological patterns 773 

The objective of this study was to characterise the vulnerability of amphibians to global 774 

warming. We investigated patterns at the level of local species occurrences (presence of a 775 

given species in a 1° x 1° grid cell based on IUCN data), allowing one to identify specific 776 

populations and species that may be more susceptible to heat stress and direct targeted 777 

research efforts. We also analysed data at the assemblage level, the species composition within 778 

a grid cell. In such case, we calculated the weighted mean and standard error of TSM (sensu 779 

103) across species in each grid cell. Assemblage-level analyses allow one to identify areas 780 
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containing a higher number of vulnerable species, offering actionable insights for broader-scale 781 

conservation initiatives. 782 

We used the gamm4 package104 to fit generalised additive mixed models (GAMM) against 783 

latitude. For local species occurrences, we fitted latitude as a fixed factor, and nested genus 784 

and species identity as random terms to account for phylogenetic non-independence. Note that 785 

we did not include family as a random term because models failed at estimating higher 786 

taxonomic variation. While better methods exist to model phylogenetic patterns, generalised 787 

additive linear models do not allow for phylogenetic correlation matrices, and other functions 788 

such as brms105 surpassed our computational time and memory limits. Nevertheless, imputed 789 

estimates already reflect variation due to phylogeny (see Data imputation), and phylogeny was 790 

further modelled when deriving mean estimates in each microhabitat and climatic scenario (see 791 

below). We fitted models using the three metrics as response variables independently: the 792 

thermal safety margin, overheating risk, and number of overheating events. The former was 793 

modelled using a Gaussian distribution of residuals, overheating risk was modelled using a 794 

binomial error structure, and the latter using a Poisson error structure. Note that overheating 795 

risks were rounded to integer values to fit a Poisson distribution. Thermal safety margin 796 

estimates were weighted by the inverse of their sampling variance to account for the uncertainty 797 

in the imputation and predictions across geographical coordinates. We fitted separate models 798 

for each climatic scenario (current climate, 2°C above preindustrial levels, 4°C above 799 

preindustrial levels) and microhabitat (terrestrial, aquatic, arboreal).  800 

To investigate the mean TSM in each microhabitat and climatic scenario, we fitted models with 801 

the interaction between microhabitat and climatic scenario as a fixed effect using MCMCglmm70 802 

(v. 2.34) and flat, parameter-expanded priors. In these models, we weighted estimates based 803 

on the inverse of their sampling variance, species identity was fitted as a random effect, and we 804 

accounted for phylogenetic non-independence using a variance-covariance matrix of 805 

phylogenetic relatedness (calculated from the consensus tree of 26). To investigate the overall 806 

overheating risk and number of overheating events in each condition, we attempted to fit 807 
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models in MCMCglmm but these models failed to converge. Therefore, we fitted Poisson and 808 

binomial models using lme4106 (v. 1.1-33) and nested genus, species, and observation as 809 

random terms. We used similar Poisson models to investigate the relationship between the 810 

number of overheating events and thermal safety margins. While the mean estimates from 811 

these simpler models should be unbiased, estimate uncertainty is likely underestimated107. 812 

We also investigated patterns of climate vulnerability at the assemblage level. We calculated 813 

the weighted average of TSM and overheating risk in each 1-degree grid cell (14,091; 14,090; 814 

or 6,614 grid cells for terrestrial, aquatic, and arboreal species, respectively), and mapped 815 

patterns geographically. Averaging overheating risk effectively returned the proportion of 816 

species overheating in each coordinate; and we also calculated the number of species 817 

overheating in each grid cell. For assemblage-level models, we fitted Gaussian, binomial or 818 

Poisson models as described above, but without taxon-level random effects because these 819 

cannot be modelled at the assemblage level. All models were fitted without a contrast structure 820 

to estimate mean effects in each microhabitat and climatic scenario, and with two-sided 821 

contrasts to draw comparisons with current terrestrial conditions. 822 

Cross-validation and sensitivity analyses 823 

We assessed the accuracy of the data imputation procedure using a cross-validation approach. 824 

Specifically, we removed heat tolerance estimates for 5% of the species in the experimental 825 

data and 5% of the data-deficient species (maintaining the same proportion of missing data) 826 

and assessed how well experimental values could be predicted from the models. Of relevance, 827 

we only removed data that were comparable to the data that were imputed. That is, data from 828 

adult animals tested using a ramping rate of 1°C/min, and where thermal limits were recorded 829 

as the onset of spasms. While we could have trimmed any data entry in the experimental data, 830 

validation of the imputation performance can only be achieved by comparing comparable 831 

entries, and imputing data from species tested in unusual settings would naturally result in large 832 

errors. In total, we cross-validated experimental estimates for 77 species. 833 
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We investigated alternative ways to i) calculate thermal safety margins, ii) account for 834 

acclimation responses, and iii) control for prediction uncertainty (see Supplementary methods; 835 

Fig. S6-8) and investigated the influence of different parameters of our biophysical models (i.e., 836 

shade and burrow availability, plant height, solar radiation, wind speed, pond depth) on 837 

predicted vulnerability risks (see Supplementary methods; Fig. S9-11). Our results were 838 

generally robust to changes in model parameters, although amphibians are likely to experience 839 

more overheating events in open habitats6,42 (Fig. S9) and shallow ponds (Fig. S10), and lower 840 

risks in underground conditions108 (Fig. S9). We also confirmed that predicted operative body 841 

temperatures were comparable to field body temperatures measured in some wild frogs (see 842 

Supplementary methods; Fig. S12). 843 

Finally, we confirmed the presence of a phylogenetic signal in the experimental dataset by fitting 844 

a Bayesian linear mixed model using all complete (no missing data) predictors (i.e., acclimation 845 

temperature, endpoint, acclimation status, life stage, and ecotype) in MCMCglmm. We 846 

accounted for phylogenetic non-independence using a correlation matrix of phylogenetic 847 

relatedness and fitted random intercepts for non-phylogenetic species effects. The phylogenetic 848 

signal (Pagel’s λ102, which is equivalent to phylogenetic heritability109,110) was calculated as the 849 

proportion of variance explained by phylogenetic effects relative to the total non-residual 850 

variance. 851 

Results from all statistical models and additional data visualizations are available at https://p-852 

pottier.github.io/Vulnerability_amphibians_global_warming/. 853 

Data availability 854 

Raw and processed data are available at https://github.com/p-855 

pottier/Vulnerability_amphibians_global_warming. Note, however, that some intermediate data 856 

files were too large to be shared online. These files are available upon request and will be 857 

uploaded to a permanent repository upon acceptance. TerraClimate data is available from 858 

https://www.climatologylab.org/terraclimate.html and NCEP data is available from 859 

https://psl.noaa.gov/thredds/catalog/Datasets/ncep.reanalysis2/gaussian_grid/catalog.html.  860 

https://p-pottier.github.io/Vulnerability_amphibians_global_warming/
https://p-pottier.github.io/Vulnerability_amphibians_global_warming/
https://github.com/p-pottier/Vulnerability_amphibians_global_warming
https://github.com/p-pottier/Vulnerability_amphibians_global_warming
https://www.climatologylab.org/terraclimate.html
https://psl.noaa.gov/thredds/catalog/Datasets/ncep.reanalysis2/gaussian_grid/catalog.html
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Code availability 861 

All code needed to reproduce the analyses is available at https://github.com/p-862 

pottier/Vulnerability_amphibians_global_warming. 863 
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Extended data 1009 
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 1011 

Extended Data Fig. 1 | Conceptual overview of the methods employed to assess the 1012 
vulnerability of amphibians to global warming.  1013 
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 1015 

 1016 
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 1017 

Extended Data Fig. 2 | Accuracy of the data imputation procedure. a) Probability density 1018 
distributions (n = 375 observations, 77 species) of experimental CTmax (blue) and CTmax cross-1019 
validated using our data imputation procedure (pink). b) Correlation between experimental and 1020 
imputed CTmax values. c) Variation in the uncertainty (standard error, SE) of imputed CTmax 1021 
predictions (outer heat map) across studied (blue; n = 524) and imputed (grey; n = 4,679) 1022 
species.  1023 
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 1024 

 1025 

1026 
Extended Data Fig. 3 | Thermal safety margin, critical thermal maximum, and operative 1027 
body temperatures in different microhabitats and climatic scenarios. Weighted mean 1028 
thermal safety margins (TSM; a-c), critical thermal maximum (CTmax; d-f) and operative body 1029 
temperatures (g-i) in terrestrial (a,d,g), aquatic (b,e,h) and arboreal (c,f,i) microhabitats are 1030 
depicted in current microclimates (blue data points), or assuming 2°C and 4°C of global 1031 
warming above pre-industrial levels (orange, and pink data points, respectively) across 1032 
latitudes. Lines represent 95% confidence intervals of model predictions from generalised 1033 
additive mixed models. CTmax and TSM estimates are scaled by precision (1/s.e.). Each point 1034 
represents a species in a given grid cell. 1035 

 1036 

 1037 

 1038 

 

 

 

 

 

 

 

 

 

       

        

           

       

        

           

       

        

           



45 

 

1039 
Extended Data Fig. 4 | Vulnerability of arboreal amphibians in terrestrial and arboreal 1040 
microhabitats. Depicted are the number of overheating events experienced by arboreal 1041 
species across latitudes (a-b) and in relation to thermal safety margins (c-d) in terrestrial (a-c) 1042 
and arboreal microhabitats (b-d). The number of overheating events were calculated based on 1043 
the mean probability that daily maximum temperatures exceeded CTmax during the warmest 1044 
quarters of 2006-2015 for each species in each grid cell. Blue points depict the number of 1045 
overheating events in historical microclimates, while orange and pink points depict the number 1046 
of overheating events assuming 2°C and 4°C of global warming above pre-industrial levels, 1047 
respectively. In panel a) and b), only the species predicted to overheat for at least one day are 1048 
displayed. The number of arboreal species predicted to experience overheating events in 1049 
terrestrial (e) and arboreal (f) microhabitats in each assemblage is also depicted. The number of 1050 
species overheating was assessed as the sum of species overheating for at least one day in the 1051 
period surveyed (warmest quarters of 2006-2015) in each assemblage (1-degree grid cell). 1052 
Black colour depicts areas with no data, and grey colour assemblages without species at risk. 1053 
The right panel depicts latitudinal patterns in the number of species predicted to overheat in 1054 
current climates (blue) or assuming 4°C of global warming above pre-industrial levels (pink). 1055 
Dashed lines represent the equator and tropics. Few species (n = 11) were predicted to 1056 
experience overheating events in water bodies, and hence are not displayed. 1057 
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 1059 

1060 
Extended Data Fig. 5 | Proportion of species predicted to experience overheating events 1061 
in terrestrial (a), aquatic (b), and arboreal (c) microhabitats. The proportion of species 1062 
overheating was assessed as the sum of species overheating for at least one day in the period 1063 
surveyed (warmest quarters of 2006-2015) divided by the number of species in each 1064 
assemblage (1-degree grid cell). Black colour depicts areas with no data, and grey colour 1065 
assemblages without species at risk. The right panel depicts latitudinal patterns in the proportion 1066 
of species predicted to overheat in current climates (blue) or assuming 4°C of global warming 1067 
above pre-industrial levels (pink). Dashed lines represent the equator and tropics.  1068 
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 1070 

Extended Data Table 1 | Statistical model estimates for thermal safety margins calculated 1071 
for local species occurrences and assemblages Model estimates for each microhabitat 1072 
(terrestrial, arboreal, aquatic) and each climatic scenario (current, +2°C, or +4°C of global 1073 
warming above pre-industrial levels) are depicted. mean: mean model estimate; CI.lb: lower 1074 
bound of the 95% confidence interval; CI.ub: upper bound of the 95% confidence interval; ksp: 1075 
number of species; kobs: number of observations; Varsp: variance explained by differences 1076 
between species; Varphy: variance explained by shared evolutionary history; Varobs: residual 1077 
variance.  1078 

Local species patterns in thermal safety margin 

 mean CI.lb CI.ub ksp kobs Varsp Varphy Varobs 

Terrestrial (current) 11.694 8.856 14.428 5177 203853 

1.295 11.960 1.828 

Terrestrial (+2°C) 10.914 8.025 13.594 5177 203853 

Terrestrial (+4°C) 9.409 6.530 12.090 5177 203853 

Arboreal (current) 12.235 9.402 14.960 1771 56210 

Arboreal (+2°C) 11.517 8.660 14.236 1771 56210 

Arboreal (+4°C) 10.073 7.229 12.797 1771 56210 

Aquatic (current) 13.598 10.708 16.276 5203 204808 

Aquatic (+2°C) 12.827 8.796 14.361 5203 204808 

Aquatic (+4°C) 11.682 8.796 14.361 5203 204808 

Assemblage-level patterns in thermal safety margin 

 mean CI.lb CI.ub  kobs   Varobs 

Terrestrial (current) 15.279 15.208 15.330  14090    

Terrestrial (+2°C) 14.328 14.279 14.396  14090    

Terrestrial (+4°C) 12.602 12.542 12.657  14090    

Arboreal (current) 14.279 14.191 14.381  6614   11.06 

Arboreal (+2°C) 13.393 13.298 13.478  6614    

Arboreal (+4°C) 11.746 11.666 11.830  6614    

Aquatic (current) 17.408 17.352 17.471  14091    

Aquatic (+2°C) 16.528 16.468 16.581  14091    

Aquatic (+4°C) 15.287 15.225 15.346  14091    

 1079 
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 1081 

Extended Data Table 2 | Statistical model estimates for overheating risk and the number 1082 
of overheating events. Model estimates for each microhabitat (terrestrial, arboreal) and each 1083 
climatic scenario (current, +2°C, or +4°C of global warming above pre-industrial levels) are 1084 
depicted. The estimated number of overheating events in species predicted to experience at 1085 
least one overheating event (i.e., overheating species) are also depicted. Model estimates for 1086 
aquatic microhabitats are not displayed because no species was predicted to experience 1087 
overheating events in this microhabitat. mean: mean model estimate; CI.lb: lower bound of the 1088 
95% confidence interval; CI.ub: upper bound of the 95% confidence interval; ksp: number of 1089 
genera; ksp: number of species; kobs: number of observations; Vargenus: variance explained by 1090 
differences between genera; Varsp: variance explained by differences between species; Varobs: 1091 
residual variance. 1092 

Overheating risk  

 mean  CI.lb CI.ub kgenus ksp kobs Vargenus Varsp  

Terrestrial (current) 9.98 x 10-7 5.60 x 10-7 1.78 x 10-6 464 5177 203853 

0.306 69.653 

 

Terrestrial (+2°C) 1.93 x 10-6 1.09 x 10-6 3.43 x 10-6 464 5177 203853  

Terrestrial (+4°C) 9.09 x 10-6 5.13 x 10-6 1.61 x 10-5 464 5177 203853  

Arboreal (current) 4.77 x 10-7 2.58 x 10-7 8.80 x 10-7 174 1771 56210  

Arboreal (+2°C) 9.78 x 10-7 5.45 x 10-7 1.75 x 10-6 174 1771 56210  

Arboreal (+4°C) 3.72 x 10-6 2.08 x 10-6 6.67 x 10-6 174 1771 56210  

Number of overheating events (all species)  

 mean  CI.lb CI.ub kgenus ksp kobs Vargenus Varsp  

Terrestrial (current) 0.014 0.001 0.080 464 5177 203853 

0.110 52.500 

 

Terrestrial (+2°C) 0.025 0.002 0.127 464 5177 203853  

Terrestrial (+4°C) 0.153 0.046 0.460 464 5177 203853  

Arboreal (current) 0.008 0.001 0.043 174 1771 56210  

Arboreal (+2°C) 0.015 0.001 0.083 174 1771 56210  

Arboreal (+4°C) 0.076 0.012 0.230 174 1771 56210  

Number of overheating events (among overheating species)  

 mean  CI.lb CI.ub kgenus ksp kobs Vargenus Varsp Varobs 

Terrestrial (current) 2.155 0.239 5.264 38 104 836 

0.253 0.187 0.310 

Terrestrial (+2°C) 2.576 0.410 5.857 61 168 1424 

Terrestrial (+4°C) 6.747 3.136 11.385 118 391 4248 

Arboreal (current) 1.621 0.026 4.429 4 13 152 

Arboreal (+2°C) 1.956 0.113 4.973 5 16 283 

Arboreal (+4°C) 5.084 1.806 9.387 17 56 748 
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Extended Data Table 3 | Statistical model estimates for the number of species predicted 1094 
to experience overheating events. Model estimates for each microhabitat (terrestrial, 1095 
arboreal) and each climatic scenario (current, +2°C, or +4°C of global warming above pre-1096 
industrial levels) are depicted. The estimated number of species overheating in assemblages 1097 
containing at least one species predicted to experience at least one overheating event (i.e., 1098 
overheating assemblages) are also depicted. Model estimates for aquatic microhabitats are not 1099 
displayed because no species was predicted to experience overheating events in this 1100 
microhabitat. mean: mean model estimate; CI.lb: lower bound of the 95% confidence interval; 1101 
CI.ub: upper bound of the 95% confidence interval; kobs: number of observations; Varobs: 1102 
residual variance. 1103 

Number of species overheating (all assemblages) 

 mean  CI.lb CI.ub kobs Varobs 

Terrestrial (current) 0.056 0.016 0.118 14090 

55.47 

Terrestrial (+2°C) 0.096 0.029 0.199 14090 

Terrestrial (+4°C) 0.288 0.083 0.604 14090 

Arboreal (current) 0.021 0.002 0.054 6614 

Arboreal (+2°C) 0.040 0.006 0.094 6614 

Arboreal (+4°C) 0.107 0.021 0.243 6614 

Number of species overheating (among overheating assemblages) 

 mean  CI.lb CI.ub kobs Varobs 

Terrestrial (current) 3.185 0.601 6.883 253 

0.601 

Terrestrial (+2°C) 3.228 0.678 6.810 426 

Terrestrial (+4°C) 3.084 0.617 6.557 1328 

Arboreal (current) 1.930 0.054 5.054 74 

Arboreal (+2°C) 2.445 0.189 5.649 111 

Arboreal (+4°C) 2.509 0.312 5.692 285 

 1104 
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 1106 

Extended Data Table 4 | Statistical model estimates for the proportion of species 1107 
predicted to experience overheating events. Model estimates for each microhabitat 1108 
(terrestrial, arboreal) and each climatic scenario (current, +2°C, or +4°C of global warming 1109 
above pre-industrial levels) are depicted. The estimated proportion of species overheating in 1110 
assemblages containing at least one species predicted to experience at least one overheating 1111 
event (i.e., overheating assemblages) are also depicted. Model estimates for aquatic 1112 
microhabitats are not displayed because no species was predicted to experience overheating 1113 
events in this microhabitat. mean: mean model estimate; CI.lb: lower bound of the 95% 1114 
confidence interval; CI.ub: upper bound of the 95% confidence interval; kobs: number of 1115 
observations; Varobs: residual variance. 1116 

Proportion of species overheating (all assemblages) 

 mean  CI.lb CI.ub kobs Varobs 

Terrestrial (current) 1.22 x 10-5 8.96 x 10-6 1.66 x 10-5 14090 

42.26 

Terrestrial (+2°C) 2.09 x 10-5 1.60 x 10-5 2.72 x 10-5 14090 

Terrestrial (+4°C) 8.13 x 10-5 6.60 x 10-5 1.00 x 10-4 14090 

Arboreal (current) 1.19 x 10-5 7.07 x 10-6 2.02 x 10-5 6614 

Arboreal (+2°C) 1.86 x 10-5 1.19 x 10-5 2.89 x 10-5 6614 

Arboreal (+4°C) 4.99 x 10-5 3.62 x 10-5 6.87 x 10-5 6614 

Proportion of species overheating (among overheating assemblages) 

 mean  CI.lb CI.ub kobs Varobs 

Terrestrial (current) 0.053 0.046 0.061 253 

1.019 

Terrestrial (+2°C) 0.058 0.052 0.065 426 

Terrestrial (+4°C) 0.094 0.088 0.100 1328 

Arboreal (current) 0.038 0.029 0.050 74 

Arboreal (+2°C) 0.054 0.043 0.067 111 

Arboreal (+4°C) 0.061 0.053 0.070 285 

 1117 
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 1119 

Extended Data Table 5 | Statistical model estimates for the association between the 1120 
number of overheating events and thermal safety margins. Model estimates for each 1121 
microhabitat (terrestrial, arboreal) and each climatic scenario (current, +2°C, or +4°C of global 1122 
warming above pre-industrial levels) are depicted. Model estimates for aquatic microhabitats 1123 
are not displayed because no species was predicted to experience overheating events in this 1124 
microhabitat. All model estimates are on the log scale. mean: mean model estimate; se: 1125 
standard error; ksp: number of genera; ksp: number of species; kobs: number of observations; 1126 
Vargenus: variance explained by differences between genera; Varsp: variance explained by 1127 
differences between species; Varobs: residual variance. 1128 

 mean se p kgenus ksp kobs Vargenus Varsp Varobs 

Terrestrial (current)          

     Intercept  3.723 0.390 <0.001 464 5177 203853 5.850 3.346 0.116 

     Slope (TSM) -1.201 0.031 <0.001       

Terrestrial (+2°C)          

     Intercept 6.318 0.310 <0.001 464 5177 203853 5.272 2.380 0.078 

     Slope (TSM) -1.452 0.027 <0.001       

Terrestrial (+4°C)          

     Intercept 7.611 0.171 <0.001 464 5177 203853 2.954 1.025 0.248 

     Slope (TSM) -1.616 0.015 <0.001       

Arboreal (current)          

     Intercept 4.929 1.091 <0.001 174 1771 56210 0.001 15.190 0.001 

     Slope (TSM) -1.511 0.094 <0.001       

Arboreal (+2°C)          

     Intercept 7.836 0.836 <0.001 174 1771 56210 4.359 2.358 0.001 

     Slope (TSM) -1.739 0.080 <0.001       

Arboreal (+4°C)          

     Intercept 10.093 0.587 <0.001 174 1771 56210 8.789 0.917 0.001 

     Slope (TSM) -2.085 0.039 <0.001       

 1129 
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Supplementary methods 46 

 47 

Sensitivity analyses 48 

In this study, we projected CTmax estimates assuming animals were acclimated to the mean 49 

weekly temperature experienced prior to each day. We also assessed the climate vulnerability 50 

of amphibians assuming they were acclimated to weekly maximum body temperatures (cf. 1), 51 

which reflects more conservative estimates (Fig. S7).  52 

We also calculated thermal safety margins as the difference between the maximum (or 95th 53 

percentile, cf. 2) hourly body temperature experienced by each population and their predicted 54 

CTmax to investigate the consequences of averaging temperatures when calculating TSMs 55 

(Fig. S6). To increase the comparability of our estimations with similar studies (e.g., 2), we also 56 

calculated climate vulnerability metrics more conservatively. Specifically, we excluded 57 

temperature data falling below the 5th percentile and above the 95th percentile body 58 

temperature for each population to mitigate the impact of outliers (Fig. S6). However, extreme 59 

weather events, which are typically captured by these outlier values, are the very phenomena 60 

most likely to precipitate mortality events3,4. Omitting these outliers could therefore obscure 61 

the ecological significance of extreme temperatures, thereby underestimating true overheating 62 

risks.  63 

To estimate overheating probabilities, we calculated the mean daily probability that operative 64 

body temperatures exceeded the predicted distribution of CTmax and restricted the standard 65 

deviation of simulated distributions to one (i.e., within ~3°C of the mean) to avoid inflating 66 

overheating probability for observations with large uncertainty. We also provided alternative 67 

results (Fig. S8) where the standard deviation of CTmax was restricted to the “biological range”, 68 

i.e., the standard deviation of the distribution of all CTmax estimates across species (range = 69 

1.84 – 2.17). We also provide a sensitivity analysis where overheating risk was positive only 70 

when the 95% confidence intervals of predicted overheating days did not overlap with zero 71 

(Fig. S8).  72 

We also investigated the influence of different parameters of our biophysical models (i.e., 73 

shade and burrow availability, height in above-ground vegetation, solar radiation, wind speed, 74 

pond depth) on predicted vulnerability risks (Fig. S9-11). Specifically, we modelled the 75 

responses of the species at highest risk in terrestrial and aquatic conditions, Noblella 76 

myrmecoides, in its most vulnerable location (latitude, longitude = -9.5, -69.5). For terrestrial 77 

conditions, we modelled the response of amphibians with different body sizes (0.5, 4.28, or 78 

50 grams), and with different levels of exposure to open habitat conditions. Specifically, we 79 
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modelled an amphibian exposed to 50% of shade to simulate an open habitat lightly covered 80 

by vegetation, and inferred temperatures at different soil depths (2.5, 5, 10, 15, or 20 cm 81 

underground). For aquatic conditions, we adjusted pond depths to simulate a very shallow 82 

pond (50 cm) and compared it to deeper ponds (1.5- or 3-meters depth). For arboreal 83 

conditions, we modelled the responses of Pristimantis ockendeni, in its most vulnerable 84 

location (-4.5, -71.5), and adjusted the height in above-ground vegetation (0.5, 2, or 5 meters), 85 

the percentage of radiation diffused by vegetation (50%, 75%, or 90% of radiation diffused), 86 

and the percentage of wind speed reduced by vegetation (0%. 50%, or 80% of wind speed 87 

reduced by vegetation). We did not estimate the influence of these parameters on all species 88 

and at all locations because of the scale of our study, but these results should provide insight 89 

into how varying microenvironmental features and biological characteristics may impact our 90 

general conclusions.  91 

Finally, we compared our predictions of operative body temperatures with field body 92 

temperature measurements. We extracted night-time (18:00 – 00:30) field body temperatures 93 

measured for 11 species of frogs in Mexico (21.48° N, -104.85° W; and 21.45° N, -105.03° W) 94 

between June and October of 2013 and 2015 from Table 1 of 5. We chose this study because 95 

it provided the data and location of body temperature measurements, covered multiple species 96 

from different sites, and matched our study timeframe (2006-2015). We then compare these 97 

estimates with hourly operative body temperatures predicted in shaded terrestrial conditions 98 

at the same dates and time windows (Fig. S12).  99 

Results from all statistical models and additional data visualizations are available at https://p-100 

pottier.github.io/Vulnerability_amphibians_global_warming/. 101 

Original studies on which our analyses are built upon are listed in Data sources6–218. 102 

 103 

  104 
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Supplementary figures 105 

 106 

Fig. S1 | Predicted critical thermal maximum (CTmax) across imputation cycles. 107 

Boxplots depict median (horizontal line), interquartile ranges (boxes), and whiskers 108 

extend to 1.5 times the interquartile range.  109 

 110 
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111 
Fig. S2 | Correlations between critical thermal maximum (CTmax) and predictors 112 

used for the imputation. CTmax from the experimental dataset was plotted against 113 

acclimation temperature (a), acclimation time (b, log scale), ramping rate (c). Colours 114 

are proportional to the values of the continuous predictors and the line refers to 115 

predictions from a simple linear regression between CTmax and the predictors. 116 

Individual slopes for each species are depicted for species when CTmax was estimated 117 

at different acclimation temperatures (a). Depicted is also the variation in CTmax with 118 

different endpoints (d), media used to infer body temperature (e), life stages (f), and 119 

ecotypes (g). Boxplots depict median (horizontal line), interquartile ranges (boxes), 120 

and whiskers extend to 1.5 times the interquartile range. LRR: loss of righting 121 

response. OS: onset of spasms.  122 
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 123 

Fig. S3 | Variation in plastic responses across species. The acclimation response 124 

ratio (ARR) represents the magnitude change in heat tolerance limits for each degree 125 

change in environmental temperature. We found limited variation in ARR (mean ± 126 

standard deviation = 0.134 ± 0.008; range = 0.049 – 0.216; n = 5203). 127 

 128 

  129 
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 130 

131 
Fig. S4 | Assemblage-level patterns in thermal safety margin for amphibians on 132 

terrestrial (a), aquatic (b), or arboreal (c) microhabitats. Thermal safety margins 133 

(TSM) were calculated as the mean difference between CTmax and the predicted 134 

operative body temperature in full shade during the warmest quarters of 2006-2015 in 135 

each assemblage (1-degree grid cell). Black colour depicts areas with no data. The 136 

right panel depicts latitudinal patterns in TSM in current climates (blue) or assuming 137 

2°C (orange) or 4°C of global warming above pre-industrial levels (pink), as predicted 138 

from generalized additive mixed models. Point estimates are scaled by precision 139 

(1/s.e.). Dashed lines represent the equator and tropics. 140 

  141 
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 142 

143 
Fig. S5 | Number of species predicted to experience overheating events in 144 

terrestrial (a), aquatic (b), and arboreal (c) microhabitats. The number of species 145 

overheating was assessed as the sum of species overheating for least one day in the 146 

period surveyed (warmest quarters of 2006-2015) in each assemblage (1-degree grid 147 

cell). Black colour depicts areas with no data and grey colour assemblages without 148 

species at risk. The right panel depicts latitudinal patterns in the number of species 149 

predicted to overheat in current climates (blue) or assuming 2°C (orange) or 4°C of 150 

global warming above pre-industrial levels (pink). Dashed lines represent the equator 151 

and tropics. No species were predicted to experience overheating events in water 152 

bodies, and hence are not displayed. 153 

  154 
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155 
Fig. S6 | Variation in thermal safety margins calculated using different 156 

assumptions. Thermal safety margins (TSM) were calculated as the mean difference 157 

between CTmax and the predicted operative body temperature in full shade during the 158 

warmest quarters of 2006-2015 (grey), as the mean difference between CTmax and the 159 

predicted operative body temperature in full shade during the warmest quarters of 160 

2006-2015 excluding body temperatures falling outside the 5% and 95% percentile 161 

temperatures (blue), as the difference between the 95% percentile operative body 162 

temperature and the corresponding CTmax (yellow), or as the difference between the 163 

maximum operative body temperature and the corresponding CTmax (red). Lines 164 

represented 95% confidence interval ranges predicted from generalized additive 165 

mixed models. This figure was constructed assuming ground-level microclimates 166 

occurring under 4°C of global warming above pre-industrial levels. 167 

  168 
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 169 

170 
Fig. S7 | Latitudinal variation in the number of overheating events when animals 171 

are acclimated to the mean (a,b) or maximum (c,d) weekly body temperature 172 

experienced in the seven days prior in terrestrial (a,c) and arboreal (b,d) 173 

microhabitats. The number of overheating events (days) were calculated based on 174 

the mean probability that daily maximum temperatures exceeded CTmax during the 175 

warmest quarters of 2006-2015 for each species in each grid cell. Blue points depict 176 

the number of overheating events in historical microclimates, while orange and pink 177 

points depict the number of overheating events assuming 2°C and 4°C of global 178 

warming above pre-industrial levels, respectively. For clarity, only the species 179 

predicted to experience overheating events across latitudes are depicted. 180 

 181 

 182 

  183 

                

                      

 
 
 
 
 
  
 
  
 
 
 
  
 
 
  
 
 
  
 
 
 
  

 

  

 



Supplementary Information for Pottier et al. 2024. Vulnerability of amphibians to global warming. 

12 
 

184 
Fig. S8 | Latitudinal variation in the number of overheating events using regular 185 

(a,b,c), uncertain (d,e,f), or conservative estimates (g,h,i) in terrestrial (a,d,g), 186 

aquatic (b,e,h) and arboreal (c,f,i) microhabitats. The number of overheating 187 

events (days) were calculated based on the mean probability that daily maximum 188 

temperatures exceeded CTmax during the warmest quarters of 2006-2015 for each 189 

species in each grid cell. Uncertain estimates are those where daily overheating 190 

probabilities were calculated based on broad predicted distributions of CTmax (i.e., 191 

simulated over the whole “biological range”), likely inflating overheating probabilities 192 

for observations with large uncertainty. Conservative estimates are those when 193 

overheating risk was considered only when the 95% confidence intervals of the 194 

predicted number of overheating events did not overlap with zero (e,f). Blue points 195 

depict the number of overheating events in historical microclimates, while orange and 196 

pink points depict the number of overheating events assuming 2°C and 4°C of global 197 

warming above pre-industrial levels, respectively. For clarity, only the species 198 

predicted to experience overheating events across latitudes are depicted. 199 

  200 
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 201 

 202 

Fig. S9 | Influence of biophysical model parameters on the estimation of 203 

terrestrial thermal safety margins. Depicted is the variation in daily thermal safety 204 

margins (TSM) as density distributions according to body mass (a), shade availability 205 

and soil depth (b). All simulations were performed assuming 4°C of global warming 206 

above pre-industrial levels in a specific grid cell (latitude, longitude = -9.5, -69.5; where 207 

the highest number of overheating events was predicted), for the most vulnerable 208 

species (Noblella myrmecoides). Negative daily TSMs were recorded as overheating 209 

events, and conditions depicted in dark grey reflect the results presented in the 210 

manuscript. The number of predicted overheating events is indicated in brackets for 211 

each condition. 212 

           

            

          

         

     

         

         

            

     

          

          

          

         

 

 



Supplementary Information for Pottier et al. 2024. Vulnerability of amphibians to global warming. 

14 
 

 213 

 214 

215 
Fig. S10 | Influence of pond depth on the estimation of aquatic thermal safety 216 

margins. All simulations were performed assuming 4°C of global warming above pre-217 

industrial levels in a specific grid cell (latitude, longitude = -9.5, -69.5; where the 218 

highest number of overheating events was predicted), for the most vulnerable species 219 

(Noblella myrmecoides). Depicted is the variation in daily thermal safety margins 220 

(TSM) as density distributions. Negative daily TSMs were recorded as overheating 221 

events, and conditions depicted in dark grey reflect the results presented in the 222 

manuscript. The number of predicted overheating events is indicated in brackets for 223 

each condition. 224 

  225 
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 226 

Fig. S11 | Influence of biophysical parameters on the estimation of aquatic 227 

arboreal safety margins. All simulations were performed assuming 4°C of global 228 

warming above pre-industrial levels in a specific grid cell (latitude, longitude = -9.5, -229 

69.5; where the highest number of overheating events was predicted), for the most 230 

vulnerable arboreal species (Pristimantis ockendeni). Depicted is the variation in daily 231 

thermal safety margins (TSM) as density distributions according to height of the animal 232 

in above-ground vegetation (a), the percentage of solar radiation diffused by 233 

vegetation (b) and the percentage of wind reduced by vegetation (c). Negative daily 234 

TSMs were recorded as overheating events, and conditions depicted in dark grey 235 

reflect the results presented in the manuscript. The number of predicted overheating 236 

events is indicated in brackets for each condition. 237 
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 238 

 239 

Fig. S12 | Validation of operative body temperature estimations. Terrestrial 240 

operative body temperatures estimated from biophysical models were compared to 241 

field body temperatures recorded around Tepic (21.48° N, -104.85° W; panel a) and 242 

El Cuarenteño (21.45° N, -105.03° W; panel b) between June and October of 243 

2013/2015, for 11 species of frogs5. The mean hourly operative body temperatures 244 

predicted from our models for the same date and time windows (18:00 – 01:00) are 245 

represented by the black horizontal line, along with their standard deviation (dark grey 246 

box), and range (light grey box). The mean (point) and range (bars) of field body 247 

temperatures recorded for each species are presented in colour. Note that our 248 

analyses were based on the maximum daily temperature recorded at each site during 249 

the warmest quarters of 2006-2015, which may not match the times and dates at which 250 

field body temperatures were recorded. Nevertheless, congruence between night-time 251 

predicted and field body temperatures suggests our models are likely to capture true 252 

biological variation in operative body temperatures throughout the day. 253 
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