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ABSTRACT 26 

Digital agriculture and biodiversity monitoring share many data collection technologies and 27 

analytical methods, yet remain siloed. We propose a pathway to harness Digital Agriculture 28 

data streams for dynamic, near-real-time assessments of biodiversity-yield interactions aligned 29 

with policy-relevant indicators. Bridging these fields, enabled by advances in science and 30 

policy, can enhance farmland biodiversity monitoring and accelerate the urgently needed 31 

transition to sustainable agriculture, securing nature’s contributions to people. 32 

 33 

INTRODUCTION 34 

Both agriculture and biodiversity science are undergoing rapid digital transformations. 35 

Research fields that were once constrained by sparse, irregular, or coarse-resolution data are 36 

now becoming increasingly data-rich. In agriculture, the widespread adoption of automated 37 

sensors for precision farming (hereafter ‘Digital Agriculture’), including cameras1,2, drones3,4, 38 

and genetic sampling5,6, enables continuous, high-resolution monitoring data7,8. These data are 39 

used to maximize yields, reduce waste, and increase the resilience and sustainability of farming 40 

systems9. Simultaneously, biodiversity monitoring is being revolutionized by the same sensing 41 

technologies2,10,11, enabling unprecedented species- and community-level biodiversity 42 

assessments12,13. 43 

This convergence in technologies creates a unique opportunity: the potential to align 44 

agricultural and ecological monitoring infrastructures, methods, and objectives. Through 45 

Digital Agriculture, sensors established for digital farm management could also generate 46 

primary biodiversity data required for biodiversity monitoring and policy-relevant 47 

reporting14,15. In fact, both applications may even use the same methods to generate insights 48 

from generated data streams (e.g., same image segmentation algorithms16,17), increasing the 49 

potential for interoperability. Notably, primary biodiversity data are already generated through 50 

Digital Agriculture (Fig. 1), but collected for purposes other than biodiversity monitoring (e.g. 51 

pest control1,3,18, soil management19–21, phenotyping22–24). In some cases, primary biodiversity 52 

data may even be collected unintentionally and treated as ‘noise’ (e.g., ground nests 123 and 53 

molehills in drone imagery26). 54 

A growing body of literature recognizes the importance of Digital Agriculture for 55 

biodiversity. For instance, farm-management data has been proposed as a tool for conservation 56 

by identifying low-productivity zones for conservation strips8, or monitoring habitat quality12. 57 

At the policy-science interface, the Food and Agriculture Organization (FAO) supports these 58 

approaches through its 2022–2031 strategic plan, which encourages the application of digital 59 

technologies to optimize the use of natural resources, reduce environmental  impacts, and 60 

promote biodiversity-friendly farming methods27. This aligns with the Global Biodiversity 61 

Framework (GBF) targets, particularly those related to sustainable land management (Target 62 

10), reduced food waste (Target 16), and lower agricultural pollution (Target 7). However, 63 

despite overlapping objectives, biodiversity monitoring initiatives largely operate 64 

independently of the rapidly evolving digital agriculture sector. This disconnect limits the 65 

integration of high-resolution, real-time agricultural and biodiversity data, potentially missing 66 

valuable opportunities for more precise and responsive conservation planning. 67 
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Indeed, such data integration is rare among state-of-the-art agroecological monitoring 68 

schemes (Fig. 2). Although meta-analysis studies aimed at linking measured yield and 69 

biodiversity at the same locations28,29, many biodiversity studies continue to rely on 70 

(sub)national agricultural statistics to assess biodiversity-yield interactions30,31. These statistics 71 

exhibit spatial gaps, temporal inconsistencies, and uncertain quality32, or lack ecologically 72 

meaningful thematic and spatial detail33. Similarly, biodiversity data frequently originates from 73 

short-term or taxonomically narrow monitoring efforts34–36. Without systematic and temporally 74 

aligned data, data biases shape perceived biodiversity changes37,38. 75 

Through Digital Agriculture, agricultural landscapes, which now comprise nearly half of the 76 

world’s habitable land39, could become living laboratories. Data streams on crop productivity, 77 

if repurposed for biodiversity monitoring, would offer direct evidence on biodiversity–yield 78 

interactions, which may be temporally and spatially dynamic40 and dependent on local 79 

environmental and socio-economic contexts34 (Fig. 2). Together with state-of-the-art sampling 80 

designs37, Digital Agriculture could thus help build scalable causal inference frameworks 81 

needed for policy-relevant biodiversity change reporting41 and evidence-based land 82 

management42,43. Crucially, integrating biodiversity monitoring into Digital Agriculture needs 83 

not to come at the expense of crop productivity. Instead, it can enable agricultural innovation 84 

while advancing sustainable development – particularly when co-designed across science, 85 

policy, and practice. 86 

In this paper, we discuss how Digital Agriculture enables generating data on species 87 

occurrences and traits of  ‘associated agrobiodiversity’44. This subset of biodiversity refers to 88 

wild species co-occurring in agricultural landscapes, which may account for large shares of 89 

known species pools (e.g., 51% of all vascular plants, earthworms, spiders, and wild bees in 90 

Europe45), and species affected by – and adapting to – agriculture-related habitat 91 

transformations46,47. This paper is organized in two major sections. First, we discuss how 92 

biodiversity monitoring is, in principle, already feasible through common applications in 93 

Digital Agriculture. Second, we propose pathways for operationalizing the use of Digital 94 

Agriculture for monitoring biodiversity, including through changes in participation strategies 95 

and monitoring cultures, and by capitalizing on established and foreseen funding schemes. 96 

 97 

 98 
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Figure 1. Uncovering biodiversity data through Digital Agriculture. a) Biodiversity monitoring is supported 99 

by various technologies, including drones (b), camera traps (c), eDNA (d), and passive acoustic monitoring (e). 100 

These technologies record species occurrences, enabling subsequent assessments of species and community 101 

compositions (in blue; f). Digital Agriculture (g) uses the same technologies in routine farm management practices 102 

(shown in red). Drones and camera traps (h), sometimes combined with passive acoustic monitoring (i), monitor 103 

pest occurrences and damages. Simultaneously, weeding robots facilitate the removal of weeds (j) that compete 104 

with crops for nutrients. Soil sampling (k), often used to control for nutrient availability, may also support the 105 

extraction of eDNA to control for harmful pathogens (l). Because biodiversity monitoring (a) shares technology 106 

requirements with Digital Agriculture (g), data from the latter, if made accessible to biodiversity monitoring 107 

experts, could enhance species and community composition assessments (in blue; f). 108 

 109 

 110 

Figure 2. Potential for farm-level causal inference. a) In a biodiversity-focused survey, species observations 111 

(bird icon, in blue) are detected with passive acoustic monitoring. The timing of the survey is aligned with the 112 

breeding season of the target species (blue outline). Species detections are paired with categorical information on 113 

land cover (in dark green), a common practice in state-of-the-art agroecological research. b) Passive acoustic 114 

sensors are used to detect crop-damaging birds, while drones are used to quantify crop growth, damages, and 115 

health. If repurposed for biodiversity monitoring, data streams generated for pest and crop monitoring could be 116 

used to generate, for instance, time-series on bird richness (c) based on bird occurrences outside the breeding 117 

season (bird icons, in black). Being derived with data used for Digital Agriculture, biodiversity metrics (such as 118 

richness) would be directly paired with metrics informing on crop growth (e.g., vegetation cover fractions, d). 119 

Metrics generated with repeated and automated measurements could be accompanied by their respective, time-120 

specific uncertainty (shaded ribbons in c-d). With concurrent, multi-temporal metrics on biodiversity and crop 121 

growth, the presence and magnitude of causal effects can be formally measured. 122 

 123 

1. OPPORTUNITIES FOR MONITORING BIODIVERSITY THROUGH DIGITAL 124 

AGRICULTURE 125 

In this section, we discuss overlaps between Digital Agriculture and automated biodiversity 126 

monitoring, specifically in terms of data requirements and methods. For this, we focus on three 127 

common applications of Digital Agriculture that routinely produce data required for 128 

biodiversity monitoring: the management of pests and weeds (1.1), the monitoring of soil 129 

nutrients and pathogens (1.2), and the phenotyping of domesticated plants (1.3). We link the 130 

data streams generated by these applications to primary biodiversity data on species 131 

occurrences and traits, and map them to Essential Biodiversity Variables (EBVs; Fig. 3). These 132 

variables, long endorsed by the biodiversity research community48–50, now serve as headline 133 
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indicators in the GBF (indicator 21.1; ref.51). As such, they are essential for policy-relevant 134 

monitoring of agroecosystems.  135 

 136 

1.1. MANAGEMENT OF PESTS AND WEEDS 137 

Globally, pests and associated crop diseases cause an estimated 20–40% loss in food 138 

production each year, amounting to approximately US$220 billion in damages52. The most 139 

damaging pests include invasive mammals, insects, and birds53,54. Weeds further contribute to 140 

crop losses55 by competing with crops for water, nutrients and space, providing habitat for 141 

insect pests, and potentially harbouring harmful pathogens56. 142 

Monitoring and managing pests and weeds are common applications of Digital Agriculture. 143 

Spatial information on these factors helps optimize the use of pesticides3, weed removal 144 

efforts57, and the deployment of deterrents (e.g., playback of calls from competing species18,58. 145 

Drones and camera traps are routinely used to detect visible crop damage caused by insects 1,3, 146 

rodents59 and larger mammals60. Drone imagery also enables weed mapping16,57 and 147 

quantification of yield loss60. When visual detection is not feasible, insect traps are commonly 148 

used, informing on the presence, field-level abundance, and seasonal occurrence (or 149 

phenology) of insect pests61. Passive acoustic sensors, used to monitor insect pests62, can also 150 

detect bird pests18.  151 

In fact, biodiversity scientists often rely on the same data and technologies used in Digital 152 

Agriculture. Drones have long supported species surveys11, enhancing estimates of species 153 

richness and abundances (e.g., as demonstrated for birds63, or the monitoring of endangered 154 

and elusive species (e.g., mammals64). Similarly, camera traps are commonly used to detect 155 

various taxa2,65 – although rarely in agricultural lands66 – as are camera-equipped insect traps67 156 

and passive acoustic sensors68. The generated imagery and audio recordings are increasingly 157 

used to train species identification models69–72.  158 

By leveraging Digital Agriculture for biodiversity monitoring, several Essential 159 

Biodiversity Variables can be enriched  (EBVs; Fig. 3). These data are required to map species 160 

distributions73 and abundances74, and to subsequently infer the diversity of community level 161 

compositions75 and interactions76. Image-based surveys could further capture species-specific 162 

traits, such as body mass77 and landscape-level movements (e.g., using camera trap networks 163 

to detect individuals of a focal species78). Similarly, audio data could enable characterizing 164 

species movements within agricultural fields through acoustic localization79. These data 165 

provide a scalable basis for monitoring biodiversity within managed landscapes – data that is 166 

often missing from conventional biodiversity datasets. 167 

 168 
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 169 

Figure 3. Potential synergies between Digital Agriculture and EBVs. On the left, the different applications of 170 

Digital Agriculture highlighted in this paper, namely pest and weed control, soil monitoring, and phenotyping. On 171 

the right, Essential Biodiversity Variables (EBVs) per thematic group. Lines link each Digital Agriculture 172 

application with one or multiple EBVs. 173 

 174 

1.2. MONITORING OF SOIL NUTRIENTS AND PATHOGENS 175 

Poor soil conditions are a critical constraint on food production globally. The United Nations 176 

estimates that up to 40% of the world’s land is degraded, affecting close to 3.2 billion people80. 177 

Soil salinity alone, which hinders crop productivity81, has led to reductions in agricultural 178 

yields of up to 70% in the affected areas82. The global costs of land degradation are substantial, 179 

US$ 878 billion per year, with regard to agricultural productivity, nature contributions to 180 

people, and other related sectors80. 181 

Regular assessments of soil condition and soil health are thus essential for optimizing crop 182 

productivity, making it a key application of Digital Agriculture. Soil sampling at the field-level 183 

shows variations in mineral compositions83, nutrient contents84,85, and functionality19. In some 184 

cases, the presence of earthworms is recorded as a proxy for soil quality86. More recently, the 185 

use of Environmental DNA (eDNA), has gained popularity in the monitoring of agricultural 186 

soils. Thanks to advanced genetic testing, which has become increasingly affordable and 187 

efficient21, farmers may now tackle root-level microbial communities that hinder plant 188 

growth5,21,84. The derived data is then used to tailor soil management strategies, including 189 

targeted uses of fertilizers20 and pesticides87, and dynamic adjustments of crop rotation 190 

schedules88. 191 

Soil biodiversity, however, remains vastly underrepresented in global biodiversity 192 

databases89. Integrating soil eDNA analyses from agricultural surveys into biodiversity 193 
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monitoring could substantially improve the representation of soil-dwelling taxa and microbial 194 

communities. eDNA has been shown effective in describing soil biodiversity in 195 

agroecosystems10, including with regard to more elusive species90. If data from agricultural soil 196 

surveys, including eDNA, are stored in accessible formats (e.g., through whole-genome 197 

sequencing), and if these data become accessible to biodiversity scientists (e.g., using 198 

standardized metadata for eDNA91) they could directly feed biodiversity surveys. 199 

Generate data streams can directly inform several EBVs (Fig. 3). Species occurrences 200 

inferred from eDNA are required to map species distributions and phenology, estimate species 201 

occurrences, and infer community-level compositions and interactions. Moreover, eDNA 202 

enables unique assessments of within-species variations in physiology92 and traits93, and 203 

community-level variations in phylogenetic diversity94. This would significantly expand the 204 

taxonomic and functional scope of biodiversity monitoring in agricultural systems. 205 

 206 

1.3. PHENOTYPING OF DOMESTICATED SPECIES 207 

Over the past three decades, approximately $3.8 trillion in crop and livestock production 208 

has been lost due to disasters95. These events have contributed to increased food prices, a trend 209 

expected to continue under climate change96. 210 

To increase the resilience of crops to extreme events, crop phenotyping has become a key 211 

application of Digital Agriculture24. This application, which implies measuring and describing 212 

the structural, physiological, and biochemical characteristics (traits) of individual plants or 213 

stands, plays a critical role in the selection of productive, disease and drought-resistant, and 214 

nutrient-efficient genotypes24. Some systems may monitor changing traits throughout the 215 

lifecycle of planted crops, helping optimize their management (e.g., through targeted 216 

irrigation97, fertilizer use23) to maximize food production and quality4. 217 

Crop phenotyping is typically pursued with drone-, airborne-, and satellite-based sensors. 218 

For instance, hyperspectral imagery is used to measure carbon concentrations98, whereas Light 219 

Detection and Ranging (LiDAR) help assess the vertical structure of plant stands to detect 220 

growth deficiencies99. Importantly, these technologies are not exclusive to agriculture: similar 221 

remote sensing methods are widely used in biodiversity surveys100,101. In fact, biodiversity 222 

experts already use phenotyping techniques to monitor agrobiodiversity102, and broader 223 

vegetated ecosystems103,104. This is required to measure several EBVs (Fig. 3), including those  224 

on species-level morphological and physiological traits (e.g., height, nutrient content) and 225 

ecosystem function and structure (e.g., vertical profile, live cover fraction, primary 226 

productivity). Furthermore, multi-temporal phenotyping of crops, while informing on crop 227 

health, could also provide insights on disturbance regimes and land-use intensity (e.g., based 228 

on the timing of planting and harvesting, or the frequency of irrigation and fertilizer use).  229 

 230 

2. ENABLING BIODIVERSITY MONITORING THROUGH DIGITAL 231 

AGRICULTURE 232 

In many regions, comprehensive biodiversity monitoring programs remain underdeveloped 233 

or underfunded105. Maintaining such programmes incurs millions of US$ in annual costs106,107, 234 

which may be feasible for higher-income countries106. However, persisting economic 235 
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inequalities among countries108 impair monitoring capabilities. In contrast, investments in 236 

Digital Agriculture are accelerating.  237 

As of January 2025, the Food and Agriculture Organization (FAO) records 449 ongoing, 238 

public or private initiatives advancing the use of digital agriculture in all continents109, ~89% 239 

of which are applied to farm-level management, from smallholder to large farms (Fig. 4a). 240 

While ~90% of all initiatives concentrate in Europe and Asia (Fig. 4a), this is likely to change 241 

in the future. In the Global South, most private investments in agriculture are already directed 242 

at digital innovation110, and national governments – across all income levels – are increasing 243 

their support for digitization efforts111,112. In fact, every country hosts Digital Agriculture 244 

initiatives and, in all countries, >50% of those initiatives are directed at farm-level 245 

management, which includes, for instance, the deployment of drones, or the use of Big Data 246 

and Artificial Intelligence109 (Fig. 4b). 247 

As the digitalization of agriculture progresses, Digital Agriculture could help balance the 248 

organizational and financial burdens associated with biodiversity monitoring in farmland. 249 

However, enabling this requires new participatory strategies (particularly for farmers), changes 250 

in monitoring culture, and the mobilization of existing funding schemes to integrate monitoring 251 

capabilities. 252 

 253 

 254 

Figure 4. Global initiatives advancing Digital Agriculture. a) For each continent, the number of ongoing 255 

Digital Agriculture initiatives recorded by the FAO109 that target farm-level management. Colours distinguish 256 

initiatives based on the farm size they target, namely small, medium, or large. Size categories are distinguished 257 

by FAO’s Agritech Observatory109. “Small” distinguishes features and characteristics associated to “smallholder” 258 

farms, such as limited access to resources, finance, and technology. “Medium” describes highly active and 259 

specialized farms and agricultural holdings. “Large” refers to industrial farming. b) In each country, the proportion 260 

of all ongoing Digital Agriculture initiatives targeting farm-level management. 261 

 262 

2.1. New participatory strategies involving farmers are needed 263 

Farmers are ultimately responsible for implementing agri-environmental measures113. They 264 

also control access to the lands where biodiversity data must be collected to evaluate the 265 

effectiveness of those measures. Without their support, farmland biodiversity monitoring may 266 

become biased or unrepresentative114, potentially misleading biodiversity change assessments. 267 

A range of participatory strategies have been proposed115, some connecting networks of 268 

stakeholders (including farmers), data, tools, and biodiversity monitoring programs105 (Fig. 5a-269 

e). Modern participatory strategies aim to incorporate not only ecological objectives, but also 270 

cultural, labour, and societal considerations in how monitoring is structured and 271 

implemented105 (Fig. 5a-b). However, we suggest current participatory strategies often place a 272 

significant burden on farmers. While they involve farmers in collecting – and sometimes 273 

analyzing – biodiversity data, and in informing policymaking (Fig. 5c-e), this can create an 274 
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additional, challenging, and time-consuming task, adding to the challenges of farming itself. 275 

Simultaneously, despite the vast literature on the biodiversity benefits of agroecological 276 

measures, the benefits for farmers remain uncertain, and scale and context dependent34. As a 277 

result, generic policy recommendations or incentive schemes may fall short, and may 278 

inadvertently feed negative human responses to biodiversity conservation116.  279 

We propose a more balanced approach: involving farmers in biodiversity monitoring by 280 

offering them direct, actionable insights about the condition of their land, derived from 281 

biodiversity data (Fig. 5g). Digital Agriculture, in particular, would offer simultaneous data 282 

streams needed for biodiversity monitoring while supporting everyday agricultural land 283 

management. This would enhance, rather than replace, current monitoring and reporting 284 

systems. In this process, targeted, long-term biodiversity gains would be achieved through 285 

dynamic adjustments to farm management practices – especially if supported by continuous 286 

causal inference. 287 

 288 

 289 

Figure 5. Farmer participation strategy. In current participatory strategies, expert communities conduct 290 

research on interactions between biodiversity and field management practices (a), and may involve farmers in 291 

monitoring activities and data analyses (b). Resulting literature fuels science-based reporting (c). Policymakers 292 

use these reports as a basis for legislation (d) aimed at regulating and funding field-level management practices 293 

aimed at biodiversity gains (e). In this process, farmers profit from biodiversity monitoring only indirectly. Yet, 294 

they are exposed to the uncertainties of biodiversity gains, and of their influence on food production. Biodiversity 295 

monitoring, if established through Digital Agriculture, could directly provide insights on common management 296 

challenges (f). Resulting Digital Agriculture data streams would then offer insights on trade -offs between food 297 

production and biodiversity (g). 298 
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 299 

2.2. JOINT MONITORING CAN EASE THE ADOPTION OF DIGITAL AGRICULTURE 300 

Industrial-scale farming systems are already adopting Digital Agriculture technologies117. 301 

Similarly, as the Digital Agriculture market grows, digitalization becomes financially 302 

accessible (e.g., as exemplified by the drone market118), including to smallholder and family 303 

farms, who are increasingly willing to adopt new technologies119–121. 304 

Yet, challenges remain for the latter, particularly in establishing the required infrastructure 305 

and in processing generated data streams122. However, we suggest such challenges may be 306 

effectively tackled in cooperation with biodiversity experts. As biodiversity monitoring 307 

becomes increasingly automated13, biodiversity experts are increasing their technological 308 

fluency12, including in those technologies enabling Digital Agriculture. In collaboration with 309 

farmers, biodiversity experts could help establish farm-level systems enabling the monitoring 310 

of both crop production and biodiversity. In addition, experts from other fields, such as 311 

robotics, could help enhance already existing farm-level management tools, such as weeding 312 

robots123. Support would be given through the calibration of image-recognition software to 313 

distinguish species occurrences and traits from ‘noise’ in acquired data (e.g., ground nests25, 314 

molehills26). Importantly, such developments would not demand extensive science exploration, 315 

as literature already evidences the applicability of robots in automated biodiversity 316 

monitoring124.  317 

Expert support in digitizing farm-level monitoring may bridge the divide many farmers feel 318 

between political nature conservation targets and production needs. In fact, such initiatives 319 

would be of political relevance, aligning with international biodiversity conservation and 320 

monitoring targets. For instance, the Global Biodiversity Framework (GBF), by which 196 321 

countries must abide, calls for capacity-building, technology transfer, and cooperation in 322 

biodiversity monitoring (Target 20)125, which Digital Agriculture would directly support within 323 

agroecosystems. Ongoing policy-relevant such as FAO’s AGRI-NBSAPs, which helps 324 

signatory countries of the GBF develop capacity in monitoring agroecosystems126, could also 325 

help enable biodiversity monitoring through Digital Agriculture. In fact, this would be in line 326 

with FAO’s long-term strategy, which is promoting the digitalization of agriculture. 327 

 328 

2.3. JOINT MONITORING INITIATIVES CAN BUILD ON ONGOING 329 

INFRASTRUCTURE DEVELOPMENTS 330 

Currently, over 70% of open data on agriculture originates primarily from satellite-based 331 

remote sensing applications127. This reflects persistent challenges in sharing farm-level data, 332 

often relating to their sheer volume and incompatibility, or to the absence of adequate digital 333 

platforms for open-access data sharing122. 334 

Ongoing initiatives are addressing these barriers. At the global level, the  UN-funded 335 

Consultative Group on International Agricultural Research (CGIAR) is advancing common 336 

principles and tools for sharing and distributing big, farm-level data128. At the national level, 337 

publicly-funded expert groups aim to make farm-level data Findable, Accessible, 338 

Interoperable, and Reusable (FAIR), including that produced by national authorities (e.g., 339 

FAIRagro in Germany129). Simultaneously, multinational data harmonization projects are 340 

underway130,131, and new data storage formats – some inspired by the compact structure of 341 
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DNA132 – may ease future data storage constraints. Although these developments remain in 342 

pilot stages, we must actively plan for them. As they are realized, Digital Agriculture data could 343 

readily become available to ecologists, who can direct subsequent analyses to appropriate 344 

biodiversity platforms (e.g., GBIF), and use them in policy-relevant reporting. 345 

 346 

2.4. FUNDING PROGRAMMES ARE ALREADY IN PLACE, BUT REQUIRE 347 

DIRECTION 348 

Integrating Digital Agriculture and biodiversity monitoring demands funding mechanisms, 349 

but not new funding streams. We suggest that multi-billion-dollar funding programmes aimed 350 

at Digital Agriculture could already support integration without harming their primary goals. 351 

For instance, in low- and lower-income countries, the UN-led 50 by 2030 program will invest 352 

US$500 million by 2030 to digitize agriculture production133. Similarly, in high- and higher-353 

income countries of Europe, the European Agricultural Fund for Rural Development (EAFRD) 354 

is dedicating €8 billion to transform rural communities through digitalization, a key goal of the 355 

European Green Deal134. This would conceptually include Digital Agriculture and associated 356 

biodiversity monitoring. Subsequent development projects could capitalize on well -357 

documented experiences regarding multi-sensor monitoring of agriculture8 and biodiversity13. 358 

Projects focused on research and innovation could also build on existing networks of research 359 

farms135. 360 

Conversely, funding mechanisms aimed primarily at biodiversity conservation could also 361 

enable Digital Agriculture. For instance, to promote and scale biodiversity-friendly land 362 

management practices, the GBF plans an annual global investment of at least US$500 billion 363 

(Target 18). Currently, acknowledged applications of these funds include, e.g., conservation 364 

easements and subsidies. However, we suggest that promoting Digital Agriculture is an equally 365 

suitable application of the allocated funds. 366 

 367 

CONCLUSIONS 368 

Biodiversity conservation efforts are gaining momentum through international policy such 369 

as the GBF or the EU Nature restoration Law. Many targets outlined in the GBF depend on the 370 

sustainable development of farm management51, which in turn requires concerted monitoring 371 

efforts to track biodiversity trends. Digital Agriculture offers a promising, cost -effective 372 

avenue to bridge agricultural and biodiversity monitoring. In fact, it employs some of the same 373 

technologies and methods used to monitor biodiversity, making derived data – which already 374 

captures species occurrences and traits – usable for concurrent biodiversity monitoring. Most 375 

importantly, this would be achieved without placing additional burdens on farmers, with direct 376 

benefits for them. Yet, the monitoring of agriculture and biodiversity remain disconnected in 377 

research and practice. Explicit integration is required to minimize monitoring costs and 378 

calibrate pathways towards a more sustainable future. 379 
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