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ABSTRACT 16 
A fundamental aspect of ecology is identifying and characterizing population processes. Because 17 
a census is rare, we almost always use sampling to make inference about the biological 18 
population, and the part of the population at risk of sampling is referred to as the statistical 19 
population. Ideally, the statistical population is the same as, or accurately represents its 20 
corresponding biological population. However, in practice, they rarely align in space and time, 21 
which can lead to biased inference. We often view a population misalignment as a temporary 22 
emigration process and resolve it with replicate and/or repeat sampling, though this approach is 23 
not feasible for all species and habitats. We developed a hierarchical model to estimate 24 
abundance of a biological population of the Kittlitz’s murrelet (Brachyramphus brevirostris), a 25 
highly mobile, non-territorial, ice-associated seabird of conservation concern in Alaska and 26 
eastern Russia. Our model combines datasets from boat and telemetry surveys to account for all 27 
components of detection probability, specifically using telemetry locations to estimate 28 
probability of presence (pp) and line transect distance sampling to estimate probability of 29 
detection (pd). By estimating pp directly, we were able to account for temporary emigration from 30 
the sampled area, which changed with shifting icefloes between sampling occasions. Between 31 
2007 and 2012, annual pp was highly variable, ranging from 0.33 to 0.75 (median=0.50, 32 
SE=0.02), but was not predictable using five environmental covariates. In years when two boat 33 
surveys were conducted, our model reduced the coefficient of variation (CV) of abundance 34 
estimates for the biological population compared to the statistical population by 13–35%, yet in 35 
the year with only one boat survey (2009), the CV skyrocketed about 10-fold, emphasizing the 36 
importance of a second survey if pp varies. Although we increased the precision of annual 37 
abundance estimates by accounting for pp, we did not see the same improvement in the temporal 38 
trend estimate, indicating that while we reduced within-year variance, we failed to account for a 39 
source(s) of variation across years, which we suspect is related to the propensity for murrelets to 40 
skip breeding in some years. Our model to account for a population misalignment is simple, 41 
flexible, and scalable for generating unbiased and precise abundance estimates of highly mobile 42 
species that occupy dynamic habitats where other open population models are not feasible. 43 
Importantly, it improves inference of the biological population, which is the population of 44 
interest. We urge ecologists to think critically about the population in which they want to draw 45 
inference, especially as tracking technology improves and model complexity increases. 46 
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INTRODUCTION 52 
A fundamental aspect of ecology is identifying and characterizing population processes. While 53 
many definitions of a biological population exist, a common one is “a group of organisms of the 54 
same species occupying a particular space at a particular time that are capable of interbreeding 55 
(Krebs 1994, Williams et al. 2002); hereafter, we refer to a biological population using this 56 
definition. In studies of biological populations, it is extremely rare that all individuals in the 57 
population are under observation (i.e., a census). In most cases, where populations are not 58 
subject to census, sampling is used to make inference about the population.  59 
 60 
The scope and strength of inference about populations in ecological studies rely on the ability to 61 
sample appropriately. For mobile species, this crucial task can be challenging. One of the 62 
important characteristics of population sampling is the portion of the population at risk of being 63 
sampled. The proportion at risk of sampling, or the proportion of the population present at the 64 
time and place of sampling, has been designated as pp (Nichols 2009), with pp ≤1; hereafter, we 65 
refer to the part of the population at risk of sampling as the statistical population.  66 
 67 
The conceptual distinction between a biological population and a statistical population has been 68 
around for decades, though the terminology has varied considerably (Waples and Giggiotti 69 
2006). In addition to biological and statistical (Krebs 1999), notable examples include target and 70 
sampled (Cochran 1977), natural and local (Andrewartha and Birch 1954), and resource and 71 
statistical (Reynolds 2012). Regardless of the terminology, the distinguishing principle is the 72 
same: one population is what we really want to know something about (biological) and the other 73 
is what we use to infer what we want to know (statistical). In practice, it is important to 74 
remember that sampling-based inference directly applies only to the statistical population; logic, 75 
assumption, or additional information are needed to extend inference to the biological 76 
population. 77 
 78 
When pp=1, the biological and statistical populations are identical, i.e., they are aligned, with 79 
direct statistical inference applying to both. However, when pp <1, the statistical population is 80 
usually a subset of the biological population (Figure 1); we refer to this situation as population 81 
misalignment. Population misalignment also has been called a frame error (Reynolds 2012), 82 
drawing from the fact that the sampling frame defines the proportion of the biological population 83 
at risk of being sampled (i.e., the statistical population). 84 
 85 
Pp can be <1, i.e., the statistical population is a subset of the biological population, for a variety 86 
of reasons, including those that are physical (e.g., natural barriers), logistical (e.g., cost, safety), 87 
legal (e.g., landownership boundaries), political (e.g., international borders), and even biological 88 
(e.g., non-breeding). For example, the Pacific walrus (Odobenus rosmarus divergens) population 89 
ranges across marine waters of Alaska and Russia, though sampling rarely covers the entire 90 
region owing to complications with securing the necessary international permits (e.g., Beatty et 91 
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al. 2022). Consequently, assuming individuals can move freely, they may not be exposed to 92 
sampling consistently, which potentially affects inference about the biological population.  93 
 94 
Analytically, we often view population misalignment as a form of temporary emigration, 95 
whereby individuals are temporarily not exposed to sampling (Kendall et al. 1997). Temporary 96 
emigration is an oddly vague process with biological and statistical drivers that usually are 97 
confounded. For example, individuals may temporarily emigrate for biological reasons like 98 
searching for food or avoiding predation, statistical reasons such as unequal sampling probability 99 
owing to a small or varying frame, or a combination of both. Ultimately, temporary emigration is 100 
a detection issue. If it occurs randomly with all animals equally likely to be part of the statistical 101 
population across sampling occasions, temporary emigration will cause large resigdual variance 102 
and reduced precision of abundance estimates; if it occurs non-randomly, e.g., with a temporal 103 
trend, it will bias estimates.  104 
 105 
Fortunately, over the last few decades, many analytical approaches have been developed to 106 
account for temporary emigration when estimating abundance. The most notable methods are 107 
capture-recapture models that use robust design (Kendall et al. 1997) or are spatially explicit 108 
(Royle and Young 2008), extensions of N-mixture models (e.g., Chandler et al. 2011), thinned 109 
point process models (e.g., Mizel et al. 2018), and models that combine methodology (e.g., 110 
Powell et al. 2000, Amundson et al. 2014). These approaches use spatial and temporal replicates 111 
with short periods of closure (i.e., no movement into or out of the statistical population; hereafter 112 
replicate sampling) or the ability to identify individuals during sampling (hereafter repeat 113 
sampling) to estimate temporary emigration and abundance of the biological population, which is 114 
sometimes referred to in this context as the superpopulation (Schwarz and Arnason 1996). While 115 
these models are flexible and powerful, they are not feasible for all species and habitats, nor in 116 
all situations. 117 
 118 
Some species and habitats are too complex to obtain a sufficient number of replicate or repeat 119 
samples across space or time. Species that are difficult to recapture or resight during sampling 120 
are inherently unsuitable for capture-recapture methods, as models do not produce reliable 121 
estimates with few recaptures or resights. Further, highly mobile, non-territorial species, such as 122 
many marine species, cannot satisfy the closure assumption, even for short periods, unless the 123 
study area is large relative to movement, which often makes sufficient sampling impractical. The 124 
same principle applies to species that are sampled during non-territorial portions of their life 125 
cycle, such as winter concentrations of ungulates or migrating raptors, when individuals are not 126 
tied to a particular area (e.g., breeding site). Finally, dynamic habitats that can change between 127 
sampling occasions (e.g., drift ice), are not conducive to replicate sampling; the size and shape of 128 
the sampled area (i.e., sampling frame) varies, inducing a change in the statistical population.  129 
 130 
An alternative approach to handling a population misalignment that does not require replicate or 131 
repeat sampling is to decompose the detection process. Nichols et al. (2009) described four 132 
components of overall detection (p): (1) probability that the individual’s home range includes at 133 
least a portion of the sample area (ps); (2) probability of presence within the sample area during a 134 
survey (pp); (3) probability of availability given presence (pa); and (4) probability of detection 135 
given presence and availability (pd). The first component (ps) simply confirms that an individual 136 
is a member of the biological population, and the last component (pd) refers to the actual 137 
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observation process, that is whether an individual was observed. Jointly, the second and third 138 
components (pp and pa, respectively) describe temporary emigration, with the second component 139 
(pp), already discussed, being spatial temporary emigration, and the third component (pa) as 140 
random temporary emigration (Kery and Royle 2016). A major advantage to using this approach 141 
is that each component can be estimated separately using different datasets and even different 142 
data types (Hostetter et al. 2019), making it suitable for all species and habitats provided that 143 
data for estimating components are available. 144 
 145 
We applied this approach to account for population misalignment of the Kittlitz’s murrelet 146 
(Brachyramphus brevirostris), a highly mobile, non-territorial, ice-associated seabird that is 147 
irregularly distributed across coastal Alaska and eastern Russia. Several aspects of this species’ 148 
life history complicate methods that rely on replicate or repeat sampling to estimate spatial 149 
temporary emigration. Unlike most seabirds, Kittlitz’s murrelets do not nest in colonies, but 150 
instead nest solitarily at low densities, usually in remote inaccessible locations (Kissling et al. 151 
2015a). Thus, populations cannot be monitored at colonies like most seabirds where replicate 152 
and repeat sampling is practical and efficient. Additionally, owing to the small size, cryptic 153 
behavior, and low and variable breeding propensity in this species, capture-recapture and resight 154 
models are not feasible. It is nearly impossible to resight banded or marked murrelets on the 155 
water or in flight and recapture rates are too low to be useful for estimating abundance (Kissling 156 
et al. 2015b), in part because of challenges with nighttime captures during summer at high 157 
latitudes.  158 
 159 
Instead, the only viable way to monitor Kittlitz’s murrelet populations is with boat-based 160 
abundance surveys that are conducted during the breeding season when most murrelets 161 
concentrate in bays and fjords often near tidewater glaciers (Day et al. 2020). A design challenge 162 
and safety concern for these surveys is the presence of icefloes, large tidal fluctuations, glacial 163 
river debris, and the possibility of rough seas. These dynamic conditions can restrict boat access 164 
to portions of the study area and cause murrelets to redistribute over short time intervals, 165 
resulting in time-varying statistical populations and a population misalignment that cannot be 166 
handled with replicate sampling, as neither the murrelets nor the habitat can meet the closure 167 
assumption.  168 
 169 
We developed a hierarchical Bayesian model to estimate abundance of a biological population of 170 
the Kittlitz’s murrelet in a dynamic environment. Our model utilizes datasets from telemetry 171 
flights to locate radio-tagged murrelets, boat-based distance sampling surveys, and dive behavior 172 
trials to account for all components of detection probability (ps, pp, pa, pd). Our primary objective 173 
was to develop an analytical tool to account for misalignment of the statistical and biological 174 
populations of this unusual species so that we could generate unbiased abundance estimates for 175 
later use in an integrated population model (Kissling et al. In review). More specifically, here, we 176 
aimed to (1) estimate detection probability components and their variation across space and time; 177 
(2) investigate predictability of pp using environmental covariates; and (3) estimate abundance 178 
and trend of the statistical (without pp) and biological populations (with pp) and identify any 179 
sources of bias. We also wanted to assess whether we delineated the biological population of 180 
Kittlitz’s murrelets in our study area appropriately. 181 
 182 
STUDY AREA 183 
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Our study was centered in Icy Bay, Alaska, USA, located in the northeastern Gulf of Alaska and 184 
~110 kilometers northwest of the town of Yakutat (Figure 2). Icy Bay is a highly dynamic glacial 185 
fjord system that has experienced multiple, rapid ice advances and subsequent retreats over the 186 
past ~3,800 years with the most recent retreat of approximately 40 km during the 20th century 187 
(Barclay et al. 2006).  188 
 189 
Currently, Icy Bay comprises a shallow outer bay and a deeper inner bay. The outer bay is 190 
adjacent to the Gulf of Alaska and measures 6 km wide at the mouth. The inner bay is divided 191 
into four distinct fjords with each terminating at an active tidewater glacier. Of these fjords, only 192 
Taan Fjord is regularly accessible by boat (Figure 2) The Malaspina Glacier, the largest 193 
piedmont glacier in North America, is situated to the east and empties meltwater and glacial 194 
sediment into Icy Bay via the Caetani River system, which can restrict boat access to the eastern 195 
side of the bay. During periods of high river flow, debris and sedimentation settle near the 196 
outflow and the marine waters become too shallow to navigate a boat safely. In addition, two 197 
small bays (Riou and Moraine bays) are located on the eastern side of Icy Bay and they have 198 
submerged marine sills at their mouths making it difficult to access them during low tides. The 199 
total surface of Icy Bay is approximately 263 km2, but typically the upper half of the bay is 200 
covered in thick ice floes and large icebergs, resulting in an open water surface area of ~160 km2 201 
with considerable variability within and across years depending on glacial calving activity. 202 
 203 
METHODS 204 
Data collection 205 
Boat surveys.— From 2005 to 2017, we conducted two boat-based abundance surveys between 1 206 
and 15 July in each of eight years (2005, 2007–2008, 2010–2012, 2016–2017); in 2009, we 207 
conducted only one survey  on 17 July because of logistical constraints. The target sampling area 208 
was ~160 km2 and contained 19 line transects total, with 11 transects in the Main Bay and 8 209 
transects in Taan Fjord (Figure 2), though actual sampling effort varied for each survey because 210 
of access issues (Table 1). Generally, we completed surveys in a single day, though rarely it took 211 
two days, depending on tides and other logistical factors. Boat surveys involved line transect 212 
distance sampling, following the protocol described in Kissling et al. (2007, 2011), with one 213 
exception; in 2016 and 2017, we estimated the angle and distance from the boat to each murrelet 214 
group as opposed to estimating perpendicular distance from the line transect (all other years). We 215 
also recorded group size, behavior (water, flying), and foraging activity of all Brachyramphus 216 
murrelets observed. Both Kittlitz’s and its congeneric marbled murrelet (B. marmoratus) occur in 217 
Icy Bay and can be difficult to distinguish, especially at a distance; if an observer was unable to 218 
identify a murrelet (or group of murrelets) to species, it was recorded as an unidentified 219 
murrelet(s).  220 
 221 
Telemetry surveys.— We captured Kittlitz’s Murrelets on the water using the night-lighting 222 
method (Whitworth et al. 1997) in the Icy Bay study area between 8 May and 3 June, 2007–2012 223 
(Figure 2). Following capture, we transported murrelets to a larger vessel for processing, which 224 
included morphometric measurements, blood sampling for sex identification, and banding. We 225 
deployed very-high-frequency (VHF) radio transmitters on a subset of after-second-year 226 
murrelets captured each year. We attached the transmitters (Advanced Telemetry Systems, Inc., 227 
Isanti, Minnesota; model number A4360; 110-day battery life ) using a subcutaneous anchor on 228 
the bird’s back between the scapulars (Newman et al. 1999). If both birds of a pair were 229 
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captured, we randomly selected one bird to radio-tag to ensure independence. We released 230 
murrelets immediately after processing was complete.  231 
 232 
We attempted to locate radio-tagged murrelets 2–5 times per week for at least eight weeks after 233 
tagging using fixed-wing aircraft equipped with “H-style” antennas mounted on the struts. We 234 
were not able to search for tagged birds using a strict design, but instead aimed for complete 235 
coverage of the study area, as shown in Figure 2, in a systematic way that allowed for safe 236 
flying. We first attempted to locate all murrelets on the water in the Icy Bay study area within 237 
gliding distance of shore; if murrelets were not detected at sea, we flew over all assumed 238 
potential nesting habitat within reason (e.g., fuel constraints) to locate incubating birds. We 239 
conducted telemetry flights on the same day as boat surveys; on occasion, we had to fly the 240 
telemetry survey on the following day because of aircraft availability. All telemetry flights were 241 
completed in less than four hours. For more details on capture, handling, tagging, and relocating 242 
see Kissling et al. (2015a, b, 2016). 243 
 244 
During each flight, we mapped ice conditions into five categories of increasing ice density: none, 245 
brash ice, open pack ice, close pack ice, and very close pack ice. We defined brash ice as 246 
accumulations of floating ice made up of fragments not more than 2 m across, open pack ice as 247 
low concentration pack ice with many leads and polynyas and the floes generally were not in 248 
contact, close pack ice as moderate concentration pack ice with the floes generally in contact, 249 
and very close pack ice as high concentration pack ice with very little water visible (Bowditch 250 
classification; NOAA 2007). Following each flight, we digitized these maps in ArcGIS (ESRI, 251 
v10.7.1) and estimated ice cover (km2) by category in the study area on that day. We then 252 
assigned all locations of radio-tagged murrelets to an ice category using the ice condition maps 253 
for each corresponding telemetry flight. 254 
 255 
We compiled environmental data for murrelets located during telemetry flights. Using the date 256 
and time of each location, we determined tide direction, which represented the vertical 257 
movement of water, as ebb or flood, and tidal current strength, the horizontal movement of 258 
water, following Kissling et al. (2007). We also acquired the daily precipitation (mm), which 259 
affected freshwater input volume and turbidity, and average daily wind speed (m/sec), which 260 
influenced icefloe movement and ocean surface conditions, from a weather station in Icy Bay 261 
(https://www.ncdc.noaa.gov/cdo-web/). Lastly, we calculated the proportion of the Icy Bay state 262 
(i.e., the area sampled during boat surveys; see below) that was covered in ice (all categories) on 263 
the flight day. 264 
   265 
Data analysis 266 
Components of detection probability.—We considered detection probability components 267 
individually, which allowed for use of different datasets, and then combined those necessary in  a 268 
joint likelihood model to estimate abundance (see below). This approach was efficient, as two 269 
components of detection probability, ps and pa, were deemed to be close to 1 and unnecessary in 270 
the abundance model. 271 
 272 
We determined that ps, the probability that an individual could be included in the sampled area 273 
during a boat survey, was 1 in all years by examining both home ranges (95% utilization 274 
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distribution [UD]) and core use areas (50% UD) of radio-tagged murrelets (Kissling et al. In 275 
revision). Therefore, we did not include ps in our model. 276 
 277 
We estimated pp, the probability that an individual was present in the sampled area during a boat 278 
survey, using location data from radio-tagged murrelets. Following Kissling et al. (2015b), we 279 
assigned each telemetry location to one of five spatial states (Figure 2): Icy Bay, which 280 
comprised Main Bay and Taan Fjord sub-states and was the core area sampled by boat; East Bay, 281 
which was too shallow for a boat; Upper Bay, which was too icy; Ocean, which was too rough; 282 
or at a nest. The outer limit of the Ocean state was constrained to aircraft gliding distance to 283 
shore, and it was same area used for a multi-state survival analysis (Kissling et al. 2015b). Any 284 
telemetry locations outside of these five states were removed from our analysis (<2% of all 285 
locations); notably, none of these individuals were located again. We then merged data on spatial 286 
state and ice category for each telemetry location. We considered a radio-tagged murrelet to be 287 
present in the sampled area if it was in Icy Bay state and in ice categories of none, brash ice, or 288 
open pack ice, where we could conduct boat surveys safely. If a radio-tagged murrelet was at a 289 
nest or in the East Bay, Upper Bay, Ocean, or in close pack ice or very close pack ice, it was 290 
deemed not present. 291 
 292 
To estimate pp, or the probability of presence, we filtered telemetry data to include locations 293 
from 1 to 15 July to overlap with our boat survey protocol. We explored the use of telemetry 294 
locations acquired in 1-, 3-, 5-, and 7-day windows surrounding the boat survey; for example, if a 295 
boat survey was conducted on 8 July, the 3-day window was 7–9 July and the 5-day window was 296 
6–10 July. All telemetry locations collected during a specific window were used to estimate a 297 
single value of pp. In 2009, we conducted a single boat survey late (17 July) because of boat 298 
availability and poor weather and therefore, we shifted the windows to center on the later date. In 299 
all years, we found that pp varied little with window length, though precision improved 300 
(Appendix 1), which was unsurprising given that sample size increased (i.e., number of telemetry 301 
locations). Here, we report results for the 3-day window only because it was the best tradeoff 302 
between improved precision while maintaining a short temporal window around each survey. For 303 
comparison, we also report pp for the entire 15-day period (1–15 July). 304 
 305 
We conducted boat-based dive behavior trials to estimate pa, the probability that a murrelet was 306 
available for detection (i.e., not underwater) given presence. We determined that the probability 307 
of a murrelet being unavailable for detection was quite low (0.032 ± 0.007; see details in Lukacs 308 
et al. 2010). Therefore, we assumed pa was close enough to 1 not to affect abundance estimates, 309 
and, like ps, did not include it in our model.  310 
 311 
Finally, we estimated pd, or the probability of being detected given presence and availability on 312 
boat surveys, using conventional distance sampling. We filtered data to include murrelets 313 
observed on the water only, i.e., we excluded flying birds from our analysis. We pooled data 314 
across both surveys each year (except 2009) and all Brachyramphus murrelets to estimate pd 315 
because observers rarely changed, and we did not expect detection probability to be different by 316 
species. We then truncated 5% of the data from the right-hand tail of the detection function 317 
(Buckland et al. 2001). We examined the effect of group size on the scale parameter of the half 318 
normal detection function, but it had no effect in any year (based on ΔAIC values and Cramer-319 
von Mises tests) and therefore, we did not include group size in our analyses.  320 
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 321 
To allocate murrelets not identified to species (i.e., unidentified Brachyramphus murrelets) 322 
during boat surveys, we estimated the probability of being a Kittlitz’s murrelet (pk), as opposed 323 
to a marbled murrelet, in two strata (m) in Icy Bay for each year (Figure 2). While Kittlitz’s 324 
murrelets are uniformly distributed throughout the bay, marbled murrelets are not; they are rarely 325 
located in Taan Fjord (Kissling et al. 2007, 2011). Therefore, we divided our sampling area into 326 
two strata, Main Bay and Taan Fjord, to satisfy the assumption of uniform distribution when 327 
estimating pk. Note that these strata were the same as the Main Bay and Taan Fjord sub-states 328 
described for pp, though they were not indexed for pp; we used different terminology to avoid 329 
confusion in the code. 330 
 331 
Model for biological population abundance.—We developed a hierarchical Bayesian model to 332 
estimate annual abundance of the biological population. Our model combines multiple datasets 333 
in a unified analytical framework and therefore, it fully accounts for uncertainty and error in 334 
parameter estimates, similar to an integrated model though without a shared parameter across all 335 
datasets (Zipkin et al. 2021). We used data augmentation to represent a relatively large number 336 
of potential but unobserved groups in our sampling area during each boat survey (Royle and 337 
Dorazio 2008). To estimate a single value for annual abundance, we used the following joint 338 
likelihood: 339 
 340 

𝐿𝐿[𝑀𝑀 �𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑] = �𝐿𝐿�𝑀𝑀|𝑁𝑁𝑖𝑖,𝑝𝑝𝑝𝑝,𝑖𝑖��  �𝐿𝐿 �𝑝𝑝𝑝𝑝,𝑖𝑖 �𝑦𝑦𝑝𝑝𝑝𝑝,𝑖𝑖��  �𝐿𝐿�𝑝𝑝𝑑𝑑,.�𝑦𝑦𝑝𝑝𝑑𝑑,.�� �𝐿𝐿�𝑝𝑝𝑘𝑘,.𝑚𝑚�𝑦𝑦𝑝𝑝𝑘𝑘,.𝑚𝑚�� 341 
( 1 ) 342 

where M is the abundance of the biological population; Ni is the statistical population abundance 343 
estimated for survey i; pp,i is the probability of presence for survey i; 𝑦𝑦𝑝𝑝𝑝𝑝,𝑖𝑖 is the telemetry survey 344 
data used to estimate pp,i; pd,. is the probability of detection across both surveys; 𝑦𝑦𝑝𝑝𝑑𝑑,. is the boat 345 
survey data to estimate pd,.; pk,.m is the probability of being a Kittlitz’s murrelet across both 346 
surveys by stratum m; 𝑦𝑦𝑝𝑝𝑘𝑘,.𝑚𝑚 is the boat survey data used to estimate pk,.m; and data refers to the 347 
collective boat and telemetry survey data. We estimated annual abundance of the statistical 348 
population using equation 1 without the pp,i likelihood component, which essentially assumes pp,i 349 
was 1. 350 
 351 
We modeled pp,i on the logit scale using telemetry survey data as logit(pp,ij) = βi, where βi is the 352 
logit(pp,i.) and therefore, 353 
 354 

𝑦𝑦𝑝𝑝𝑝𝑝,𝑖𝑖𝑖𝑖 ~ Bernoulli(pp,ij) 355 
( 2 ) 356 

where individual locations (j) during each survey (i) were used to estimate pp,ij. We did not 357 
include covariates in this sub-model because we did not identify any that helped explain 358 
variation in pp,ij (see ‘Predicting probability of presence’ below). 359 
 360 
We modeled pd,. on the log scale using the boat survey data with perpendicular distance of each 361 
group q from the transect line (xiq) and the half-normal detection function: 362 
 363 
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𝑝𝑝𝑑𝑑,.𝑞𝑞 = 𝑒𝑒𝑒𝑒𝑝𝑝 �−
𝑒𝑒𝑖𝑖𝑞𝑞2

2𝜎𝜎𝑖𝑖𝑞𝑞2
� 364 

( 3 ) 365 

where σq is the scale parameter. As noted above, we did not include group size as a covariate on 366 
σq because it did not help explain variation in pd,.. We estimated the probability of being a 367 
Kittlitz’s murrelet using the boat survey data as 368 
 369 

𝑦𝑦𝑝𝑝𝑘𝑘,.𝑚𝑚  ~ Bernoulli(pk,.m), 370 
( 4 ) 371 

where identified groups in each stratum across all surveys were used to estimate pk,.m. We 372 
modeled group size of the augmented groups as 373 
 374 

yg,.q ~ Poisson(λg), 375 
( 5 ) 376 

where yg,.q is the observed group size q across all boat surveys and λg is mean group size.  377 
We ran our model (equation 1) with its components (equations 2–5) by year because of long run-378 
times (~10–12 hours) and to accommodate slight differences in data management and storage 379 
each year. Moreover, no parameters were shared across years and therefore, we would not have 380 
gained anything by running the model with all years simultaneously.  381 
 382 
Predicting probability of presence.—We attempted to predict pp of radio-tagged murrelets in the 383 
sampling area using environmental covariates so that we could estimate it in years for which we 384 
lacked telemetry data (i.e. 2005, 2016, and 2017) and potentially improve our boat survey 385 
protocol to minimize variation in pp in the future. We considered five covariates: tide direction, 386 
tidal current strength, daily precipitation, daily average wind speed, and the proportion of Icy 387 
Bay state covered in ice. We hypothesized that pp would be higher during the flood (incoming 388 
tide) than the ebb and positively associated with tidal current strength, reasoning that these 389 
conditions would concentrate murrelet prey. We posited that pp would be negatively associated 390 
with daily precipitation because of increased freshwater input into Icy Bay, possibly reducing 391 
prey or access to prey because of higher turbidity, and positively related to daily average wind 392 
speed, as an indicator of offshore storms. Lastly, we hypothesized that pp would be inversely 393 
related to the proportion of ice in the Icy Bay state, as ice would displace murrelets.  394 
 395 
We used a generalized linear mixed model (binomial error, logit link) with random effects for 396 
year and individual to explore our ability to predict pp with environmental covariates. We filtered 397 
telemetry data to include the same dates as our boat survey protocol (1–15 July); we also 398 
excluded murrelet locations at a nest because environmental data for those records were not 399 
relevant. We scaled all covariates to have a mean of 0 and standard deviation of 1. To assess our 400 
model, we used cross-validation by randomly selecting 80% of the records to estimate pp, then 401 
using the estimated pp to predict presence for the remaining 20%, setting a threshold of 0.5 to 402 
denote whether a murrelet was predicted to be present or not in the sampling area. We then 403 
created a confusion matrix comparing predicted and actual presence to evaluate our ability to 404 
predict presence.  405 
 406 
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We ran this analysis separately from estimation of abundance for the statistical and biological 407 
populations. Our reasoning for doing so was to manage model runtime.  408 
 409 
Estimating trend in abundance.—We used a state space model to estimate trend in abundance, or 410 
the instantaneous growth rate (r), of the statistical and biological populations (i.e. without and 411 
with pp, respectively). Our state space model included a random effect for year and weighted the 412 
response variable (log abundance) by the inverse of its variance. For years with direct estimates 413 
of pp (2007–2012), we used abundance of the biological population estimated incorporating 414 
telemetry data (3-day window). In years without telemetry data (2005, 2016–2017), we used 415 
mean pp from across the 15-day period in all years, with year and individual included as random 416 
effects in the estimation process. We intended to predict pp for use in these non-telemetry years, 417 
but because our predictive power was low, we opted to use mean pp. To assess the effect of 418 
including pp in our trend estimate, we examined the root-mean-square-error (RMSE) of mean r 419 
and percent change of coefficients of variation (CV) of the geometric growth rate, lambda (λ), 420 
converted from mean r to avoid division by 0, between models without and with pp. We report 421 
trend results across all years (2005–2017).  422 
 423 
Because we estimated abundance for each year using separate model runs, we had to run the 424 
state space model separately too. To do so, we saved the output of each model for annual 425 
abundance and used it as data input for the state space model.   426 
 427 
We fit all models using JAGS (Plummer 2003) with R 4.2.1 (R Core Team 2019) using R2jags 428 
as an interface. We used weakly informative priors on all parameters and 3 chains of 50,000 429 
iterations, discarding the first 15,000 per chain as burn-in (Appendix 4). We assessed model 430 
convergence through visual inspection of trace plots and the Gelman-Rubin diagnostic (Brooks 431 
and Gelman 1998). We assumed convergence had occurred when chains overlapped 432 
substantially, and the Gelman-Rubin diagnostic was <1.1 for all parameters.  433 
 434 
RESULTS 435 
Components of detection probability 436 
We radio-tagged 191 Kittlitz’s murrelets between 12 May and 3 June, 2007–2012. Of these, 132 437 
birds remained alive in the study area until at least 1 July when boat surveys commenced, 438 
contributing to 516 telemetry locations that were used to estimate pp (Table 1). Across all flights 439 
and years, relocations of most radio-tagged murrelets were in the Icy Bay state (53%) where boat 440 
surveys occurred, followed by the inaccessible states of Ocean (24%), East Bay (18%), Nest 441 
(4%), and Upper Bay (<1%; Appendix 3a). Only 5% of murrelets in the Icy Bay state were in 442 
close pack ice; the remainder were in open pack ice (8%), brash ice (15%), or no ice (72%; 443 
Appendix 3b).  444 
 445 
Across all years, the median of pp was 0.50 (SE=0.02). During the 15-day period in which boat 446 
surveys were conducted, median annual estimates of pp ranged from 0.35 (SE=0.06) to 0.65 447 
(SE=0.04; Figure 3a), which was similar to median estimates from the 3-day window 448 
surrounding each survey (0.32 [SE=0.10]–0.76 [SE=0.09]; Appendix 1). Within a year, pp varied 449 
little, as indicated by the points falling close to the identity line (Figure 4). Although the 95% 450 
credible intervals (CrI) across surveys and within a year always overlapped, they narrowed as the 451 
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window widened, reflecting an increase in the number of telemetry locations used to estimate pp 452 
(Appendix 1).  453 
 454 
Our ability to predict pp using five environmental covariates was generally poor (Figure 5). We 455 
correctly predicted 62% of the observed outcomes and incorrectly predicted 38%. Of the 456 
environmental covariates examined, proportion of Icy Bay state covered in ice was the only one 457 
with 95% CrI that did not include 0 (βice = -0.356, CrI = -0.665, -0.059). While our hypothesis 458 
that pp would be higher during a flood tide was not supported (βtide = -0.006, CrI = -0.345, 459 
0.356), we found that pp was more variable with a flood compared to an ebb tide (Figure 5b).  460 
 461 
Between 2005 and 2017, we conducted 17 boat surveys for Brachyramphus murrelets, of which 462 
only one covered the sampling area completely (mean fraction of sampling area covered=0.80, 463 
range=0.56–1.00; Table 1). This limitation of boat survey coverage due to shifting ice 464 
underscores the dynamic nature of our study area. Median annual estimates of pd varied from 465 
0.49 to 0.77 with CVs below 9% (Figure 3b). The probability that a detected Brachyramphus 466 
murrelet was a Kittlitz’s murrelet, not a marbled murrelet, was high in both spatial strata, but 467 
lower and more variable in the Main Bay (range=0.72–1.00) compared to Taan Fjord 468 
(range=0.95–1.00; Figure 3c,d). 469 
 470 
Abundance and trend 471 
Abundance estimates of the statistical population were positively correlated with estimates of pp; 472 
that is, when pp was low, abundance was low, and vice versa (Figure 6).. In all years, biological 473 
population abundance estimates were generally stable across all window lengths (Appendix 2). 474 
In years when two boat surveys were conducted, our model with pp reduced CVs of annual 475 
abundance estimates by 13–35%; in the year with only one boat survey (2009), CVs increased by 476 
270% (Figure 7), likely because the CV of the 2009 population estimate was highly 477 
underestimated.  478 
 479 
From 2005 to 2017, the trends in abundance of the statistical and biological populations were 480 
negative (Figure 8). The probability of a decline (mean r < 0) across our study area was 67% for 481 
the statistical population and 73% for the biological population. Estimates of mean r were -0.024 482 
(CrI = -0.231, 0.183) for the statistical population (i.e., without pp) and -0.043 (CrI = -0.265, 483 
0.191) for the biological population (i.e., with pp). By including pp in the state space model, we 484 
reduced sampling variance in the estimate of annual r by 17%. However, the CV for λ increased 485 
by 12% and the RMSE for r increased from 0.160 to 0.185, indicating that we reduced within-486 
year variance by accounting for pp, but not across-year variance.  487 
 488 
DISCUSSION 489 
We developed a contemporary model to account for a population misalignment and generate 490 
unbiased abundance estimates of a highly mobile, non-territorial species, the Kittlitz’s murrelet, 491 
in a dynamic marine environment. By decomposing detection probability, we were able to use 492 
multiple datasets of different data types that did not rely on replicate or repeat sampling, which 493 
was not feasible for our study species or area without an unrealistically large number of sampling 494 
occasions or sites (e.g., N-mixture models; Royle 2004, Barker et al. 2008, Hostetter et al. 2019). 495 
Alternatively, we would have needed to devise a way to increase capture probabilities to utilize 496 
capture-recapture or resight models effectively (Burnham et al. 1987). Moreover, the hierarchical 497 
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structure of our model allowed us to work within a single analytical framework and appropriately 498 
account for all sources of uncertainty. 499 
 500 
We are not aware of another abundance model that accounts for all components of detection 501 
probability, especially pp, without using replicate or repeat sampling methods. Fischbach et al. 502 
(2022) developed a similar ratio estimator to account for haulout probability, which is analogous 503 
to pp, for estimating abundance of Pacific walrus, a species like Brachyramphus murrelets for 504 
which population monitoring is notoriously difficult. Their model combined count data from 505 
unoccupied aircraft systems and telemetry data, and therefore, while conceptually similar to our 506 
model, it is not applicable to our situation because of differences in data types and habitat 507 
dynamics, nor does it account for pa or pd. In these ways, our model builds on that of Fischbach 508 
et al. (2022) and adds to the toolbox of demographic models that account for spatial temporary 509 
emigration. 510 
 511 
By accounting for pp in our model, which aligned the statistical and biological populations, we 512 
improved the precision of annual abundance estimates by 13–35% when we followed our 513 
standard protocol of conducting two boat surveys. However, results from 2009, when only one 514 
boat survey was conducted, clearly indicated that pp and survey effort were conflated, as the CV 515 
for the abundance estimate increased about tenfold. This outcome emphasizes the importance of 516 
a second boat survey annually if pp varies; otherwise, the abundance estimate from a single 517 
survey can have misleadingly high precision. We suspect this implication would be true for other 518 
highly mobile species and dynamic systems as well. Nonetheless, our ability to notably improve 519 
CVs for abundance estimates is a major achievement for a species often plagued with imprecise 520 
estimates (USFWS 2013, Hoekman 2019). 521 
  522 
Although we increased the precision of annual abundance estimates by aligning the statistical 523 
and biological populations, we did not see the same improvement in the estimate of mean r, or 524 
temporal trend. Thus, while we explained and reduced variation in abundance within a year, we 525 
failed to account for a source(s) of variation across years. We suspect it relates to the propensity 526 
for Kittlitz’s murrelets to skip breeding in some years and resultant variable return rates to Icy 527 
Bay. A modeling exercise such as a life-stage simulation analysis (Wisdom et al. 2000) or an 528 
integrated population model (Schaub et al. 2007) would help approximate the potential influence 529 
of these latent parameters until direct data are available (see Kissling et al. In review). It is worth 530 
noting that while we did not increase precision of the trend estimate, we also did not reduce it 531 
even though we added a parameter to the estimation process, suggesting some information about 532 
pp was useful. 533 
 534 
Though a population misalignment existed, we found that abundance estimates for the statistical 535 
population of Kittlitz’s murrelets in Icy Bay generally were proportional to those of the 536 
biological population. We were somewhat surprised by this finding because, based on a survival 537 
analysis with the same telemetry dataset, radio-tagged murrelets moved frequently among spatial 538 
states with daily transition probabilities ranging from 0.135 to 0.279 (Kissling et al. 2015b). Yet, 539 
despite these moderate movement rates, pp varied little within a year (Figure 4). Further, pp was 540 
correlated with abundance of the statistical population across years (Figure 6), which suggests 541 
that murrelets in our study area were operating as a single biological population, otherwise we 542 
would have expected discordance. Importantly, we did not detect a temporal trend in pp, the link 543 
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between the two types of populations, meaning that pp in the statistical population was random 544 
with respect to the biological population and inference could be extended without bias. 545 
 546 
As with all models, our model has assumptions beyond those associated with specific methods 547 
like radio telemetry (White and Garrott 1990) and distance sampling (Buckland et al. 2001). 548 
Inherent to boat and telemetry surveys, we assumed that the statistical population was closed 549 
with respect to pp for survey duration and within the 3-day window used to estimate biological 550 
population abundance. While we developed our model in part to avoid assumptions of closure, it 551 
is not entirely possible with the survey methods used in our study; essentially, our model relaxed 552 
the assumption considerably, though did not eliminate it. Even so, given that estimates of pp did 553 
not vary much within a year, we feel confident that we sufficiently met the closure assumption 554 
for the purpose of estimating abundance. For trend estimation, we also assumed that mean pp was 555 
an adequate estimate of pp in the three years with boat survey data but without telemetry data. 556 
Given that pp varied considerably across years, this assumption likely was violated, but in the 557 
absence of annual telemetry data, we think that the mean and its associated variance are adequate 558 
because the variance was correctly incorporated into the trend variance by the Bayesian model. 559 
Also, when estimating pk, we assumed that both murrelet species were equally likely to be 560 
classed as unidentified. We think this assumption was met reasonably well in our dataset even 561 
though Kittlitz’s murrelets far outnumber marbled murrelets in our study area. Further, using 562 
field trials, we found misidentification rates of Brachyramphus murrelets to be low (Schaefer et 563 
al. 2015). 564 
 565 
Our final assumption was that the tagged murrelets were representative of the biological 566 
population, as we defined it. Although our boat surveys were conducted in early July, we tagged 567 
murrelets in May because our capture technique requires darkness, which is not sufficiently 568 
available in our study area for about 6–8 weeks surrounding summer solstice (21 June). 569 
Therefore, we inevitably tagged a few birds that were transiting through Icy Bay, which we only 570 
located once or twice, or never again. These birds were not included in our estimation of pp 571 
because they were not located during our boat surveys, so they are not relevant here. 572 
Additionally, because we only conducted telemetry flights in the Icy Bay study area, it is 573 
possible that some tagged birds could have temporarily emigrated beyond our search area, which 574 
would have biased our estimation of pp. However, we do not believe it was the case, largely 575 
because it was rare for a tagged bird to leave our study area and then return, especially as late in 576 
the breeding season as July. In fact, we removed eight locations (<2%) from our analysis because 577 
they were not within any of the five spatial states; none of those birds were located again, 578 
suggesting they permanently emigrated, or possibly the tag stopped reporting for whatever 579 
reason. Therefore, we feel confident this assumption was met as best we could with VHF 580 
transmitters.  581 
 582 
Despite our poor ability to predict pp from environmental covariates, we gained new insights into 583 
the ecology of Kittlitz’s murrelets. First, in previous studies of this species, we posited that, if 584 
murrelets temporarily emigrated during boat surveys, they were moving into dense icefloes near 585 
the tidewater glaciers (i.e., Upper Bay), presumably to search for food or avoid predation 586 
(Kissling et al. 2007, Day et al. 2020). Here, we confirmed that when the proportion of ice in the 587 
Icy Bay state increased, pp decreased, but we found that instead of moving into pack ice closer to 588 
the glacier(s), murrelets moved into shallow or rough waters away from the glaciers (i.e., East 589 
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Bay and Ocean, respectively). While this finding should be viewed cautiously until confirmed at 590 
other times and locations, it appears that murrelets are less associated with ice when at sea at fine 591 
spatial scales than we previously thought, at least in the Icy Bay system.  592 
 593 
Second, although pp varied little within a year, it varied considerably across years, revealing a 594 
spatiotemporal pattern that implied an ecological driver(s) was at play but was not captured by 595 
the available environmental covariates. For example, pp was comparatively low across the 15-596 
day period in 2007 and 2010, yet in 2007, murrelets outside of the sampled area were mostly in 597 
the Ocean state and in 2010, they were mostly in the East Bay state (Appendix 3). From this 598 
result, we assume that variation in prey availability led murrelets to select states outside of the 599 
Icy Bay state, with patterns that varied on an annual, rather than a within-year, basis. With 600 
additional data on murrelet movements from Icy Bay or elsewhere, this finding may eventually 601 
provide clues as to the ecological driver(s) of these patterns and improve our ability to predict pp. 602 
 603 
Our model to align statistical and biological populations for abundance estimation is simple, 604 
flexible, and scalable and is suitable for a variety of species and habitats. It is a practical solution 605 
to resolving a population misalignment when repeat and replicate sampling is not feasible and 606 
increased precision of abundance and trend estimates is desired, as is the case with many species 607 
of conservation concern like the Kittlitz’s murrelet (USFWS 2013). Although it requires 608 
telemetered animals, which can be costly compared to methods for unmarked animals, it was the 609 
only reasonable way to estimate pp for Kittlitz’s murrelets in Icy Bay and we suspect the same is 610 
true for other species and habitats that are difficult to sample (e.g., walrus; Fischbach et al. 611 
2022). The use of satellite transmitters, which are not readily available yet for murrelets, would 612 
greatly facilitate and perhaps improve estimation of pp, especially if location data could be 613 
collected at a finer temporal scale. Moreover, satellite transmitters would relax the assumption 614 
related to representativeness of the tagged animals of the biological population and could 615 
improve precision of trend estimates if their retention and operation extended beyond a single 616 
year.  617 
 618 
For any study reporting abundance, it is critical to clearly define the population to which 619 
abundance refers (Hammond et al. 2021), though delineating populations can be difficult and 620 
require substantial data (Rushing et al. 2016). Our goal here was not to provide a framework for 621 
how to delineate biological populations, but instead to develop an analytical approach to account 622 
for a population misalignment if one exists. However, we urge ecologists to think critically about 623 
the population in which they want to draw inference, especially as tracking technology improves 624 
and model complexity increases. If possible, the statistical population should be the same as the 625 
biological population, or at least representative of it in terms of population processes or 626 
ecological conditions, which fortunately happened in our case. Otherwise, if pp has temporal or 627 
geographic patterns, inference about abundance for the population of interest is confounded with 628 
its use of the sampled area and could be misleading. This messy situation with potentially 629 
misleading estimates can have conservation implications if threats or stressors vary. For 630 
example, threatened grizzly bears (Ursus arctos) can roam outside of national park boundaries, 631 
with bears outside the park being subject to differing mortality sources not captured by within-632 
park monitoring (Schwartz et al. 2010). Further, if estimates of abundance are subsequently used 633 
in population models, it is imperative that they are from the same population used to estimate 634 
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other demographic parameters (e.g., survival and productivity) to avoid misleading inference 635 
about population dynamics.  636 
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Table 1. Sample sizes and effort by survey type for estimating abundance of a biological 
population of Kittlitz’s murrelets, Icy Bay, Alaska, 1–15 July 2005–2017. Truncation distance 
was used to model the detection function to estimate probability of detection (pd) with distance 
sampling data. 

Year 

Boat surveys Telemetry surveys 

# 
surveys 

Portion of sampling 
area surveyed Truncation 

distance (m) 

15-day period 

Survey 1 Survey 2 # flights 
# radio-
tagged 

individuals 
# locations 

2005 2 0.85 0.85 250 - - - 
2007 2 0.75 0.74 281 4 24 82 
2008 2 0.75 0.70 278 8 20 137 
2009a 1 0.91 - 288 5 20 85 
2010 2 0.67 0.91 242 3 24 58 
2011 2 0.77 0.73 210 4 27 100 
2012 2 0.75 0.56 181 4 17 54 
2016 2 0.91 1.00 325 - - - 
2017 2 0.91 0.90 323 - - - 

aBoat survey conducted on 17 July 2009; telemetry survey information presented here for 1–15 July 2009. 
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Figure 1. Schematic illustrating the relationship between the (a) biological population, or the 
population of interest; (b) sampling framework with line transects (black lines with gray 
rectangles) along which individuals are sampled (solid yellow circles) or not sampled (open 
yellow circles) and inaccessible areas (cross-hatching) that contain a portion of the biological 
population (solid black circles); and (c) statistical population, which is defined by the extent of 
the sampling frame in (b). 
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Figure 2. Map of study area, Icy Bay, Alaska, where we conducted boat and telemetry surveys to 
estimate abundance of Kittlitz’s murrelets. Our sampling area during telemetry flights comprised 
five spatial states that collectively formed the extent of the biological population: Icy Bay (Main 
Bay and Taan Fjord sub-states combined), East Bay, Upper Bay, Ocean, and nest. During boat 
surveys, only the Icy Bay state, with Main Bay and Taan Fjord as strata, was regularly accessible 
and formed the extent of the statistical population. The gray-shaded area is land. 
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Figure 3. Posterior distributions (teal) of estimates of detection probability components for Kittlitz’s murrelets, Icy Bay, Alaska, 
2005–2017. Components are (a) probability of presence (pp), (b) probability of detection (pd), and probability of being a Kittlitz’s 
murrelet (pk) in (c) Main Bay and (d) Taan Fjord strata. The median of the estimate is denoted with a point, the 50% credible interval 
with a thick line, and the 95% credible interval with a thin line. Note that for pd (b), truncation distance varied across years (Table 1).  
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Figure 4. Probability of presence (pp) for the 3-day window by boat survey within a year. The 
error bars describe the standard errors of the estimate and correspond with the respective axes. 
The identity, or 1:1 line, is included in gray. 
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Figure 5. Distribution of observed outcomes (teal points) and predicted probability of presence 
(pp; orange triangles) using environmental covariates for Kittlitz’s murrelets, Icy Bay Alaska, 
2007– 2012. Covariates on x-axis are scaled; see ‘Methods’ text for description. For year (f), the 
dotted line denotes the mean pp across all years in the observed dataset. 
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Figure 6. Probability of presence (pp) across both surveys for the 3-day window by abundance of 
the statistical population, i.e., without pp. The error bars describe the standard errors of the 
estimate and correspond with the axes.   
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Figure 7. Posterior distributions of annual abundances estimate for the Kittlitz’s murrelet and corresponding coefficients of variation 
(triangles) without probability of presence (pp; statistical population) and with pp (3-day window; biological population) around 
corresponding boat surveys, Icy Bay, Alaska. In 2009, when only one boat survey was completed, the posterior distribution was 
extremely narrow (overly precise) and extends beyond the y-axis limits of this figure for display purposes. 
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Figure 8. Annual and predicted abundance estimates of the statistical population (without 
probability of presence, pp) and biological population (with pp) of Kittlitz’s murrelets, Icy Bay, 
Alaska, 2005–2017. Annual estimates are denoted with open circles and predicted estimates from 
the state-space model are identified with closed circles; the shaded areas describe the 95% 
credible intervals of the modeled abundance. Pp is accounted for in the biological population 
estimates using telemetry data surrounding a 3-day window of a boat survey.  
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Appendix 1. Estimates of probability of presence (pp; ± 95% credible intervals) of radio-tagged 
Kittlitz’s murrelets by window length (1-, 3-, 5-, 7-day, and 15-day) and boat survey (survey 
1=orange, survey 2=teal), Icy Bay, Alaska, 1–15 July 2007–2012. Asterisks indicate windows 
when the same telemetry data were used to estimate pp for boat surveys 1 and 2. 
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Appendix 2. Kittlitz’s murrelet annual abundance estimates and 95% credible intervals (black) and corresponding coefficients of 
variation (blue) without probability of presence (pp; None; statistical population) and with pp by window length (1-, 3-, 5-, and 7-day; 
biological population) around corresponding boat surveys and entire window (15-day) when boat surveys were conducted (i.e. 1–15 
July), Icy Bay, Alaska. We completed two boat surveys each year except 2009 when only one survey was done.
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Appendix 3. Number of telemetry locations of Kittlitz’s murrelets by year and (a) spatial state 
and (b) Bowditch ice class, 1–15 July 2007–2012, Icy Bay, Alaska. We did not locate any 
murrelets in very close pack ice. 


