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Abstract 10 

Estimation of abundance and demographic rates for populations of wild species is a 11 
challenging but fundamental issue for both ecological research and wildlife management. One 12 
set of approaches that has been used extensively to estimate abundance of wildlife populations 13 
is Distance Sampling (DS) for line or point transect survey data. The first implementations of 14 
DS models were only available as closed population models, and did not allow for the 15 
estimation of changes in abundance through time. The advent of open population 16 
formulations based on the DS framework greatly extended the scope of the models, but much 17 
untapped potential remains in models that estimate temporal dynamics not only in abundance 18 
but also in the underlying demographic rates. Here, we present an integrated distance 19 
sampling approach that utilizes age-structured survey data and auxiliary data from marked 20 
individuals to jointly estimate population density and the demographic rates (recruitment 21 
rate and survival probability) that drive temporal changes in density. The resulting model is 22 
equivalent to an integrated population model with a two age classes: juveniles and adults. The 23 
integrated framework allows making full use of the available data by effectively combining 24 
line transect and telemetry data, and can easily be adapted to include additional and/or 25 
different data types. Moreover, as demographic rates often respond to environmental 26 
variation, our approach also supports direct estimation of the effects of such environmental 27 
covariates on demographic rates. Through a comprehensive simulation study we show that 28 
the model is able to adequately recover true population and vital rate dynamics. Subsequent 29 
application to data from a study of willow ptarmigan (Lagopus lagopus) in Norway showcases 30 
the frameworks ability to recover both fluctuations and trends in population dynamics and 31 
highlights its potential applicability to a wide range of species surveyed using distance 32 
sampling approaches. 33 

  34 

mailto:erlend.nilsen@nina.no


2 
 

1. Introduction 35 

Estimating abundance and demographic rates for wildlife populations is an integral part of 36 
basic and applied ecology (Skalski, Ryding, and Millspaugh 2005; Williams, Nichols, and 37 
Conroy 2002). Over the last few decades, tremendous progress has been made towards this 38 
end. This progress is partly driven by development and application of new field data 39 
collection methods and approaches, such as citizen science data (Danielsen et al. 2022), 40 
camera trap data (Hamel et al. 2013) and the collection of environmental DNA data (Beng 41 
and Corlett 2022). In addition, developments of novel statistical methods alongside 42 
decreases in computational costs now allow researchers to estimate abundance and 43 
demographic rates in situations where it was not feasible before (Zipkin et al. 2021). 44 
Combined, these advances put us in a much better position for estimating quantities needed 45 
for population management (Williams, Nichols, and Conroy 2002) and indices relevant for 46 
large scale policy applications, e.g. Essential Biodiversity Variables (Kissling et al. 2018). 47 

Until recently, joint estimation of population dynamics and demography has relied mostly 48 
on data from marked individuals and associated open-population capture-mark-recapture 49 
models (Schaub and Kéry 2021). While such methods can provide valuable information for 50 
both ecological research and management, collecting the necessary data is typically costly 51 
and logistically challenging to implement over large areas. Monitoring programmes 52 
focusing on abundance trends over larger areas, on the other hand, are typically based on 53 
data from unmarked animals. One often used approach for such surveys is distance 54 
sampling (DS). DS has been used for estimating animal abundance in a wide range of 55 
contexts and for a variety of taxa (Buckland et al. 2015). One reason for the method’s 56 
popularity is that it requires neither marking of individuals nor repeated visits to the same 57 
sites for estimating detection probability. This makes DS particularly useful for 58 
implementation in participatory monitoring programs, allowing stakeholders to take part in 59 
the data collection process. 60 

Classical implementations of DS models have used closed-population formulations, 61 
i.e. models that treat estimates of population density or abundance at different time points 62 
as independent and do not including an explicit formulation of the process model that links 63 
abundance across years based on estimates of population growth rate (𝜆) or underlying 64 
demographic rates (Buckland et al. 2015). In recent years, DS approaches have been 65 
extended in many ways, including applications that estimate changes in abundance over 66 
time in open populations via a hidden state model representing population dynamics 67 
(Moore and Barlow 2011; Sollmann et al. 2015; Schaub and Kéry 2021). This has greatly 68 
extended the potential of DS approaches for studying ecological dynamics across time and 69 
space. However, while these latter frameworks may allow to accurately quantify population 70 
changes, they typically provide little information on the drivers of these changes, i.e. the 71 
underlying vital rates. In fact, if the data does not contain information about the age (and/or 72 
sex-) structure of the surveyed population, there is no straightforward way to estimate 73 
demographic rates from such data. On the contrary, if age (and sex) of detected individuals 74 
can be determined, this information can be used to provide information on recruitment 75 
rates and survival probabilities. Nilsen and Strand (2018), for example, used a model based 76 
on harvest statistics and observations of population age structure to estimate population 77 
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abundance and demographic rates without the need for any additional data from marked 78 
individuals. 79 

Concurrent with the development of more sophisticated DS models, another group of 80 
models has emerged and rapidly gained popularity, not least for their ability to disentangle 81 
demographic processes underlying population dynamic: integrated population models 82 
(IPMs, Schaub and Kéry 2021). Through joint analysis of multiple datasets (or multiple 83 
components of the same dataset), IPMs allow simultaneous estimation of population size 84 
and composition, as well as all vital rates that form part of an underlying age- or stage-85 
structured population model. Since both DS models and IPMs estimate population 86 
size/density, a combination of the two frameworks has the potential to provide good 87 
estimates of both population- and demographic parameters by maximizing knowledge 88 
gained from transect surveys by augmenting them with other available data (e.g. Schmidt 89 
and Robison 2020). 90 

In this study, we present a new integrated distance sampling model (IDSM) which 91 
integrates data from line transect distance sampling survey data and survival data from 92 
marked animals. The model’s core is a stage-structured matrix population model that 93 
projects population size from one time step to the next based on underlying survival and 94 
recruitment rates. We first present the model and assess its robustness and performance 95 
through applications to simulated data. By doing so, we showcase how distance sampling 96 
models can be used to not only estimate population density but also demographic rates in 97 
an IPM setting. Finally, we proceed to highlight the potential of this new modelling 98 
framework by applying it to a case study involving data collected on willow ptarmigan 99 
(Lagopus lagopus) in Central Norway. 100 

  101 
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2. Methods 102 

2.1 Integrated distance sampling model 103 

Our open population integrated distance sampling model (IDSM) consists of two major 104 
components: a latent structured population model and a set of likelihoods for data 105 
originating from distance sampling surveys and auxiliary survival monitoring of marked 106 
birds. In the example case, these auxiliary data come from a radio-telemetry study, but in 107 
principle other types of capture-recapture data can also be used. 108 

2.1.1 Age-structured population model 109 

The population model follows a post-breeding census and includes two age classes: 110 
juveniles (young of the year) and adults (> 1 year of age, Figure 1). This structure 111 
commonly used for populations of passerine and game birds (Williams, Nichols, and Conroy 112 
2002; Schaub and Kéry 2021). In the context of our willow ptarmigan case study (see 113 
below), the population census is set in late summer - which is when the annual distance-114 
sampling survey takes place. At this time, the juvenile class is about 1 - 2 months old. 115 

Both juveniles and adults survive from year 𝑡 census to year 𝑡 + 1 census with survival 116 
probability 𝑆𝑡. We assume that individuals can reproduce already as 1-year olds, meaning 117 
all survivors may produce offspring in late June which recruit into the population as 118 
juveniles just prior to the census in year 𝑡 + 1 according to a recruitment rate 𝑅𝑡+1. The 119 
changes in densities of juveniles and adults in the population, 𝐷𝑗𝑢𝑣  and 𝐷𝑎𝑑 , can thus be 120 

expressed as 121 

𝐷𝑗𝑢𝑣,𝑡+1 = 𝐷𝑎𝑑,𝑡+1 ∗ 𝑅𝑡+1

𝐷𝑎𝑑,𝑡+1 = 𝑆𝑡 ∗ (𝐷𝑗𝑢𝑣,𝑡 + 𝐷𝑎𝑑,𝑡)
 122 

or, alternatively, in matrix notation as 123 

[
𝐷𝑗𝑢𝑣,𝑡+1
𝐷𝑎𝑑,𝑡+1

] = [
𝑆𝑡 ∗ 𝑅𝑡+1 𝑆𝑡 ∗ 𝑅𝑡+1

𝑆𝑡 𝑆𝑡
] [
𝐷𝑗𝑢𝑣,𝑡
𝐷𝑎𝑑,𝑡

] 124 

Note that recruitment rate 𝑅 is defined as juveniles/adult (not juveniles/female). We 125 
assume no stochasticity beyond time-variation in vital rates in the model for population 126 
density itself, but instead treat local population sizes (numbers of birds in age class 𝑎 in 127 
year 𝑡 within the area of each transect 𝑗, 𝑁𝑎,𝑗,𝑡), as outcomes of a Poisson process with an 128 

expected average equaling 𝐷𝑎,𝑡 times the transect area (see below). We also make the 129 
simplifying assumption that there is no age- or sex-dependence of vital rates, but this 130 
assumption could be relaxed by including additional auxiliary data (Israelsen et al. 2020; 131 
Sandercock et al. 2011). 132 
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Figure 1: Graphical representation of the annual ptarmigan life cycle with two age classes 
under a post-breeding census and the data sources included in the integrated distance 
sampling model. Solid arrows represent relationships within the ptarmigan life cycle; dotted 
arrows visualize information flow from data sources to parameters. Blue and pink data 
nodes originate from distance sampling and line transect surveys, respectively. Juvenilet = 
juveniles in year 𝑡. Adultt = adults in year 𝑡. 𝑅𝑡 = recruitment rate in year 𝑡. 𝑆𝑡 = survival 
probability from year 𝑡 to 𝑡 + 1. 

2.1.2 Likelihoods for distance sampling data 133 

The implementation of the modelling framework we present assumes that the distance 134 
sampling survey data have the following characteristics: 1) the survey consists of line 135 
transects, 2) animals may be detected alone or in groups, and 3) juveniles and adults can be 136 
distinguished during surveys. These characteristics are inspired by our willow ptarmigan 137 
case study (details below). Our model includes three likelihoods for different components 138 
of the age-structured distance sampling data. First is the likelihood for the perpendicular 139 
detection distances from line transect, 𝑦, which are linked to distance-dependent detection 140 
probability 𝑝𝑦 through a half-normal detection function: 141 

𝑝𝑦 = 𝑒𝑥𝑝 (−
𝑦2

2𝜎2
) 142 

where 𝜎 is the half-normal detection parameter. We assumed 𝜎 to vary among years (index 143 
𝑡) but not between transect lines or animal group sizes. Following Moore and Barlow 144 
(2011), the resulting 𝜎𝑡  can be used to calculate effective strip width (𝑒𝑠𝑤𝑡) and, 145 
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consequently, average detection probability per line transect with a truncation distance 𝑊 146 
according to: 147 

𝑒𝑠𝑤𝑡 = √
𝜋 ∗ 𝜎𝑡

2

2

𝑝�̂� = 𝑒𝑠𝑤𝑡/𝑊

 148 

The estimated average detection probability 𝑝�̂� is an integral part of the second data 149 
likelihood which relates the observed number of animals in each age class 𝑎, 𝑜𝑏𝑠𝑁𝑎,𝑗,𝑡 (𝑗 = 150 

transect) to the corresponding true number per transect, 𝑁𝑎,𝑗,𝑡: 151 

𝑜𝑏𝑠𝑁𝑎,𝑗,𝑡 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑝�̂� ∗ 𝑁𝑎,𝑗,𝑡) 152 

𝑁𝑗𝑢𝑣,𝑗,𝑡 and 𝑁𝑎𝑑,𝑗,𝑡 are then linked back to the population model by converting them to 153 

densities through multiplication by 2𝐿𝑗,𝑡𝑊 (where 𝐿𝑗,𝑡 is length of transect 𝑗 in year 𝑡, and 154 

𝑊 is the truncation distance). 155 

The third data likelihood focuses on the counts of adults (𝑜𝑏𝑠𝐴𝑑𝑗,𝑡) and juveniles (𝑜𝑏𝑠𝐽𝑢𝑣𝑗,𝑡) 156 

observed during the distance sampling surveys and links them to the estimated year-157 
specific recruitment rate: 158 

𝑜𝑏𝑠𝐽𝑢𝑣𝑗,𝑡 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑅�̂� ∗ 𝑜𝑏𝑠𝐴𝑑𝑗,𝑡) 159 

2.1.3 Likelihood for radio-telemetry data 160 

The final likelihood is for the auxiliary telemetry data. It is set up under the assumption of 161 
perfect detection, and hence known fates, of animals bearing transmitters and links the 162 
numbers of animals released at the start of season 𝑘 of year 𝑡 to the number of survivors at 163 
the end of the same season: 164 

𝑠𝑢𝑟𝑣𝑖𝑣𝑜𝑟𝑠𝑘,𝑡 ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑𝑘,𝑡, 𝑆𝑘�̂�) 165 

Here, 𝑆𝑘𝑡 is the survival probability over the relevant time interval 𝑘 in year 𝑡. The length 166 
and definition of 𝑘 will be specific to any given study. For the remainder of this article, we 167 
define 𝑘 as 6-month seasons to be consistent with our ptarmigan case study. Consequently, 168 
the annual survival probability, 𝑆𝑡 that appears in the population model above is calculated 169 
as the product of two seasonal survival probabilities, 𝑆1𝑡  and 𝑆2𝑡 . 170 

2.1.3 Hierarchical models with time-variation in parameters 171 

Vital rates (survival probabilities 𝑆𝑡, recruitment rates 𝑅𝑡) and detection parameters (half-172 
normal detection parameters 𝜎𝑡) can all be modelled as time-dependent in our framework. 173 
For both the tests with simulated data and the case study described below, we implemented 174 
log-normally distributed random year effects on recruitment rate and detection probability. 175 
In the case study, we additionally included a covariate effect (see details below) on log 176 
recruitment rates, resulting in the following model: 177 

𝑙𝑜𝑔(𝑅𝑡) = 𝑙𝑜𝑔(𝜇𝑅) + 𝛽 ∗ 𝑐𝑜𝑣𝑡 + 𝜖𝑡 178 
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𝜇𝑅 represents the mean recruitment rate if the covariate 𝑐𝑜𝑣𝑡 is centered around 0 (e.g. z-179 
standardized) or a baseline recruitment rate corresponding to 𝑐𝑜𝑣𝑡 = 0 if the covariate is 180 
not centered. 𝛽 the slope of the covariate effect, and 𝜖𝑡 the normally distributed random 181 
effects. 182 

In both simulations and the case study, we treated survival as time-invariant. This was 183 
motivated by our case study: previous research has relatively low interannual variation in 184 
survival of our focal ptarmigan population (Israelsen et al. 2020) and the telemetry data 185 
used in this study has limited potential for accurately estimating time-variation as it is 186 
relatively sparse. We note, however, that also survival could be modelled as time-187 
dependent if sufficient data is available. 188 

2.2 Model testing with simulated data 189 

We assessed the model’s overall performance and ability to estimate abundance, 190 
demographic rates, and detection parameters without bias by testing it on simulated data. 191 
We generated a total of 10 simulated datasets in five steps. First, we simulated 15-year 192 
time-series of survival and recruitment rates from biologically plausible values for averages 193 
and – in the case of recruitment – among-year variation in demographic rates (survival was 194 
held constant across years). Second, we used the yearly demographic rate and realistic 195 
initial population densities to simulate stochastic population dynamics in 50 distinct sites. 196 
Third, we simulated the grouping of individuals in each site by first determining the 197 
expected number of groups in a site (based on the average group size of 5.6 from our 198 
ptarmigan data) and then distributing individuals among groups via multinomial trials. 199 
Fourth, we assigned a distance from transect line to each group and simulated the line 200 
transect survey in all 50 sites across 15 years. Finally, we simulated 5-year time-series of 201 
radio-telemetry data (= survival from one year to the next) for a subset of individuals (30 202 
per year on average) using the simulated survival probabilities for each relevant year. We 203 
then fit the IDSM to each of the 10 simulated datasets three times, using distinct seeds for 204 
both simulating initial values and initiating and running the MCMC. Model implementation 205 
for simulated data tests was largely identical to that for real data and is described in detail 206 
below. For assessing model performance, fit, and bias, we 1) compared model estimates to 207 
the true values of parameters used for data simulations visually, 2) correlated estimated 208 
and true values, and 3) calculated two metrics to measure bias: the proportion of samples 209 
above the true value (corresponding to Bayesian p-values) and the root-mean square 210 
deviation (RMSD). 211 

2.3 Case study 212 

To demonstrate the applicability of the IDSM to real data, we applied it to a case study of 213 
willow ptarmigan, a small grouse species with a has a circumpolar distribution (Fuglei et al., 214 
2020). In Norway, there has been a long-term decline in willow ptarmigan abundance 215 
across more than a century (Hjeljord and Loe 2022), but in the last few decades abundance 216 
trends have fluctuated substantially both across time and space. Willow ptarmigan is a 217 
valued game species (see e.g. Andersen et al. (2014) ), and there have been several long-218 
term research projects devoted to understanding how they respond to environmental 219 
variation and harvest management (Israelsen et al. 2020; Sandercock et al. 2011). A key 220 
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insight from across several study areas is the the annual recruitment rate (i.e. 𝑅𝑡 in our 221 
model, as outlined above) is highly variable, and is affected both by spring conditions 222 
(Eriksen et al. 2023) and the abundance of small rodents, which constitute alternative prey 223 
for common predators (i.e. the Alternative Prey Hypothesis; see Hagen (1952); Kausrud et 224 
al. (2008); Bowler et al. (2020)). Adult survival show less inter-annual fluctuations 225 
(Israelsen et al. 2020), although variation due to e.g. harvest management is evident when 226 
comparing across studies (Israelsen et al. 2020; Sandercock et al. 2011). 227 

Our case study was based on an ongoing long-term research project on willow ptarmigan in 228 
Lierne municipality in Central Norway (approximately 62.4 degrees north and 13.2 degrees 229 
east). The study area is located in a sub-alpine ecosystem, and the landscape is a mosaic of 230 
open heath and shrub vegetation (dominated by Ericacea, willow shrub Salix spp., and 231 
dwarf birch Betula nana), interspersed with bogs and forest patches (mainly birch Betula 232 
spp.). The climate is strongly seasonal, with snow typically covering the ground from 233 
October/November through April/May. 234 

From this study system, two datasets were used for the case study: 235 

1. Data from a line transect survey program targeting willow ptarmigan operated 236 
under the natural resources management authorities (2007-2021, ongoing) 237 

2. Data from an individual-based monitoring programme based on radio collared 238 
willow ptarmigan (2015-2021, ongoing) 239 

Line transect survey data were collected in August each year, prior to the annual autumn 240 
harvest season, as part of the program “Hønsefuglportalen”. Hønsefuglportalen is a national 241 
program for line transect surveys of tetraonid birds, and the effort is directed mainly 242 
towards willow ptarmigan habitats. In our case study, we used data from the western part 243 
of Lierne municipality. Line transects are surveyed by trained volunteers that use pointing 244 
dogs to locate the birds. When located, the geographical coordinate, perpendicular distance 245 
from the sampling line, the number of birds in the group, as well as the age (juvenile or 246 
adult) and sex of the birds are recorded. As the surveys are conducted in early August, 247 
juveniles can be distinguished from adults by their smaller body size. Males and females are 248 
mainly distinguished by sound (males often make a characteristic sound when being 249 
flushed). Observers are trained to distinguish age classes and sexes, but incomplete 250 
identification can occur. In this application we assumed that the resulting “unknown” age 251 
and/or sex class birds were in fact juveniles (see discussion for further considerations). 252 
Besides bird observations, field workers also record whether (1) or not (0) they encounter 253 
small rodents on any transect line, allowing the proportion of transect lines with small 254 
rodent detection to be used as measure of rodent occupancy (covariate ranging from 0 to 255 
1). After data are collected they undergo quality control, get standardized based on the 256 
Darwin-Core standard (Wieczorek 2012), and made publicly available as a sampling-event 257 
data set published through GBIF (Nilsen et al. 2023). For additional description of the data 258 
collection procedures, see (Bowler et al. 2020; Kvasnes, Pedersen, and Nilsen 2018; Nilsen 259 
et al. 2023). 260 

The radio-telemetry data is the result of an individual-based longitudinal study over the 261 
period 2015-2021. Each winter (in February-March), willow ptarmigan were located at 262 
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night using snowmobiles and large hand nets with prolonged handles, as described in 263 
(Israelsen et al. 2020). High-powered head lamps were used to dazzle the birds and allow 264 
capture. Captured birds were fitted with a uniquely numbered leg ring (~ 2.4g) and a 265 
Holohil RI-2BM or Holohil RI-2DM radio transmitter (~ 14.1g) and subsequently released. 266 
The radio transmitters had an expected battery lifetime of 24 months (RI-2BM) or 30 267 
months (RI-2DM), and included a mortality circuit that was activated if a bird had been 268 
immobile for 12 hours. We monitored the birds throughout most of the year by 269 
triangulation from the ground at least once a month for 10 months of the year (February – 270 
November) by qualified field personnel. A number of birds dispersed out of the main study 271 
areas and was thus out of signal range for field personnel on the ground. To avoid loss of 272 
data, we conducted aerial triangulation using a helicopter or airplane three times a year 273 
(May, September and November) in the years 2016-2020. In the analysis here, we assume 274 
that the telemetry data is representative for the entire duration of study period (2007-275 
2021), despite its collection only starting in 2015. 276 

2.4 Bayesian model implementation 277 

We implemented the model in a Bayesian framework using NIMBLE version 1.0.1 (Valpine 278 
et al. 2017) in R version 4.3.1 (R Core Team 2023). The likelihood for line transect 279 
observation distances was set up using a custom half-normal distribution developed by 280 
Michael Scroggie as part of the “nimbleDistance” package 281 
(https://github.com/scrogster/nimbleDistance). We used non-informative uniform priors 282 
(with biologically reasonable boundaries where possible) for all parameters. We assumed 283 
constant survival and time-varying recruitment rate in models fit to both simulated and real 284 
data. 285 

For the model fits to simulated and real data we ran 3 (simulated) or 4 (real) MCMC chains 286 
with NIMBLE’s standard samples for 100k iterations. 40k thereof were discarded as burn-in 287 
prior to thinning with factor 20, leaving us with 3k posterior samples per chain (total of 12k 288 
samples per run). MCMC parameters were chosen to yield a representative number of 289 
samples from converged chains, and convergence was determined based on visual 290 
inspection of trace plots. Posterior samples from the model fitted to real data are available 291 
at Nilsen and Nater (2024) (in folder PosteriorSamples_LierneCaseStudy). 292 

  293 
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3. Results 294 

3.1 Model performance on simulated datasets 295 

Models fit to simulated datasets reached MCMC convergence within the given number of 296 
iterations. Chain mixing was good for all parameters except average recruitment rate (𝜇𝑅); 297 
for this parameter, an elevated degree of autocorrelation was visible in the MCMC chains in 298 
some of the replicate runs, but models still produced posterior distributions that well 299 
represented the true value used in simulations (Figure 2). 300 

Posterior estimates relative to true values, Bayesian p-values, and RMSD for parameters 301 
estimated in three model fits to each of 10 simulated data sets are shown in Figure 2 and 302 
Figure 3. Overall, the IDSM was able to correctly estimate the majority of parameters from 303 
all 10 simulated datasets without substantial systematic bias. The replicate runs for each 304 
dataset resulted in very similar posterior distributions, demonstrating that the models 305 
converged towards the same posterior distributions irrespective of starting values. This 306 
may not seem to be the case for survival parameters (Figure 2), but this is largely due to the 307 
relatively low number of individuals in the simulated telemetry data; estimated posteriors 308 
match up well with simulated numbers of survivors in each datasets, and the averages of 309 
Bayesian p-values fell very close to 0.5 (= no bias). For time-variation in recruitment rate 310 
(𝜎𝑅), on the other hand, the average Bayesian p-value indicated a potential for 311 
overestimation (p = 0.6966667), and this is consistent with the relatively large spread of 312 
Bayesian p-values for year-specific recruitment rates (Figure 3). Across all years, the 313 
correlation between predicted and true recruitment rates was very high (slope = 0.981), yet 314 
closer inspection showed that slight over- and under-estimation was present for certain 315 
years across all replicates (see supplementary figures in folder SimCheck_byDataSet in 316 
Nilsen and Nater (2024)). This was also the case for year-specific estimates of population 317 
density and detection probability, but both were slightly more likely to be underestimated 318 
than overestimated (Figure 3). 319 
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Figure 2: Vital rate and detection parameter averages estimated from 10 distinct sets of 
simulated data (= colors) using three model fits each. First row depicts posterior densities 
from each model run relative to the true value used to simulate data (black dashed line). 
Second and third rows visualize the distributions of Bayesian p-values (proportion of 
samples > true value) and root-mean square deviations (RMSD) for all model runs, 
respectively. Purple lines and numbers mark the mean values across all model runs; dashed 
black line (second row only) marks the ideal Bayesian p-value of 0.5. 
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  320 

 

Figure 3: Annual population density (𝐷𝑡), detection probability (𝑝𝑡), and recruitment rate 
(𝑅𝑡) estimated from 10 distinct sets of simulated data (= colors) using three model fits each. 
First row depicts the relationship between posterior medians from each model run and the 
true value used to simulate data (purple solid line = relationship estimated from linear 
model with a = intercept and b = slope; black dashed line = perfect correlation). Second and 
third rows visualize the distributions of Bayesian p-values (proportion of samples > true 
value) and root-mean square deviations (RMSD) for all model runs, respectively. Purple lines 
and numbers mark the mean values across all model runs; dashed black line (second row 
only) marks the ideal Bayesian p-value of 0.5. And equivalent figure showing posterior 
samples instead of posterior means is available in the supplementary material on OSF. 

3.2 Case study on willow ptarmigans in Central Norway 321 

Having evaluated the overall performance of our model on simulated data, we used data 322 
from our case study in Lierne to estimate abundance, vital rates and detection probabilities 323 
from a real-world data set. Like the model fits to simulated data, convergence was reached 324 
within the fiven amount of iterations and mixing was good, albeit with somewhat higher 325 
chain autocorrelation for the intercept in the recruitment model. Ptarmigan population 326 
density was estimated with a marked increase across the study period, from < 10 ptarmigan 327 
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/ 𝑘𝑚2 in 2007 to > 35 ptarmigan / 𝑘𝑚2 in in 2021 (Figure 4). The increase was most 328 
distinct from 2016 and onward. 329 

The average probability of detecting individuals and groups of ptarmigan within transect 330 
line areas was 0.61 (95% C.I = 0.57 - 0.65), and estimated with a detection decay parameter 331 
𝜎 of 95.3 (95% C.I = 82.18 - 110.43). Detection probabilities were highest in the start of the 332 
study and in the period 2016-2019 and lowest from 2010-2012. The relationship between 333 
detection probability and distance and changes in detection over time are visualized in 334 
supplementary figures “DetectionProb_distance.png” and “TimeSeries_pDetect.png” in 335 
Nilsen and Nater (2024). 336 

 

Figure 4: Estimated density of willow ptarmigans in Lierne from 2007 to 2021. Solid line 
represents the posterior median, ribbon marks 95% credible interval. 

Average survival probability for August - January (𝑆1) was estimated at 0.46 (95% C.I = 0.42 337 
- 0.5) while average survival probability for February - July (𝑆2) was estimated as 0.64 338 
(95% C.I = 0.59 - 0.7) (Figure 5 A). Annual survival probability 𝑆, given by the product of 𝑆1 339 
and 𝑆2, was estimated at 0.3 (95% C.I = 0.29 - 0.31), Figure 5 A). 340 

Recruitment (𝑅𝑡) was allowed to vary across years (see model specification), and estimates 341 
displayed large inter-annual variability (Figure 5 C, Figure S1). While the mean (baseline) 342 
recruitment 𝜇𝑅 was estimated as 2.7 (95% C.I = 2.3 - 3.2) the yearly recruitment rates 343 
ranged from 1.2 in year 2012 to 4.9 in year 2007. 344 

Given the available data, the IDSM was not able to estimate a clear effect of small rodent 345 
abundance on ptarmigan recruitment (slope-paramater for the z-standardized rodent 346 
occurrence data = 0.062 ; 95% C.I. = -0.2 - 0.31, see supplementary figure “Rep_betaR.R.png” 347 
in Nilsen and Nater (2024)). 348 
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Figure 5: Posterior densities of A) seasonal survival, B) average annual survival, and C) 
recruitment rate. For the latter, the yellow distribution is for the intercept, representing a 
baseline recruitment rate when rodent occupancy is low. The turquoise distributions are for 
year-specific estimates or recruitment rate, with darker colors indicating later years. For a 
visualization of the time-series of recruitment rates, see supplementary figure 
“TimeSeries_rRep” on OSF. 

 349 

  350 



15 
 

4. Discussion 351 

We developed an integrated population model that jointly analyses line transect distance 352 
sampling survey data and data from marked individuals to estimate population abundance, 353 
survival probabilities, and recruitment rates over time. We first used simulated data to 354 
examine the model’s ability to recover the underlying parameters when they were known. 355 
We then fitted the model to data from an ongoing field study on willow ptarmigan in 356 
Norway to showcase its applicability to real wildlife monitoring data. 357 

Open population formulations of the distance sampling model have previously been 358 
presented and applied to various ecological systems(Sollmann et al. 2015; Bowler et al. 359 
2020; Moore and Barlow 2011). The model presented here extends those previous 360 
applications by formulating the underlying population process model as a stage-structured 361 
matrix model (Caswell 2000) in which the matrix elements are represented by annual 362 
survival probabilities and recruitment rates. While this has been the common approach for 363 
a range of other statistical modelling frameworks, including the growing suite of models 364 
falling into the category of integrated population models (Schaub and Kéry 2021), the 365 
integration of mechanistic population models into distance sampling frameworks is rather 366 
new. The resulting modelling framework allow us to make maximum use of distance 367 
sampling data in combination with auxiliary information both from the distance sampling 368 
survey itself (i.e. information on age, sex, etc. of observed animals) and from other types of 369 
monitoring, and enables estimation not only of changes in population density but also of 370 
underlying vital rates over time. 371 

In general, the model did a good job at recreating the underlying parameters when fitted to 372 
simulated data with known underlying true parameter values. The simulated data sets were 373 
based relatively wide ranges of parameter values, yet model posteriors included the true 374 
values in almost all cases. While there seems to be potential for overestimating time 375 
variation in recruitment rates, this bias did not propagate into estimates of year-specific 376 
recruitment rates (Figure 3), and may be related to the subpar mixing of the intercept of the 377 
recruitment model. The model was more likely to under- than overestimate detection 378 
probabilities and population densities, but bias in these estimates was generally small and 379 
spread out across time-series, i.e. bias did not seem to arise disproportionately at e.g. the 380 
starts or ends of time-series. Simulated data tests also revealed that telemetry data 381 
simulated with an average of 30 individuals may be too sparse to obtain robust and 382 
generalisable estimates of seasonal survival probabilites. This could be investigated further 383 
by repeating simulated data runs with different average numbers of individuals in the 384 
telemetry data, but we chose not to go down this path here as we were primarily interested 385 
in model performance given the amounts of data that are currently available for our 386 
ptarmigan case study. Based on the simulated data tests presented here, we conclude that 387 
the IDSM is able to provide meaningful and sufficiently accurate and robust estimates of 388 
demographic parameters from age-structured distance sampling data, provided that the 389 
input data are unbiased (with respect to the underlying model formulation). 390 

Real data, however, are likely to be subject to certain biases, which may result in biased 391 
parameter estimates unless accounted for. One type of bias that is likely to be common for 392 
age-structured distance sampling data arises from failure to (correctly) classify the age 393 
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class of observed individuals. In our case study on willow ptarmigan in Norway, such 394 
misclassification is likely to happen at an unknown rate, even if the size difference between 395 
adult and juvenile birds are quite substantial during the survey. Moreover, The probability 396 
for misclassificiation might be related to both the timing of the survey (e.g. mid August 397 
rather than early August), it might vary between observers, and even by survey conditions. 398 
Observations with incorrectly classified age have the potential to introduce bias in the 399 
IDSMs relative estimates of survival and recruitment. This is due to the way it uses the 400 
distance sampling data to estimate survival and recruitment rates. In our process model, 401 
the population growth rate (𝜆) is determined by the survival and recruitment rate in the 402 
following way: 𝜆 = 𝑆 + (𝑆 ∗ 𝑅), and this creates a dependence between the demographic 403 
parameters. If the age ratio in the data are biased or contain frequent misclassifications, this 404 
is likely to affect the relative contribution of survival and recruitment to the growth rate. To 405 
get an idea of the potential effect of this on parameter estimation, we checked the 406 
sensitivity of the output of the model fit to real data with regard to the treatment of birds 407 
classified as “unknown sex and age” by the field personnel (see Methods). In the model 408 
version presented in the results section, we made the assumption that these birds were in 409 
fact juveniles. Comparing estimates to an alternative scenario in which we discarded all 410 
birds classified as “unknown sex and age” (see supplementary figures in Nilsen and Nater 411 
(2024)) we found that – as expected – estimated population density was virtually 412 
unaffected by the treatment of “unknown sex and age” observations, while the annual 413 
demographic parameters shifted proportional to the amount of “unknown sex and age” 414 
observations in the given year (towards higher recruitment and lower survival). Thus, 415 
biases in the reported age ratios may affect estimated of demographic rates, but not so 416 
much population density. Since the proportion of “unknown sex and age” observations in 417 
our ptarmigan case study was low (< 3% of observations), potential biases in estimates 418 
resulting from age misclassification are expected to be small. Nonetheless, future 419 
developments of the IDSM modelling framework should focus on ways of accounting 420 
explicitly for misclassification of age class in the field. 421 

The density estimates that we derived from the case study on Willow ptarmigan in Norway 422 
is comparable to previous estimates from across Norway (see e.g. Sandercock et al. (2011); 423 
Kvasnes, Pedersen, Solvang, et al. (2014)). Throughout the study period from 2007 - 2021, 424 
the density increased markedly, but the reason for this increase is not known. Compared to 425 
previous studies on ptarmigan (see e.g. (Israelsen et al. 2020; Sandercock et al. 2011)), we 426 
could have expected somewhat higher estimates of survival probability. One potential 427 
reason for the overall lower estimates obtained here is that our IDSM analysis assumed 428 
constant survival over the period 2007-2021 while survival, in reality, may have changed 429 
over time. If survival in more recent years, when telemetry data was collected (and the 430 
study of e.g. Israelsen et al. (2020) was carried out) was higher than in earlier years – 431 
something that seems likely given population increase over recent years – an average over 432 
the entire time period is expected to be lower. On a different note, we can also not exclude 433 
the possibility of a small degree of bias in survival estimates due to misclassification of age 434 
in the data (see above), especially seeing as the IDSM’s recruitment rate estimates also 435 
appear somewhat high compared to other studies on willow ptarmigan (Eriksen et al. 2023; 436 
Kvasnes, Pedersen, Storaas, et al. 2014; Steen et al. 1988). As the ptarmigan case study 437 
served as an illustrative example for the IDSM framework in this article, we did not further 438 
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investigate alternative models, such as implementations with time-varying survival or 439 
different treatment of uncertainty in age and/or sex. The model lends itself easily to such 440 
extensions, however, and methods such as posterior predictive checks and WAIC will be 441 
useful for assessing and optimizing the fit of the model to data from relevant case studies 442 
(Hooten and Hobbs 2015; Conn et al. 2018). 443 

In addition to estimating demographic rates from line transect data, the IDSM also allows 444 
including relevant environmental effects on the demographic rates themselves, and not just 445 
on population growth rate as a whole (𝜆). In the ptarmigan case study we thus attempted to 446 
investigate the effect of small rodent abundance (approximated as the proportion of 447 
transect lines on which rodents were reported each year) on recruitment rate. We were not 448 
able to detect a clear effect of rodent abundance due to large uncertainty associated with 449 
the estimate (see Supplementary Figures “Rep_betaR.R.png” in Nilsen and Nater (2024)). 450 
This may seem somewhat surprising given that such a pattern has been reported 451 
repeatedly in the literature (see e.g. Bowler et al. (2020)). We speculate that there are at 452 
least three potential and not mutually exclusive explanations to this result. The first is that 453 
our covariate data may not have been well suited for estimating effects on recruitment. The 454 
data on rodent abundance was heavily zero-inflated, and the annual variation in the index 455 
was rather small otherwise, making for a covariate with relatively little information 456 
content. While this may be partially a consequence of how these data are collected, it is also 457 
well known that the amplitude and regularity of the rodent cycles has been fading in recent 458 
decades (Kausrud et al. 2008; Cornulier et al. 2013), and our study area might be no 459 
exception. Lack of peak rodent years in the time series to which we fitted the model may 460 
thus also have contributed to making effect estimation challenging. Second, it is possible 461 
that rodent effects were obscured by other, potentially stronger, covariate effects. Previous 462 
research has shown that ptarmigan recruitment is also sensitive to the weather in the late 463 
winter and spring (before and during the breeding season); as we did not fit any weather 464 
covariates to the model, there is a possibility that effects of spring conditions in certain 465 
years may have masked any remaining effects of small rodent abundance. Finally, the data 466 
set used in this analysis is relatively short (15 years), leaving us with somewhat limited 467 
statistical power to detect effects of temporal covariates. Taken together we therefore do 468 
not consider this study as a particularly strong test of the underlying effect of small rodent 469 
fluctuations on ptarmigan recruitment rates. It is worth noting that future applications 470 
could increase statistical power by including either more years of data or capitalizing on 471 
space-for-time substitution as the Norwegian ptarmigan monitoring programme spans 472 
many more locations beyond Lierne. Bowler et al. (2020), for example, used data from the 473 
same sampling program but from more areas using a simpler open population DS model, 474 
and detected a very clear signal from small rodent abundance on ptarmigan population 475 
growth rate. An extension of our IDSM to include data from multiple areas therefore 476 
constitutes a promising approach for investigating to which extent similar results emerge 477 
by linking environmental covariates to the actual demographic rates and not only just to the 478 
resulting population growth rates. 479 

The new IDSM framework presented here is relevant for many wildlife populations that are 480 
surveyed using line transect sampling that includes additional information on age, sex, 481 
and/or life stages of the observed individuals. Following the integrated modelling 482 
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philosophy, the IDSM also allows for the integration of auxiliary data. In our application 483 
here, we integrated data from radio-telemetry of marked birds, which explicitly supported 484 
the estimation of survival probabilities. The IDSM framework is very flexible, however, and 485 
open to the inclusion of additional/other auxiliary data that contains information on 486 
demographic rates or population size/density. Moreover, the hierarchical nature of the 487 
model makes is straightforward to adapt to different species and to include different suites 488 
of environmental covariates on the demographic rates. Finally, it constitutes a modelling 489 
framework that is well suited for extension to multiple areas and thus able to capitalize on 490 
space-for-time substitution (Lovell et al. 2023) to produce large-scale and spatially explicit 491 
estimates of population density, demographic rates, and environmental effects from large-492 
scale (participatory) monitoring. 493 
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