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Abstract 

Organismal morphology has been at the core of study of biodiversity for millennia before the 

formalization of the concept of evolution. In the early to mid-twentieth century, a strong 

theoretical framework was developed for understanding both pattern and process of 

morphological evolution on a macroevolutionary scale. The past half century has been a 

transformational period for the study of evolutionary morphology, in both the quantification 

of morphology and novel analytical tools for estimating how and why morphological 

diversity changes through time, with a marked increase in studies apparent in the early 1990s. 

We are now at another inflection point in the study of morphological evolution, with the 

availability of vast amounts of high-resolution data sampling extant and extinct diversity 

allowing ‘omics’-scale analysis. Artificial intelligence is already increasing the pace of 

phenomic data collection even further. This new reality, where the ability to obtain data is 

quickly outpacing the ability to analyse it with robust, realistic evolutionary models, brings a 

new set of challenges, and we here present analyses demonstrating these challenges and 
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discussing solutions. Fully transitioning the study of morphological evolution into the 

“Omics” era will involve the development of tools to automate the extraction of meaningful, 

comparable morphometric data from images, integrate fossil data into large phylogenetic 

trees and downstream evolutionary analyses, and generate robust models that both accurately 

reflect the complexity of evolutionary processes and are well-suited for high-dimensional 

data. Combined, these advancements will solidify the emerging field of evolutionary 

phenomics and appropriately center it around the analysis of unambiguously critical deep-

time data. 

Introduction 

The study of morphological evolution is, in a sense, as old as biology, with pre-Darwinian 

attempts to classify the world, from the Scala Naturae, or Great Chain of Being, to early 

representations of the tree of life, being based on an intuitive sense of the hierarchy of 

anatomical complexity (Gontier 2011). For millennia, the study of morphology was relatively 

qualitative and descriptive, though often insightful, but more quantitative approaches begin 

appearing in the nineteenth century, with the first descriptions of phenomena such as Cope’s 

rule (Cope 1885a, b, c), which proposed an evolutionary trend towards increased body size in 

lineages. Many of the key foundational concepts for the quantitative study of morphological 

evolution appear during the modern synthesis of the mid twentieth century, from adaptive 

landscapes to adaptive radiations (Wright 1932; Dobzhansky 1937; Simpson 1944). Since 

then, quantifying morphology has benefitted from many transformational shifts. 

Computational power is one, and phylogenetics is another, allowing for explicit analysis of 

change along lineages. Coupled with access to seemingly limitless amounts of data and 

advancements in palaeobiology as well as molecular and developmental biology have spurred 

new understanding of how, when, and why morphologies evolve.  
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As a result of these advancements, there has been a huge increase in interest and work in the 

field of morphological evolution over the last few decades, with increasing numbers of 

publications using the term “morphological evolution” or “evolutionary morphology” year on 

year (Fig. 1, data captured from Web of Science on October 30, 2023). Many of the 

foundational concepts in the study of morphological evolution were laid down half a century 

ago in a period coincident with the founding of the journal Paleobiology (Gould 1966, 1970, 

1971, 1980; Lewontin 1966; Raup 1966; Eldredge and Gould 1972; Van Valen 1973 p. 

197197; Pilbeam and Gould 1974; Lande 1976; Gould and Eldredge 1977; Gould and 

Lewontin 1979). A transition point in the study of morphological evolution can be identified 

around 1990, closely following the Palaeobiological Revolution (Sepkoski and Ruse 2015) 

and the establishment of analytical palaeobiology. Fittingly, the 1990s saw the publication of 

some of the most influential papers in the areas of macroevolution, disparity, and 

morphological evolution published (Gould 1988, 1991; Arnold 1992; Foote et al. 1992, Foote 

1993a, b, 1994, 1997a, b; Wills et al. 1994; Fortey et al. 1996; Jablonski et al. 1997).  

Recent years in many ways harken another transition point in the study of morphological 

evolution. The explosion of imaging tools and online databases of capturing organismal form 

in unprecedented detail (Houle et al. 2010; Goswami 2014; Boyer et al. 2016; Davies et al. 

2017) represents a new leap forward in the study of morphology, bringing the study of 

phenotype firmly into the “Omics” age. The integration of morphometrics and evolutionary 

modelling over the past few decades is now reaching a new stage of innovation, as large-scale 

multivariate analyses are increasingly achievable (e.g., Clavel et al. 2015; Cooney et al. 2017; 

Arbour et al. 2019; Price et al. 2019; Booher et al. 2021; Coombs et al. 2022; Goswami et al. 

2022; Navalón et al. 2022). These innovations bring new possibilities to improve our 

understanding of the evolution of organismal form and diversity, as well as broadening the 



4 
 

 
Figure 1. Increasing number of publications using the terms “morphological evolution” or 
“evolutionary morphology”, according to Web of Science (data downloaded on October 30, 
2023).  A transition point is visible around 1990, with a marked increase in publications in 
this field after that time. 

availability of free tools and open data to a wider pool of global scientists (Revell 2012; 

Goswami 2014; Boyer et al. 2016; Rolfe et al. 2021). Here, we review major areas of interest 

in the study of morphological evolution, focusing on new methods and their impact on the 

field. We demonstrate with a worked example how better data and methods can improve our 

understanding of the tempo and mode of morphological evolution, both through refined 

modelling of complex scenarios and greater resolution in empirical analyses. In total, we 

present a view of a field in its prime, with evolutionary phenomics presenting huge potential 

for transforming our understanding of life on Earth in the past, present, and future. 

Quantifying morphology  

Morphology can and has been measured in numerous ways. For centuries, discrete (usually 

binary), meristic, and univariate traits have dominated, and in many ways still do. Discrete 

traits continue to be the primary morphological data for phylogenetic analysis, particularly 

those incorporating taxa without molecular data available, which includes nearly all extinct 
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species (Lee and Palci 2015). Discrete and meristic data also form the primary data for much 

of the foundational and continuing work on morphological disparity and evolutionary tempo 

(Briggs et al. 1992, Foote 1992a, 1994, 1995, 1999; Wills et al. 1994; Brusatte et al. 2008; 

Halliday and Goswami 2016; Halliday et al. 2016; Deline and Ausich 2017; Clark et al. 

2023), as they offer the benefit of being readily applicable to incomplete taxa or those with 

preservational deformation, as well as being better suited to taxa with variable numbers of 

elements or those without clear homology across structures (Briggs et al. 1992). Univariate 

data similarly offer numerous benefits, including being more directly comparable across 

disparate taxa, faster to capture, which often translates into larger sample sizes, and easier to 

measure even with preservational differences, particularly for soft-bodied taxa or spirit-

preserved specimens. As a result, traits like body size continuing to dwarf other measures of 

morphological evolution (Gould 1966; Jablonski 1996; Butler and Goswami 2008; Venditti et 

al. 2011; Evans et al. 2012; Clavel and Morlon 2017; Benson et al. 2018; Cooney and 

Thomas 2021; Burin et al. 2023). Linear measurements of specific structures also offer the 

benefit of being more readily translatable to developmental, functional, and biomechanical 

properties, such as lever arms or hydrodynamics (Wainwright 2007; Cardini and Polly 2013; 

Price et al. 2019, 2022). Even with the explosion of ‘omics’ in molecular analyses, studies 

linking morphological and molecular evolution on a macroevolutionary scale frequently use 

full genomes but only one or a handful of univariate or discrete phenotypic traits (Fondon and 

Garner 2004; Lartillot and Poujol 2011; Zhang et al. 2014; Levy Karin et al. 2017; Partha et 

al. 2017, 2019; Wu et al. 2017; Yuan et al. 2021; Christmas et al. 2023), despite the capacity 

to capture dense shape data with geometric approaches and its frequent usage in 

microevolutionary analyses, such as QTL studies (e.g., Alexandre et al. 2015; Maga et al. 

2015; Fruciano et al. 2016).  
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Comparing forms via geometric differences also has a long history (Thompson 1917), but this 

has proliferated in recent decades with the development of geometric morphometrics (i.e. 

landmark-based morphometrics (Gower 1975; Mardia et al. 1979; Bookstein 1986, 1991; 

Mardia and Dryden 1989; Rohlf and Bookstein 1990; Dryden and Mardia 1992; Adams et al. 

2013; Mitteroecker and Schaefer 2022), as well as other multivariate quantifications of shape, 

from outlines (Rohlf 1986, Foote 1993a; Crampton 1995; Bookstein 1997; Haines and 

Crampton 2000; Hopkins 2014) to surfaces (Wang et al. 2019; Kirveslahti and Mukherjee 

2021). Geometric approaches offer several benefits over linear morphometrics, including 

explicitly capturing shape and allowing more precise identification of points of difference 

between specimens. However, there are also drawbacks to geometric approaches, including 

limitations in identifying homologous points in disparate organisms and sensitivity to 

registration approach (e.g. covariation induced by Procrustes superimposition) (Zelditch and 

Swiderski 2023) and deformation (Angielczyk and Sheets 2007). There are several recent 

overviews of geometric morphometric approaches (Adams et al. 2013; Mitteroecker and 

Schaefer 2022), and so a full review is not provided here, but, despite the shortcomings (and 

indeed, all methods have shortcomings), it is uncontroversial that the capacity to capture and 

compare complex shapes, particularly in three-dimensions, has revolutionized the study of 

morphological evolution and produced novel understanding of the primary axes of variation 

across diverse organisms.  

It is in this realm of 3D morphometrics that we see the most gains in recent years. At present, 

the most common approaches to studying morphology remain length measurements or small 

numbers of landmarks, which utilize only an infinitesimal amount of the possible data 

available in these images. This constraint is due largely to the time requirements and 

accessibility of tools for imaging, segmentation, and morphometric data collection. However, 

high-resolution imaging has become increasingly accessible, with photogrammetry (e.g., 
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Falkingham 2011; Mallison and Wings 2014) and surface scanners proving low-cost options, 

and micro-CT and even synchrotron scanning becoming more widely available. Possibly 

even more influential is the rapid growth of online databases for 3D images (Goswami 2014; 

Boyer et al. 2016; Cross 2017; Davies et al. 2017), which provides access to scans across the 

globe without the need to travel for primary data collection. The scale of generation of new 

scans has also increased with the introduction of robotic arm systems to autoload specimens 

and allow for mass scanning of specimens (Rau et al. 2021). Computational power to process 

large numbers of images has similarly increased, with deep learning approaches to 

segmentation making rapid image analysis of massive tomographic datasets entirely feasible 

(Lösel et al. 2020; Shu et al. 2022; Toulkeridou et al. 2023; He et al. in press; Mulqueeney et 

al. in review). These advancements mean that the time constraint in quantitative analysis of 

evolutionary morphology will imminently shift from obtaining and processing images to 

collecting morphometric data from those images.  

There have also been some promising forays using computer vision and deep learning 

analysis of images to capture established types of morphometric data, including 2D outlines 

and 3D volumes and surface areas (Hsiang et al. 2018) and placement of landmarks in 2D 

(Porto and Voje 2020) and 3D (Percival et al. 2019; Devine et al. 2020; Porto et al. 2021). 

The geometric morphometric applications, while promising, have been applied primarily 

within individual species, and it remains to be seen whether automated landmark placement 

can be successfully scaled up to datasets with higher levels of variation (He et al. in press). 

Moreover, the desire to fully leverage the data in high-resolution 3D images is reflected in the 

outpouring of new methods that sample shape more densely than the more established 

approaches noted above, for example through surface sliding semilandmarks (Gunz and 

Mitteroecker 2013; Bardua et al. 2019), pseudolandmarks (Boyer et al. 2015), or entirely 

landmark free approaches. Some of the landmark free approaches available for comparative 
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biological analysis include Generalized Procrustes Surface Analysis (Pomidor et al. 2016), 

Deterministic Atlas Analysis in Deformetrica (Durrleman et al. 2014; Bône et al. 2018; 

Toussaint et al. 2021), spherical harmonics (McPeek et al. 2008; Shen et al. 2009), 

Eigenshapes (MacLeod 1999) and topological transforms (Wang et al. 2019; Kirveslahti and 

Mukherjee 2021), as well as Alphashapes for shape complexity (Gardiner et al. 2018). These 

approaches have various strengths and weaknesses, as expected (Bardua et al. 2019; 

Goswami et al. 2019; Marshall et al. 2019; Mulqueeney et al. 2023), and the choice of what 

kind of morphometric data to use is invariably dependent on the goal of a given study and the 

challenges and limitations of the study system. While semilandmark approaches provide high 

resolution descriptors of morphology, they can be time-consuming to implement (Bardua et 

al. 2019). Though there are some automated options for intraspecific analyses (Porto et al. 

2021; Devine et al. 2022), noted above, most implementations for analyses spanning species 

will require at least some manual placement of landmarks and curves, with an automated 

procedure to place surface semilandmarks based on the positions of the former (e.g. as in the 

R package ‘Morpho’ (Schlager 2017). One the other hand, the ability to isolate shape changes 

in specific regions, or to look at integration across different regions, is one key factor that 

may argue against using methods that are not pinned to homologous points, such as 

pseudolandmark and other landmark-free approaches. Of course, to be biologically 

meaningful, all of these approaches should be applied to structures that are homologous, even 

if individual pseudolandmarks or control points are not, and there are undeniable benefits to 

the speed and detail provided by methods that don’t require manual collection of 

morphometric data. These approaches may also benefit studies of ontogenetic and soft-tissue 

datasets, where homologous points are difficult to trace even in unambiguously homologous 

structures (Toussaint et al. 2021; Lanzetti et al. 2022). Figure 2 demonstrates a sample of the 

range of morphometric approaches available, from linear morphometrics, through geometric 
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Figure 2. Linear, geometric, and landmark-free morphometric approaches, demonstrated on a 
3D mesh of a mammal skull Arctictis bintuong (MNHN 1936-1529). A) Common linear 
measurements, which often span elements and cannot be localized further, but are faster to 
obtain, more easily comparable across disparate taxa, and potentially more translatable to 
some aspects of function.  B) Type 1 and Type 2 3D landmarks, manually placed on points of 
unambiguous biological homology (Rohlf and Bookstein 1990; Bookstein 1991).  C) Sliding 
semilandmark curves (gold) manually placed to link landmarks (red) and defining element 
boundaries, which can add substantial shape information over landmarks alone (Bardua et al.  
2019; Goswami et al. 2019).  D) Surface sliding semilandmarks, here defining individual 
cranial elements, automatically placed using a template and based on position relative to 
manually placed landmarks and curves.  E) Deterministic atlas analysis, which uses control 
points (red) to represent points of high variation across a sample and quantifies deformations 
from the mean shape as momenta from a flow field (Durrleman et al. 2014; Bône et al. 2018; 
Toussaint et al. 2021). F) Alphashapes, which measures a shapes complexity as the level of 
refinement needed to match an original shape (Gardiner et al. 2018).    
 

morphometrics with landmarks and curve and surface sliding semilandmark, and finally to 

two landmark-free approaches – deterministic atlas analysis and alphashapes, showing both 

the difference in resolution of data but also the relationship to homology in each approach.  



10 
 

These innovations are pushing the study of phenotype fully into the ‘omics’ age, where the 

quality and density of morphological data are approaching that of molecular data, with 

resultant improvements in our ability to understand the evolution of morphology. What 

remains unclear is how comparable these different approaches, and the results from their 

analysis, are. A number of studies have demonstrated that analyses using, for example, 

relatively few landmarks vs dense landmarks differ in the phylogenetic, ecological, and 

allometric signals captured (Marshall et al. 2019; Wimberly et al. 2022). Others demonstrate 

that landmark-free approaches may capture overall shape to a similar level as geometric 

morphometric approaches, when the elements of a structure do not substantially shift in their 

relationships but can diverge markedly when there are large changes in the contributions of 

individual elements to the overall shape of a structure. For example, deterministic atlas 

analysis of mammal skulls (Fig. 2E, Mulqueeney et al. 2023) captured the classic 

brachycephalic to dolichocephalic axis of mammal skull variation that linear morphometric 

analysis supports (Cardini and Polly 2013), but failed to capture the axes of shape variation 

returned with sliding semilandmarks that discriminate individual cranial elements, which 

have markedly different contributions to overall skull shape in different clades (Goswami et 

al. 2022, 2023). We fully expect that these approaches will continue to develop and 

proliferate with the expansion of interest, data, and automated tools allowing for 

unprecedented detail in the analysis of evolutionary morphology and the formalization of the 

field of evolutionary phenomics.  

Morphospaces and morphological diversity 

Macro-scale study of diversity has long been the domain of species numbers, for many 

reasons. Uncertainty about what qualifies as a species notwithstanding (Zachos 2016), 

taxonomic diversity is easier to measure, particularly across different organisms (Sepkoski et 
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al. 1981; Benton 1995; Benson et al. 2021). Yet, there is an inherent appreciation that 

evolution isn’t just a matter of numbers but also of kinds, or varieties (Thomas and Reif 

1993). A clade with a large number of fairly similar species has likely experienced a very 

different evolutionary history than a clade with a small number of highly dissimilar species. 

Moreover, morphology reflects numerous aspects of an organism’s biology, and thus 

morphological diversity provides novel understanding of ecological, physiological, and 

developmental diversity and on organism-environment interactions, among many other 

important topics. As such, the study of morphological diversity, or disparity, is one that has 

reshaped the study of morphological evolution, particularly during the pivotal period of the 

1990s that saw an explosion of macroevolutionary studies of morphology. The continuing 

interest in disparity stems from its broad relevance; quantifying the distribution of 

morphological variation in the past and present informs numerous topics, from key 

innovations to developmental and functional constraints to extinction selectivity and response 

(Briggs et al. 1992; Wills et al. 1994; Jernvall et al. 1996, Foote 1997a; Eble 2000; Hopkins 

2014; Hughes et al. 2015; Goswami et al. 2016; Halliday and Goswami 2016; Benson et al. 

2018; Puttick et al. 2020; Dickson et al. 2021; Burin et al. 2023; Clark et al. 2023; Wang and 

Zhou 2023). Analysis of disparity, particularly using variance-based metrics (Foote 1997a), 

may also less susceptible to sampling bias than is taxonomic diversity, and thus may be better 

suited for accurate representation of patterns in deep time, which inevitably sample only a 

fraction of past life (Foote 1993a, b, 1996, 1997a, b). As with quantifying morphology, there 

are many approaches to quantifying disparity, all of which have pros and cons that have been 

recently reviewed (Guillerme et al. 2020a, b).  

Most studies of morphological disparity begin with a morphospace. Morphospaces have been 

long used to represent variation in biological form, both realized and theoretical. As such, 

they are useful for many topics of interest, from identifying physical mechanisms of (and 
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constraints on) shape formation (Raup 1966; Chirat et al. 2013; McGhee 2015; Gerber 2017) 

to identifying gaps in observed morphologies to quantifying shifts in organismal variation 

through time (Foote 1994, 1995; Holliday and Steppan 2004; Wesley-Hunt 2005; Halliday 

and Goswami 2016) to estimating adaptive landscapes (McGhee 2006; Chartier et al. 2014; 

Dickson et al. 2021; Jones et al. 2021). Morphospaces can be constructed from just a few 

traits or can use dimensionality reduction approaches such as Principal Components Analysis 

to synthesize vast numbers of traits into a much smaller number of primary axes of variation, 

which can then be meaningfully interrogated and understood. Morphospaces are now 

common in quantitative studies of morphology, but they have important limitations that 

depend both on the type of data being input and the use of the morphospace for further 

analysis (Mitteroecker and Huttegger 2009; Polly and Motz 2016; Gerber 2017; Polly 2023). 

Thus, it is critical to consider carefully whether input data are appropriate for visualization or 

further analysis using a morhospace approach. For example, traits that are not independent or 

that lack a common scale or scale relationship can create patterns that aren’t biologically 

meaningful (Mitteroecker and Huttegger 2009). However, for most studies of evolutionary 

morphology, a morphospace will be the first port of call and often provides unexpected 

insights into macroevolutionary patterns, particularly for understudied clades. 

While examples of morphospaces in evolutionary studies abound, the undeniably most 

famous is Raup’s (1966) shell coiling morphospace, which used four parameters to define a 

theoretical morphospace for all shelled invertebrates and plotted their empirical (largely 

estimated) distributions within it. Its enduring influence is because it is generally recognized 

to be both the first explicit use of this approach to understand the distribution of organismal 

form and the first interrogation of the factors underlying that distribution. As such, its impact 

stretches from evo-devo to paleobiology (Mitteroecker and Huttegger 2009; Gerber 2017; 

Polly 2023). Equally influential, however, are the iconic stacked morphospaces from Foote’s 
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series of studies in the 1990s, which used discrete trait data to quantify and track changes in 

morphological variation through time in various clades of marine invertebrates (Foote 1993b, 

1994, 1995, 1999). These morphospaces, and the associated disparity metrics, provided new 

perspective on the evolution of morphological diversity and for understanding how its 

relationship with taxonomic diversity provides novel insights into evolutionary processes 

(Foote 1992b, 1993b, a, 1997b). High taxonomic diversity but low morphological diversity is 

suggestive of a constraint or radiation driven by isolation or habitat contraction (Fig 3A, top 

left), whereas high morphological diversity with low taxonomic diversity suggests an early 

burst of morphological evolution (Fig 3A, top centre), compared to unhindered, trend-free 

morphological diversification in line with taxonomic diversification (Fig. 3A, top right). 

Shifts in disparity and morphospace occupation that result in decreases in morphological 

diversity later in clade evolution (as indicated in the bottom two rows of Fig. 3A and in 3B, 

C) also provide insight into whether and how evolutionary process are selective or not 

selective. For example, in Foote’s analysis of blastoids (Foote 1993b) demonstrates diffusion 

through morphospace (Fig. 3B) and matched increases in taxonomic and morphological 

diversity early in clade evolution (Fig. 3C). Later declines in taxonomic diversity are not 

accompanied by reductions in disparity, suggesting that taxonomic extinctions were 

nonselective for morphology (Foote 1993b).  

The expected amount of disparity in a clade is intimately linked to the evolutionary process, 

which involves both the diversification dynamic, such as the rate of turnover in lineages, and 

how traits have evolved on lineages. This interplay can complicate interpretation of patterns 

of disparity, as a homogeneous process of trait evolution can shows changes is disparity 

through time that reflect solely the effects of speciation and extinction events (i.e. the 

branching pattern in a tree – see, for instance, Fig. 2 in O’Meara et al. 2006).  One way to 

capture this aspect is to focus in on the contributions of subclades to overall disparity (Foote  
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Figure 3. The relationship between morphological and taxonomic diversity provides insight 
into evolutionary processes, as described in Foote (1993b).  A. Fig 1 of Foote 1993b: 
Idealised diversity histories of a clade early under different scenarios of diversification (top 
row) and decline (middle and bottom row). B. Fig. 2 of Foote 1993b: Stacked morphospaces 
showing shifts in blastoid morphology through the Palaeozoic.  C. Figure 3 from Foote 
(1993b) showing  concordant early increases and discordant later declines in disparity (top) 
and taxonomic diversity (bottom).  Figure reproduced from Foote 1993b. 

1993a, 1997b). While it is possible to assess this aspect without a resolved phylogenetic tree 

(Foote 1993a), this is more robustly accomplished with methods quantifying disparity 

through time using an explicitly phylogenetic framework. The most commonly applied 

approach at present is subclade disparity (Harmon et al. 2003) as implemented in the R 

package ‘geiger’ (Harmon et al. 2008; Slater and Harmon 2013), which measures how the 

partitioning of morphological variation has changed through a clade’s evolution. Phylogeny-

based approaches also allow the benefit of point estimates of disparity, rather than binning 

taxa into coarse time intervals, which may introduce additional biases into analyses 

(Guillerme and Cooper 2018). Another benefit of a phylogenetic framework is that also 

allows for ancestral state estimation at internal nodes (Halliday and Goswami 2016) and 

comparisons with expectations under different evolutionary models (Harmon et al. 2003; 

Slater et al. 2010; Slater and Harmon 2013). For example, using a recently published 
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morphometric dataset of placental mammal skulls (Goswami et al. 2022), we plotted first the 

empirical data (322 species spanning the Eocene to Recent; black dots in Fig. 4) using a 

stacked PCA binned by Cenozoic epochs. We then ran 100 simulations estimating disparity 

using a Brownian motion (BM) model and a dated phylogeny for the sample and binned these 

into the same time bins (red dots in Fig. 4A). While the empirical and simulated data are 

largely similar, it is apparent that the empirical data have not diffused through morphospace 

as a strict BM would estimate. Rather, placental mammals have stayed largely constrained 

into a single region of morphospace, with the exception of a distinct “whale” space, 

suggesting that convergence (or constraint) has dominated placental mammal evolution 

(Goswami et al. 2022). As discussed and demonstrated further below, although most 

simulations of disparity expectations rely on a simple BM (Harmon et al. 2003; Slater et al. 

2010), more complex models can also be applied, as in Fig. 4B (green dots), where disparity 

was instead simulated using a variable rates BM model with a lambda tree transformation, 

estimated from analysis in BayesTraits v.3 (Venditti et al. 2011; Goswami et al. 2022). From 

these brief introductory examples, it is clear that analysis of disparity is one of many areas  

 
Figure 4.  Stacked principal component analyses showing empirical (black dots) and 
simulated disparity through Cenozoic epochs for a sample of placental mammal skulls 
(Goswami et al. 2022).  Left: simulations (n = 100) of a single-rate Brownian Motion model 
(red dots). Right: simulations (n = 100) with a variable-rate Brownian motion model with 
lambda tree transformation (green dots). 
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that has been transformed by the development of phylogenetic comparative methods. 

Enter phylogeny and the rise of phylogenetic comparative methods 

Ever since Darwin sketched the first explicitly evolutionary tree (Darwin 1859), 

reconstructing the relationships among organisms has been a primary concern for biologists. 

While morphological data had been the cornerstone of phylogenetic analysis for decades 

(Hennig 1965), the advent of molecular phylogenetics saw a rapid increase in the number and 

stability of evolutionary trees for extant taxa, while overturning some long-held hypotheses 

of relationships among even well-studied clades. As evolutionary trees became more 

available, it became increasingly possible to explicitly include understanding of relationships 

into estimation of evolutionary patterns and processes. Incorporating phylogeny into 

comparative analyses is particularly critical for the study of morphology, because it is well 

understood that organisms share evolutionary history and thus cannot be treated as wholly 

independent datapoints in a statistical analysis (Felsenstein 1985).  

The past two decades have seen a surge in the development of phylogenetic comparative 

methods (PCMs) dedicated to the study of morphological evolution. These methods are 

increasingly applied to reconstructing trait evolution, including that of complex shapes, and 

identifying the factors underlying their evolution across short to large time scales. There are 

several recent reviews of this topic (Hernández et al. 2013; Pennell and Harmon 2013; 

Garamszegi 2014; Goolsby 2015; Cooper et al. 2016; Cornwell and Nakagawa 2017; Adams 

and Collyer 2018, 2019; Uyeda et al. 2018; Clavel and Morlon 2020; Harmon et al. 2021; 

Soul and Wright 2021), and thus we focus here on a key aspects: incorporation of fossil data 

and extension to multivariate data and to more complex evolutionary models. 
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Fossils are critical for accurate estimation of evolution 

The molecular revolution, the increasing availability of robust, dated phylogenies for many 

clades, and the development of phylogenetic comparative approaches have fostered the 

studies of morphological evolution and macroevolution in general over the past few decades. 

However, one negative side effect of the explosion of molecular phylogenetics is the reduced 

use of morphological data in large-scale phylogenetic analyses. This in turn has hindered 

incorporation of fossils into large evolutionary trees and prevented the widespread integration 

of fossil data in phylogenetic comparative studies, despite recognized benefits (Slater and 

Harmon 2013). There has been substantial progresses for dating fossil and mixed extant and 

fossil cladograms (Stadler 2010; Bapst 2013; Luo et al. 2020) and incorporating fossil taxa 

using morphological information along with molecular data using “total evidence” 

approaches (Pyron 2011, 2017; Ronquist et al. 2012; Álvarez-Carretero et al. 2019), as well 

as the recently developed “metatree” approach (Lloyd and Slater 2021). Morphometric data 

may also assist with resolving these issues, with development of new approaches to 

estimating divergences using both molecular and morphometric, while accounting for 

population-level variance and trait covariances (Álvarez-Carretero et al. 2019). There are also 

established approaches for incorporating partial information from fossils into phylogenetic 

comparative studies (Slater et al. 2012a, b). Nonetheless, there are still significant barriers to 

generating phylogenetic trees that include fossils at the same scale as those for extant taxa, 

including continuing conflict between molecular and morphological (extant and fossil) trees 

in both topology and divergence estimation (Foley et al. 2016; Sauquet and Magallón 2018; 

Lyson and Bever 2020), and much further work needs to be done to integrate fossils into 

large phylogenetic trees and downstream analyses. Fortunately, most phylogenetic 

comparative methods are known to be relatively robust to unresolved trees (Martins 1996; 

Martins and Housworth 2002; Stone 2011), and extensions to a general time-variable model 
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allow for analysing trends in continuous character evolution without a fully-resolved 

phylogeny (Hunt 2006, 2007a; Finarelli and Goswami 2013; Raj Pant et al. 2014).  

It is critical that these barriers to the inclusion of fossils are overcome, because there is 

extensive evidence that fossil data are critical for accurate analysis of macroevolutionary 

patterns (Slater et al. 2012a; Finarelli and Goswami 2013; Slater and Harmon 2013; Raj Pant 

et al. 2014), for many reasons. Fossils provide unique factual observations in analyses, rather 

than using reconstructed states, which typically cannot, for example, estimate states outside 

of the sampled (i.e. extant) range, though we know that trait distributions change markedly 

through a clade’s history (Finarelli and Goswami 2013; Raj Pant et al. 2014). The impact of 

these effects is seen in analysis of evolutionary trends, such as Cope-Depéret’s rule of body 

size increases over time (Finarelli and Goswami 2013; Bokma et al. 2016; Benson et al. 

2018). In fact, identifying a trended BM model requires fossil data. Not only does the 

incorporation of fossils helps in assessing evolutionary processes, but it also allows improved 

estimation of parameters (Ané 2008, Slater et al. 2012a, Ho and Ané 2014a), specifically by 

constraining their estimation (reduced variation around parameters) compared to studies on 

extant only datasets (Finarelli and Goswami 2013). For instance, the ancestral state estimate 

in a BM process (although it is unbiased) is said to be not consistent because it is not 

improved by increasing the sample size (i.e., the variance around the parameter estimate is 

not reduced with infinitely large phylogenies of extant taxa). Instead, only the incorporation 

of fossil data improves ancestral state estimates and detection of shifts in traits (Ané 2008). 

Similarly, in an Ornstein-Uhlenbeck (OU) process, a modified random walk in which a trait 

evolves toward an optimum value, estimating the primary optimum value and the ancestral 

state is possible only with fossils (Ho and Ané 2013, 2014a)(Fig. 5). The ability to detect 

time-dependent models, where the rate changes as a function of time, such as in an Early 

Burst model – where rate decreases through time, as is hypothesized for adaptive radiations -  
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Figure 5. Inference of Ornstein-Uhlenbeck processes using trees with both fossil and extant 
species (non-ultrametric trees) vs. trees with extant species only (ultrametric trees). Inference 
based on extant species only will miss evolutionary trends (e.g., Cope’s or Depéret’s rules) 
from the ancestral phenotype to the primary optimum value. This can lead to inaccurate 
estimation of ancestral states, incorrect reconstruction of evolutionary dynamics, and, thus, 
spurious interpretations.  

or an Accelerated Change model – with rates increasing exponentially through time 

(Blomberg et al. 2003) - may also be severely affected by exclusion of fossils (Slater et al. 

2012a).  

Fossil data do not only assist in estimating and constraining the parameters of evolutionary 

models; they are also critical for distinguishing different processes. For example, consider the 

OU process and the Accelerated Change models mentioned above. The expected covariances 

matrices for both of these models are proportional on ultrametric trees (trees in which all tips 

are equidistant from the root, as in extant-only trees) (Uyeda et al. 2015). Because of that, 

they have identical likelihoods and thus cannot be distinguished. However, they can be 

distinguished on non-ultrametric trees, i.e. trees that include fossils (Slater et al. 2012a). 
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Similarly, changes in evolutionary dynamics (e.g., shifts from constrained evolution to 

radiation, such as after an extinction event), are also largely identifiable only with trees 

incorporating fossils (Slater and Harmon 2013; Clavel et al. 2015). For example, we can 

simulate an ecological release model (or the related, but slightly more complex release-and-

radiate model), where a clade is governed by an OU process due to some extrinsic constraint 

such as competition until a shift point, after which a BM model dominates (Fig. 6). For 

example, this model was applied by Slater (2013) to mammal body size evolution before and 

after the end-Cretaceous mass extinction, to test the hypothesis that non-avian dinosaurs 

constrained body size evolution in mammals prior to the dinosaur extinction. In our 

simulations (Fig. 6), we observe that the log-likelihood profile is almost flat around the 

simulated value (alpha=2, dashed line in B) of the OU process for all simulated datasets when 

an ultrametric tree (extant only) is used. This indicates that with comparative datasets made 

only of extant species, such a scenario cannot be retrieved. In contrast, with non-ultrametric 

(fossil + extant) trees, the (negative) log-likelihood profile shows an optimum around the 

simulated value, allowing recovery of the shift in processes through the evolutionary history 

of the clade.  

As shifts in evolutionary dynamics are often driven by extrinsic events, such as mass 

extinctions or global warming/cooling, these examples and simulations demonstrate that 

fossil data will be critical for understanding how species respond to changes in their 

environment. Nonetheless, while the importance of including fossils into macroevolutionary 

analyses is clear, the challenge of doing so may appear daunting given the issues noted above 

with producing comprehensive phylogenetic trees, as well as well-known issues with 

sampling and preservation of fossil material, especially for 3D morphometric studies. There 

is hope here as well though, as previous studies have shown that the incorporation of even a 

small proportion of fossil into comparative studies is sufficient to differentiate competing  
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Figure 6. Identifiability of processes changes with fossil data. In A), we depict a release-and-
radiate model (Slater 2013; Clavel et al. 2015), where phenotypic evolution is modelled as an 
Ornstein-Uhlenbeck process representing constrained evolution up to a shift point, after 
which it switches to a Brownian motion process (radiating phase). This model was used to 
test whether the mammals experienced an increased in body-size diversity after the K/Pg 
extinction (Slater 2013). In B) we show the log-likelihood profile from the ecological release 
model simulations (100 datasets) when fitted with ultrametric trees (top; extant only) and 
non-ultrametric (bottom; fossil+extant species) trees.  Figure adapted from Clavel et al. 2015.  

evolutionary scenarios (Slater et al. 2012a; Clavel et al. 2015; Uyeda et al. 2015). We 

demonstrate this effect here with simulations of a modified OU process that introduces a 

powerful new approach to modelling factors that may influence morphological evolution 

through deep time.  

Some of our recent work has focused on explicitly considering variation in extrinsic factors, 

such as temperature or precipitation, into models of morphological evolution by allowing 

parameters to track the extrinsic factor as it changes through time (Clavel and Morlon 2017; 

Brinkworth 2019). This approach has previously been described for a BM model in which the 

evolutionary rate is not constant and instead is dependent upon a continuous climatic variable 
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(Clavel and Morlon 2017). The relationship between evolutionary rate and the climatic 

variable (which can be any variety of extrinsic factors) could be linear or exponential, or 

indeed could better relate to a derivative of the factor (i.e. tracking change or rate of change, 

rather than a raw value). Here, we describe an extension of this climatic model where the 

model of trait evolution corresponds instead to a generalized OU process (also called Hull-

White model) of the form 𝑑𝑑𝑑𝑑(𝑡𝑡) = 𝛼𝛼[𝜃𝜃(𝑡𝑡) − 𝑑𝑑(𝑡𝑡)]𝑑𝑑𝑡𝑡 + 𝜎𝜎𝑑𝑑𝜎𝜎(𝑡𝑡) where 𝛼𝛼 controls the 

strength of selection toward a moving optimum 𝜃𝜃(𝑡𝑡), and 𝜎𝜎 controls the generation of 

random fluctuations (as applied in Troyer et al. 2022a). The optimum in this climatic-OU 

simulations changes through time according to the following linear equation: 𝜃𝜃(𝑡𝑡) = 𝜃𝜃0 +

𝛽𝛽 × 𝑇𝑇(𝑡𝑡) where 𝜃𝜃0 is the optimum at the root of tree, 𝑇𝑇(𝑡𝑡) is a climatic function, for instance, 

the temperature curve estimated from benthic foraminifera oxygen isotopes (e.g., Cramer et 

al. 2011; Westerhold et al. 2020, as applied in Troyer et al. 2022a), and 𝛽𝛽 is the parameter 

controlling the relationship and the effect of the climate/environment on the optimum 

trajectory (Brinkworth 2019). Note that when 𝛽𝛽 = 0 this model reduces to a classical OU 

process with a fixed optimum.  

In the simulations displayed in Figure 7, the climatic OU process was simulated on birth-

death trees subsampled to 164 species with various proportions of fossils (from 0% - i.e. only 

extant species, to 50% fossils). The tree height was scaled to 60Ma before simulating the trait 

process, to represent an optimum chasing climate change over a major part of the Cenozoic 

period. On each tree, the traits were simulated with combinations of increased strength of 

selection (𝛼𝛼 = [0.006, 0.012, 0.035,0.056, 0.116] corresponding to various phylogenetic 

half-lives (from 0.5 to 10, represented by line opacity in the plot) and varying strengths of 

association with the temperature curve, from negative to positive (𝛽𝛽 = [−5,−1,0,1,5]). Our 

results show the proportion of time the climatic-OU process was favoured over alternative  



23 
 

 

Figure 7. Simulations showing the power to detect the climatic-OU process (Troyer et al. 
2022b) with various proportions of fossils included in simulated trees.  The climatic OU 
process was simulated on birth-death trees subsampled to 164 species with various 
proportions of fossils (from 0% - i.e. only extant species, to 50% of fossils). On each tree, the 
traits were simulated with combinations of increased strength of selection (𝛼𝛼 =
[0.006, 0.012, 0.035,0.056, 0.116] corresponding to various phylogenetic half-lives from 0.5 
to 10) represented by lines opacity in the plot, and varying strengths of association with the 
temperature curve, from negative to positive (𝛽𝛽 = [−5,−1,0,1,5]), represented in the 
separate insets. The plot shows the proportion of time the climatic-OU process was favoured 
over alternative processes according to the AICc criterion.  

processes (BM, OU, EB, trended BM, and climatic- BM) according to the AICc criterion. As 

expected, with 𝛽𝛽 = 0 we see that the OU and climatic-OU share the model support (~50%). 

In the other simulations, we observe increased support for the climatic-OU model with both 

increased effects (𝛽𝛽 = −5 or 𝛽𝛽 = 5) and strength of the 𝛼𝛼 parameter. Importantly, for the 

largest effects, only 5% of fossils in the tree were sufficient for detecting the climatic OU 

process. In stark contrast, when the analyses are conducted on extant species only, the 

climatic-OU is never recovered as the best fitting model. This is evident in the solution (the 

expected value, or optimum, for each lineage in the tree) to this generalized OU given by the 

following equation: 



24 
 

𝐸𝐸�𝑑𝑑(𝑡𝑡)� = 𝜃𝜃0𝑒𝑒−𝛼𝛼𝛼𝛼 + � 𝛼𝛼𝑒𝑒𝛼𝛼(𝑠𝑠−𝛼𝛼)(𝜃𝜃0 + 𝛽𝛽𝑇𝑇(𝑠𝑠))𝑑𝑑𝑠𝑠
𝛼𝛼

0
 

The integral on the right part of this equation is going from 0 (the root) to “t” (the tip value) 

and shows that when species are all contemporary, the changes in the optimum (expected 

value) through time will not be identifiable. This example thus definitively illustrates the 

need to incorporate – even a small number of – fossils in comparative studies to identify 

complex evolutionary scenarios, including those of particular relevance to the current 

environmental crisis.  

Big phenomes, big analytical headaches 

As detailed above, there are numerous advances in the collection of 3D images and in 

collecting dense morphometric data from specimens, catapulting the study of morphological 

evolution fully into the ‘Omics’ arena. However, as evidenced by numerous recent studies of 

body size evolution, and all of the examples above, the vast majority of work modelling 

morphological evolution has focused on univariate data. Some approaches to rectify the 

discordance between multivariate data and univariate methods include reducing multivariate 

data to individual principal components, but this is problematic (Uyeda et al. 2015; Clavel 

and Morlon 2020). There are increasingly methods being developed that are suited to 

multivariate data (Revell and Collar 2009; Bartoszek et al. 2012; Clavel et al. 2015; Caetano 

and Harmon 2017; Goolsby et al. 2017; Bastide et al. 2018), as well as extensions of 

conventional multivariate statistical approaches to account for phylogenetic relatedness 

(Revell and Harrison 2008; Revell 2009; Clavel and Morlon 2020). Applying these methods 

to multivariate data, however, does bring challenges. Morphometric datasets using 2D and 3D 

landmarks are often described as high-dimensional because the number of descriptors 

(coordinates) “p” is often greater than the number of individual observations “n”. Most 
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conventional multivariate statistical approaches, such as multivariate regressions and 

MANOVAs, suffer from low statistical performances when “p” approaches “n”, or cannot be 

used at all when p>n. Geometric morphometric datasets bring additional challenges because 

the steps of the Procrustes superimposition (rotation, translations, and scaling) used to align 

specimens to a common conformation lead to the loss of several dimensions (four for 2D and 

seven for 3D data; Rohlf 1999)) irrespective of the number of variables. For these reasons, 

dimensionality of the shape space (or tangent space) is often either reduced to a handful of 

principal components that are used in downstream analyses, or the complete set of 

coordinates are analyzed using simpler statistics (e.g., the Procrustes ANOVA of Goodall 

1991, which assumes that the variance is isotropic and identical at each landmark).  

Multivariate PCMs, including evolutionary model fitting procedures, also suffer from high-

dimensionality because the traditionally used likelihood techniques are not applicable (Clavel 

et al. 2015). Moreover, the use of data reduction techniques, such as Principal Components 

Analysis, may lead to biased estimates and affect model comparison or statistical tests in 

PCMs (Uyeda et al. 2015; Clavel and Morlon 2020), as well as biasing analyses of datasets 

containing autocorrelations (Bookstein 2012). Phylogenetic PCA (Revell 2009; Polly et al. 

2013) can rescue these issues, but is essentially limited to the Brownian motion process at 

present. In recent years there have been several attempts at developing model fitting 

approaches and statistics that are directly applicable to these high-dimensional comparative 

datasets using different strategies (Adams 2014a, b; Goolsby 2016; Adams and Collyer 2018; 

Tolkoff et al. 2018; Clavel et al. 2019; Clavel and Morlon 2020; Hassler et al. 2022). For 

instance, “distance” based techniques were proposed to circumvent the constraints of the 

huge covariance matrices used in likelihood-based approaches (Adams 2014a, b; Adams and 

Collyer 2018). However, as in related techniques such as the permutational multivariate 

analysis of variance (PERMANOVA) used in ecology or the Procrustes ANOVA discussed 
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above (Goodall 1991; Anderson 2001), distance-based PCMs ignore the covariances in 

multivariate datasets when computing their statistics and are limited to Brownian motion. In 

consequence, these approaches are highly sensitive to departure from these assumptions 

(Warton et al. 2012; Clavel and Morlon 2020). The pseudo-likelihood technique proposed by 

Goolsby (2016), or more precisely the pairwise composite likelihood (PCL) allows for 

extension beyond classical Brownian motion process by offering a likelihood-based 

technique to infer parameters and compare alternative evolutionary models. PCL is efficient 

and fast (Goolsby 2016; Clavel et al. 2019), but it is not invariant to rotation and is thus not 

applicable to geometric morphometric datasets because of the arbitrary orientation of the 

baseline shape (Rohlf 1999; Adams and Collyer 2018). Penalized likelihood techniques also 

allow estimating and fitting alternative models and can alleviate issues related to rotation-

invariance (Clavel et al. 2019; Clavel and Morlon 2020). These approaches show 

performances comparable to the PCL for estimating parameters and outperforms 

conventionally used data reduction techniques or distance-based approaches, but they are 

computationally costly and may not scale easily to datasets composed of more than 2000-

4000 dimensions (a common situation with the use of sliding semilandmarks or 

pseudolandmarks in 3D geometric morphometrics). In asymptotic conditions (when n>>p), 

the PL approach reduces to the classical likelihood techniques. Recently, (Bartoszek et al. 

2023) showed that better defined algorithms and use of appropriate corrections after data 

transformations (e.g. rotation of the data), can be used to circumvent some issues linked with 

working with large multivariate datasets. However, these recommendations do not necessarily 

apply to the specific case of geometric morphometric data because there is no reference 

orientation one can use to devise a correction term.  

Phylogenetic Factor Analysis was also recently proposed as an efficient way to model 

complex high-dimensional datasets using a handful of latent factors (Tolkoff et al. 2018; 



27 
 

Hassler et al. 2022). This technique uses a promising probabilistic framework for data 

reduction; however, it is also currently limited to Brownian motion and might suffer from 

rotation invariance issues such as those faced by classical Factor Analysis. These methods are 

in ongoing development to address these issues. For instance, several algorithms have been 

proposed to improve and speed-up the computation of multivariate likelihood in PCMs 

(Pybus et al. 2012, Ho and Ané 2014b; Clavel et al. 2015; Goolsby et al. 2017; Bastide et al. 

2018; Caetano and Harmon 2019; Mitov et al. 2020), and further techniques (e.g., machine 

learning approaches) might be envisioned to study high dimensional datasets, such as 

geometric morphometric datasets, with the various constraints – such as rotation invariance – 

accompanying these datasets.  

Another key aspect to consider is the tradeoff between the morphological complexity 

captured by modern morphometrics and the number of parameters that must be estimated by 

the models to improve biological realism and interpretability. To avoid overfitting and 

difficulties in optimizing parameter rich models, most developments for high-dimensional 

comparative datasets mentioned above are based on simpler assumptions, for instance, that 

multivariate OU has a simple structure with same parameter shared across traits – sometimes 

called the “scalar OU model” (Bastide et al. 2018; Clavel et al. 2019), than state of the art 

multivariate models. While some maximum likelihood implementations allow the estimation 

of rates or adaptive optimum in different lineages or clades across traits in multivariate 

datasets (Revell and Collar 2009; Bartoszek et al. 2012; Clavel et al. 2015; Caetano and 

Harmon 2017), these approaches usually require that the parts of the tree where the shift 

occurred to be known a priori (mapped), or for those areas of the tree to be reconstructed 

independently. More recently, maximum likelihood and penalized likelihood implementations 

have been proposed that can detect the position of these shifts automatically in multivariate 

datasets (Khabbazian et al. 2016; Bastide et al. 2018). Similarly, some Bayesian 
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implementations using reversible jumps with Markov chains Monte Carlo algorithms 

(RJMCMC; e.g., in RevBayes (Höhna et al. 2016) and BayesTraits (Venditti et al. 2011) relax 

these assumptions by allowing the estimation of rates changes in different parts of the tree 

without any prior knowledge on the position of the shifts. As a prior on the number of shifts 

is however usually needed, these methods are based on the Occam’s razor principle that a 

limited number of changes are needed to model the data. A model with branch-specific traits 

changes has previously been developed (Lemey et al. 2010), but has not – to the best of our 

knowledge – been applied to morphometric datasets. Although they are more flexible it 

should be noted that to cope with the rapid increase in number of parameters, all of these 

approaches also make some simplifying assumptions – just as with the methods for high-

dimensional datasets described previously - compared to the full models employed in 

“mapped trees” methods. For instance, none of these approaches can be employed on high-

dimensional datasets without relying on some sort of data reduction techniques; they either 

assume that traits evolved independently of each other (Khabbazian et al. 2016) or that the 

evolutionary correlations between traits are homogeneous across the tree (Lemey et al. 2010; 

Venditti et al. 2011; Höhna et al. 2016; Bastide et al. 2018), and that rates changes are shared 

across traits.  

Future developments will have to overcome these various challenges imposed by parameter 

rich models and high dimensionality of modern datasets, because, at present our ability to 

generate high quality, phenomic-scale data, as discussed above, is outpacing the capacity of 

evolutionary analyses, most of which rely on relatively simple models of evolution or are 

only suited to univariate or low dimensional data. Nonetheless, even with existing methods, 

we already have the means to assess the processes underlying observed patterns with more 

complexity and accuracy than is usually applied, as we demonstrate below by returning to the 

topic of disparity.  
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Expectations of disparity under alternative evolutionary models  

It is intuitive that there is a close relationship between morphological disparity and the 

evolutionary process unfolding on a tree or on a time series. Hunt (2012) showed that the rate 

of phenotypic evolution in time-series data necessarily depend on the generating process. 

Relatedly, O’Meara et al. (2006), showed that the expected disparity under an homogeneous 

Brownian motion can depend on the dynamics of speciation and extinction, i.e., the 

branching pattern or shape of the tree, as the accumulated variance depends on species 

coalescent times. And yet, though they are ultimately inseparable, we often find discrepancies 

between rate and disparity in empirical datasets (Goswami et al. 2014; Felice et al. 2018). 

Part of understanding this inconsistency requires us to confront our expectations - 

specifically, our Brownian expectations. As discussed above, disparity through time (DTT) 

plots have become ubiquitous in studies of morphological evolution, and for good reason: 

they provide a clear picture of how the distribution of morphological variation changes 

through time. As noted above, when paired with an understanding of evolutionary 

relationships, DTT plots provide insight into the evolutionary dynamics of a clade, by 

measuring whether disparity is concentrated between clades (subclade disparity approaches 

0) or within clades (subclade disparity approaches 1). In most implementations, the empirical 

DTT plot is compared to a Brownian expectation (e.g., Slater et al. 2010; Navalón et al. 

2022). While modelled disparity cannot take into account factors such as selective extinction, 

there are many reasons why disparity may depart from a Brownian expectation, the simplest 

being that the Brownian model is a poor model for the data. Thus, it is sensible to model 

disparity using a model that better fits the data. Above we have mentioned a variety of 

models, from single-rate BM, to various implementations of OU processes, to time-dependent 

models, including both AC and EB models. In the following section, we consider some of 

these models as we demonstrate the impact of evolutionary model on expectations of 
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disparity with a worked example from our recent study of mammal skulls (Goswami et al. 

2022). 

Estimating disparity under different evolutionary models: a worked example of 

mammal evolution 

Disparity through time plots (DTT; Harmon et al. 2003) were computed on 67 PCs that 

captured 95% of the total variance for a dataset of 322 placental mammals, with skull shape 

quantified with 66 landmarks and 688 sliding semilandmarks (black curve on Fig. 8). The 

DTT curves were estimated on 1Ma (million year) time bins (mean binned subclade 

disparity) using modified codes from Navalón et al. (2022). We estimated through 

simulations the 95% confidence envelope for the DTT under four alternative models (BM, 

OU, EB, and a variable rates BM model with a lambda tree transformation) to compare to the 

empirical DTT. For each process, 100 datasets were generated with the “simulate” function 

with parameters from model fit by penalized likelihood using the “mvgls” function in 

mvMORPH R package v1.1.8 (Clavel et al. 2015). The variable rates lambda model was 

estimated in a previous study (Goswami et al. 2022) using the RJMCMC algorithm 

implemented in BayesTraits v3 (Venditti et al. 2011). To simulate the data under that process 

we first used the average branch-specific rates from the BayesTrait mcmc output to scale the 

branch lengths of the placental phylogenetic tree. This branch length transformed tree was 

then used in “mvgls” to fit a multivariate “lambda” model, and to simulate new datasets using 

the “simulate” function. Because the parameter that describes the decay in rate in the EB 

model was estimated close to zero on the empirical data – that is, the process behaves like 

BM – we further simulated DTT with various strengths of early burst to illustrate more 

standard expectations (Fig. 8A). To do so, we simulated decays representing 2, 5, and 10 half-

lives elapsing over the 80Ma of the placental tree used in the analysis. That is, a mild early 

burst with a rate that decays by half after 40Ma (2 half-lives) or a strong EB with a rate that 
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decays by half after only ~8Ma (10 half-lives). Overall, we can see that the EB (Fig. 8A) and 

OU processes (Fig. 8B) show a low fit to the empirical DTT and that their trajectories tend 

toward the opposite corners of the DTT plot. Specifically, the EB model predicts greater 

disparity between clades than is observed for most of the Cenozoic, while the OU model that 

tends to homogenise variation across clades. The BM process is reasonable in capturing the 

main disparity pattern, but it misses some bursts in disparity and doesn’t accommodate well  

 
Figure 8. Empirical (black line) vs. expected disparity (relative subclade disparity) for 
placental mammal skull evolution simulated under four evolutionary models: A) Early Burst 
with three alternative parameterizations; B) OU; C) single rate BM; D) variable rate BM with 
a lambda tree transformation, estimated in Goswami et al. (2022). Dashed lines are 95% 
confidence intervals and dotted lines are the mean expectation.  
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the disparity near the present (Fig. 8C), in contrast to the BM variable rates model (Fig. 8D). 

This example demonstrates how we can already accommodate complex models into well-

established analyses, such as morphological disparity, and how doing so may relieve some of 

the perceived incongruence of evolutionary rate and disparity and more accurately identify 

where disparity diverges from more accurate expectations. This is of course important 

because not all differences observed in rates and disparity are due to methodological 

oversimplification; some of the incongruence is an accurate reflection of underlying 

biological factors, discussed below. 

From pattern to process 

Quantifying morphology and changes in it across clades, space, or time is inherently 

interesting, but is rarely the goal of a study. Rather, we generally seek to understand why 

certain morphologies exist, why they vary, and how they change. We can discriminate this 

into two key areas – what factors are associated with morphological variation and what 

processes underly morphological variation. Factors associated with morphological variation 

can be both intrinsic to the organism, such as ecology, life history, function, or physiology, or 

extrinsic, such as environment and competition (Baab et al. 2014; Goswami et al. 2016; 

Arbour et al. 2019, Felice et al. 2019a; Fabre et al. 2020; Bardua et al. 2021). The 

associations of these various factors and morphology can be assessed statistically using 

regressions, including the phylogenetic regressions discussed above where specimens are 

phylogenetically structured and a phylogeny is available (Goswami et al. 2022). Biotic 

interactions are another key factor driving trait evolution, but though there are many methods 

for integrating species interactions into models of trait evolution for univariate traits (Drury et 

al. 2016; Bartoszek et al. 2017; Clarke et al. 2017; Manceau et al. 2017; Quintero and Landis 

2020), there are none at present for high-dimensional data.   
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These associations can provide deep insight into the drivers of morphological variation, 

disparity, and change, but they often provide little information on the specific pathways of 

that change. For that, we need to access information on how morphology is generated, which 

requires understanding of genetic and developmental patterning of morphology. While much 

early work on comparative development laid the foundations for this topic (Thompson 1917), 

the rise of comparative genomics and evolutionary developmental biology has provided novel 

insights into how morphologies form and change (Noden 1983; Sears 2004; Sears et al. 2007; 

Brugmann et al. 2010; Young et al. 2010, 2014; Zhang et al. 2014; Green et al. 2017; 

Bouwman et al. 2018; Claes et al. 2018; Salzburger 2018; Jebb et al. 2020; Yuan et al. 2021; 

Zhou et al. 2021; Brandon et al. 2022; Carbeck et al. 2023). Now, it is plausible to quantify 

shape changes through time and tie them to specific changes in genetic architecture or 

developmental pathways. The opposite is equally possible – starting from a quantification of 

development and estimating what morphologies could and could not evolve, similar to 

Raup’s (1966) coiling morphospace but with far greater resolution (Young et al. 2014). 

Linking phylogeny and developmental data in comparative analysis also allows estimation of 

ancestral developmental pathways, essentially creating hypotheses of developmental 

patterning for taxa that will likely never be sampled directly (White et al. 2023).  

Of course, the vast majority of biological diversity is extinct. While extracting genomes for 

species that went extinct in the last few million years is increasing possible, the fact remains 

that there is almost no record of genetic or developmental data for the millions of fossil 

species that have inhabited this planet prior to modern times, nor even for most species alive 

today. How then, can we access this information to link pattern to process across the diversity 

of living and extinct species? Morphological integration and phenotypic modularity are 

concepts that are inherently about the relationships among traits, but are of widespread 

interest because those relationships reflect the underlying developmental and genetic 



34 
 

architecture of those traits (Wagner 1996; Wagner and Altenberg 1996; Klingenberg 2013; 

Zelditch and Goswami 2021). Integration refers to the relationships among components 

within a structure, and modularity refers to the decomposition of a structure into quasi-

autonomous, highly-integrated modules. Thus quantitative analysis of the covariances among 

phenotypic traits allows one to access the intrinsic processes generating those traits, even 

when direct genetic or developmental data is not available, as is the case for the vast majority 

of extinct and rare species. Linking trait integration and modularity to specific processes is 

complicated by overlapping effects (Hallgrímsson et al. 2009), but even where the precise 

cause of a pattern of integration and modularity is not identifiable, phenotype alone, even 

from fossil species, is sufficient to identify where in evolutionary history those relationships 

and their underlying architecture have changed (e.g., Goswami 2006, Webster and Zelditch 

2011a, b; Goswami et al. 2015, Felice et al. 2019b; Love et al. 2022).  

These relationships among traits also have important consequences for their evolution, as trait 

covariances are a primary influence on the variation of individual traits. Strong integration 

among traits can limit the ability of individual traits to vary and evolve in some directions, 

while facilitating their evolution in other directions (Schluter 1996; Steppan 1997; Steppan et 

al. 2002; Marroig and Cheverud 2005; Renaud et al. 2006, Hunt 2007b; Rhoda et al. 2023). 

This tendency will leave some areas of morphospace unexplored, while likely promoting 

homoplasy and convergence in other areas (Goswami et al. 2014; Felice et al. 2018). 

Importantly, this constraint on direction of evolution does not necessarily similarly limit pace 

of evolution and thus trait integration is one biological cause for discordance between 

evolutionary rates and disparity, as described by the Fly-in-the-tube model of evolution for 

integrated phenotypes (Felice et al. 2018).  



35 
 

This effect of trait integration has led to the hypothesis that modularity has increased over 

evolutionary time, to circumvent these potentially constraining effects. There is, however, no 

conclusive analysis on trends in modularity at present, though there is certainly variation in 

modularity across major clades (e.g., Goswami 2006, Felice et al. 2019b). It is likely that 

modularity, like complexity (Marcot and McShea 2007), fails to show biased evolution when 

rigorously assessed, despite reasonable hypotheses for a trend towards increased modularity 

(Wagner and Altenberg 1996), but this remains to be tested with sufficient comparative data. 

One of the major hindrances in assessing trends in modularity and integration is that many of 

the major shifts in patterns of modularity are observed between large clades, with a high 

degree of conservation in pattern (if not in magnitude) within major vertebrate clades 

(Goswami 2006; Porto et al. 2009, Felice et al. 2019b; Watanabe et al. 2019; Bardua et al. 

2020; Fabre et al. 2020; Navalón et al. 2020). Assessing trends in modularity then requires 

robust comparisons across long-diverged clades, which is difficult with standard geometric 

morphometric approaches because of the paucity of homologous landmarks in disparate taxa. 

Moreover, as the key shifts likely occurred in stem taxa or early representatives of major 

clades, quantifying phenotypic modularity and integration in fossils will be essential for 

testing this hypothesis. This is but one of many fundamental questions on the drivers and 

constraints on morphological evolution that will hopefully be addressed by better approaches 

to quantifying and comparing morphology on macroevolutionary scales and with direct data 

from extinct species.  

Shifting bottlenecks, beyond data limitations to methods limitations 

Centuries of study have provided a rich theoretical framework for the study of evolutionary 

morphology, but just in the past decade, a monumental shift has occurred in its analysis. 

Whereas the limiting factor for centuries has been data collection and quality, access to online 
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databases and imaging tools is making it increasingly possible to gather multivariate data 

from thousands of specimens within a few years. Ready access to high-performance 

computing clusters and stable freeware are an equally important factor for the explosion in 

scale of evolutionary morphology studies. The rise of Artificial Intelligence and the 

application of deep learning and computer vision to image data are already pushing the time 

scales for data collection from several years to a few hours, although there are still significant 

issues to resolve for ensuring biologically meaningful comparisons of shape. We can now 

foresee a day in just a few years, when it will be possible to obtain dense morphometric data 

for hundreds of thousands of species and marry these data with phylogenetic, ecological, life 

history, biotic, and geographic information. Where then are the new bottlenecks and next 

frontiers for the study of morphological evolution? It is undeniable that the size and 

complexity of phenomic-scale datasets are presently outpacing the ability of analytical tools 

to robustly reconstruct morphological evolution with high-dimensional data, particularly 

those that sample a large number of species in a phylogenetic framework. In this regard, the 

scale and quality of morphological data is rapidly catching up with its molecular counterpart 

and presenting new opportunities for robust analysis of the genome-phenome relationship. 

Going forward, the key areas for improving the study of morphological evolution will be 

automating the extraction of meaningful, comparable morphometric data from images, 

integrating fossil data into large phylogenetic trees and downstream evolutionary analyses, 

generating robust models that accurately reflect the complexity of evolutionary processes, 

and developing methods that are well-suited for high-dimensional data. Combined, these 

advancements will solidify the emerging field of evolutionary phenomics and appropriately 

center it around the analysis of unambiguously critical deep-time data.       
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