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ABSTRACT 16 
Ideally, a statistical population is the same as, or accurately represents its corresponding 17 
biological population. However, in practice, they rarely align in space and time, which can lead 18 
to variable exposure to sampling and biased inference. We often view a population mismatch as 19 
a temporary emigration process and resolve it with replicate and/or repeat sampling, though this 20 
approach is not feasible for all species and habitats. We developed a hierarchical Bayesian 21 
integrated model to estimate abundance of a biological population of the Kittlitz’s murrelet 22 
(Brachyramphus brevirostris), a highly mobile, non-territorial, ice-associated seabird of 23 
conservation concern in Alaska and eastern Russia. Our model combines datasets from boat and 24 
telemetry surveys to account for all components of detection probability, specifically using 25 
telemetry locations to estimate probability of presence (pp) and line transect distance sampling to 26 
estimate probability of detection (pd). By estimating pp directly, we were able to account for 27 
temporary emigration from the sampled area, which changed with shifting icefloes between 28 
sampling occasions. Between 2007 and 2012, annual pp was highly variable, ranging from 0.33 29 
to 0.75 (median=0.50, SE=0.02), but was not predictable using five environmental covariates. In 30 
years when two boat surveys were conducted, our model reduced the coefficient of variation 31 
(CV) of abundance estimates by 13–35%, yet in the year with only one boat survey (2009), the 32 
CV skyrocketed about 10-fold, emphasizing the importance of a second survey if pp varies. 33 
Although we increased the precision of annual abundance estimates by accounting for pp, we did 34 
not see the same improvement in the estimate of mean r, or trend, indicating that while we 35 
reduced within-year variance, we failed to account for a source(s) of variation across years, 36 
which we suspect is related to the propensity for murrelets to skip breeding in some years. Our 37 
integrated model to resolve a population mismatch is simple, flexible, and scalable for generating 38 
unbiased and precise abundance estimates of highly mobile species that occupy dynamic habitats 39 
where other open population models are not feasible. Importantly, it improves inference of the 40 
biological population, which is the true population of interest. We urge ecologists to think 41 
critically about the population in which they want to draw inference, especially as tracking 42 
technology improves and model complexity increases. 43 
 44 
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 48 
INTRODUCTION 49 
The population concept is a central theme in ecology, management, and conservation. Yet, the 50 
term ‘population’ has many definitions depending on the underlying objectives and the context 51 
in which it is used (Waples and Gaggiotti 2006, Hammond et al. 2021). Fundamentally, we can 52 
distinguish between two types of populations: biological and statistical. A biological population 53 
is a group of individuals that share some attributes with ecological or evolutionary meaning. In 54 
contrast, a statistical population describes an aggregate of things, which may or may not be 55 
individuals, about which we draw inference, usually by sampling. While many variations of 56 
these two types of populations exist, such as sampled and target (Cochran 1977), natural and 57 
local (Andrewartha and Birch 1954), and resource and statistical (Reynolds 2012), the 58 
distinguishing principle across them is the same: one population is what we really want to know 59 
something about (biological) and the other is what we use to infer what we want to know 60 
(statistical). 61 
 62 
Ideally, a statistical population is the same as, or accurately represents its corresponding 63 
biological population (Cochran 1977). However, in practice, they rarely align in space and time, 64 
which can lead to variable exposure to sampling and biased inference about the population of 65 
interest. Although statistical inference can be appropriately drawn from the sample, it only 66 
extends to the statistical population, as defined by the researcher. In contrast, scientific inference, 67 
which is a far broader concept that is based on evidence and reasoning, applies to the biological 68 
population. The crucial distinction between scientific and statistical inference in population 69 
ecology studies is often overlooked, especially with the increasing use of complex models, in 70 
part because of the challenges in delineating a biological population (Berryman 2002, Camus and 71 
Lima 2002). Yet, because scientific inference is the knowledge goal of these studies, any 72 
misalignment between the statistical and biological populations can be problematic and 73 
misleading if left unresolved.  74 
 75 
Generally, a population mismatch can occur for two primary reasons. First, one can arise when 76 
knowledge about the biological population is limited. Often researchers design investigations 77 
before having a clear understanding of the variation in the spatial and temporal dynamics of the 78 
population of interest, potentially and unknowingly leading to a mismatch. Second, a mismatch 79 
can occur when the distribution of the biological population across space and time is known but 80 
access is restricted, which can result in a poor sampling design. This situation, which is termed a 81 
frame error (Reynolds 2012), can arise for physical (e.g., natural barriers), logistical (e.g., cost, 82 
safety), legal (e.g., landownership boundaries), and political (e.g., international borders) reasons.  83 
 84 
For mobile organisms, we often view a population mismatch as a form of temporary emigration, 85 
whereby individuals are temporarily not exposed to sampling for a variety of potential reasons 86 
(Kendall et al. 1997). It is an oddly vague process with biological and statistical drivers that 87 
usually are confounded. For example, individuals may temporarily emigrate for biological 88 
reasons like searching for food or avoiding predation, statistical reasons such as unequal 89 
sampling probability owing to a frame error, or a combination of both. Ultimately, temporary 90 
emigration is a detection issue. If it occurs randomly, temporary emigration will inflate 91 
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unexplained variance and reduce precision of abundance estimates; if it occurs non-randomly, 92 
i.e., with a temporal trend, it will bias estimates.  93 
 94 
Fortunately, over the last few decades, many analytical approaches have been developed to 95 
account for temporary emigration when estimating abundance. The most notable methods are 96 
capture-recapture models that use robust design (Kendall et al. 1997) or are spatially explicit 97 
(Royle and Young 2008), extensions of N-mixture models (e.g., Chandler et al. 2011), thinned 98 
point process models (e.g., Mizel et al. 2018), and models that combine methodology (e.g., 99 
Powell et al. 2000, Amundson et al. 2014). These approaches use spatial and temporal replicates 100 
with short periods of closure (hereafter replicate sampling) or the ability to identify individuals 101 
during sampling (hereafter repeat sampling) to estimate temporary emigration and abundance of 102 
the biological population, sometimes referred to in this context as the superpopulation (Schwarz 103 
and Arnason 1996). While these models are flexible and powerful, they are not feasible for all 104 
species and habitats, or in all situations. 105 
 106 
Some species and habitats are too complex to obtain a sufficient number of replicate or repeat 107 
samples across space or time. Species that are difficult to recapture or resight during sampling 108 
are inherently unsuitable for capture-recapture methods, as reliable models cannot be developed 109 
with few observations. Further, highly mobile, non-territorial species, such as many marine 110 
species, cannot satisfy the closure assumption, even for short periods, unless the study area is 111 
large relative to movement, which paradoxically often makes sufficient sampling impractical. 112 
The same principle applies to species that are sampled during non-territorial portions of their life 113 
cycle, such as winter concentrations of ungulates or migrating raptors, when individuals are not 114 
tied to a particular area (e.g., breeding site). Finally, dynamic habitats that can change between 115 
sampling occasions (e.g., drift ice), are not conducive to replicate sampling; not only can the size 116 
and shape of the sampled area vary, but also the individuals exposed to sampling.  117 
 118 
An alternative approach to handling a population mismatch that does not require replicate or 119 
repeat sampling is to decompose the detection process. Nichols et al. (2009) described four 120 
components of overall detection (p): (1) probability that the individual’s home range includes at 121 
least a portion of the sample area (ps); (2) probability of presence within the sample area during a 122 
survey (pp); (3) probability of availability given presence (pa); and (4) probability of detection 123 
given presence and availability (pd). The first component (ps) simply confirms that an individual 124 
is a member of the biological population, and the last component (pd) refers to the actual 125 
observation process, that is whether an individual was observed. Jointly, the second and third 126 
components (pp and pa, respectively) describe temporary emigration, with the second component 127 
(pp) being spatial temporary emigration and specifically addressing the population mismatch 128 
issue, and the third component (pa) as random temporary emigration (Kery and Royle 2016). A 129 
major advantage to using this approach is that each component can be estimated separately using 130 
different datasets and even different data types (Hostetter et al. 2019), making it suitable for all 131 
species and habitats provided that the components are estimable. 132 
 133 
We applied this approach to resolve a population mismatch for the Kittlitz’s murrelet 134 
(Brachyramphus brevirostris), a highly mobile, non-territorial, ice-associated seabird that is 135 
irregularly distributed across coastal Alaska and eastern Russia. Several aspects of this species’ 136 
life history complicate methods that rely on replicate or repeat sampling to estimate spatial 137 
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temporary emigration. Unlike most seabirds, Kittlitz’s murrelets do not nest in colonies, but 138 
instead nest solitarily at low densities, usually in remote inaccessible locations (Kissling et al. 139 
2015a). Thus, populations cannot be monitored at colonies like most seabirds where replicate 140 
and repeat sampling is practical and efficient. Additionally, owing to the small size, cryptic 141 
behavior, and prevalence of nonbreeding in this species, capture-recapture and resight models are 142 
not feasible. It is nearly impossible to resight banded or marked murrelets on the water or in 143 
flight and recapture rates are too low to be useful for estimating abundance (Kissling et al. 144 
2015b), in part because of challenges with nighttime captures during summer at high latitudes.  145 
 146 
Instead, the only viable way to monitor Kittlitz’s murrelet populations is with boat-based 147 
abundance surveys that are conducted during the breeding season when most murrelets 148 
concentrate in bays and fjords often near tidewater glaciers (Day et al. 2020). A design challenge 149 
and safety concern for these surveys is the presence of icefloes, large tidal fluctuations, glacial 150 
river debris, and the possibility of rough seas. These dynamic conditions can restrict boat access 151 
to portions of the study area and cause murrelets to redistribute over short time intervals, 152 
resulting in a population mismatch that cannot be handled with replicate sampling, as neither the 153 
murrelets nor the habitat can meet the closure assumption.  154 
 155 
We developed a hierarchical Bayesian integrated model to estimate abundance of a biological 156 
population of the Kittlitz’s murrelet in a dynamic environment. Our model combines datasets 157 
from telemetry flights to locate radio-tagged murrelets, boat-based distance sampling surveys, 158 
and dive behavior trials to account for all components of detection probability (ps, pp, pa, pd). Our 159 
primary objective was to develop an analytical tool to align the statistical and biological 160 
populations of this unusual species so that we could generate unbiased abundance estimates for 161 
later use in an integrated population model. More specifically, here, we aimed to (1) estimate 162 
detection probability components and their variation; (2) assess predictability of pp using 163 
environmental covariates; and (3) estimate abundance and trend of the statistical (without pp) and 164 
biological populations (with pp) and identify any sources of bias. We also wanted to assess 165 
whether we delineated the biological population of Kittlitz’s murrelets in our study area 166 
appropriately. 167 
 168 
STUDY AREA 169 
Our study was centered in Icy Bay, Alaska, USA, located in the northeastern Gulf of Alaska and 170 
~110 kilometers northwest of the town of Yakutat (Figure 1). Icy Bay is a highly dynamic glacial 171 
fjord system that has experienced multiple, rapid ice advances and subsequent retreats over the 172 
past ~3,800 years with the most recent retreat of approximately 40 km during the 20th century 173 
(Barclay et al. 2006).  174 
 175 
Currently, Icy Bay comprises a shallow outer bay and a deeper inner bay. The outer bay is 176 
adjacent to the Gulf of Alaska and measures 6 km wide at the mouth. The inner bay is divided 177 
into four distinct fjords with each terminating at an active tidewater glacier. The Guyot, Yahtse, 178 
and Tsaa glaciers are one glacial system, while the Tyndall Glacier in Taan Fjord is an 179 
independent system. The Malaspina Glacier, the largest piedmont glacier in North America, is 180 
situated to the east and empties meltwater and glacial sediment into Icy Bay via the Caetani 181 
River system. Gull Island, near the mouth of the Caetani River, provides a catchment for glacial 182 
sediment circulating in the bay and therefore the size and shape of the island, as well as the water 183 
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depths adjacent to the island, vary within and across years. Currently, at extremely low tides 184 
(<0.5 m), Gull Island is connected to the mainland by a thin, sandy strip of beach and at 185 
extremely high tides (>3.0 m), the waters are deep enough that the island can be circumnavigated 186 
in a boat with an outboard engine. There are two small bays within Icy Bay (Riou and Moraine 187 
bays) that have submerged marine sills at their mouths making it difficult to access these small 188 
bays during low tides. The total surface of Icy Bay is approximately 263 km2, but typically the 189 
upper half of the bay is covered in thick ice floes and large icebergs, resulting in an open water 190 
surface area of ~160 km2 with considerable variability within and across years depending on 191 
glacial calving activity. 192 
 193 
METHODS 194 
Data collection 195 
Boat surveys.— From 2005 to 2017, we conducted two boat-based abundance surveys between 1 196 
and 15 July in each of eight years (2005, 2007–2008, 2010–2012, 2016–2017) and one survey on 197 
17 July 2009. The target sampling area was ~160 km2, consisting of the Main Bay and Taan 198 
Fjord (Figure 1). Generally, we completed surveys in a single day, though rarely it took two 199 
days, depending on tides and other logistical factors. Boat surveys involved line transect distance 200 
sampling, following the protocol described in Kissling et al. (2007, 2011), with one exception; in 201 
2016 and 2017, we estimated the angle and distance from the boat to each murrelet group as 202 
opposed to estimating perpendicular distance from the line transect (all other years). We also 203 
recorded group size, behavior (water, flying), and foraging activity of all Brachyramphus 204 
murrelets observed. Both Kittlitz’s and its congeneric marbled murrelet (B. marmoratus) occur in 205 
Icy Bay and can be difficult to distinguish, especially at a distance; if an observer was unable to 206 
identify a murrelet (or group of murrelets) to species, it was recorded as an unidentified 207 
murrelet(s).  208 
 209 
Telemetry surveys.— We captured Kittlitz’s Murrelets on the water using the night-lighting 210 
method (Whitworth et al. 1997) in and near Icy Bay between 8 May and 3 June, 2007–2012. 211 
Following capture, we transported murrelets to a larger vessel for processing, which included 212 
morphometric measurements, blood sampling for sex identification, and banding. We deployed 213 
very-high-frequency (VHF) radio transmitters on a subset of after-second-year murrelets 214 
captured each year. We attached the transmitters (Advanced Telemetry Systems, Inc., Isanti, 215 
Minnesota [ATS]; model number A4360) using a subcutaneous anchor on the bird’s back 216 
between the scapulars (Newman et al. 1999). If both birds of a pair were captured, we randomly 217 
selected one bird to radio-tag to ensure independence. We released murrelets immediately after 218 
processing was complete.  219 
 220 
We attempted to locate radio-tagged murrelets 2–5 times per week for at least eight weeks after 221 
tagging using fixed-wing aircraft equipped with “H-style” antennas mounted on the struts. We 222 
were not able to search for tagged birds using a strict design, but instead aimed for complete 223 
coverage of the study area in a systematic way that allowed for safe flying. We first attempted to 224 
locate all murrelets on the water in and near Icy Bay within gliding distance of shore; if 225 
murrelets were not detected at sea, we flew over all assumed potential nesting habitat within 226 
reason (e.g., fuel constraints) to locate incubating birds. We conducted telemetry flights on the 227 
same day as boat surveys; on occasion, we had to fly the telemetry survey on the following day 228 
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because of aircraft availability. All telemetry flights were completed in less than four hours. For 229 
more details on capture, handling, tagging, and relocating see Kissling et al. (2015a, b, 2016). 230 
 231 
During each flight, we mapped ice conditions into five categories of increasing ice density: none, 232 
brash ice, open pack ice, close pack ice, and very close pack ice. We defined brash ice as 233 
accumulations of floating ice made up of fragments not more than 2 m across, open pack ice as 234 
low concentration pack ice with many leads and polynyas and the floes generally were not in 235 
contact, close pack ice as moderate concentration pack ice with the floes generally in contact, 236 
and very close pack ice as high concentration pack ice with very little water visible (Bowditch 237 
classification; NOAA 2007). Following each flight, we digitized these maps in ArcGIS (ESRI, 238 
v10.7.1) and estimated ice cover (km2) by category in the study area on that day. We then 239 
assigned all locations of radio-tagged murrelets to an ice category using the ice condition maps 240 
for each corresponding telemetry flight. 241 
 242 
We compiled environmental data for murrelets located during telemetry flights. Using the date 243 
and time of each location, we determined tidal stage, which represented the vertical movement of 244 
water, as ebb or flood, and tidal current strength, the horizontal movement of water, following 245 
Kissling et al. (2007). We also acquired the daily precipitation (mm), which affected freshwater 246 
input volume and turbidity, and average daily wind speed (m/sec), which influenced icefloe 247 
movement and ocean surface conditions, from a weather station in Icy Bay 248 
(https://www.ncdc.noaa.gov/cdo-web/). Lastly, we calculated the proportion of the Icy Bay state 249 
(i.e., the area sampled during boat surveys; see below) that was covered in ice (all categories) on 250 
the flight day. 251 
   252 
Data analysis 253 
Components of detection probability.—We considered detection probability components 254 
individually, which allowed for use of different datasets, and then combined those necessary in 255 
an integrated model (see below). This approach was efficient, as two components of detection 256 
probability, ps and pa, were deemed to be close to 1 and unnecessary in the integrated model. 257 
 258 
We determined that ps, the probability that an individual could be included in the sampled area 259 
during a boat survey, was 1 in all years by examining both home ranges (95% utilization 260 
distribution [UD]) and core use areas (50% UD) of radio-tagged murrelets (Kissling 2023). 261 
Therefore, we did not include ps in our integrated model. 262 
 263 
We estimated pp, the probability that an individual was present in the sampled area during a boat 264 
survey, using location data from radio-tagged murrelets. Following Kissling et al. (2015b), we 265 
assigned each telemetry location to one of five spatial states (Figure 1): Icy Bay, which 266 
comprised Main Bay and Taan Fjord sub-states and was the core area sampled by boat; East Bay, 267 
which was too shallow for a boat; Upper Bay, which was too icy; Ocean, which was too rough; 268 
or at a nest. Any telemetry locations outside of these five states were removed from our analysis 269 
(<2% of all locations); notably, none of these individuals were located again. We then merged 270 
data on spatial state and ice category for each telemetry location. We considered a radio-tagged 271 
murrelet to be present in the sampled area if it was in Icy Bay state and in ice categories of none, 272 
brash ice, or open pack ice, where we could conduct boat surveys safely. If a radio-tagged 273 
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murrelet was at a nest or in the East Bay, Upper Bay, Ocean, or in close pack ice or very close 274 
pack ice, it was deemed not present. 275 
 276 
To estimate pp, we filtered telemetry data to include locations from 1 to 15 July to overlap with 277 
our boat survey protocol. We explored the use of telemetry locations acquired in 1-, 3-, 5-, and 7-278 
day windows surrounding the boat survey; for example, if a boat survey was conducted on 8 279 
July, the 3-day window was 7–9 July and the 5-day window was 6–10 July. All telemetry 280 
locations collected during a specific window were used to estimate a single value of pp. In 2009, 281 
we conducted a single boat survey late (17 July) because of boat availability and poor weather 282 
and therefore, we shifted the windows to center on the later date. In all years, we found that pp 283 
varied little with window length, though precision improved (Appendix 1), which was 284 
unsurprising given that sample size increased (i.e., number of telemetry locations). Here, we 285 
report results for the 3-day window only because it was the best tradeoff between improved 286 
precision while maintaining a short temporal window around each survey. For comparison, we 287 
also report pp for the entire 15-day period (1–15 July). 288 
 289 
We conducted boat-based dive behavior trials to estimate pa, the probability that a murrelet was 290 
available for detection (i.e., not underwater) given presence. We determined that the probability 291 
of a murrelet being unavailable for detection was quite low (0.032 ± 0.007; see details in Lukacs 292 
et al. 2010). Therefore, we assumed pa was close enough to 1 not to affect abundance estimates, 293 
and, like ps, did not include it in our integrated model.  294 
 295 
Finally, we estimated pd, or the probability of being detected given presence and availability on 296 
boat surveys, using conventional distance sampling. We filtered data to include murrelets 297 
observed on the water only, i.e., we excluded flying birds from our analysis. We pooled data 298 
across both surveys each year (except 2009) and all Brachyramphus murrelets to estimate pd 299 
because observers rarely changed, and we did not expect detection probability to be different by 300 
species. We then truncated the upper 5% of distance data. We examined the effect of group size 301 
on the scale parameter of the half normal detection function, but it had no effect in any year 302 
(based on ΔAIC values and Cramer-von Mises tests) and therefore, we did not include group size 303 
in our analyses.  304 
 305 
To allocate murrelets not identified to species (i.e., unidentified Brachyramphus murrelets) 306 
during boat surveys, we estimated the probability of being a Kittlitz’s murrelet (pk), as opposed 307 
to a marbled murrelet, in two strata (m) in Icy Bay (Figure 1). While Kittlitz’s murrelets are 308 
uniformly distributed throughout the bay, marbled murrelets are not; they are rarely located in 309 
Taan Fjord (Kissling et al. 2007, 2011). Therefore, we divided our sampling area into two strata, 310 
Main Bay and Taan Fjord, to satisfy the assumption of uniform distribution when estimating pk. 311 
Note that these strata were the same as the Main Bay and Taan Fjord sub-states described for pp; 312 
we used different terminology to avoid confusion in the code (Appendix 4). 313 
 314 
Integrated model for biological population abundance.—We developed a hierarchical Bayesian 315 
integrated model to estimate annual abundance of the biological population. We used data 316 
augmentation to represent a relatively large number of potential but unobserved groups in our 317 
sampling area during each boat survey (Royle and Dorazio 2008). To estimate a single value for 318 
annual abundance, we used the following joint likelihood: 319 
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 322 
where M is the abundance of the biological population, Ni is the statistical population abundance 323 
estimated for survey i, pp,i is the probability of presence for survey i, pd,. is the probability of 324 
detection across both surveys, pk,.m is the probability of being a Kittlitz’s murrelet across both 325 
surveys by strata m, and data refers to the boat and telemetry survey data.  326 
 327 
We modeled pp,i on the logit scale as 328 
 329 

𝑦𝑦𝑝𝑝𝑝𝑝,𝑖𝑖𝑖𝑖 ~ Bernoulli(pp,ij), 330 
 331 
where individual locations (j) during each survey (i) were used to estimate pp,ij. We did not 332 
include covariates in this sub-model because we did not identify any that helped explain 333 
variation in pp,ij (see ‘Predicting probability of presence’ below). 334 
 335 
We modeled pd,. on the log scale using the perpendicular distance of each group q from the 336 
transect line (xiq) and the half-normal detection function: 337 
 338 

𝑝𝑝𝑑𝑑,.𝑞𝑞 = 𝑒𝑒𝑒𝑒𝑝𝑝 �−
𝑒𝑒𝑖𝑖𝑞𝑞2

2𝜎𝜎𝑖𝑖𝑞𝑞2
�, 339 

 340 
where σiq is the scale parameter. As noted above, we did not include group size as a covariate on 341 
σiq because it did not help explain variation in pd,.. We estimated the probability of being a 342 
Kittlitz’s murrelet as 343 
 344 

𝑦𝑦𝑝𝑝𝑘𝑘,.𝑚𝑚  ~ Bernoulli(pk,.m), 345 
 346 
where identified groups in each stratum across all surveys were used to estimate pk,.m. We 347 
modeled group size of the augmented groups as 348 
 349 

yg,.q ~ Poisson(λ), 350 
 351 
where yg,.q is the observed group size q across all surveys and λ is mean group size.  352 
 353 
Predicting probability of presence.—We attempted to predict pp of radio-tagged murrelets in the 354 
sampling area using environmental covariates so that we could estimate it in years for which we 355 
lacked telemetry data (i.e. 2005, 2016, and 2017) and potentially improve our boat survey 356 
protocol to minimize variation in pp in the future. We considered five covariates: tidal stage, tidal 357 
current strength, daily precipitation, daily average wind speed, and the proportion of Icy Bay 358 
state covered in ice. We hypothesized that pp would be higher during the flood (incoming tide) 359 
than the ebb and positively associated with tidal current strength, reasoning that these conditions 360 
would concentrate murrelet prey. We posited that pp would be negatively associated with daily 361 
precipitation because of increased freshwater input into Icy Bay, possibly reducing prey or 362 
access to prey because of higher turbidity, and positively related to daily average wind speed, as 363 
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an indicator of offshore storms. Lastly, we hypothesized that pp would be inversely related to the 364 
proportion of ice in the Icy Bay state, as ice would displace murrelets.  365 
 366 
We used a generalized linear mixed model (binomial error, logit link) with random effects for 367 
year and individual to explore our ability to predict pp with environmental covariates. We filtered 368 
telemetry data to include the same dates as our boat survey protocol (1–15 July); we also 369 
excluded murrelet locations at a nest because environmental data for those records were not 370 
relevant. We scaled all covariates to have a mean of 0 and standard deviation of 1. To assess our 371 
model, we used cross-validation by randomly selecting 80% of the records to estimate pp, then 372 
using the estimated pp to predict presence for the remaining 20%, setting a threshold of 0.5 to 373 
denote whether a murrelet was predicted to be present or not in the sampling area. We then 374 
created a confusion matrix comparing predicted and actual presence to evaluate our ability to 375 
predict presence.   376 
 377 
Estimating trend in abundance.—We used a state space model to estimate trend in abundance, or 378 
the instantaneous growth rate (r), of the statistical and biological populations (i.e. without and 379 
with pp, respectively). Our state space model included a random effect for year and weighted the 380 
response variable (log abundance) by the inverse of its variance. For years with direct estimates 381 
of pp (2007–2012), we used abundance of the biological population estimated incorporating 382 
telemetry data (3-day window). In years without telemetry data (2005, 2016–2017), we used 383 
mean pp from across the 15-day period in all years, with year and individual included as random 384 
effects in the estimation process. We intended to predict pp for use in these non-telemetry years, 385 
but because our predictive power was low, we opted to use mean pp. To assess the effect of 386 
including pp in our trend estimate, we examined the root-mean-square-error (RMSE) of mean r 387 
and percent change of coefficients of variation (CV) of lambda (λ), converted from mean r to 388 
avoid division by 0, between models without and with pp. We report trend results across all years 389 
(2005–2017).  390 
 391 
We fit all models using JAGS (Plummer 2003) with R 4.2.1 (R Core Team 2019) using R2jags 392 
as an interface. We used weakly informative priors on all parameters and 3 chains of 50,000 393 
iterations, discarding the first 15,000 per chain as burn-in (Appendix 4). We assessed model 394 
convergence through visual inspection of trace plots and the Gelman-Rubin diagnostic (Brooks 395 
and Gelman 1998). We assumed convergence had occurred when chains overlapped 396 
substantially, and the Gelman-Rubin diagnostic was <1.1 for all parameters.  397 
 398 
RESULTS 399 
Components of detection probability 400 
We radio-tagged 191 Kittlitz’s murrelets between 12 May and 3 June, 2007–2012. Of these, 132 401 
birds remained alive in the study area until at least 1 July when boat surveys commenced, 402 
contributing to 516 telemetry locations that were used to estimate pp (Table 1). Across all flights 403 
and years, relocations of most radio-tagged murrelets were in the Icy Bay state (53%) where boat 404 
surveys occurred, followed by the inaccessible states of Ocean (24%), East Bay (18%), Nest 405 
(4%), and Upper Bay (<1%; Appendix 3a). Only 5% of murrelets in the Icy Bay state were in 406 
close pack ice; the remainder were in open pack ice (8%), brash ice (15%), or no ice (72%; 407 
Appendix 3b).  408 
 409 
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Across all years, the median of pp was 0.50 (SE=0.02). During the 15-day period in which boat 410 
surveys were conducted, median annual estimates of pp ranged from 0.35 (SE=0.06) to 0.65 411 
(SE=0.04; Figure 2a), which was similar to median estimates from the 3-day window 412 
surrounding each survey (0.32 [SE=0.10]–0.76 [SE=0.09]; Appendix 1). Within a year, pp varied 413 
little, as indicated by the points falling close to the identity line (Figure 3). Although the 95% 414 
credible intervals (CrI) across surveys and within a year always overlapped, they narrowed as the 415 
window widened, reflecting an increase in the number of telemetry locations used to estimate pp 416 
(Appendix 1).  417 
 418 
Our ability to predict pp using five environmental covariates was generally poor (Figure 4). We 419 
correctly predicted 62% of the observed outcomes and incorrectly predicted 38%. Of the 420 
environmental covariates examined, proportion of Icy Bay state covered in ice was the only one 421 
with 95% CrI that did not include 0 (βice = -0.356, CrI = -0.665, -0.059). While our hypothesis 422 
that pp would be higher during a flood tide was not supported (βtide = -0.006, CrI = -0.345, 423 
0.356), we found that pp was more variable with a flood compared to an ebb tide (Figure 4b).  424 
 425 
Between 2005 and 2017, we conducted 17 boat surveys for Brachyramphus murrelets, of which 426 
only one covered the sampling area completely (mean fraction of sampling area covered=0.80, 427 
range=0.56–1.00; Table 1). This limitation of boat survey coverage due to shifting ice 428 
underscores the dynamic nature of our study area. Median annual estimates of pd varied from 429 
0.49 to 0.77 with CVs below 9% (Figure 2b). The probability that a detected Brachyramphus 430 
murrelet was a Kittlitz’s murrelet, not a marbled murrelet, was high in both spatial strata, but 431 
lower and more variable in the Main Bay (range=0.72–1.00) compared to Taan Fjord 432 
(range=0.95–1.00; Figure 2c,d). 433 
 434 
Abundance and trend 435 
Abundance estimates of the statistical population were positively correlated with estimates of pp; 436 
that is, when pp was low, abundance was low, and vice versa (Figure 5), suggesting that Kittlitz’s 437 
murrelets in Icy Bay were functioning as a single biological population. In all years, biological 438 
population abundance estimates were generally stable across all window lengths (Appendix 2). 439 
In years when two boat surveys were conducted, our integrated model with pp reduced CVs of 440 
annual abundance estimates by 13–35%; in the year with only one boat survey (2009), CVs 441 
increased by 270% (Figure 6), likely because the CV of the 2009 population estimate was highly 442 
underestimated.  443 
 444 
From 2005 to 2017, the trends in abundance of the statistical and biological populations were 445 
negative (Figure 7). The probability of a decline (mean r < 0) across our study area was 67% for 446 
the statistical population and 73% for the biological population. Estimates of mean r were -0.024 447 
(CrI = -0.231, 0.183) for the statistical population (i.e., without pp) and -0.043 (CrI = -0.265, 448 
0.191) for the biological population (i.e., with pp). By including pp in the state space model, we 449 
reduced sampling variance in the estimate of mean r by 17%. However, the CV for λ increased 450 
by 12% and the RMSE for mean r increased from 0.160 to 0.185, indicating that we reduced 451 
within-year variance by accounting for pp, but not across-year variance.  452 
 453 
DISCUSSION 454 
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We developed a contemporary integrated model to resolve a population mismatch and generate 455 
unbiased abundance estimates of a highly mobile, non-territorial species, the Kittlitz’s murrelet, 456 
in a dynamic marine environment. By decomposing detection probability, we were able to use 457 
multiple datasets of different data types that did not rely on replicate or repeat sampling, which 458 
was not feasible for our study species or area without an unrealistically large number of sampling 459 
occasions or sites (e.g., N-mixture models; Royle 2004, Barker et al. 2008, Hostetter et al. 2019). 460 
Alternatively, we would have needed to devise a way to increase capture probabilities to utilize 461 
capture-recapture or resight models effectively (Burnham et al. 1987). Moreover, the hierarchical 462 
structure of our integrated model allowed us to work within a single analytical framework and 463 
appropriately account for all sources of uncertainty. 464 
 465 
We are not aware of another abundance model that accounts for all components of detection 466 
probability, especially pp, without using replicate or repeat sampling methods. Fischbach et al. 467 
(2022) developed a similar integrated model to account for haulout probability, which is 468 
analogous to pp, for estimating abundance of Pacific walrus (Odobenus rosmarus divergens), a 469 
species like Brachyramphus murrelets for which population monitoring is notoriously difficult. 470 
Their model combined count data from unoccupied aircraft systems and telemetry data, and 471 
therefore, while conceptually similar to our model, it is not applicable to our situation because of 472 
differences in data types and habitat dynamics, nor does it account for pa or pd. In these ways, 473 
our model builds on that of Fischbach et al. (2022) and adds to the toolbox of demographic 474 
models that account for spatial temporary emigration. 475 
 476 
By accounting for pp in our model, we improved the precision of annual abundance estimates by 477 
13–35% when we followed our standard protocol of conducting two boat surveys. However, 478 
results from 2009, when only one boat survey was conducted, clearly indicated that pp and 479 
survey effort were conflated, as the CV for the abundance estimate increased about tenfold. This 480 
outcome emphasizes the importance of a second boat survey annually if pp varies; otherwise, the 481 
abundance estimate from a single survey can have misleadingly high precision. We suspect this 482 
implication would be true for other highly mobile species and dynamic systems as well. 483 
Nonetheless, our ability to notably improve CVs for abundance estimates is a major achievement 484 
for a species often plagued with imprecise estimates (USFWS 2013, Hoekman 2019). 485 
  486 
Although we increased the precision of annual abundance estimates, we did not see the same 487 
improvement in the estimate of mean r, or trend. Thus, while we explained and reduced variation 488 
in abundance within a year, we failed to account for a source(s) of variation across years. We 489 
suspect it relates to the propensity for Kittlitz’s murrelets to skip breeding in some years and 490 
resultant variable return rates to Icy Bay. A modeling exercise such as a life-stage simulation 491 
analysis (Wisdom et al. 2000) or an integrated population model (Schaub et al. 2007) would help 492 
approximate the potential influence of these latent parameters until direct data are available. It is 493 
worth noting that while we did not increase precision of the trend estimate, we also did not 494 
reduce it even though we added a parameter to the estimation process, suggesting some 495 
information about pp was useful. 496 
 497 
Though a population mismatch existed, we found that abundance estimates for the statistical 498 
population of Kittlitz’s murrelets in Icy Bay were proportional to those of the biological 499 
population. We were somewhat surprised by this finding because, based on a survival analysis 500 
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with the same telemetry dataset, radio-tagged murrelets moved frequently among spatial states 501 
with daily transition probabilities ranging from 0.135 to 0.279 (Kissling et al. 2015b). Yet, 502 
despite these moderate movement rates, pp varied little within a year (Figure 3). Further, pp was 503 
correlated with abundance of the statistical population across years (Figure 5), which suggests 504 
that murrelets in our study area were operating as a single biological population, otherwise we 505 
would have expected discordance. Importantly, we did not detect a temporal trend in pp, the link 506 
between the two types of populations, meaning that pp in the statistical population was random 507 
with respect to the biological population and inference could be extended without bias. 508 
 509 
As with all models, our model has assumptions beyond those associated with specific methods 510 
like radio telemetry (White and Garrott 1990) and distance sampling (Buckland et al. 2001). 511 
Inherent to boat and telemetry surveys, we assumed that the statistical population was closed 512 
with respect to pp for survey duration and within the 3-day window used to estimate biological 513 
population abundance. While we developed our model in part to avoid assumptions of closure, it 514 
is not entirely possible with the survey methods used in our study; essentially, our model relaxed 515 
the assumption considerably, though did not eliminate it. Even so, given that estimates of pp did 516 
not vary much within a year, we feel confident that we sufficiently met the closure assumption 517 
for the purpose of estimating abundance. For trend estimation, we also assumed that mean pp was 518 
an adequate estimate of pp in the three years with boat survey data but without telemetry data. 519 
Given that pp varied considerably across years, this assumption likely was violated, but in the 520 
absence of annual telemetry data, we think that the mean and its associated variance are adequate 521 
because the variance was correctly incorporated into the trend variance by the Bayesian model. 522 
Also, when estimating pk, we assumed that both murrelet species were equally likely to be 523 
classed as unidentified. We think this assumption was met reasonably well in our dataset even 524 
though Kittlitz’s murrelets far outnumber marbled murrelets in our study area. Further, using 525 
field trials, we found misidentification rates of Brachyramphus murrelets to be low (Schaefer et 526 
al. 2015). 527 
 528 
Our final assumption was that the tagged murrelets were representative of the biological 529 
population, as we defined it. Although our boat surveys were conducted in early July, we tagged 530 
murrelets in May because our capture technique requires darkness, which is not sufficiently 531 
available in our study area for about 6–8 weeks surrounding summer solstice (21 June). 532 
Therefore, we inevitably tagged a few birds that were transiting through Icy Bay, which we only 533 
located once or twice, or never again. These birds were not included in our estimation of pp 534 
because they were not located during our boat surveys, so they are not relevant here. 535 
Additionally, because we only conducted telemetry flights in and near Icy Bay, it is possible that 536 
some tagged birds could have temporarily emigrated beyond our search area, which would have 537 
biased our estimation of pp. However, we do not believe it was the case, largely because it was 538 
rare for a tagged bird to leave our study area and then return, especially as late in the breeding 539 
season as July. In fact, we removed eight locations (<2%) from our analysis because they were 540 
not within any of the five spatial states; none of those birds were located again, suggesting they 541 
permanently emigrated, or possibly the tag stopped reporting for whatever reason. Therefore, we 542 
feel confident this assumption was met as best we could with VHF transmitters.  543 
 544 
Despite our poor ability to predict pp, we gained new insights into the ecology of Kittlitz’s 545 
murrelets. First, in previous studies of this species, we posited that, if murrelets temporarily 546 
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emigrated during boat surveys, they were moving into dense icefloes near the tidewater glaciers 547 
(i.e., Upper Bay), presumably to search for food or avoid predation (Kissling et al. 2007, Day et 548 
al. 2020). Here, we confirmed that when the proportion of ice in the Icy Bay state increased, pp 549 
decreased, but we found that instead of moving into pack ice closer to the glacier(s), murrelets 550 
moved into shallow or rough waters away from the glaciers (i.e., East Bay and Ocean, 551 
respectively). While this finding should be viewed cautiously until confirmed at other times and 552 
locations, it appears that murrelets are less associated with ice when at sea at fine spatial scales 553 
than we previously thought, at least in the Icy Bay system.  554 
 555 
Second, although pp varied little within a year, it varied considerably across years, revealing a 556 
spatiotemporal pattern that implied an ecological driver(s) was at play but was not captured by 557 
the available environmental covariates. For example, pp was comparatively low across the 15-558 
day period in 2007 and 2010, yet in 2007, murrelets outside of the sampled area were mostly in 559 
the Ocean state and in 2010, they were mostly in the East Bay state (Appendix 3). From this 560 
result, we assume that variation in prey availability led murrelets to select states outside of the 561 
Icy Bay state, with patterns that varied on an annual, rather than a within-year, basis. With 562 
additional data from Icy Bay or elsewhere, this finding may eventually provide clues as to the 563 
ecological driver(s) of these patterns and improve our ability to predict pp. 564 
 565 
Our model to align statistical and biological populations for abundance estimation is simple, 566 
flexible, and scalable and is suitable for a variety of species and habitats. It is a practical solution 567 
to resolving a population mismatch when repeat and replicate sampling is not feasible and 568 
increased precision of abundance and trend estimates is desired, as is the case with many species 569 
of conservation concern like the Kittlitz’s murrelet (USFWS 2013). Although it requires 570 
telemetered animals, which can be costly compared to methods for unmarked animals, it was the 571 
only reasonable way to estimate pp for Kittlitz’s murrelets in Icy Bay and we suspect the same is 572 
true for other species and habitats that are difficult to sample (e.g., walrus; Fischbach et al. 573 
2022). The use of satellite transmitters, which are not readily available yet for murrelets, would 574 
greatly facilitate and perhaps improve estimation of pp, especially if location data could be 575 
collected at a finer temporal scale. Moreover, satellite transmitters would relax the assumption 576 
related to representativeness of the tagged animals of the biological population and could 577 
improve precision of trend estimates if their retention and operation extended beyond a single 578 
year.  579 
 580 
For any study reporting abundance, it is critical to clearly define the population to which 581 
abundance refers (Hammond et al. 2021), though delineating populations can be difficult and 582 
require substantial data (Rushing et al. 2016). Our goal here was not to provide a framework for 583 
how to delineate biological populations, but instead to develop an analytical approach to 584 
resolving a population mismatch if one exists. However, we urge ecologists to think critically 585 
about the population in which they want to draw inference, especially as tracking technology 586 
improves and model complexity increases. If possible, the statistical population should be the 587 
same as the biological population, or at least representative of it in terms of population processes 588 
or ecological conditions, which fortunately happened in our case. Otherwise, if pp has temporal 589 
or geographic patterns, inference about abundance for the population of interest is confounded 590 
with its use of the sampled area and could be misleading. This messy situation with potentially 591 
misleading estimates can have conservation implications if threats or stressors vary. For 592 
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example, threatened grizzly bears (Ursus arctos) can roam outside of national park boundaries, 593 
with bears outside the park being subject to differing mortality sources not captured by within-594 
park monitoring (Schwartz et al. 2010). Further, if estimates of abundance are subsequently used 595 
in population models, it is imperative that they are from the same population used to estimate 596 
other demographic parameters (e.g., survival and productivity) to avoid misleading inference 597 
about population dynamics.  598 
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Table 1. Sample sizes and effort by survey type for estimating abundance of a biological 
population of Kittlitz’s murrelets, Icy Bay, Alaska, 1–15 July 2005–2017. Truncation distance 
was used to model the detection function to estimate probability of detection (pd) with distance 
sampling data. 

Year 

Boat surveys Telemetry surveys 

# 
surveys 

Portion of sampling 
area surveyed Truncation 

distance (m) 

15-day period 

Survey 1 Survey 2 # flights 
# radio-
tagged 

individuals 
# locations 

2005 2 0.85 0.85 250 - - - 
2007 2 0.75 0.74 281 4 24 82 
2008 2 0.75 0.70 278 8 20 137 
2009a 1 0.91 - 288 5 20 85 
2010 2 0.67 0.91 242 3 24 58 
2011 2 0.77 0.73 210 4 27 100 
2012 2 0.75 0.56 181 4 17 54 
2016 2 0.91 1.00 325 - - - 
2017 2 0.91 0.90 323 - - - 

aBoat survey conducted on 17 July 2009; telemetry survey information presented here for 1–15 July 2009. 
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Figure 1. Map of study area, Icy Bay, Alaska, where we conducted boat and telemetry surveys to 
estimate abundance of Kittlitz’s murrelets. Our sampling area during telemetry flights comprised 
five spatial states that collectively formed the extent of the biological population: Icy Bay (Main 
Bay and Taan Fjord sub-states combined), East Bay, Upper Bay, Ocean, and nest. During boat 
surveys, only the Icy Bay state, with Main Bay and Taan Fjord as strata, was regularly accessible 
and formed the extent of the statistical population.  
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Figure 2. Posterior distributions of estimates of detection probability components for Kittlitz’s murrelets, Icy Bay, Alaska, 2005–2017. 
Components are (a) probability of presence (pp), (b) probability of detection (pd), and probability of being a Kittlitz’s murrelet (pk) in 
(c) Main Bay and (d) Taan Fjord strata. The median of the estimate is denoted with a point, the 50% credible interval with a thick line, 
and the 95% credible interval with a thin line. Note that for pd (b), truncation distance varied across years (Table 1).  
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Figure 3. Probability of presence (pp) for the 3-day window by boat survey within a year. The 
error bars describe the standard errors of the estimate and correspond with the respective axes. 
The identity, or 1:1 line, is included in gray. 
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Figure 4. Observed outcomes (teal points) and predicted probability of presence (pp; orange 
triangles) using environmental covariates for Kittlitz’s murrelets, Icy Bay Alaska, 2007– 2012. 
Covariates on x-axis are scaled; see ‘Methods’ text for description. For year (f), the dotted line 
denotes the mean pp across all years in the observed dataset. 
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Figure 5. Mean probability of presence (pp) across both surveys for the 3-day window by 
abundance of the statistical population, i.e., without pp. The error bars describe the standard 
errors of the estimate and correspond with the axes.   
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Figure 6. Posterior distributions of annual abundances estimate for the Kittlitz’s murrelet and corresponding coefficients of variation 
(triangles) without probability of presence (pp; statistical population) and with pp (3-day window; biological population) around 
corresponding boat surveys, Icy Bay, Alaska. In 2009, when only one boat survey was completed, the posterior distribution was 
extremely narrow (overly precise) and extends beyond the y-axis limits of this figure for display purposes. 
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Figure 7. Annual and predicted abundance estimates of the statistical population (without 
probability of presence, pp) and biological population (with pp) of Kittlitz’s murrelets, Icy Bay, 
Alaska, 2005–2017. Annual estimates are denoted with open circles and predicted estimates from 
the state-space model are identified with closed circles; the shaded areas describe the 95% 
credible intervals of the modeled abundance. Pp is accounted for in the biological population 
estimates using telemetry data surrounding a 3-day window of a boat survey.  
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Appendix 1. Estimates of probability of presence (pp; ± 95% credible intervals) of radio-tagged 
Kittlitz’s murrelets by window length (1-, 3-, 5-, 7-day, and 15-day) and boat survey (survey 
1=black, survey 2=red), Icy Bay, Alaska, 1–15 July 2007–2012. Asterisks indicate windows 
when the same telemetry data were used to estimate pp for boat surveys 1 and 2. 
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Appendix 2. Kittlitz’s murrelet annual abundance estimates and 95% credible intervals (black) and corresponding coefficients of 
variation (blue) without probability of presence (pp; None; statistical population) and with pp by window length (1-, 3-, 5-, and 7-day; 
biological population) around corresponding boat surveys and entire window (15-day) when boat surveys were conducted (i.e. 1–15 
July), Icy Bay, Alaska. We completed two boat surveys each year except 2009 when only one survey was done.
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Appendix 3. Number of telemetry locations of Kittlitz’s murrelets by year and (a) spatial state 
and (b) Bowditch ice class, 1–15 July 2007–2012, Icy Bay, Alaska. We did not location any 
murrelets in very close pack ice. 
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Appendix 4. JAGS code and priors 
All raw data and code are included in data release via Dryad at: 
https://doi.org/10.5061/dryad.0cfxpnw8m 
 
##### integrated model for abundance with prob of presence from telemetry data, probability of 
detection from distance sampling data, and probability of being a Kittlitz’s murrelet to allocated 
unidentified murrelets in JAGS for two boat surveys in a year 
 
model { 
    ##### priors 
    ### priors for distance sampling, group size, and speciesID  
    # data augmentation parameter; proportion of z's that are real animals 
    for( i in 1:nstrata){ 
      psi1[i] ~ dunif(0,1)   # in survey 1 
      psi2[i] ~ dunif(0,1)   # in survey 2 
    } 
     
    # intercept for probability of being KIMU  
    for( i in 1:nstrata){ 
      b0.sid[i] ~ dnorm( 0, 0.01 ) T(-10,10) 
      logit(mean.sid1[i]) <- b0.sid[i]   
      logit(mean.sid2[i]) <- b0.sid[i] 
    } 
     
    lambda.group ~ dunif(1, 10)     # dgamma(0.1, 0.1)    # prior for group size 
    alpha0 ~ dunif(-10, 10)       # intercept for sigma (shape of detection function) 
    #alpha1 ~ dunif(-10, 10)     # prior for group size effect on detection function (if using) 
     
    ### priors for prob of being in core area 
    #beta0 ~ dnorm( 0, 0.01 )T(-10,10)  # prior for intercept (if needed) 
    beta1 ~ dnorm( 0, 0.01 )T(-10,10)  # prior for Survey1 
    beta2 ~ dnorm( 0, 0.01 )T(-10,10)  # prior for Survey2 
 
    ##### likelihood 
    ### likelihood for distance sampling, group size, and speciesID for survey 1 
    for ( m in 1:nstrata) { 
       
    for( i in 1:nind.dist1){ 
       
      # process model 
      z1[i,m] ~ dbern(psi1[m])    # fake and real animals  
      x1[i,m] ~ dunif(0, B)   # distribution of distances; B is max distance of strip width 
      species.id1[i,m] ~ dbern( mean.sid1[m])    # prob of being a KIMU 
      group.size1[i,m] ~ dpois(lambda.group)  # distribution of group size  
       
      # observation model 
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      # log(sigma1[i,m]) <- alpha0 + alpha1 * group.size1[i,m]   # if using group size 
      log(sigma1[i,m]) <- alpha0  # if not using group size in detection function 
      logdp1[i,m] <- -((x1[i,m]*x1[i,m]) / (2*sigma1[i,m]*sigma1[i,m]))     # half normal  
      dp1[i,m] <- exp(logdp1[i,m]) 
      mu1[i,m] <- z1[i,m] * dp1[i,m]     
      y1[i,m] ~ dbern( mu1[i,m] )   # likelihood for probability of detection (pd; distance sampling) 
       
      zg1[i,m] <- z1[i,m] * (group.size1[i,m] )   # number of individuals in group i 
    } 
     
    } 
     
    ### likelihood for distance sampling, group size, and speciesID for survey 2 
    for (m in 1:nstrata) { 
     
    for( i in 1:nind.dist2){ 
       
      # process model 
      z2[i,m] ~ dbern(psi2[m])     
      x2[i,m] ~ dunif(0, B)    
      species.id2[i,m] ~ dbern( mean.sid2[m])     
      group.size2[i,m] ~ dpois(lambda.group)   
       
      # observation model 
      # log(sigma2[i,m]) <- alpha0 + alpha1 * group.size2[i,m]      
      log(sigma2[i,m]) <- alpha0 
      logdp2[i,m] <- -((x2[i,m]*x2[i,m]) / (2*sigma2[i,m]*sigma2[i,m]))      
      dp2[i,m] <- exp(logdp2[i,m]) 
      mu2[i,m] <- z2[i,m] * dp2[i,m]     
      y2[i,m] ~ dbern( mu2[i,m] )    
       
      zg2[i,m] <- z2[i,m] * (group.size2[i,m] )    
    } 
     
    } 
     
    ### likelihood for prob of being in core area  
    # for survey 1  
    for( i in 1:nlocs1 ) { 
     core1[i] ~ dbern(p1[i])    # likelihood for probability of presence (pp) 
     logit(p1[i]) <- beta1     # success probability 
    } 
     
    # for survey 2 
    for( i in 1:nlocs2 ) { 
     core2[i] ~ dbern(p2[i]) 
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     logit(p2[i]) <- beta2 
    } 
     
    ##### derived parameters  
    ### derived parameters for distance sampling, group size, and speciesID 
    G[1] <- sum(z1[,1]) 
    G[2] <- sum(z1[,2]) 
    G[3] <- sum(z2[,1]) 
    G[4] <- sum(z2[,2]) 
     
    ### population size of KIMU (study area km2 / (transect length * strip width)) 
    # population size of KIMU in MB for survey 1 
    N.1[1] <- sum(zg1[1:nind.dist1, 1] * species.id1[1:nind.dist1, 1])  
       * (mb1.km2 / (mb.length1 * (B*2/1000)))  
     
    # population size of KIMU in TF for survey 1    
    N.1[2] <- sum(zg1[1:nind.dist1, 2] * species.id1[1:nind.dist1, 2])  
       * (tf1.km2 / (tf.length1 * (B*2/1000)))  
     
    # estimated population size of KIMU for survey 1 
    N[1] <- sum(N.1[1], N.1[2]) 
     
    # population size of KIMU in MB for survey 2 
    N.2[1] <- sum(zg2[1:nind.dist2, 1] * species.id2[1:nind.dist2, 1])  
       * (mb2.km2 / (mb.length2 * (B*2/1000)))  
     
    # population size of KIMU in TF for survey 2 
    N.2[2] <- sum(zg2[1:nind.dist2, 2] * species.id2[1:nind.dist2, 2])  
       * (tf2.km2 / (tf.length2 * (B*2/1000))) 
     
    # estimated population size of KIMU for survey 2    
    N[2] <- sum(N.2[1], N.2[2]) 
     
    ### derived parameters for prob of being in core area 
    # mean prob of presence in core area for survey 1 
    logit(core.p[1]) <- beta1     
     
    # mean prob of presence in core area for survey 2 
    logit(core.p[2]) <- beta2    
     
    ### integrated model for abundance of biological population 
    # prior for Ntot  
    logNtot ~ dunif(6, 10) 
    
    Ntot <- exp(logNtot)  
    sigmaN <- Ntot*core.p[1]*(1-core.p[1])    # approximate SE 
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    for( m in 1:nsurvey){ 
      muN[m] <- exp( -( ((N[m]/core.p[m])-Ntot)*((N[m]/core.p[m])-Ntot  )) / 
(2*sigmaN*sigmaN) )  
      yN[m] ~ dbern(muN[m]) 
    } 
  } 
 
##### state space model to estimate trend in abundance of murrelets with random effects for 
year and weighted response variable (log abundance) by inverse of the variance in JAGS 
 
model { 
  ##### priors 
  logN.pred[1] ~ dnorm(7, 0.01)   # initial population size 
   
  mean.r ~ dnorm(0, 0.001)   # mean growth rate 
   
  sigma.r ~ dunif(0, 1)   # SD of state process 
  tau.r <- pow(sigma.r, -2) 
   
  sigma.obs ~ dunif(0, 1)   # SD of observation process 
  tau.obs <- pow(sigma.obs, -2) 
   
  mean.y ~ dunif(0, 3000) 
  tau.y ~ dunif(0, 50) 
   
  for (t in 1:nyears){ 
  y[t] ~ dnorm(mean.y, tau.y) T(0, 10000) 
  } 
   
  mean.sd ~ dunif(0, 1000) 
  tau.sd ~ dunif(0, 10) 
   
  for (t in 1:nyears){ 
  y.sd[t] ~ dnorm(mean.sd, tau.sd) T(0, 2000) 
  } 
   
  ##### likelihood 
  ## state process 
  for (t in 1:(nyears-1)){ 
    r[t] ~ dnorm(mean.r, tau.r)           
    logN.pred[t+1] <- logN.pred[t] + r[t] 
  } 
   
  ## observation process 
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  for (t in 1:nyears){ 
    logy[t] ~ dnorm(logN.pred[t], tau.obs*(y.sd[t]/y[t])^2) 
  } 
   
  ## derived parameter - population size on real scale 
  for (t in 1:nyears){ 
    N.pred[t] <- exp(logN.pred[t]) 
  } 
   
} 
 
 
 
 
 
 
 
 
 
 
 
 
 


