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Abstract 
 

As phylogenomic datasets have grown in size, researchers have developed new ways to 
measure biological variation and to assess statistical support. Larger datasets have many more 
sites and many more loci, and therefore less sampling variance. While this means that we can 
more accurately measure the mean signal in these datasets. the lower sampling variance is 
often reflected in widely used measures of branch support— such as the bootstrap and 
posterior probability—being uniformly high, limiting their utility. Larger datasets have also 
revealed a large amount of biological variation in the topologies found across individual loci, 
such that the single species tree inferred by most phylogenetic methods represents a limited 
summary of the data. In contrast to measures of statistical support, the degree of underlying 
topological variation among sites or loci should be approximately constant regardless of the size 
of the dataset. “Concordance factors” and similar statistics have therefore become increasingly 
important tools in phylogenetics. In this review, we explain why concordance factors should be 
thought of as descriptors of topological variation, rather than as measures of statistical support, 
and argue that they provide important information not contained in measures of support. We 
review a growing suite of statistics derived from various ways of measuring concordance, 
comparing them in a common framework that reveals their interrelationships. We also discuss 
how measures of topological variation might change in the future as we move beyond 
estimating a single “tree of life” towards estimating the myriad evolutionary histories underlying 
genomic variation.  
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Introduction 
As recently as a decade ago, the molecular datasets commonly used in phylogenetics were 
quite small, consisting of perhaps a handful of loci. Although one of the main goals of 
phylogenetics was and remains estimating a species tree, the limited available data meant there 
was little point in trying to examine variation in phylogenetic signal among the loci that 
constituted a dataset. Instead, most concerns revolved around statistical uncertainty, such that 
most effort was expended trying to quantify the statistical support for each branch in the species 
tree (Simon 2022). The most commonly used methods to evaluate statistical support are the 
bootstrap (Felsenstein 1985) and posterior probability (Rannala and Yang 1996); both were 
intended to evaluate the reliability of inferred trees in an era when such trees were built by 
sampling small numbers of informative substitutions from a small number of loci. The support 
levels output by these methods can provide estimates of statistical confidence on each branch 
of a specific tree, given an alignment and a model of sequence evolution.  
 
More data hopefully means more accurate inferences, at least when the correct models are 
used—changing the model of sequence evolution can sometimes drastically change support 
levels (Stefanović et al 2004; Kumar et al. 2012; Shen et al. 2017). Regardless of their 
dependence on a particular model of sequence evolution, bootstrap and posterior probability 
support values are almost universally reported as measures of confidence in branches of 
phylogenetic trees. However, genome-scale data has greatly reduced the sampling variance in 
typical phylogenetic datasets. While some support methods have been extended for datasets 
with huge numbers of sites and taxa (Lemoine et al. 2018; Lutterop et al. 2022; Stamatakis et al. 
2008; Minh et al. 2013, Hoang et al. 2018), in general the consequence of larger datasets has 
been to lower sampling variance. This lower variance means that branch support measures will 
be almost always uniformly high, limiting their utility (Thomson and Brown 2022).  
 
Although sampling variance has been reduced in so-called “phylogenomic” datasets, there has 
been increased recognition of biological variance in such data (Maddison 1997). Biological 
variation arises because individual loci do not have to share the same topology with either the 
species tree or with each other. We refer to gene trees that match the species tree as 
concordant, and those that do not as discordant. (Note that a “gene tree” can refer to the 
topology at any locus, not just in protein-coding genes.) Discordance can be due to both 
technical and biological causes. Technical error, such as model misspecification, misalignment, 
or simply a limited amount of information, can result in both systematic and stochastic gene tree 
inference error. The biological processes that drive discordance include incomplete lineage 
sorting (ILS), introgression, and horizontal gene transfer (Degnan and Rosenberg 2009). 
Duplication and loss can also generate gene trees that differ from species trees, though the 
resulting discordance may be due to a combination of both biological processes and technical 
error (i.e. the misidentification of orthologous sequences).  
 
Importantly, biological discordance contains information about evolutionary processes, and 
therefore represents a rich source of data (Bravo et al. 2019). In this review, we discuss the 
various ways that concordance and discordance can be measured and quantified in 
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phylogenetics. We show how several popular ways to quantify topological heterogeneity are 
related via a shared set of simpler measures, and explain how each can be interpreted. While 
the maximization of concordance can be an optimality criterion for choosing a species tree 
topology within a particular dataset, we stress that concordance is not a measure of statistical 
support. Biological concordance and discordance should not change with varying amounts of 
data from the same set of taxa, as they represent measures of statistical variation, not statistical 
confidence. 

Concordance and discordance 
To introduce concordance and discordance, it can help to start with a simple example. Imagine 
a dataset of three gene trees sampled from four clades (A, B, C, and D), one of which, D, is the 
outgroup; let us also assume that we have inferred the topology of the species tree relating 
these clades (Figure 1a). In this example, the three gene trees have three different topologies—
one that is concordant with the species tree (Gene tree 1, Figure 1b) and two that are 
discordant (Gene trees 2 and 3, Figure 1b). Although gene trees can vary in their branch 
lengths, we do not consider this source variation in our labelling of concordant and discordant 
trees: only the hierarchical sets of relationships (sometimes referred to as “bipartitions”or 
“splits”) are considered. Indeed, gene tree branch lengths are expected to differ from species 
tree branch lengths even when the trees are concordant (Edwards and Beerli 2000), making 
branch lengths an impractical measure of concordance.  
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Figure 1. Concordance and discordance. (a) A species tree of four clades of organisms, A, B, C, and D. 
Clade D is the outgroup. (b) three possible gene trees derived from the species tree in (a). Gene tree 1 is 
concordant with the species tree, while gene trees 2 and 3 are discordant. (c) The gene concordance 
vector, ψ, describes the number of gene trees, or sometimes the proportion of gene trees, that fall into 
each of four categories. ψ1 is the number of gene trees that are concordant with the species tree 
(commonly called the “concordance factor”). ψ2 and ψ3 are the number of gene trees that match 
discordant tree 2 and 3 in (b), ordered with the largest count first. ψ4 is the number of gene trees that are 
discordant with the species tree but match neither gene tree 2 or gene tree 3 (for example, any gene tree 
in which clades A, B, or C are not monophyletic).   
 
 
For a rooted three-taxon tree, or an unrooted four-taxon tree, there are only three possible 
topologies, all of which are shown in Figure 1b. As a result, the trees in Figure 1 can only differ 
in a very limited number of ways, as long as clades A, B, C, and D are always monophyletic. 
Trees with more taxa have many more possible topologies. For a rooted four-taxon tree there 
are 15 possible topologies, with the number of topologies growing super-exponentially with the 
number of taxa (see Table 3.1 in Felsenstein 2004). One implication of this huge number of 
possible topologies is that, given enough taxa, any given gene tree is likely to be discordant with 
the species tree on at least one branch. Indeed, in several large datasets (in terms of number of 
gene trees and number of taxa) there are no gene trees that are completely concordant with the 
species tree (e.g. Jarvis et al. 2014; Pease et al. 2016). Partly because of this, researchers 
rarely focus on the overall concordance of gene trees with the entire species tree. Instead, it is 
much more informative to focus on a specific internal branch of the species tree, and to ask 
what proportion of gene trees are concordant with that branch. In other words, most researchers 
seek to estimate a concordance factor for every branch in the species tree.  
 
The biological (and technical) factors that drive concordance and discordance can vary through 
time and across the phylogeny, such that the unique combination of processes that underlie the 
evolutionary history of any clade will produce a particular distribution of gene trees. In order to 
study these processes, we would therefore like a measure of genealogical heterogeneity that 
tells us about concordance and discordance on specific branches of the species tree. 
Concordance factors (CFs) have become a widely used metric to describe this heterogeneity 
(Baum 2007). (These are also sometimes called gene support frequencies [GSFs]; Gadagkar et 
al. 2005.) The concordance factor was originally defined as “the proportion of the genome for 
which a given clade is true” (Baum 2007). Here, the genome is imagined to be made up of many 
independent loci, each of which has a gene tree topology affected by ILS, introgression, and 
horizontal gene transfer. This definition also assumes that the species tree is an accurate 
reflection of species relationships, and that gene trees that match it are “true”; later we relax this 
assumption, but for now we will accept this phrasing. The concordance factor of a branch or 
clade in the species tree is therefore a biological parameter that we should be able to estimate 
by inferring gene trees at many loci. In contrast, discordance factors (DFs) describe the fraction 
of the genome for which the given clade is not true. Because there are multiple ways for a gene 
tree topology to not match a branch in the species tree, discordant gene trees can be 
subdivided into several different biologically relevant groups, each represented by its own 
discordance factor (note that some papers refer to all concordance and discordance measures 
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collectively as concordance factors; e.g. Allman et al. 2022). Together, concordance and 
discordance factors provide useful information for understanding evolutionary histories and for 
testing evolutionary hypotheses; here we summarise them in a single vector called the 
‘concordance vector’ (Figure 1C), which we introduce below. 
 
In the rest of the paper, we review the meaning of concordance factors, how they can be 
estimated, and how these different estimates can be interpreted. We start by distinguishing 
concordance factors from measures of statistical support. We then introduce the concordance 
vector—a set of four concordance and discordance factors for a given branch of the species 
tree that usefully summarizes topological heterogeneity. Following this, we introduce and 
compare the different methods that have been developed for estimating concordance and 
discordance factors from empirical data. We describe how several popular ways to quantify 
topological heterogeneity are related via this shared set of simple measures, and explain how 
each can be interpreted. We conclude with suggestions for future directions. 

The concordance factor is not a measure of 
statistical support 
 
A seemingly common misconception is to treat concordance factors as measures of statistical 
support. This is not correct: concordance factors are (estimates of) biological parameters, not 
measures of statistical support (Baum 2007). Measures of support such as bootstrap 
proportions and posterior probabilities are estimates of our confidence that a branch exists, 
given some assumptions about the data and the models being used (Ané et al. 2007). For 
consistent statistical methods, these types of support measures will always increase towards 
their maximum possible value as we add more data to the analysis (cf. Kumar et al. 2012). The 
same is not true of concordance factors. As we add more data to an analysis, estimates of 
concordance factors will become more precise, but will not approach any limiting value. This is 
demonstrated for two empirical datasets in Figure 2—as we add more data to the analyses, 
measures of statistical support (here, the UltraFast Bootstrap [Hoang et al. 2017] and the 
ASTRAL posterior probability [Sayyari and Mirarab 2016], both shown in greyscale with square 
points) tend to increase towards their maximum value, while measures of concordance (shown 
in colour with circular points) have higher variance at lower sample sizes, but quickly stabilise to 
quite consistent values as sample size increases. 
 
To see what determines concordance factors (and discordance factors), consider the simplest 
species tree that can have discordance (Figure 1a, imagining a single representative is sampled 
from clades A-D). Under a model of incomplete lineage sorting, the length of the internal branch 
of the species tree, T, determines the degree of concordance and discordance. (Branch lengths 
here are measured in “coalescent” units, such that T=t/2N, where t is the number of generations 
and N is the effective population size.) If ILS is the only process acting, the probability of 
sampling a locus with a concordant gene tree is (Hudson 1983): 
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𝑃(𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑐𝑒) = 1 − 2 30 𝑒!"   (1) 

Conversely, the probability of sampling a locus with either one of the two possible discordant 
gene tree topologies is: 
 

𝑃(𝑑𝑖𝑠𝑐𝑜𝑟𝑑𝑎𝑛𝑐𝑒) = 1
30 𝑒!"    (2) 

Both of the two possible discordant topologies have the same probability, and so are always 
expected to have the same frequency under ILS alone for this species tree. 
Here, equation 1 is equivalent to the expected concordance factor—the “proportion of the 
genome for which a given clade is true”—if we imagine that we have randomly sampled 
unlinked loci from across the genome. Given these definitions, expected concordance will be 
highest (approaching 1) with long branch lengths (large T), and will be lowest (approaching 1/3) 
with very short branch lengths (very small T). Note that while concordance factors can never be 
greater than 1, for trees with more than three taxa they can be less than 1/3 because more than 
two discordant topologies are possible (more on this below). 
 
Most importantly, we can see from this formulation that the expected degree of concordance 
does not change with the amount of data we use to estimate it. If T=0.01, then the concordance 
factor will always be ≈0.34 for the simple tree in this example—barely any excess concordant 
gene trees relative to either of the other two discordant gene trees (each 0.33). This expectation 
is generated by the evolutionary process, not by the sampling of data. As a result, the numerical 
value of a concordance factor provides little information about the probability that a branch is 
true, because true branches in a species tree can have almost any value of a concordance 
factor.  
 
However, it is clearly the case that our confidence in this species tree (as measured by 
statistical support) will increase with increasing amounts of data (see the examples in Figure 2). 
If we sampled only 10 loci, we might not even get the concordant tree as the most common 
topology. With increasing amounts of data (and appropriate models), both the bootstrap 
proportion and posterior probability of this branch will increase towards 100% (Figure 2). From a 
statistical perspective, the larger sample size increases our confidence that the concordant tree 
is the most common. While this is the behaviour we want in a measure of statistical support, it is 
precisely this observation that has led some authors to question the utility of measures of 
statistical support in modern phylogenomics (Kumar et al. 2012; Thomson and Brown 2022): our 
datasets our now so large that almost all such measures reach their maximum value on every 
branch. Despite this, concordance factors do provide some information on the amount of data 
that will be needed to have high statistical support: a branch with a low concordance factor will 
require commensurately more data before measures of statistical support approach 100%. 
Another useful way to think about the same idea is to consider that measures of support are 
often equivalent to asking how sure you can be that that the split in the species tree has a 
concordance factor that is higher than any split that conflicts with it (given a particular sample of 
genes and/or sites).  
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What is the biological importance of the distinction between concordance factors and either 
bootstrap support or posterior probabilities? One useful analogy (suggested to us by Cecile 
Ané) is with the statistical concepts of standard deviation and standard error. The concordance 
factor is similar to the standard deviation: it tells you about the spread of values in your data, 
regardless of how many datapoints you have. In contrast, measures of support are similar to 
standard errors: they tell you how confident you can be in your estimate of the mean of the data. 
Extending this analogy to a phylogenetic dataset, just because we are very sure of the topology 
of a species tree does not mean that all loci must follow this topology. For some questions we 
might need to know the species tree with high confidence, while for others it will be most 
important to understand the underlying variability in the gene trees (Hahn and Nakhleh 2016; 
Bravo et al. 2019).  
 
There are also important practical implications of distinguishing between measures of 
concordance and measures of support. One relevant scenario arises when choosing an 
appropriate outgroup for phylogenetic analyses. Outgroups can be used for multiple purposes, 
including rooting ingroup relationships and polarizing the direction of evolutionary changes. 
Importantly, the main criterion for choosing outgroup lineages is that the taxa chosen always be 
sister to all ingroup lineages (i.e. “outside” the ingroup), as their relationships with all other 
species are not being assessed. Unfortunately, support measures are not always good 
measures of this property: we may be very sure that a lineage is sister to our ingroup in the 
species tree, even while an appreciable fraction of gene trees from this lineage lie within the 
ingroup clade. An effective outgroup should be an outgroup on every gene tree; i.e. the 
concordance factor for an outgroup should be 100%. Choosing outgroups without this property 
can mislead phylogenetic inferences (e.g. among the platyrrhine monkeys; Schrago and 
Seuánez 2019; Vanderpool et al. 2020). Outgroups should therefore be chosen considering 
levels of concordance, rather than levels of support. 
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Figure 2. Phylogenetic statistical support (greyscale, square points) compared to measures of 
phylogenetic statistical variation (coloured, circular points) as dataset size increases. In two example 
datasets (Cannon et al. 2016; Ran et al. 2018) we calculated the mean values of two measures of 
statistical support: ultrafast bootstraps (Hoang et al. 2017) and ASTRAL posterior probabilities (Sayyari 
and Mirarab 2016), as well as four measures of concordance: gene concordance factor (gCF; Minh et al. 
2020), quartet concordance factor (qCF; Mirarab et al. 2014) , and the site concordance factor (sCF), 
calculated with parsimony (Minh et al. 2020) and likelihood (Mo et al. 2023). All measures of concordance 
assume that the tree calculated from the 200-locus dataset was correct. The figure shows that as more 
loci are used to calculate the statistics, the average of the measures of statistical support tends to 
increase towards 100%, but the average of the measures of concordance tends to stabilise after being 
estimated inaccurately with small numbers of loci. 

The concordance vector: a simple way to summarise 
concordance and discordance 
Before we discuss how concordance and discordance factors are estimated, we first provide a 
simple framework to facilitate synthesis across authors, papers, and methodologies with many 
different terminologies: the concordance vector. The concordance vector is a simple summary 
that describes fundamental aspects of concordance and discordance for a branch. Each internal 
branch of a species tree will have its own concordance vector. 
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The challenge that the concordance vector seeks to address is to provide a compact and 
meaningful summary of both the concordance and discordance factors associated with a single 
branch. This can be difficult because, although the concordance factor is a single proportion, 
discordance factors can be much more complex. There can be a vast number of ways that gene 
tree can be discordant with a species tree, and in principle we could calculate a discordance 
factor for each of them. However, this would involve enumerating all possible tree topologies 
discordant with the clade of interest, and calculating the expected proportion of the genome 
matching that topology for each. This approach is neither practical nor particularly helpful: the 
number of discordant topologies will differ for different branches on the species tree, will be 
astronomical for many of them, and under most evolutionary scenarios the expected 
discordance factor for many or most topologies will be effectively zero.  
 
The concordance vector, ψ, addresses this problem by summarising the concordance and 
discordance factors of a clade into four proportions that sum to 1. The first entry in the 
concordance vector, ψ1, is simply the concordance factor; the remaining three entries (ψ2, ψ3, 
and ψ4) summarise the discordance factors. The second and third entries in the concordance 
vector, ψ2 and ψ3, correspond to the two alternative topologies obtained by swapping around 
the relationships of the groups A, B, C, and D in Figure 1 (equivalent to nearest-neighbor 
interchanges in phylogenetics). These alternative topologies are biologically important because 
in many scenarios, such as incomplete lineage sorting, we expect them to be the topologies 
associated with the two highest discordance factors. Since there is no clear objective way to 
distinguish between the two topologies that represent ψ2 and ψ3, we simply denote ψ2 to be the 
larger and ψ3 the smaller of the two, as this simplifies the description and comparison of some 
interpretations and derivations of concordance factors (see below). The third discordance factor, 
ψ4 is the sum of all other discordance factors, i.e. those associated with all discordant 
topologies that are not represented by ψ2 and ψ3. Since the sum of the concordance vector 
must equal 1, ψ4 can be calculated by simply subtracting the rest of the concordance vector 
from 1. 
 
The concordance vector helps to reveal the relationships between different methods of 
estimating and interpreting concordance and discordance factors. For example, certain 
approaches to estimating concordance factors—like the site and quartet concordance factors— 
assume that ψ4 is zero, while others can be prone to overestimating or underestimating ψ4 

depending on the properties of the data. Some approaches to testing hypotheses about 
evolution compare values in the concordance vector; for example, one can test for deviations 
from a model of incomplete lineage sorting by testing the expectation that ψ2 and ψ3 should be 
equal. And some measures of node support, like Internode Certainty (Salichos and Rokas 
2013), can be thought of as asking whether ψ1 is larger than ψ2 (see below). We next discuss 
these and other cases.  

Estimating concordance factors 
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Any given set of biological processes associated with a group of evolving lineages is associated 
with an expected concordance vector for each internal branch of the species tree. In this section 
we discuss different approaches to estimating concordance vectors from empirical data. 
Thinking of empirical concordance factors as estimates of the true values helps to clarify how 
and why they differ from each other, while also retaining the original definition of a concordance 
factor as a biological parameter describing the “proportion of a genome for which [a given clade] 
is true” (Baum 2007). Despite this, we note that it is common for researchers to discuss 
concordance factors as summary statistics similar to various earlier notions of consensus and 
congruence (e.g. Adams 1972; Hillis 1987; Carpenter 1988). We discuss cases where this can 
be particularly useful below.   
 
We cover three approaches to estimating concordance vectors: using genes, using quartets, 
and using sites. We follow recent convention by prefixing estimated concordance factors to 
indicate the input data for each, as this helps to distinguish them both from each other and from 
their expected values (i.e. the true but unknown concordance vectors). We denote concordance 
factors estimated from genes as gene concordance factors (gCFs), from quartets as quartet 
concordance factors (qCFs), and from sites as site concordance factors (sCFs). We name each 
associated concordance vector in the same way, for example gene concordance vector (gCV). 
 
Gene concordance factors (gCFs) 
 
Gene concordance factors (gCFs), first defined in 2007 (Ané et al. 2007; Baum 2007), seek to  
estimate the true concordance vector from a large collection of gene trees, themselves 
estimated from alignments of independent genes (here defined as unlinked loci without internal 
recombination). The simplest and most naïve way to calculate the gene concordance vector of a 
branch of interest is to first obtain a single topology for each gene tree (for example, using 
maximum likelihood), and then to count the proportion of these trees associated with the 
topologies assigned to ψ1 to ψ4 (e.g. the estimate of ψ1 would simply be the proportion of gene 
trees that contain the branch of interest). A problem arises when some gene trees have missing 
taxa, but this can be solved by considering only those gene trees that could have contained the 
branch of interest, known as decisive gene trees (Minh et al. 2020). The resulting proportions 
can be considered estimates of the true entries in the concordance vector, whose accuracy and 
precision will depend on the total number of decisive gene trees for each branch and on the 
accuracy and precision with which each of the underlying gene trees is estimated, which are 
discussed further below.  
 
Quartet concordance factors (qCFs) 
 
Quartet concordance factors (qCFs) can refer to any approach in which each alignment of an 
independent locus is summarised not by a single tree (as in the gCF), but by a collection of sub-
trees of four taxa (quartets). qCFs became popular alongside the program ASTRAL (Mirarab et 
al. 2014), as they are a standard output of this tool (though they are referred to as quartet 
"scores” or "frequencies" there). Since this time, they have been more widely adopted to 
quantify and explore conflicting signal in multi-locus datasets (e.g. Sayyari and Mirarab 2016; 
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Solís-Lemus and Ané 2016; Zhou et al. 2020; Rhodes et al. 2021; Allman et al. 2022). 
Calculating quartet concordance factors usually involves two steps. The first step is to estimate 
a set of quartets for each locus. This can be done by subsampling the alignment of that locus 
into all (or a large number of) possible groups of four taxa, and then estimating the unrooted 
quartet trees directly from the sequence data. However, it is more common to first estimate a 
single gene tree of all taxa for each locus (as for gCFs above), and to then extract unrooted 
quartets from that gene tree (i.e. the quartets relevant to the branch of interest); this approach 
provides more accurate quartets. The second step in estimating qCFs is to count the proportion 
of relevant quartets associated with the topologies assigned to ψ1 to ψ3 for the branch of 
interest. Because unrooted quartets only have four taxa and three possible topologies, they can 
only display internal branches that match ψ1 to ψ3 (i.e.  ψ4 is always zero for this measure). In 
other words, it is impossible for a quartet to display a branch that is not either in the species 
tree, or that represents one of the two splits that could be induced by ILS occurring on that 
branch.  
 
Site concordance factors (sCFs) 
 
Site concordance factors (sCFs) were first introduced in 2020 (Minh et al. 2020), using a 
parsimony-based approach, and later updated to use maximum likelihood (Mo et al. 2023). Most 
sites (for example, constant sites) contain no information about any branch in the tree. For that 
reason, the sCF focuses on decisive sites—those that contain information about the branch of 
interest. Similarly to qCFs, sCFs use a quartet of states at a single site to determine the implied 
topology. The site concordance vector is estimated by first sampling quartets (which is done 
slightly differently in the two sCF methods), then by counting the proportion of decisive sites in 
the sample that match ψ1, ψ2, or ψ3. As with the qCF, ψ4 is always zero for sCFs because it is 
impossible for a single decisive site for a branch to display any internal branch other than those 
associated with ψ1, ψ2, or ψ3. 

Understanding concordance factors 
All of the measures of concordance and discordance described above seek to estimate entries 
of the concordance vector, but each comes with its own set of advantages and disadvantages. 
They also often estimate slightly different things and are used differently by downstream 
methods, so it is important to know how they differ. Below we discuss the key issues associated 
with each quantity. 
 
Gene concordance factors 
 
Gene concordance factors offer the fullest view of genealogical variation, but also come with the 
greatest caveats. In terms of information provided, not only are gene concordance factors the 
only approach that can estimate ψ4, but they also allow us to expand the gene concordance 
vector beyond four entries. Recall that ψ4 is associated with all topologies not accounted for by 
ψ1, ψ2, and ψ3 (Figure 1). While the smaller vector used here allows us to have a common 
vocabulary for all the different approaches to quantifying concordance and discordance, there 
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can be quite a lot of information hidden within ψ4, information that is only available when 
estimating full topologies from genes. 
 
As an example of the sort of information found in ψ4, Salichos and Rokas (2013; see also 
Salichos et al. 2014) introduced a measure called “internode certainty" based on the gene 
concordance vector. While we are not so sure that this statistic measures certainty of any kind, 
it does measure the magnitude of conflict among gene trees. In the simpler version of this 
statistic (denoted “IC”), for a single branch we calculate the degree of conflict between the two 
most common splits—often, but not always, ψ1 and ψ2—using an entropy-based measure. In 
the fuller version (called internode certainty all, or “ICA"), we calculate the degree of conflict for 
a branch among the n most common splits using an entropy-based measure. If n is greater than 
3, then we must expand our concordance vector to be of length n (since ψ4 typically refers to 
many more than a single split). We may be able to glean quite a lot from the frequency of gene 
trees beyond the most common three, but unfortunately ICA is one of the only methods we 
know of that uses this information. One reason for this may be that there are few programs that 
output these frequencies in a usable format, making the data inaccessible to most researchers. 
 
The biggest limitation of gene concordance factors is gene tree estimation error.  Estimation 
error is unavoidable with the limited phylogenetic information available in single-locus 
alignments. The requirement that loci be non-recombining often means that alignments will be 
even shorter than a whole gene, or that single-gene alignments will mistakenly contain 
recombination events, misleading tree inference in complex ways. Gene tree estimation error 
will cause trees to be assigned to the wrong entry in the concordance vector. Consider an 
extreme case of no biological discordance: small amounts of estimation error will decrease ψ1 
and increase ψ2 and ψ3, leading to an overestimate of the amount of discordance.  Even in 
cases with biological discordance, small amounts of error will cause ψ1, ψ2, and ψ3 to become 
more similar to one another. However, as the degree of error (as measured per-tree) increases, 
more and more estimated gene trees will not match any of these tree topologies, and ψ4 will 
increase. With large amounts of gene tree estimation error, almost all of the gene trees will fall 
into ψ4, regardless of the true level of biological discordance. When this occurs—such as in 
cases with high sequence divergence and short alignments—alternative approaches may be 
needed to estimate the entries in the gene concordance vector (e.g. Rosenzweig et al. 2022). 
Such topological errors may be responsible for some studies in which no single gene tree 
matches the species tree (e.g. Jarvis et al. 2014). 
 
It is also possible for the gene concordance factor (i.e. ψ1) to be overestimated using gCFs. This 
is most likely to occur when individual gene tree alignments span recombination breakpoints (an 
issue sometimes called "concatalescence"; Gatesy and Springer 2014). In this case, although 
multiple different topologies may be represented among the constituent loci, the resulting 
inferred gene tree from the combined alignment will reflect the majority signal in the data. 
Because ψ1 is typically associated with the majority signal in the data, the result will often be an 
overestimate of ψ1 and a concomitant underestimate of ψ2, ψ3, and ψ4 (e.g. Mendes et al. 
2019). In the extreme, we could estimate a “gene tree” from an entire chromosome or genome, 
and the resulting topology would most likely reflect the most common gene tree (but not 
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always—see Kubatko and Degnan 2007; Mendes and Hahn 2018). The effect of the two biases 
discussed here on gCFs will depend on the properties of each dataset and the exact methods 
used to estimate the gene trees. Regardless, gene concordance vectors should be interpreted 
with both issues in mind. 
 
Quartet concordance factors  
 
For both computational expediency and biological interpretability, full gene trees are often 
downsampled into quartets of taxa. Sampling a quartet usually means choosing four 
independent tips from a larger tree—for instance, we could sample hypothetical species a, b, c, 
and d from clades A, B, C, and D in Figure 1a. As mentioned before, for an unrooted quartet 
around a single branch of interest there are only three possible topologies, so we only have 
entries for ψ1, ψ2, and ψ3 in the quartet concordance vector. 
 
The more limited resolution of quartets (i.e. the assumption that ψ4 is always zero) can be seen 
as both a strength and a weakness. The strength of this method is that each quartet contributes 
to an informative entry in a concordance vector, even if the full gene tree that it is a part of does 
not. For instance, if gene tree error caused even one of the clades in Figure 1 (A, B, C, or D) to 
be non-monophyletic, then the full gene tree would be placed in ψ4; this would be true even if a 
single lineage was placed in the wrong clade (in this sense, so called ‘rogue taxa’ may have a 
large influence on gCFs and gCVs). In contrast, there would still be many informative quartets 
that we could sample from such a gene tree, even quartets that contain the single misplaced 
lineage. In this sense, small amounts of gene tree error are much more easily dealt with by 
counting quartet frequencies. This same feature could also be a weakness of using quartets: by 
assuming that ψ4 is zero, ψ1, ψ2, and ψ3 will be biased upwards when the true ψ4 Is greater than 
zero. In the extreme case of high levels of per-gene error—when gene concordance measures 
might have little or no evidence for trees matching ψ1-ψ3—quartet calculations will be forced to 
populate these entries in the vector.  
 
By far the biggest advantage of quartets is that many types of operations can be done on them 
easily and quickly. Quartet-based methods have become the dominant approach for inferring 
species trees, especially using the program ASTRAL (Mirarab et al. 2014; Mirarab and Warnow 
2015; Zhang et al. 2018a). There is a rich history of methods for constructing species trees from 
constituent quartet trees, which are often called “puzzling”, “amalgamation,” or “assembly” 
methods (e.g. Strimmer and von Haeseler 1996; Bryant and Steel 2001; Snir and Rao 2010). 
The conceptual leap between these older methods and newer methods was largely driven by 
two advances. First, the growing size of datasets meant that instead of a handful of quartets 
from loci with nonoverlapping sets of taxa, genome-scale data provided many quartets 
estimated from each of thousands of loci containing mostly the same taxa. Second, it was 
recognized that using unrooted quartets provided accurate estimates of the species tree even in 
cases where there was discordance due to ILS—i.e. these methods are statistically consistent 
under the multispecies coalescent model. Any method for counting and combining quartets 
accurately should have this property, because the unrooted quartet topology (or rooted triplet 
topology) matching the species tree is always the most frequent under ILS alone (Hudson 1983; 
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Allman et al. 2011). (Rooted triplets work just as well as unrooted quartets in inferring species 
trees, but methods employing them are used less frequently [e.g. DeGiorgio and Degnan 2010; 
Liu et al. 2010].) For similar reasons, quartets sampled from reconstructed gene trees have 
become the currency of multiple methods that aim to infer introgression between species as 
violations of the ILS-only model (e.g. Huson et al. 2005; Solís-Lemus and Ané 2016). 
 
In ASTRAL, quartet trees are sampled many times for each gene tree, with quartets across 
gene trees all counted together. Because tips are largely chosen at random, many quartets are 
not providing information about only a single internal branch of the species tree, but rather a 
span of branches. For this and similar reasons, many quartets from the same gene tree will not 
be independent of one another; any method that counts quartet frequencies must therefore take 
this non-independence into account. As with any method for inferring species trees, quartet 
methods can provide support measures—the confidence one should have in the inferred branch 
of the tree. ASTRAL uses local posterior probabilities based on the qCV (Sayyari and Mirarab 
2016). In this case (and similar ones) the support metric is assessing our confidence that ψ1 is 
the most frequent topology, which is obviously related to its magnitude relative to ψ2 and ψ3, as 
well as to the number of independent quartets we have sampled. Confidence measures for 
internal branches can also be calculated using the bootstrap with gene tree- and quartet-based 
methods: one simply has to construct many bootstrapped samples of the set of individual gene 
trees, reconstructing the species tree from each sampled set of trees to assess confidence.  
 
Site concordance factors 
 
Breaking gene trees down into quartet trees obviates some of the problems due to gene tree 
estimation error, but not all (Molloy and Warnow 2018). One must still infer a full gene tree from 
a short alignment, which is always prone to error. Therefore, as an alternative approach, one 
can calculate site concordance factors (Minh et al. 2020; Mo et al. 2023). sCFs were explicitly 
developed to estimate concordance and discordance without the need to divide alignments into 
short, non-recombining loci. As described earlier, they can be easily calculated from a long, 
concatenated alignment. 
 
Site concordance factors may differ from gCFs and qCFs for both practical and theoretical 
reasons. There are a number of practical factors that affect sCFs, with complex interactions 
among these factors making it hard to predict whether they will be consistently higher or lower 
than the other measures on any particular branch of a tree or in any particular dataset (e.g. 
Figure 2). sCFs are most similar to qCFs, in that they assume ψ4 is zero. As a consequence, 
sCFs may be higher than gCFs because ψ1, ψ2, and ψ3 will all be upwardly biased. However, 
both gCFs and qCFs may be higher than sCFs if they are calculated from loci that contain 
multiple tree topologies, leading to an overestimate of ψ1 (see above). Most importantly, multiple 
substitutions at a single site and variation in nucleotide substitution rates across a tree can 
cause sCFs to overestimate the amount of discordance (Kück et al. 2022; Mo et al. 2023). The 
likelihood version of sCFs (Mo et al. 2023) attempts to minimize this problem, though care must 
still be taken when using a single site to reveal an underlying tree topology. 
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Aside from practical considerations, there is an important conceptual reason why sCFs may 
differ from other measures: they are measuring a slightly different quantity. Both gCFs and 
qCFs are directly estimating the quantity expressed in equation 1: the proportion of the genome 
having a particular tree topology. In contrast, sCFs are measuring the proportion of sites 
supporting a particular tree topology, which is a function of both gene tree frequency (the 
quantity measured by gCFs and qCFs) and the length of the relevant branch in each gene tree. 
This measure will be very close to, but slightly different from, the parameter estimated by gCFs 
and qCFs. If the expected value of those measures is given by equation 1, the expected value 
of sCFs (assuming that sites are unlinked) is: 
 

𝑃(𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑡	𝑠𝑖𝑡𝑒) = 1 − #
$%$"&!"

   (3) 

 
Another way to think about this is that the length of the branch of interest in the species tree 
impacts the sCF twice—once by determining the frequency of the gene tree topologies, and 
then again by determining the branch lengths of those topologies. Because of this, and as can 
be seen in Figure 3, sCFs are expected to go up slightly faster than either gCFs or qCFs as a 
function of the length of the internal branch of the species tree. This implies that sCFs are 
expected to be slightly higher than the two other methods in the absence of estimation error. 
However, the expected values are close enough that we predict that practical considerations in 
estimation (such as gene tree estimation error) will be the deciding factor in which is higher or 
lower, and this seems to be borne out by the examples in Figure 2. 
 

 
Figure 3. The difference between expected site concordance factors (sCF) and gene concordance 
factors (gCF) as the branch length of the species tree changes. Here we plot the expected values of 
gCFs (equation 1; blue) and sCFs (equation 3; yellow-green) as a function of the internal branch length, 
T. The figure shows that sCFs go up faster than gCFs, as they are affected both by the number of 
concordant gene trees and the length of the internal branch of such trees. 
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Although sCFs were introduced as a way to measure concordance and discordance on a 
species tree, the various numbers underlying these calculations have been used in multiple 
preceding applications. These applications ask about the underlying species tree topology, as 
well as deviations from this history due to introgression. The most widely used method 
employing site-based quartets to infer a species tree is SVDquartets (Chifman and Kubatko 
2014; Swofford and Kubatko 2023). SVDQuartets considers all quartet site-patterns—i.e. not 
just decisive sites, and separate patterns for each combination of nucleotides—placing them in 
one of three matrices for each branch. The three matrices represent the three possible splits 
corresponding to ψ1, ψ2, and ψ3. If singular value decomposition (SVD) is carried out on each 
matrix, it can be shown that the one with the lowest SVD score will match the species tree. If 
such calculations are carried out for many sampled quartets of tip species, the resulting set of 
highest-scoring quartet trees can be input into an assembly method (as described above for 
other quartet methods), giving a full species tree as output (see a similar site-pattern method in 
Zhang et al. 2023). 
 
Possibly the most widely known use of the site concordance vector is the ABBA-BABA (“D”) test 
for introgression (Green et al. 2010; Patterson et al. 2012). This test employs only the counts of 
sites in entries ψ2 and ψ3: given the species tree in Figure 1a, if we denote ancestral states with 
“A” and derived states with “B” (and always assign the outgroup to be “A”) then the decisive site-
pattern in ψ2 can be written as “BABA” (because species A and C will share the derived state) 
and the one in ψ3 can be written as “ABBA” (Figure 1b). As mentioned above, in the absence of 
introgression (and ancestral population structure; Slatkin and Pollack 2008; Durand et al. 2011), 
we expect ψ2 and ψ3 to be equal. The ABBA-BABA test asks whether this is true across a 
genome, taking the non-independence of nearby sites into account via block bootstrapping of 
genomic windows. Similarly, the Δ statistic of Huson et al. (2005) tests for the equality of ψ2 and 
ψ3 using quartet trees, with a similar interpretation of introgression if they are not equal (see 
Vanderpool et al. 2020 and Suvorov et al. 2022 for applications to whole genomes). 

The future of concordance factors 
Concordance factors and concordance vectors are already very useful summaries of biological 
variation, but there are many ways they could be improved, and many new areas in which they 
could be applied to better understand complex evolutionary histories.  
 
The simplest, and perhaps most useful, modification to current practice would be to routinely 
provide confidence intervals for all entries of the concordance vector. Currently, concordance 
factors and other entries of the concordance vector are presented as point estimates on every 
branch of the tree, largely because this is the output given by popular software for calculating 
concordance factors like ASTRAL and IQ-TREE (Mirarab et al. 2014; Minh et al. 2020). 
However, point estimates can sometimes be misleading, as their interpretation can vary 
dramatically depending on the confidence intervals around them. This problem is compounded 
by the fact that the sample size for concordance factors can vary from branch to branch in a 
tree: it can depend on taxon sampling for gCFs and qCFs, and on the number of informative 
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sites per branch for sCFs. To give an extreme example: a gCF of 50% may indicate substantial 
underlying variation in gene trees when the sample size is large (e.g. with 1000 gene trees, the 
95% confidence intervals on the gCF would be 47% and 53%), but may contain relatively little 
useful information if the sample size is small (e.g. with 4 gene trees the 95% confidence 
intervals are 0% and 100%). Calculating confidence intervals on all entries of the concordance 
vector is very simple, and could be done via the bootstrap or by using a Dirichlet-multinomial 
distribution (Gelman et al. 2013). Displaying confidence intervals alongside concordance factors 
(and other entries of the concordance vector) would help biologists to better interpret the 
underlying biological variation, particularly when considering biological hypotheses about the 
causes of this variation.  
 
One of the biggest challenges to estimating concordance factors is gene tree estimation error. 
Gene tree estimation error affects both gene and quartet concordance factors, though to 
differing degrees (see above). As a result, it affects any methods that rely on these estimates. 
For example, because gene tree estimation error leads to overestimates of discordance, it will 
lead to underestimates of branch lengths based on the concordance vector (e.g. those 
calculated in ASTRAL). Many approaches have been developed to mitigate gene-tree 
estimation error and its effects on concordance factors (Larget et al. 2010; Boussau et al. 2013; 
Zhang and Mirarab 2022). One additional option may be to move beyond a binary view of 
concordance—i.e. that a gene tree is either concordant or discordant with a branch of interest—
and instead to incorporate the degree of discordance demonstrated by a gene tree. Such a 
measure could be achieved in many ways, for example by measuring the difference in 
likelihoods when a gene tree is constrained to contain a branch of interest, or by calculating how 
much a gene tree would have to be altered to recover the branch of interest (e.g. using the 
Transfer Bootstrap Expectation; Lemoine et al. 2018). Regardless, accounting for and/or 
mitigating gene tree estimation error when calculating concordance factors remains a largely 
open problem. 
 
Concordance factors could also be extended in multiple ways. For instance, the current 
discussion has assumed a bifurcating species tree and single-copy gene trees, though more 
and more datasets may extend beyond both of these constraints. In terms of the species tree, it 
is now possible to infer species networks from many datasets (Wen et al. 2018; Zhang et al. 
2018b). A question then arises: how best to represent and measure concordance with a 
network? One simple approach might be to consider all of the relationships shown in the 
network as concordant entries in the concordance vector; e.g. both ψ1 and ψ2 could be 
concordance factors if both appear in a network. However, we suspect that there will also be 
other ways to summarize concordance between gene trees and species networks. Similarly, 
species tree topologies can now be accurately reconstructed using gene trees containing 
paralogs (see Smith and Hahn 2021 for a recent review). Using gene trees with multiple tips 
from the same species requires new ways to quantify concordance: gCFs and sCFs cannot yet 
be calculated for such trees, although qCFs can (e.g. Smith et al. 2022). New approaches for 
calculating concordance factors from all of these non-standard data types will be necessary in 
the near future. 
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Finally, visualising concordance and discordance remains challenging. The simplest and most 
commonly used approach is to represent the data using a single best-estimate of a binary tree 
(usually the species tree), and then to label each branch with entries of the concordance vector 
(most often by displaying only the first entry, the concordance factor). While this representation 
can give some indication of the scale of discordance, it does not represent the discordant 
relationships themselves. The latter can be achieved using networks to represent the 
discordance (e.g. Huson 1998; Huson and Scornavacca 2012), overlaying the topology of each 
gene tree onto the species tree itself (e.g. Bouckaert 2010; Schliep 2011), or by colouring 
alignments based on the inferred topology of each region (e.g. Fontaine et al. 2015; Edelman et 
al. 2019). However, none of these approaches is ideal, and each has its own limitations. New 
approaches that enable fast and clear ways to visualise and to query discordant relationships 
would help researchers to quickly understand and interrogate their phylogenomic datasets. 
 
 
Concluding remarks 
 
Phylogenomic datasets are rapidly approaching complete sampling, i.e. entire genomes 
sequenced and assembled for every tip of the tree being estimated. Largely because of this, 
researchers will continue to move beyond single representations of the relationships among 
taxa (e.g. species trees and species networks), and will increasingly focus on estimating and 
interpreting the complex set of relationships underlying all sites of the sampled genomes. 
Concordance factors are a useful tool for summarising and interpreting this variation, ones that 
will be particularly useful for bridging the gap between species trees and underlying genomic 
variation. We envision their ever-widening use and further development for the foreseeable 
future.   
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