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ABSTRACT

The global expansion and intensification of food production threaten biodiversity, vital for
ecosystem services and food security. The Kunming-Montreal Global Biodiversity Framework
(GBF) advocates drastic changes in agricultural management, yet translating recommendations
into local action is challenging. Deciding on which, when, and how to implement sustainable
agricultural management practices requires systematic reference data on biodiversity-
management-yield interactions, but such data is currently lacking. Here, we discuss how Digital
Agriculture can help tackle this gap. Although it uses technologies also applied in biodiversity
monitoring, it is currently treated separately, leading to a duplication of effort and costs. Digital
Agriculture offers the means to monitor biodiversity in food production systems, linking it directly
to land management practices, and directly benefiting multiple stakeholders. This integration of
monitoring efforts has the potential to increase the effectiveness of the GBF in achieving a

sustainable agriculture transition.

IN A NUTSHELL

e Global food production expansion threatens biodiversity and food security.

e The Kunming-Montreal Global Biodiversity Framework calls for significant changes in
agricultural management practices

e We lack systematic data on biodiversity-management-yield interactions

e Digital Agriculture offers an avenue for integrating biodiversity monitoring in food
production systems, potentially enhancing the effectiveness of sustainable agriculture

practices

INTRODUCTION

The global expansion and intensification of food production systems has resulted in dramatic
losses of biodiversity (IPBES, 2019). As the human population continues to grow, so does the
demand for food (van Dijk et al., 2021), leading to a continued expansion of farmland areas that
threatens thousands of species with extinction (IPBES, 2019). Many of these species benefit food
security and resilience (IPBES, 2016), including through pollination (IPBES, 2016) maintenance
of soil fertility (Fonte et al., 2023), and pest control (Lindell et al., 2018).
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Changes to food production practices are needed to reduce their impacts on biodiversity
(Delabre et al., 2021). The Kunming-Montreal Global Biodiversity Framework (GBF, CBD, 2022)
recognizes this urgency, and advocates for sustainable land use to conserve biodiversity and
nature’s contribution to people. For farmland biodiversity, this is to be achieved through Target 10
in particular, which promotes the integration of biodiversity-provided services in food production
(e.g., through sustainable intensification, (CBD, 2022). Nevertheless, despite evidence indicating
that these practices can promote biodiversity gains without compromising food production
(MacLaren et al., 2022), it has been argued that transition periods of lower productivity are likely
(Koviacs-Hostyanszki et al., 2017), creating possible food security challenges. Therefore,
translating GBF recommendations into optimal management strategies that can achieve local
benefits remains a challenge.

Systematic, long-term monitoring capabilities are necessary to provide reliable and scalable
recommendations on when, where, and which agricultural management practices to implement to
best promote biodiversity and its services (Toivonen et al., 2015). This is critical as ecological
benefits may be slow, uncertain or scale and context dependent (Burian et al., 2024). As a support
for long-term, systematic monitoring, the biodiversity community has largely reached consensus
on key variables for measuring and monitoring biodiversity, referred to as Essential Biodiversity
Variables (EBVs, Pereira et al., 2013). Recently, a similar set of Essential Ecosystem Service
Variables (EESVs, Balvanera et al., 2022) was proposed. Changes in these variables can be
contextualised in connection with ground-level biodiversity data, which are quickly evolving in
both frequency and quality with the support of automated techniques (Besson et al., 2022).
Nonetheless, understanding biodiversity-yield interactions requires reference data on crop
conditions and management practices at the time the species was observed. Combining these data
at the field and farm-level is critical for deriving reliable policy recommendations.

Yet, biodiversity studies often lack such detailed reference data. Instead, state-of-the-art
literature relies on coarser agricultural statistics as proxies (e.g., at sub-national scales, Beckmann
et al., 2019) which are typically incomplete, lacking temporal detail, or of uncertain quality
(Kebede et al., 2024). In addition, despite technological advancements in biodiversity monitoring,
data on farmland biodiversity is often scarce. These data limitations lead to thematically focused
research (e.g., selected taxonomic groups such as birds, Scholefield et al., 2011, or simulation

studies, Burian et al., 2024) and to custom choices of methods to analyse them (Gonzalez et al.,
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2023). Therefore, we cannot confidently generalise evidence research on the causes of biodiversity
change (Gonzalez et al., 2023), such as on which agricultural management practices help increase
or diminish biodiversity.

To better understand biodiversity-yield interactions, we must involve farmers (Holting et al.,
2022). They are ultimately responsible for implementing agri-environmental measures (e.g., in the
EU Common Agricultural Policy, Pe’er et al., 2022), and control access to the lands where data is
needed. To achieve this, various participatory strategies have been proposed (Holting et al., 2022),
some connecting networks of stakeholders, data, tools, and biodiversity monitoring programs
(Kiihl et al., 2020). However, we argue that current participatory strategies are insufficient, and
agree with Pe’er et al. (2022), in that support for biodiversity monitoring and reporting must be
made explicit. Because biodiversity monitoring constitutes an additional, challenging, and time-
consuming task, we cannot expect farmers to perform it without legislative enforcement and
financial support. Without such mechanisms, farmers may naturally see biodiversity monitoring
as a secondary concern compared to other priorities (e.g., income and life quality, (Maas et al.,
2021)). In addition, farmers may even view some aspects of biodiversity as pests (e.g., small
mammals), and thus not share the urgency of implementing conservation measures (Maas et al.,
2021).

Without the support of farmers, however, the sampling of farmland may become
unrepresentative at the landscape-scale due to limited access to lands (Steinke et al., 2017). To
obtain systematic and concurrent data on both biodiversity and food production, we must ensure
the participation of farmers without imposing additional challenges on them. We propose this can
be achieved through technologies used to optimise food production (hereafter ‘Digital
Agriculture’, Fig. 1). Whereas Digital Agriculture helps farmers optimise food production, it may
also provide highly valuable, but currently overlooked, biodiversity data streams (specifically
relating to observations of non-agricultural species and, potentially, their traits, Fig. 2). Our work
sheds light on an immediate and overlooked opportunity to obtain biodiversity data paired with
data on food production and land management. We aim to stimulate technical advances that reduce
redundancy and costs in environmental monitoring, while accelerating benefits for nature and

people.
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Figure 1. Unaccounted biodiversity in food production systems. a) A surveyor of biodiversity is located outside private
farmland, but can record overpassing birds or other species detectable from the distance. Such information can enter public or
private databases and then contributes to knowledge and monitoring of local biodiversity (shown in blue). The observation of areas
within the farmland is, however, restricted (e.g. due to fencing or dense crop cultivation). b) Within the maize plantation, a wild
pig is spotted by a drone. The drone was deployed by a land manager (¢, on the right) with the intention of surveying crop conditions
and detecting potential pests (in red). Simultaneously, another land manager collects data on pests in the cultivated crops (e.g. bugs,
in red) and on crop conditions (in orange) to make management decisions. As shown at the top of panel c¢), information on pests
and crop conditions informs on crop productivity (in yellow). Combining the biodiversity information and data given in a) with the
pest and crop condition data given in ¢) provides a more complete picture of biodiversity and how biodiversity responds to (and
affects) crop productivity (shown above b).

Parallels of Digital Agriculture and automated biodiversity monitoring

Digital Agriculture and automated biodiversity monitoring share many similar technologies. At
the landscape level, drones are used to detect, locate, and count pests such as insects (Stumph et
al., 2019), rodents (Keshet et al., 2022) or wild pigs (Friesenhahn et al., 2023). They are also used
to detect plant diseases (Abbas et al., 2023) and to monitor cattle in large pasture areas (Soares et
al., 2021). Similarly, drones are used in biodiversity surveys to detect wildlife more efficiently
compared to human observations (Hodgson et al., 2018). At the ground level, passive acoustic
sensors can measure crop height (Sharma et al., 2016) and are used to detect soniferous species
such as birds (Fischer et al., 2023). On the other hand, active acoustic sensors can provide
information on crop health (Colago et al., 2018) and physiological traits that distinguish non-crop
plant species (Rostami and Nansen, 2022). Most recently, robots equipped with artificial
intelligence showed promise for extracting environmental DNA (eDNA) to detect microbes and
insects harmful to crops (Kestel et al., 2022), and to survey different animal species, including
insects, mammals, birds, and amphibians (Aucone et al., 2023). Robots are also increasingly used
to assist in farmland management, such as weed removal (Zingsheim and Doring, 2024), and in

biodiversity surveys across habitats inaccessible to humans (Angelini et al., 2023) such as
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potentially large farmlands. All of these technologies can be integrated with satellite remote
sensing to monitor biodiversity change (Vihervaara et al., 2017) or long-term trends in food

production (Basso and Antle, 2020).

Digital Agriculture: a hidden source of biodiversity data

Although Digital Agriculture and biodiversity monitoring have obvious parallels, they are
treated as separate branches of environmental monitoring in research, university education and
practice. This results in duplication of efforts and costs. Combining these branches would offer a
low-cost pathway to improve biodiversity monitoring in food producing systems. More
importantly, it would offer critical and novel insights into biodiversity-yield interactions that are
only enabled through systematic and long-term data streams obtainable through Digital
Agriculture (Fig. 2).

As an immediate benefit, this integration process can improve the coverage of biodiversity
monitoring within food producing systems. For instance, applying biodiversity monitoring
methods (e.g., image interpretation) to data obtained for the initial purpose of monitoring food
production (e.g., drone imagery) could generate new data on species traits and occurrences
otherwise missed (Fig. 1). These data could be directly linked to concurrent biophysical
measurements of crop conditions, providing unique insights on species-specific functional
responses in habitat selection. Conversely, failure to detect a species on farmland despite its
presence in the regional species pool can provide valuable data on habitat preferences and dislikes.
This will significantly advance our understanding of species-specific habitat and resource selection
in agricultural landscapes (e.g., habitat vs. matrix, Fahrig, 2001), or even challenge our initial
perceptions. In fact, evidence shows that some species can adapt to man-made habitats (Gruber et
al., 2019), and that others thought displaced by cropland expansion can be ‘rediscovered’ with the
support of farmers (Jess, 2023).

As a long-term benefit, time-series data on biodiversity and crop conditions obtained through
systematic and periodic sampling would support robust causal analyses. This would enable us to
generate reliable information on which management practices enhance or decrease biodiversity
(Basile et al., 2021), and which ecosystem functions and ecosystem services are created or
compromised (Magnano et al., 2023). Ultimately, as Digital Agriculture becomes a more common
practice, reproducible landscape-level experiments become possible, enabling comprehensive
analyses of cross-scale biodiversity-yield relationships, including detecting intensification traps
(Burian et al., 2024), to directly support conservation and other forms of land management.
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Figure 2. Sensing biodiversity through Digital Agriculture. A cropland area (where colours distinguish fields with
different crops) is observed using different sensing technologies (indicated in the circles above the fields). These
technologies provide several pieces of information, such as on pests, plant growth and conditions. All of the existing
information links (shown with full lines) feed into food production and quality information systems (in orange). We
here propose new information links (shown with dashed lines) that can feed monitoring systems for both biodiversity
(in green) and food production and quality. Here, ‘biodiversity’ refers specifically to species observations and,
potentially, species traits. For instance, whereas drones and robots inform on the presence of pests so that farmers can
make management decisions, this information can additionally be used to distinguish different species for biodiversity
information. Similarly, ecoacoustics and eDNA used to monitor crop growth and health can simultaneously be used
to acquire information on roaming species not captured directly through image recognition. All of this information
can be fed into biodiversity monitoring workflows that can distinguish and catalogue species occurrences and assess
species traits. In addition, information on biodiversity can be combined with that on food production and quality to
acquire new knowledge on species habitat preferences. This can help us establish causal links between biodiversity
and food production and quality that inform on the provision of ecosystem services by particular species, and which
can then feed the mapping of these services and subsequent policymaking, monitoring, and conservation.

Multisensor
data retrieval
on farmland

[] Food production/quality —— Existing links — — Potential links

Digital agriculture as a vehicle towards more confident policy recommendations

The value of Digital Agriculture technologies for biodiversity monitoring does not invalidate
other sources of data, such as citizen science (Billaud et al., 2021) and taxonomic specialists
(European Commission et al., 2022). Yet, with urban populations projected to increase by 13% by
2050 at the cost of those in rural areas (Heilig, 2019), citizen science, at least, is likely to be

displaced away from food production systems. It is vital to ensure that policy recommendations,
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such as those on biodiversity-friendly agricultural management practices (GBF, target 10), are not
skewed by sampling biases. Whereas site selection biases distort our perceptions of biodiversity
change (Mentges et al., 2021), systematic monitoring capabilities can inform confident detections
of biodiversity changes and their causes, which serves as a basis for confident policymaking
(Gonzalez et al., 2023).

However, most countries still lack biodiversity monitoring programs (Kiihl et al., 2020). Their
implementation demands an annual investment of millions of US dollars (Juffe-Bignoli et al.,
2016), clashing with global inequalities in economic power (World Bank, 2022). In some
countries, biodiversity monitoring may, by necessity, even be considered a lower priority
compared to other development issues, such as food security. In those countries, Digital
Agriculture, which can already support several GBF targets by improving production efficiency,
reducing waste, and optimising pest management (targets 7, 10, and 16, respectively), offers an
avenue for joint biodiversity and food security monitoring without duplicating financial or
organisational efforts.

Due to the existence of economic incentives for improving food production, biodiversity
monitoring can capitalise on an industry worth US$6.2 trillion (FAO, 2023). In fact, in some
regions, most investments in agriculture are already aimed at digital innovation, targeting both
industrial and smallholder farming (e.g., as documented in the global south, Prasad et al., 2023).
For instance, the UN-led 50 by 2030 initiative plans to invest US$500 million to digitise food
production in multiple countries by 2030 (Zezza et al., 2022). Simultaneously, the UN-funded
Consultative Group on International Agricultural Research (CGIAR) is advancing generalised
principles and tools for sharing and distributing big, farm-level data (Basel et al., 2023). Through
such initiatives, and combined with legislation prompting the sharing of new data streams —
potentially at the level of individual farms — Digital Agriculture can help balance the costs of
biodiversity monitoring in food production systems. This will enable more confident assessments

of biodiversity-yield interactions, and of their contributions to people.

Benefiting farmers on the short-term for long-term biodiversity and sustainability returns
Capitalising on investments in Digital Agriculture for biodiversity monitoring demands
cooperation between farmers, biodiversity experts and decision-makers. However, we must

transcend current participatory strategies. Rather than involving farmers in biodiversity
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monitoring, which adds to the challenges of farming itself, collaborations could, for instance,
coordinate smart solutions to deploy sensing technologies in ways that maximise returns for all
stakeholders involved. For example, drones used to assess crop growth could also be employed to
monitor green infrastructure in farmland without translating in an additional task for farmers.
Similarly, automated deployments of acoustic sensors would enable the detection of pests, which
benefits farmer’s directly, while enabling recording and distinguishing various species (e.g. bats,
insects, birds). In addition, cooperation could be extended to other disciplines. For instance, the
involvement of engineers can support the adoption of new sensing technologies, such as robots
(e.g. Pringle et al., 2023). Similarly, experts from other disciplines, such as agronomy and
computer vision, could help calibrate sensing routines to increase knowledge benefits for scientists
and farmers alike while reducing monitoring costs.

Such measures can help bridge the divide that many farmers feel between society’s expectation
to conserve nature and the desire to achieve production needs. Simultaneously, they would enable
farmers and other stakeholders to jointly build knowledge about biodiversity-yield interactions,
and on the effectiveness of management practices in promoting biodiversity and subsequent
ecosystem services. Evidence suggests that such joint knowledge increases the likelihood that
farmers will adopt recommended changes to management practices (Bartkowski et al., 2023). We
emphasise that Digital Agriculture should not be regarded as a direct substitute for traditional
biodiversity monitoring, and the expertise of taxonomic specialists remains indispensable. In fact,
if not properly designed, monitoring through Digital Agriculture may even shift current biases in
biodiversity data. However, combining traditional monitoring with joint on-farm learning

involving scientists and farmers would bring us closer to a sustainable agriculture transition.

CONCLUSION

The adoption of the GBF sets an ambitious agenda to mitigate biodiversity losses, and
emphasises the critical role of sustainable agriculture to achieve it. However, the decision on which
sustainable practices to implement is hindered by uncertainties surrounding expected trade-offs
between biodiversity and yield. Reducing uncertainties requires paired and systematic data on food
production and biodiversity, which is either rare or non-existent. To tackle this gap, Digital
Agriculture offers a cost-efficient solution. Because it employs some of the same technologies

used to monitor biodiversity, the data it generates to monitor food production can, in principle,
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also provide concurrent and systematic data on non-agricultural species found in farmland. Most
importantly, this would be achieved without creating additional tasks for farmers, and support the
co-design of nature-based solutions sensitive to the needs and challenges of both farming and

farmland biodiversity conservation.
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