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Abstract 21 

 22 

Background: The avian microbiome plays an essential role in host development, health, and 23 

behavior, but while microbiomes of captive birds have been extensively studied, little is known 24 

about how life history traits influence the resident microbial diversity of individuals and of 25 

species in wild birds. Host traits may shape their associated microbiomes by modulating the 26 

exposure of the host to microbes (e.g., through dispersal), or by selecting or removing subsets of 27 

the community, and they can affect the diversity of individuals (alpha diversity) or of the entire 28 

population (gamma diversity). To explore the relationship between interspecific traits and 29 

microbiome diversity in birds, we synthesized 773 microbiome samples and host trait data across 30 

133 bird species and explored whether traits related to exposure to conspecifics (flock size, 31 

global abundance), environmental microbiomes (trophic level, primary habitat, primary lifestyle, 32 

body mass), or describing the range of exposure to microbes, or dispersal, (habitat breadth, range 33 

size) influence interspecific differences in individual or population-level diversity in bird-34 

associated microbiomes.  35 

 36 

Results: We found that traits related to exposure to environmental microbiomes (habitat, primary 37 

lifestyle, trophic level), and global abundance were the strongest predictors of differences in the 38 

composition of the bird microbiomes across species. Furthermore, we found that traits related to 39 

microbiome dispersal (range size and habitat breadth) were positively related to gamma, but not 40 

alpha diversity, highlighting that dispersal-related traits may be acting on the population level. 41 

Traits related to exposure to conspecifics were negatively related to alpha and gamma diversity, 42 

suggesting that social exposure is not a mechanism for microbial dispersal into hosts. Finally, we 43 
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found higher richness, but evidence of biotic homogenization in the microbiomes of birds 44 

inhabiting human modified systems.  45 

 46 

Conclusions: Our study demonstrates the importance of studying interspecific differences in 47 

microbial diversity to understand the ecological drivers of host-associated microbiomes, and 48 

highlights the potential of syntheses approaches for doing so.  49 

 50 

Keywords: Microbial diversity; trait-based ecology; 16S rRNA gene amplicon sequencing; host-51 

microbiome relationships; synthesis 52 

  53 



4 
 

Introduction 54 

Microbes are fundamentally important to the form and function of vertebrates (Hird 2017), 55 

working to defend them against pathogens (van der Waaij 1989; Troha and Ayres 2020), 56 

modulate behavior (Barratt et al. 2017; Trevelline and Kohl 2022), aid in digestion (Lesser and 57 

Molbak 2009; Kohl 2012), and influence nutrition (Sharpton 2018). Microbiomes are ecological 58 

communities with their own complex and dynamic interactions (Kodera et al. 2022), but they are 59 

also driven by interactions with the host and the host’s environment. The microbiota of an 60 

organism can affect an individual’s development, and consequently, its fitness (Rosengaus et al. 61 

2011; Kohl et al. 2018). Conversely, the host’s physiology (Rawls et al. 2006), behavior (Sarkar 62 

et al. 2020), development (Jurburg et al. 2019), and environment (Schreuder et al. 2020; Alberdi 63 

et al. 2021) can modulate the resident microbiota, creating complex feedbacks (Contijoch et al. 64 

2019).  65 

 66 

Understanding what shapes the microbiome of an individual can have important implications for 67 

both maintaining the stability of that microbiome and linking this to potential changes in the 68 

population of that species. Phylosymbiosis, the phylogenetic signal exhibited by host-associated 69 

microbiomes (i.e., microbiomes of more closely related species are more similar) has been 70 

repeatedly observed across animals, and attributed to selection by the host’s traits, which shift as 71 

the host evolves, gradually modulating the resident microbiota (Moran and Sloan 2015; Mazel et 72 

al. 2018; Mallot and Amato 2021). This is supported by the repeated finding of convergence in 73 

the host-associated microbiome’s composition across species following the convergence of their 74 

traits (Song et al. 2020). However, while host traits are responsible for this filtering, most 75 

research into the relationship between host life history traits and the gut microbiome across host 76 
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species has been limited to dietary preferences (e.g., Youngblut et al. 2019; Bodawatta et al. 77 

2021; Mallot and Amato 2021; Levin et al. 2021; Cho and Lee 2021). Host traits can directly or 78 

indirectly shape their associated microbiomes by modulating the exposure of the host to 79 

microbes (e.g., through dispersal), or by selectively removing or selecting for subsets of the 80 

microbial community (Kohl 2020). Importantly, some life history traits like host diet may 81 

directly affect the diversity of individual animals (alpha diversity), while others, like habitat 82 

breadth may act on the microbial diversity across a population of hosts (gamma diversity), but to 83 

date, this distinction has not been tested across species. 84 

 85 

Due to the diversity in life history strategies, global distribution, and the relative ease with which 86 

they can be sampled, wild birds represent a significant model group to further our understanding 87 

of how microbiomes are shaped (Bodawatta et al. 2022). Consequently, interest in the microbiota 88 

of birds has grown rapidly in recent years (Grond et al. 2018; Song et al. 2020; Bodawatta et al. 89 

2022). Despite widespread declines in bird populations (e.g., Rosenberg et al. 2019), the 90 

importance of microbial diversity in maintaining populations is unknown (Grond et al. 2018). 91 

Most extant research into the host-associated microbiome has revealed substantial intraspecific 92 

variation in bird microbiomes (Song et al. 2020). In contrast, studies of the interspecific 93 

differences in microbiomes across bird hosts can reveal the role of life histories or the 94 

environment shaping the microbiome, but are rare, generally focusing on a subgroup of birds 95 

(Capunitan et al. 2020; Bodawatta et al. 2021) or including several bird species within broader 96 

studies of vertebrate-associated microbiomes (e.g., Youngblut et al. 2019). The recent surge in 97 

sequence-based studies has created a rich reservoir of microbiome data for a wide range of bird 98 

species, which can be explored within a synthesis framework.  99 

https://doi.org/10.1016/j.tim.2021.07.003
https://doi.org/10.1016/j.tim.2021.07.003
https://doi.org/10.1016/j.tim.2021.07.003
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 100 

The composition and diversity of the bird gut microbiome is likely determined by a combination 101 

of host physiology and evolutionary history, diet, and behavior (Bodawatta et al. 2022). When 102 

examined on their own, bird-associated microbiomes do not exhibit strong phylogenetic signals 103 

(Song et al. 2020; Capunitan et al. 2020; Mallott and Amato 2021), in contrast to mammals 104 

(Nishida and Ochman 2017; Clayton et al. 2018). Similarly, diet has been shown to be a key 105 

determinant of the gut microbiomes of vertebrates (Hicks et al. 2018; Youngblut et al. 2019), but 106 

there have been mixed findings for birds, with one study finding no effect of diet among birds 107 

(Song et al. 2020), and others finding diet to be a main driver of the bird gut microbiome (Hird et 108 

al. 2014; Waite and Taylor 2014). A species’ preferred habitat likely constrains the environments 109 

from which colonizing microbes may be recruited. Host physiology, and especially body size, 110 

has been shown to relate to microbial diversity, with one study showing that among New 111 

Guinean passerines, larger species have more homogenous microbiomes (Bodawatta et al. 2021), 112 

and another finding a weak, negative correlation between body size and microbial richness 113 

within Passeriformes (Herder et al. 2023). Recent studies have revealed the role of social 114 

interactions in modulating the microbiomes of wild mice (Raulo et al. 2021) and chimpanzees 115 

(Moeller et al. 2016), and thus it is possible that similar life history traits in birds, such as flock 116 

size, may also modulate their microbiome.  117 

 118 

Here, we apply a trait-based approach, using a suite of morphological and life history traits to 119 

explore the relationship between interspecific traits and microbiome diversity in birds. 120 

Specifically, we integrate and synthesize microbial data with trait data across 133 species of 121 

birds to test for interspecific differences in individual or population-level microbial diversity 122 

https://doi.org/10.1016/j.tim.2021.07.003
https://doi.org/10.1016/j.tim.2021.07.003
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among birds. We use a total of 8 different traits related to exposure to conspecifics (flock size, 123 

global abundance), environmental microbiomes (trophic level, primary habitat, primary lifestyle, 124 

body mass), or describing the range of exposure to microbes, or dispersal, (habitat breadth, range 125 

size). We hypothesize that life history traits describing the host’s exposure to environmental 126 

microbiomes (trophic level, primary habitat, primary lifestyle, body mass) or to the microbiomes 127 

associated to conspecifics (flock size, global abundance), will be positively related to alpha 128 

diversity and linked to beta diversity, while traits that describe the range of environments a 129 

population encounters (e.g., range size, habitat breadth) will be positively related to gamma 130 

diversity.  131 

 132 

Methods 133 

Microbiome data 134 

Raw 16S rRNA gene sequence data and associated metadata were collected from the NCBI 135 

Sequence Read Archives and Dryad (Table S1). Candidate datasets were identified from the 136 

general literature, from the Earth Microbiome Project dataset (Thompson et al. 2017), and from a 137 

list of reusable 16S rRNA gene datasets (Jurburg et al. 2020). We selected studies which (a) 138 

sequenced the V4 hypervariable region of the 16S rRNA gene between base pair positions 515 139 

and 806; (b) sampled the bird’s gastrointestinal tract, including cloacal swab, feces, intestine, and 140 

oral cavity swab. As captivity can significantly alter the resident microbiota (McKenzie et al. 141 

2017; Hird 2017), we excluded samples from captive birds — only studies of wild (i.e., non-142 

captive) birds were included. Details of the 7 datasets used in this study including sample types 143 

and accession numbers are available in Table S1, and a map of their geographic coverage is 144 
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shown in Figure 1. We did not account for the influence of age, sex, or season in the sampling of 145 

individual hosts, as this information was seldom reported. 146 

 147 

Sequences were reprocessed using the dadasnake wrapper (Weissbecker et al. 2020). Our 148 

conservative approach to sequence processing was designed to maximize comparability among 149 

samples, and to focus on the dominant taxa. Primers were removed with cutadapt (Martin 2011). 150 

Only forward reads were used, and sequences were trimmed to 90 base pairs (in accordance with 151 

EMP recommendations (Thompson et al. 2017), quality-filtered, and denoised with DADA2 152 

(Callahan et al. 2016), using standard parameters. Error-learning models were trained separately 153 

for each study. Sequences were classified using the mothur (Schloss et al. 2009) naive Bayes 154 

classifier and taxonomy was assigned using the SILVA v.138 database (Quast et al. 2013). 155 

Samples were randomly subsampled to 5,000 reads per sample. The percentage of reads 156 

preserved after filtering and removal of non-bacterial ASVs is detailed in Figure S1. Data 157 

wrangling was performed in R (3.6.3) using the phyloseq package (McMurdie and Holmes 158 

2013). We recovered 773 microbiome samples from 133 bird species (Figure S2), representing 159 

20,471 amplicon sequence variants (ASVs, or microbial taxa).  160 

 161 

Life history data 162 

We compiled data from existing sources for a total of eight life history traits, chosen based on a 163 

priori hypotheses and predictions as well as data availability: body mass, range size, habitat 164 

breadth, flock size, trophic level, primary habitat, primary lifestyle, and global abundance. Body 165 

mass was a continuous variable, representing the size of a species, and data were sourced from 166 

Tobias et al. 2022. Flock size was a continuous variable representing the number of individuals 167 
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of a species seen together, on average, a proxy for the gregariousness of a species (Callaghan et 168 

al. 2021). Trophic level was a categorical variable represented by either carnivore, omnivore, or 169 

herbivore, depending on diet classification and data were sourced from Pigot et al. 2020; Tobias 170 

et al. 2022. Primary habitat was a categorical variable represented by either forest, woodland, 171 

shrubland, wetland, grassland, or human modified and data were sourced from Tobias et al. 172 

2021. Primary lifestyle was a categorical variable represented by either insessorial, generalist, 173 

terrestrial, or aerial and was sourced from Tobias et al. 2022. Global abundance represented the 174 

estimated total global abundance of a species and was sourced from Callaghan et al. 2021. 175 

 176 

Statistical analysis 177 

Because we had a priori hypotheses about individual traits, we first fit models individually for 178 

each of the eight predictor variables we tested (i.e., one response and one predictor variable). In 179 

each instance, the response variable was alpha species richness as determined from the 180 

microbiome sampling described above. We used mixed effects models where the response 181 

variable was richness, and the fixed effect (i.e., the effect of primary interest) was the predictor 182 

variable. Body mass, range size, habitat breadth, global abundance, and flock size were log10-183 

transformed before modeling. Because studies within our synthesis targeted different regions of 184 

the gastrointestinal tract (Grond et al. 2018), which differ in their microbiome composition 185 

(Colston and Jackson 2016; Herder et al. 2023), we adjusted for this uncertainty in our statistical 186 

models using random effect, where the random effect for sample type (N=11) was nested within 187 

a random effect for study (N=7). We additionally used a random effect for species, as individuals 188 

of the same species were sampled more than once. Models were fit using a Poisson error 189 
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distribution in a Bayesian framework using default priors with 4 chains and 4000 iterations and a 190 

warmup of 1000 using the brms package in R (Bürkner et al. 2017; 2021).  191 

 192 

To complement our single-regression model approach we fit an additional model that was a 193 

multiple regression (i.e., all eight predictor variables modeled simultaneously), following the 194 

same approach as above. Additionally, while our main results focused on species richness (Hill 195 

q=0; Chao et al. 2014), we performed exploratory analyses that used inverse Simpson diversity 196 

(q=2; Chao et al. 2014) as the response variable to confirm that the effect of traits on microbial 197 

diversity was not due to the measure of microbial diversity used. These models were fit as above, 198 

with the only difference being that Simpson’s diversity was log10-transformed, and a gaussian 199 

error distribution was used for fitting. 200 

 201 

To understand the relationship between microbial diversity and the host population, we 202 

performed an additional analysis that used gamma richness as the response variable. We 203 

calculated gamma richness by randomly subsampling 3 microbiome samples for each species for 204 

1,000 iterations, calculating their cumulative richness, and averaging these richness values across 205 

iterations. Species with less than triplicate samples were excluded, and averaging reduced sample 206 

sizes, requiring that some levels of categorical variables be dropped. As such, we had fewer data 207 

points for which gamma richness models were fit (Table S2). We fit the models as above using 208 

both a single regression and multiple regression approach. 209 

 210 

To further determine the life history traits with the strongest effect on the microbiome 211 

composition, we performed forward selection of all traits on a distance-based redundancy 212 
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analysis (RDA) of Bray-Curtis dissimilarities using the R package vegan (Oksanen et al. 2013) 213 

and selected the four traits with the strongest explanatory power for a variance partitioning 214 

analysis. We quantified the effect of technical choices on the microbiome by partitioning the 215 

variance in Bray-Curtis dissimilarities using sample type, study, and host species as explanatory 216 

variables.  217 

 218 

Results 219 

Body mass, flock size, global abundance, habitat breadth, and range size were negatively related 220 

to microbial richness in individual hosts (Figure 2), with moderate statistical support for all but 221 

flock size (see supplementary Figures S3-S7). Among trophic levels, herbivores had the lowest 222 

microbial richness, while carnivores had the highest microbial richness (Figure 2; Figure S8). 223 

Furthermore, birds inhabiting human modified habitats and wetlands had more species-rich 224 

microbiomes than those in other habitats (Figure 2; Figure S9), although we acknowledge a low 225 

sample size of species with those primary habitat types. We found minimal differences in 226 

microbial richness among birds with different lifestyles, with a slightly higher diversity in aerial 227 

species compared with terrestrial, insessorial, and generalist lifestyles (Figure 2; Figure S10). 228 

 229 

To further examine how bird microbiomes differed at the species level, we calculated gamma 230 

richness as the cumulative microbial richness across three individuals of the same species 231 

(N=56). Body mass, flock size, and range size were negatively and significantly related with 232 

gamma microbial richness (Figure 3). These relationships were stronger (i.e., larger effect size) 233 

for gamma compared with alpha richness. In contrast, habitat breadth showed a positive 234 

relationship with gamma richness. Gamma richness was greatest in carnivores and lowest in 235 
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omnivores and herbivores. Compared with alpha richness, opposite patterns were found in 236 

primary habitat, whereby human modified habitat had the lowest value for gamma richness 237 

compared with the greatest in alpha microbial richness (Figure 3).  238 

 239 

When looking at the same traits in a multiple regression framework (i.e., all traits modeled 240 

simultaneously) we found that habitat breadth had the strongest negative relationship with 241 

microbial richness, suggesting that the number of habitats a species collectively uses negatively 242 

influences microbial richness of individual hosts (Figure S11). Consistent with our single 243 

regression approach, we also found that a species’ primary habitat modulated microbiome 244 

diversity, with species inhabiting human-modified environments exhibiting the greatest 245 

microbial richness. We found similar results for both species richness and inverse Simpson’s 246 

diversity for both our single regression approach (Figure S12) and our multiple regression 247 

approach (Figure S13; Figure S14) suggesting that the observed changes in alpha richness were 248 

primarily driven by the dominant community.  249 

 250 

Host species accounted for 28.7% of the variance in community composition across all samples 251 

examined, with most of this variance (15%) attributed specifically to host species, and the rest of 252 

this variance jointly determined by host species, sample type (e.g., feces, cloacal swab), and 253 

study (10.6%), or by host species and study (3.1%; Figure S15). Of all the traits examined, 254 

forward selection revealed that primary habitat, primary lifestyle, trophic level, range size, 255 

habitat breadth, and flock size collectively explained a significant (p=0.002), but modest 256 

(adjusted R2=0.12) portion of the variance in community composition. Of these, habitat had the 257 
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strongest effect on microbial community composition, explaining 3.1% of the variance in 258 

community composition on its own (Figure 4).  259 

 260 

Discussion 261 

Using a synthesis approach, we analyzed 773 gut microbiome samples of 133 bird species to 262 

assess the relationship between bird life history traits and microbial diversity. Broadly, we 263 

expected that traits that were associated to the exposure of individual hosts to different 264 

environments, foods, and other members of the same species would lead to greater microbial 265 

richness in individual hosts (alpha diversity), while traits that described the species-level 266 

exposure would be positively related to microbial richness across the species (gamma diversity). 267 

Our analyses found mixed support for these hypotheses and reveal that host traits can have 268 

opposite effects on alpha and gamma diversity. Ultimately, our results highlight the difficulties 269 

in predicting the avian microbiome using species-level traits, potentially underscoring the 270 

importance of environmental structure and genetic mechanisms supporting microbial diversity 271 

(Kassen and Rainey 2004). 272 

We hypothesized that indicators of how often an individual host interacted with its peers (i.e., 273 

global abundance and flock size) would be positively related to alpha diversity, as these traits are 274 

related to the number of encounters an individual may have with conspecifics with viable 275 

microbiota (i.e., dispersal). Contrary to this expectation, we found that global abundance and 276 

flock size were negatively related to both alpha and gamma diversity, suggesting that social 277 

interactions ae not strong contributors to gut microbial diversity in birds (Sarkar et al. 2020). 278 

Other factors, such as early life or idiosyncratic exposure patterns may play a more influential 279 
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role in shaping the avian microbiome, as has been shown for captive birds (Schreuder et al. 280 

2020).  281 

 282 

We expected host body mass to be positively related to microbial diversity due to a greater intake 283 

of food. Contrary to our expectation, we found a negative relationship between the host’s body 284 

mass for both alpha and gamma diversity. This suggests that the species-area relationship, where 285 

body size serves as a proxy for area, does not hold in microbial diversity of birds, supporting 286 

previous results by Herder et al. (2023). We also hypothesized that range size and habitat 287 

breadth, which describe the range of environments an individual or population encounters, would 288 

be positively related to alpha and gamma diversity. Instead, we found that while habitat breadth 289 

negatively related to diversity at the individual level, it related positively to the population-level 290 

microbial diversity. Indeed, habitat breadth is a metric that aggregates the habitats of all the 291 

individuals within a population, highlighting a higher host-to-host microbiome variability in 292 

species that inhabit more varied habitats. This finding suggests that as a species or population 293 

inhabits a greater variety of habitats, the microbial communities within individual hosts become 294 

less diverse, but don’t adopt the same composition across hosts. One possible explanation is that 295 

species with broader habitat breadth have evolved physiological or behavioral adaptations that 296 

optimize their gut microbiome for a narrower range of environmental conditions, thereby 297 

reducing alpha diversity. In other words, although habitat breadth may be high, the individuals 298 

may rely on a specific niche within those habitats that influences the microbial diversity.  299 

 300 

In line with our hypotheses, we found that traits related to exposure to environmental 301 

microbiomes (habitat, primary lifestyle, and trophic level) along with global abundance to be the 302 
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strongest predictors of differences in the composition of the bird microbiomes. Collectively, 303 

these four traits explained nearly 10% of the variation across microbiota, highlighting the 304 

important role of the host’s exposure to microbes in modulating the kinds of microbes that 305 

inhabit the gut. Among trophic levels, we found that herbivores had the lowest microbial 306 

richness, and carnivores had the highest. At the population level, the microbiome of carnivorous 307 

species was also significantly higher than in omnivores and herbivores. This contrasts with 308 

previous studies of the relationship between host diet and the microbiome across animals. 309 

Crucially, these studies had a wide range of animal hosts, most of which were mammalian 310 

(Youngblut et al. 2019; Levin et al. 2021). By focusing exclusively on birds, this work suggests 311 

that the relationship between the host diet and its associated microbiota may vary among 312 

taxonomic classes and emphasizes the importance of exploring host-microbiome patterns within 313 

taxonomic groups.  314 

 315 

We found higher richness in birds inhabiting human-modified systems. Notably, we found 316 

evidence of biotic homogenization in species inhabiting human-modified landscapes, where 317 

individuals had the highest microbial richness, but populations had the lowest richness. Indeed, 318 

biotic homogenization is increasingly noted as a feature of human-modified environments 319 

(Eisenhauer et al. 2023), affecting microbiomes across the world (Delgado-Baquerizo et al. 320 

2021). While this is a novel contribution, we do acknowledge the low number of species 321 

inhabiting human-modified environments in our dataset, and further testing of this hypothesis is 322 

warranted. We also found that generalist species, characterized by their ability to use diverse 323 

resources and various habitats, showed the highest levels of gamma microbial richness. This 324 

suggests that the broader ecological niche and adaptability of generalists provide them with 325 
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increased opportunities for exposure to a wider range of microbial communities, potentially 326 

leading to greater resilience. We found minimal differences in microbial richness among birds 327 

with different lifestyles, with a slightly higher diversity in aerial species compared with 328 

terrestrial, insessorial, and generalist species. These findings suggest that the ecological 329 

strategies and niche breadth of birds play a role in shaping their associated microbiomes. 330 

However, further research is needed to understand the mechanisms underlying these associations 331 

and to explore the functional implications of these microbial diversity patterns in relation to bird 332 

lifestyles. Importantly, our study used species-level traits (i.e., one value per species, per trait). A 333 

better understanding of how traits affect the bird-associated microbiota at the individual, 334 

population, and species levels requires collecting microbiome and trait data for individuals and 335 

across bird species, and is currently not available, especially for wild birds (Bodawatta et al. 336 

2022).  337 

 338 

Conclusions 339 

Over the past two decades, an increasing amount of research has explored the relationship 340 

between individual animal hosts and their gut microbiomes, focusing primarily on the role of 341 

host phylogeny (Mallott and Amato 2021) and diet (Muegge et al. 2011), revealing the important 342 

roles of each of these factors in shaping microbiomes. Less is known about how other host traits 343 

relate to the gut microbiome (Mazel et al. 2018), and whether, or to what extent, species-level 344 

traits drive microbial diversity. By studying the gut microbiota of a wide range of bird species 345 

within a synthetic framework, we found that different ecological traits shape the alpha, beta, and 346 

gamma diversity of the resident microbiota, highlighting the importance of studying drivers of 347 

microbial communities at multiple scales. The contrasting effects observed at the individual and 348 
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population levels suggest that different ecological and evolutionary processes shape microbial 349 

diversity at the individual and population scales. Further research is needed to unravel the 350 

underlying mechanisms driving these patterns and to elucidate the ecological and functional 351 

implications of these relationships in the context of host-microbe interactions. Animals exist in 352 

tight associations with their resident microbiota, and understanding how host traits shape these 353 

communities is essential to characterizing animals as holobionts (Simon et al. 2019). 354 
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Figures 

 

 
 

Figure 1. (a) A description of the bird samples and traits included in this study. Birds were 

sampled from globally distributed locations. Samples were collected in Australia, Ecuador, 

Equatorial Guinea, Papua New Guinea, UK, USA, and Venezuela. Countries are colored 

according to the number of samples collected in each location. Purple dots indicate sampling 

sites.  Traits analyzed included a range of body, flock, and range sizes (b-d), global abundances 

(e), and habitat, lifestyle, and nutritional preferences (g-i).



29 
 

 

Figure 2. The results of individual regression models (N=8) where the response variable was 

alpha microbial species richness. Each panel represents a separate model, and the red vertical 

line is at zero, representing no influence of the predictor variable on the response variable. The 

black lines represent the 95% credible interval. 
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Figure 3. The results of individual regression models (N=8) where the response variable was 

gamma microbial species richness. Each panel represents a separate model, and the red vertical 

line is at zero, representing no influence of the predictor variable on the response variable. The 

black lines represent the 95% credible interval. 
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Figure 4. Variance partitioning analysis of Bray-Curtis dissimilarities. All samples which had 

complete trait data (n=717 samples) were included. The traits with the strongest explanatory 

power for the microbiome were selected using permutation-based backward and forward 

selection. *** p-values for permutation-based tests for the individual significance of each trait is 

< 0.001.  
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Supplementary Tables 

 

Table S1. Metadata information for the seven studies used in the synthesis. 

Study DOI # samples # species 
mean observations per sample (pre-

processing) 

10.1007/s00248-020-01569-8 77 1 170989 

10.1098/rspb.2021.0446 308 45 42448 

10.1111/mec.15354 125 67 62611 

10.1186/s13071-016-1607-1 7 1 45490 

10.1186/s40168-018-0477-5 12 1 110855 

10.1186/s40168-018-0555-8 131 9 38418 

Earth Microbiome Project 113 9 60941 
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Table S2. The number of species and total observations in each respective model for single 

regression models (i.e., where each predictor trait was treated individually), for alpha and gamma 

microbial richness. For multiple regression (i.e., where all predictors were modeled 

simultaneously) there were 122 unique species and 717 observations from 7 studies. 

 

Predictor Number of species Number of 

observations 

Number of studies 

 

 Alpha Gamma Alpha Gamma  

Body mass 133 56 773 249 7 

Range size 132 55 763 248 7 

Habitat breadth 126 54 743 247 7 

Global 

abundance 
130 54 757 247 7 

Flock size 132 56 772 249 7 

Primary habitat 133 56 773 249 7 

Trophic level 133 56 773 249 7 

Primary lifestyle 133 56 773 249 7 
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Supplementary Figures 

 

Figure S1. Proportion of reads preserved after quality filtering (a), the proportion of reads 

included in the synthesis study (b) for each dataset. Additional information for each study is 

found in Table S1.  
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Figure S2. We had a total of 133 species included in our alpha analysis across 47 families. 
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Figure S3. The results of our single regression model where alpha species richness was the 

response variable and body mass was the predictor variable, log10-transformed to meet 

modelling assumptions. Panel A represents predicted draws from our bayesian model where the 

red line is the average relationship and each individual line represents a separate posterior 

prediction, and the points represent the raw data. Panel B shows the posterior distribution of the 

relationship for body mass. 
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Figure S4. The results of our single regression model where alpha species richness was the 

response variable and body mass was the predictor variable, log10-transformed to meet 

modelling assumptions. Panel A represents predicted draws from our bayesian model where the 

red line is the average relationship and each individual line represents a separate posterior 

prediction, and the points represent the raw data. Panel B shows the posterior distribution of the 

relationship for body mass. 
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Figure S5. The results of our single regression model where alpha species richness was the 

response variable and body mass was the predictor variable, log10-transformed to meet 

modelling assumptions. Panel A represents predicted draws from our bayesian model where the 

red line is the average relationship and each individual line represents a separate posterior 

prediction, and the points represent the raw data. Panel B shows the posterior distribution of the 

relationship for body mass. 
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Figure S6. The results of our single regression model where alpha species richness was the 

response variable and body mass was the predictor variable, log10-transformed to meet 

modelling assumptions. Panel A represents predicted draws from our bayesian model where the 

red line is the average relationship and each individual line represents a separate posterior 

prediction, and the points represent the raw data. Panel B shows the posterior distribution of the 

relationship for body mass. 
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Figure S7. The results of our single regression model where alpha species richness was the 

response variable and body mass was the predictor variable, log10-transformed to meet 

modelling assumptions. Panel A represents predicted draws from our bayesian model where the 

red line is the average relationship and each individual line represents a separate posterior 

prediction, and the points represent the raw data. Panel B shows the posterior distribution of the 

relationship for body mass. 
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Figure S8. The results of our single regression model where alpha species richness was the 

response variable and body mass was the predictor variable, log10-transformed to meet 

modelling assumptions. Panel A represents predicted draws from our bayesian model where the 

red line is the average relationship and each individual line represents a separate posterior 

prediction, and the points represent the raw data. Panel B shows the posterior distribution of the 

relationship for body mass. 

 

  



2 
 

 
Figure S9. The results of our single regression model where alpha species richness was the 

response variable and body mass was the predictor variable, log10-transformed to meet 

modelling assumptions. Panel A represents predicted draws from our bayesian model where the 

red line is the average relationship and each individual line represents a separate posterior 

prediction, and the points represent the raw data. Panel B shows the posterior distribution of the 

relationship for body mass. 
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Figure S10. The results of our single regression model where alpha species richness was the 

response variable and body mass was the predictor variable, log10-transformed to meet 

modelling assumptions. Panel A represents predicted draws from our bayesian model where the 

red line is the average relationship and each individual line represents a separate posterior 

prediction, and the points represent the raw data. Panel B shows the posterior distribution of the 

relationship for body mass. 
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Figure S11. The results of a multiple regression model where the response variable was alpha 

species richness and all predictor variables were included simultaneously. The black points 

represent the parameter estimate and the lines represent the 95% credible interval. 
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Figure S12. There was an overall strong agreement between the results of analyses where 

species richness was used as the response variable (x-axis) and inverse Simpson was used as the 

response variable (y-axis). As a result, we focused on presenting the results of species richness in 

the main text. 

 



2 
 

 
Figure S13. The results of a multiple regression model where the response variable was alpha 

Simpson diversity and all predictor variables were included simultaneously. The black points 

represent the parameter estimate and the lines represent the 95% credible interval. 
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Figure S14. As with single regression results (Figure S12), there was an overall strong 

agreement between the results of multiple regression analyses where species richness was used 

as the response variable (x-axis) and inverse Simpson was used as the response variable (y-axis). 

As a result, we focused on presenting the results of species richness in the main text. 
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Figure S15. Variance partitioning analysis of Bray-Curtis dissimilarities focusing on the 

influence of technical factors on the microbiomes studied. *** p-values for permutation-based 

tests for the individual factors is < 0.001.  

 

 

 

 

 

 


