
This work is licensed under a Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” license.

Integrating intraspecific trait variability in functional1

diversity: an overview of methods and a guide for2

ecologists3

Facundo X. Palacio1,2,*, Gianluigi Ottaviani3,4, Stefano Mammola4,5, Caio Graco-Roza6,4

Francesco de Bello7,8, and Carlos P. Carmona95
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Abstract. The variability in traits within species (intraspecific trait variability; ITV)23

has attracted an increased interest in functional ecology, as it can profoundly influence24

the detection of functional trait patterns, calculation of functional diversity (FD), and25
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assessments of ecosystem functioning. This renewed focus stems from the recognition that26

species are not homogeneous entities but rather mosaics of individuals with varying traits.27

Researchers dealing with FD have increasingly recognized this issue, and consequently,28

multiple methods have emerged to explicitly incorporate ITV into FD calculations. Some29

methods treat individuals as the unit of analysis, while others characterize trait distri-30

butions around their means. Ecologists navigating this landscape of methods may face31

challenges in selecting the most appropriate approach to address their research questions.32

This synthesis provides an overview and guidelines on how and when to use the different33

methods available to quantify ITV in biological assemblages and integrate it into FD. As34

a case study, we computed correlations on simulated assemblages with varying degrees35

of trait variability. Our findings suggest that the choice of FD metric should be guided36

primarily by the ecological question being addressed and, to a lesser extent, by the num-37

ber and types of traits. Simulations revealed strong correlations among FD metrics that38

account for ITV, particularly those indicating the size of the occupied functional trait39

space. As evidence accumulates and shows how ITV is key to shaping species’ fitness and40

distribution as well as affecting ecosystem functioning, this synthesis will serve as a con-41

ceptual and practical tool inspiring and guiding researchers to integrate ITV in functional42

diversity analyses.43
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1 Introduction44

Functional diversity (FD), defined as the extent of trait differences among organisms within45

a unit of study (e.g. population, community, biome), is a core eco-evolutionary concept [122].46

Biodiversity is indeed a multifaceted notion, and FD constitutes one of its key components (to-47

gether with taxonomic, genetic and phylogenetic diversity), which can have a significant impact48

on how individuals assemble to form a population or species a community as well as ecosystem49

functioning ([40, 65, 78]). Although the study of FD has fueled major conceptual, empirical,50

methodological, and philosophical research and advances ([93, 122]), the vast majority of studies51

on FD has heavily relied on averaging individual trait values of the same species. Using mean52

trait values per species bears the implicit assumption that intraspecific differences are negligi-53

ble compared to those among species (‘mean field approach’) ([41, 39, 67]). However, although54

within species trait variability has been found often lower than between species differences, its55

extent and effects are definitely not minor; for example, there is, on average, 25% variability56

in functional traits within species in plant communities ([56]). The assumption of intraspecific57

trait variability (ITV) being relatively small has been also the foundation of standardized sam-58

pling protocols to collect trait data (e.g. [13, 66, 72, 89]) focused on the creation of large scale59

databases which, in turn, have contributed to further focusing on interspecific trait differences.60

By contrast, ITV, defined as the variation in a trait between individuals of the same species (e.g.61

forming a local population or across populations along gradients), has been often overlooked in62

FD analyses [33, 108]. In a recent review of 1655 articles on trait-based animal ecology, [119]63

found that 94.6% of the articles ignored ITV. Despite there has been an increase in the number64

of articles published on FD accounting for ITV in recent years, they are still vastly outnumbered65

by those that do not include ITV (Fig. 1). This reveals that ITV is a significantly understudied66

aspect in trait-based functional ecology, and highlights the need for more research on this topic67

to better understand the role that ITV can have in ecological systems.68

More recently, ITV has attracted an increasing interest among ecologists [34, 68, 91, 108].69

ITV is increasingly considered key in functional ecology and evolutionary biology because it70

can 1) promote species’ coexistence, 2) allow populations to cope with changing environmental71

conditions, and, in the long-term, 3) lead to speciation and adaptive evolution [57, 118]. Growing72
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evidence also shows that the magnitude of ITV can, under specific circumstances such as small73

spatial scales or low species richness assemblages (Box 1), be equal to or surpass that attributable74

to interspecific trait variation [91, 92]. Furthermore, intraspecific effects on ecological responses,75

as those associated with changes in a species’ abundance and community composition, are often76

comparable to, and sometimes even stronger than interspecific effects linked to species turnover77

[79]. As a result, the ‘mean field approach’ [41] may underrate possible consequences on FD78

effects [27, 35, 109].79

Overlooking ITV can therefore underestimate FD by downplaying the range and variety of80

resources a species can use and thus its ecological role or ability to cope with environmental81

changes [46, 91]. For instance, in a simulation experiment on alpine plant assemblages, [39]82

found that the relationship between FD and environmental factors was altered when accounting83

for ITV. Specifically, the relationship between leaf dry matter content and temperature varied84

between negative, positive or null, depending on ITV’s quantity and structure [39]. Larger ITV85

may also lead to a higher uncertainty in FD estimation, with some metrics (e.g. functional richness86

and Rao’s quadratic entropy) more sensitive to the inclusion of ITV than others [39]. Similarly,87

[109] found that ITV largely affected some metrics of FD in plant and ant assemblages, and that88

neglecting ITV distorted relationships between FD and environmental covariates. Accounting for89

ITV can deepen our understanding of ecological dynamics, as ITV may 1) enhance the stability90

of populations and communities [75, 80, 93], 2) affect species’ responses through abiotic and91

biotic constraints along environmental gradients [54, 70], 3) shape biotic interactions [84], and92

ultimately 4) influence ecosystem functioning by increasing the range of functional roles and the93

contribution to ecosystem services [49, 98].94

Aiming to consider these reasons and address these challenges (Box 1), several methods have95

been developed to explicitly incorporate ITV in FD calculations. Some methods consider indi-96

viduals as the unit of interest (i.e. observations) when including ITV (e.g., ‘individual-level FD’97

–iFD– [27, 62]), whereas others characterize a given trait distribution either parametrically (e.g.,98

[41, 35]) or non-parametrically ([59, 76, 90]). In this context, a useful concept when considering99

ITV is the Hutchinsonian niche, defined as a multidimensional hypervolume (see ‘n-dimensional100

hypervolumes’ below) of ecological variables in which a species maintains a viable population101

[4]. In particular, the mean trait value and its variance are descriptors for niche position and102
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breadth, respectively [23, 28, 82]. Therefore, functional traits can describe species niches within103

assemblages, and intraspecific functional diversity can be thought of as the distribution of species’104

niches (in terms of position and breadth) in an assemblage. The greater the distance between105

niche positions and/or the smaller the niche breadth of species, the higher the iFD. Although the106

niche concept has been recently applied in trait-based ecology to represent the functional trait107

space of assemblages [59, 76, 77] and quantify functional diversity [97], the volume of this space108

strictly measures the variation in niche position among species forming an assemblage, not the109

Hutchinsonian niche per se (e.g., [47, 105]. A more direct link between the niche concept and FD110

can be established when moving from species to individuals because these can intrinsically and111

better capture the variability of trait values in populations [28].112

Ecologists delving into the many approaches available for integrating ITV into FD analyses are113

therefore facing the challenge of selecting the most appropriate method to address their research114

question. Here, we aim to provide an overview and guidelines on how and when-to-use the different115

methods capable of quantifying ITV in biological assemblages, with a special focus on those that116

allow integrating ITV into FD. In the following sections, for each of these methods, we identify117

and describe 1) their main characteristics, 2) their strengths and drawbacks, 3) examples of which118

and how ecological insights can be gained and inferences made, and 4) redundancy in the ecologi-119

cal patterns they capture. The sections and methods below are organized based on the number of120

species and traits that a given metric can accommodate, regardless of the way it is applied (e.g.121

the coefficient of variation is computed on a single species, yet it is often used to compare multi-122

ple species). Method notation is summarized in Table 1. Finally, to further assist researchers in123

their selection of which approach to implement when deciding to integrate ITV in FD analyses,124

we examine the impact of ITV on the different methods presented below with a simulated case125

study comparing how a variable degree of ITV affects different FD metrics. All the metrics and126

approaches used are available as an R tutorial at https://github.com/facuxpalacio/intraspecific-127

trait-variability-and-functional-diversity/tree/main/tutorial128
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2 One species, a single trait129

The simplest and most widely used measure to quantify ITV for species i and trait j is the130

coefficient of variation (CV):131

CVij =
Sij

Xij

(1)

where S and X are the standard deviation and the mean of species i and trait j (X ̸= 0),132

respectively. The CV quantifies the degree of variability relative to its mean; it is dimensionless,133

and thus can be used to compare traits, species, and studies [102, 107]. Although it does not134

require a priori assumption about the underlying distribution of traits, it is a biased estimator of135

the population CV because the sample standard deviation tends to be smaller than the population136

standard deviation, underestimating the true population CV [7, 12]. In a recent comparison of137

different CV metrics, [102] found that the CV underestimated ITV up to nearly 50%. This bias138

can be largely reduced by log-transforming trait data and using the Bao’s CV or CV4 estimator139

(CVB) [26, 102]:140

CVB = CVij −
CV 3

ij

n
+

CVij

4n
+

CV 2
ijγ1ij

2n
+

CVijγ2ij
8n

(2)

where n is the number of individuals, and γ1 and γ2 are Pearson’s measures of skewness and141

kurtosis of the trait sample distribution, respectively. This is because the bias of the sample CV142

depends on the skewness and kurtosis of the distribution [26]. Moreover, this procedure allows to143

use a minimum sampling size (to achieve a ±5% accuracy) of 20 individuals for most species and144

traits (at least in plants), in contrast to the CV, whose minimum sampling size can range from 10145

to 295 individuals, depending on the skewness of the trait distribution [102]. Despite its historical146

use in biology, it suffers from sensitivity to excess zero values and/or irrelevant low mean values,147

so the CV should not be applied to traits with these characteristics. More recently, a modified148

version of the CV, termed KCV [71], has shown better properties than the CV, particularly149

when there is high variability (e.g. CV > 1.0), such as in the case of phenological traits [121].150
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This measure is bounded between 0 and 1, has increased statistical power, and can be computed151

directly from the CV as:152

KCV =

√
CV 2

1 + CV 2
(3)

It should also be noted that the CV and its variants account for ITV of a single species, not153

of the overall assemblage. However, it represents a first step to describe and explore ITV of a set154

of traits and species.155

3 One species, multiple traits156

Although a univariate metric such as the CV provides a rapid, descriptive measure of ITV, it157

neglects the fact that organisms comprise a multivariate set of correlated traits [8, 14]. Therefore,158

a multivariate variant of the CV can be more informative than the univariate CV about the159

diversity of entire multifunctional phenotypes (if the selected traits capture the main functions160

[11]), while accounting for the correlative nature of traits. However, deriving a multivariate CV161

(MCV) is not straightforward, and several generalizations of the MCV have been introduced in162

the literature [29, 52]. For the sake of simplicity, we only provide the Voinov and Nikulin’s CV163

(γV N ), which has an intuitive definition, is scale invariant and has shown a better performance164

than other MCVs [52]:165

γV N =
√
(µTΣ−1µ)−1 (4)

where µ is the mean vector (µ ̸= 0) andΣ is the variance-covariance matrix. To our knowledge,166

MCVs have not been applied in trait-based ecology, and thus offer new opportunities to disen-167

tangle how multiple, correlated traits respond to environmental gradients. It should be noted,168

however, that considering multiple traits reflecting different functions may convey a ‘blurred’169

signal, obscuring main ecological patterns [40].170
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A major caveat of the CV is that it is computed on each individual population and cannot171

be partitioned between different populations, overestimating ITV across environmental gradi-172

ents[114]. For example, imagine a plant species growing in two different environments, one found173

at higher altitudes and the other at lower altitudes. The plants in the high-altitude environment174

may be smaller on average than the plants in the low-altitude environment. Now suppose that175

both populations have the same CV (different mean and standard deviation, but proportional). If176

we combine the individuals from the two populations and calculate the CV for the entire species,177

the CV will be larger than the CV for either population individually, as we now incorporate178

substantial variability spanning individuals from both environments. To overcome this limita-179

tion, [114] modified the relative distance plasticity index (RDPI; [22]) to quantify ITV across180

environmental gradients accounting for within-population trait variability (PhDK):181

PhDS =

∑S
s>m PhDsm

S(S−1)
2

(5)

where PhDS is the phenotypic dissimilarity index for S ecological units (e.g., populations,182

individuals), and PhDsm is the normalized version of the RPDI, which represents the expected183

trait dissimilarity across S ecological units (s, m = 1, 2, ..., S) in the range 0-1 [48]:184

PhDsm =
RDPI − 0.5(Ds +Dm)

1− 0.5(Ds +Dm)
(6)

The RDPI is represented by:185

RDPI =

Ns∑
i

Nm∑
j

dij
NsNm

(7)

where Ns and Nm are the number of individuals i and j in ecological units s and m, respec-186

tively, and dij is any dissimilarity metric between the trait values of individuals i and j with the187
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constraints dij = dji and dii = 0 ([22]). Ds and Dm represent the expected trait dissimilarity188

between two individuals i and j drawn at random from ecological units s and m, respectively:189

Ds =
1

N2
s

Ns∑
i,j

dij (8)

Dm =
1

N2
m

Nm∑
i,j

dij (9)

Essentially, the RDPI computes the mean trait pairwise dissimilarity among all the individuals190

from different populations (without accounting for within-population variation). Therefore, the191

PhDS index generalizes the RDPI by computing the mean value of PhDsm for all possible192

K(K−1)
2 pairs of ecological units and accounting for within-population trait variation [114].193

4 Multiple species, one trait194

4.1 Community-weighted intraspecific trait variance195

From an ecological perspective, it is often of interest to describe functional diversity or composi-196

tion of a species in a given local or regional assemblage, using a single trait. One of the most widely197

used functional composition metrics which does not incorporate ITV is the community-weighted198

mean (CWM), representing the average trait distribution (weighted by species abundances) of a199

given assemblage k [16]:200

CWMk =

N∑
i=1

pikXi (10)

where pik is the relative abundance of species i in assemblage k and Xi is the mean trait201

value of species i. A simple extension to account for ITV of this metric consists of computing the202

community-weighted variance (CWV) as the dispersion of a functional trait around its mean,203

weighted by relative abundances [32]:204
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CWVk =

N∑
i=1

pik(Xi − CWMk)
2 =

( N∑
i=1

pikX
2

i

)
− CWM2

k (11)

The CWV does not account for ITV per se, but for between-species variability (i.e., it is a205

measure of interspecific functional diversity). A further step is to expand this metric to account206

for ITV in a community-weighted intraspecific trait variance (CWITV; [87]):207

CWITVk =

[ N∑
i=1

pik(X
2

i + S2
i )

]
− CWM2

k (12)

where S2
i is the variance of the trait for species i. From this, it follows that intraspecific208

variability increases functional diversity; if S2
i = 0 for every species in the assemblage (i.e., when209

ignoring ITV), then CWITV = CWV.210

4.2 Linear mixed effects models211

To describe the extent of ITV and decompose it by different organizational levels (e.g., commu-212

nity, species, individuals), several approaches have been proposed based on variance partitioning213

methods [35, 41]. These provide an intuitive way to quantify both the degree of overall ITV within214

a given organizational level and the relative contribution of ITV to FD of different levels in a215

hierarchical manner. The simplest method is based on linear mixed effect models (LMMs), also216

called variance component analysis. Although LMMs have been traditionally applied in quanti-217

tative genetics to estimate genetic variances and covariances of phenotypic traits [5, 10, 60], their218

use in trait-based ecology is more recent [29, 31, 91]. The response variable is represented by a219

functional trait, whereas random effects are represented by individuals, species or populations,220

nested one into another. Then, the relative contribution of a level is estimated as the ratio be-221

tween the variance of a given level and total variance [15]. The species random effect is typically222

of most interest, because it allows assessing whether between-species trait variance is larger than223

within-species trait variance, the key assumption of the mean field approach [41]. Fixed effects224

(biotic and abiotic predictors) can also be included, but these are usually only represented by the225
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intercept, because the primary aim is often to describe the relative contribution of main sources226

of ITV to overall variation. As many as different ecological levels can be included to account for227

any other context-specific sources of variation like plots, forest patches, or vegetation strata (e.g.,228

[41, 91]). The main drawback of LMMs is that these assume a normal distribution of errors, so229

that these are restricted to continuous symmetric trait distributions (but see expansions for other230

error distributions in [60]), and that these do not include information about multiple functional231

traits within and between species. The first limitation can be overcome by using generalized lin-232

ear mixed models (GLMM) to select the most appropriate error distribution based on the nature233

of the trait under study. For instance, since most continuous traits cannot take negative values in234

nature, a gamma distribution may often be a more suitable choice than a Gaussian distribution235

(which is typically used in a LMM). Similarly, for dummy-coded traits, a Bernoulli distribution236

can be employed to effectively model the frequency of zeros and ones in the trait’s distribution.237

4.3 T-statistics238

Another approach to partition functional trait variance across organizational levels is based on239

T-statistics [41]. These represent variance component ratios considering four organizational lev-240

els: individual, population, community, and regional pool. Based on [6] findings that the relative241

importance of intra- and interspecific phenotypic variation is key for species coexistence, these242

variance components test for internal and environmental filtering of a given assemblage at differ-243

ent organizational levels [41]. As a consequence, T-statistics, in contrast to LMMs, rely strongly244

upon species competition notions to improve our theoretical understanding about the importance245

of ITV for assemblage structure. This framework identifies six variance components based either246

on individuals or on the mean of a set of individuals of each respective ecological level. From these247

components, a set of three ratios, termed T-statistics, are computed to estimate the magnitude of248

external and internal filtering based on ITV: TIP/IC , TIC/IR, and TPC/PR. TIP/IC is the ratio of249

population-level variance (σ2
IP ) to community-level variance (σ2

IC), and measures the strength of250

internal filtering or niche packing (e.g., microenvironmental heterogeneity or density-dependent251

processes) among the species of the community; TIC/IR is the ratio of community-level variance252

(σ2
IC) relative to the total variance in the regional pool assessed at the individual level (σ2

IR), and253

measures the strength of external filtering (e.g. abiotic constraints or external interactions) when254
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accounting for individuals; and TPC/PR is the same ratio as TIC/IR, but without accounting for255

ITV, and measures the strength of external filtering at the species level. To quantify T-statistics,256

therefore, researchers must clearly define what a community and a population represent under257

their context-specificity of each study (e.g., [88]).258

4.4 Trait overlap259

Another potential solution to account for ITV is to characterize the trait distribution within260

each species assuming some particular shape (e.g. fitting a Gaussian probability distribution261

with trait mean and variance or using kernel density estimation), and computing the overlap262

between curves ([21, 36, 93]). The larger the overlap, the lower the trait dissimilarity between263

species. These distributions represent probability density functions that integrate to one, so264

that the dissimilarity between species i and j is given by 1 - overlapij ([21]). The dissimilarity265

between each species pair for a single trait can be computed ([36]), and then any FD metric266

based on dissimilarities can be used (see ‘Trait probability density functions’ below). Using trait267

dissimilarities based on ITV is biologically more meaningful than trait dissimilarities based on268

species means, as it links traits with the Hutchinsonian niche concept and trait overlap with269

niche overlap ([43, 64]). The biggest issue with this approach is that two non-overlapping trait270

distributions may be very close or very far from each other, so that an overlap equal to zero271

cannot tell how different the traits of each species are.272

5 Multiple species, multiple traits: functional diversity and the273

inclusion of intraspecific variability274

Despite the importance of ITV in functional and community ecology, the vast majority of FD275

methods rely on using a single mean trait value per species, and thus assuming that ITV equals276

zero (see [106, 93] for reviews). However, as we have seen above, ITV is not always negligible277

and can be substantial under certain circumstances, so the question is: How can we account for278

ITV when estimating FD for multiple species and multiple traits simultaneously?279
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5.1 Individual-level functional diversity280

The simplest approach to account for ITV in FD consists of using an individual-by-trait matrix281

instead of a species-by-trait matrix, and then computing FD metrics straightforwardly. For in-282

stance, a functional dendrogram (representing the functional distances among individuals) can283

be built with a hierarchical clustering algorithm, and used to compute the sum of branch lengths284

connecting individuals present in a given assemblage (dendrogram FD) [27]. Alternatively, func-285

tional ordination can be applied on the individual-by-trait matrix and used to calculate functional286

richness, regularity and divergence indices (e.g., [91]). This approach has usually low computa-287

tion time, yet its main limitation is the requirement of exactly the same individuals in both the288

individual-by-trait and the assemblage-by-individual matrices in order to obtain conformable289

matrices. This can require considerable sampling effort, particularly for large assemblages. When290

individual trait data are not available, a common situation when working with trait databases,291

trait values can be simulated by drawing random values from a theoretical probability distribu-292

tion (e.g., [74]). Nevertheless, this approach should be taken with great caution, as ecological293

processes are not expected to result in purely random ITV values under environmental change,294

but the opposite [33, 39, 41]. In particular, there is no theoretical justification to include ITV into295

FD as random draws from a single probability distribution if the hypothesized mechanism struc-296

turing ITV is environmentally-driven [33, 39]; in those cases it would be preferable to estimate297

a probabilistic distribution for each set of environmental conditions [103, 109].298

5.2 Variance decomposition299

To assess the impact of ITV on FD, [35] based on [37] proposed two methods based on variance300

partitioning, using a multivariate expression of variance based on dissimilarity between species.301

The first method aims at partitioning FD into within- and between-species FD (a variance302

partitioning recalling the quadratic entropy partitioning), whereas the second method aims at303

separating the effects of species turnover from ITV (repeated measures ANOVA and variance304

partitioning) [35]. The first method decomposes total community trait variance into between-305

and within-species variance:306
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1

N

N∑
i=1

ni∑
l=1

1

ni
(xil −X)2 =

1

N

N∑
i=1

(xi −X)2 +

N∑
i=1

ni∑
l=1

1

ni
(xil − xi)

2 (13)

Therefore, this approach is conceptually similar to a linear mixed effect model, but all the307

traits are simultaneously used and a measure of overall FD is obtained [35, 37]:308

1

2

n∑
k=1

n∑
l=1
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2
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1

2

N∑
i=1

N∑
j=1

pipjd
2
ij +

1

2

N∑
i=1

pi

ni∑
ki=1

ni∑
li=1

1

n2
i

d2kli (14)

where dkl, is the functional distance between individuals k and l, Pk = pi/ni, dij is the309

functional distance between species i and j, and pi and pj are the relative abundances of species310

i and j, respectively (with
∑N

i=1 pi = 1 and
∑N

j=1 pj = 1). This corresponds to the Rao quadratic311

entropy (with Euclidean distance and divided by two), a widely used metric of FD [17]. Total312

diversity encompasses both between-species diversity and within-species diversity. On the left-313

hand side of the equation, total diversity is quantified as the weighted average dissimilarity314

between all pairs of individuals, where the weights represent the relative abundances of the315

species to which the individuals belong. In contrast, between-species diversity, represented by316

the first term in the right-hand side of the equation, solely considers the average dissimilarity317

between individuals from different species. On the other hand, within-species diversity (second318

term in the right-hand side) focuses on the average dissimilarity between individuals within319

the same species. The contribution of each species’ within-species diversity to the overall total320

diversity is also weighted by the species’ relative abundance. As a result, multiple traits for321

individuals belonging to multiple species can be analyzed simultaneously, in addition to single322

traits like in LMMs or T-statistics.323

Functional diversity responses to the environment cannot only result from changes in ITV,324

but also from species composition (species turnover). For instance, a hypothetical decrease in325

bird body mass variability with elevation could stem from changes in species composition alone326

(the body mass of individuals is constant within species, but larger species dominate at lower327

elevations) or to ITV alone (species composition is constant across elevations, but larger individ-328
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uals dominates at lower elevations; [122]). Thus, [35] proposed a method to dissect the effects of329

ITV and species turnover on FD, in which two FD measures are computed [35]: an FD metric330

calculated using only the individuals in each assemblage or sampling unit (‘FDhabitat’), and331

an FD metric computed using the same (mean) trait values across all assemblages (‘FDfixed’).332

Differences in FDfixed values among sampling units can only be due to species composition since333

FDfixed is constant for every individual, whereas differences in FDhabitat can be due to changes334

in either ITV or species composition [35]. Thus, the difference between FDhabitat and FDfixed335

is only due to ITV across assemblages:336

ITV = FDhabitat − FDfixed (15)

5.3 Trait onion peeling and trait even distribution337

Functional richness (defined as the amount of functional trait space occupied by an assemblage;338

[18, 25]) is a key functional diversity dimension that has been extensively used in FD studies [81].339

Operationally, it is quantified as the volume of the minimum convex hull containing all species340

in an assemblage [20]. It is strongly related to species richness, and it is only sensitive to species341

loss at the edges of the distribution, ignoring gaps and inner species within the functional space.342

To account for ITV, consider all the individuals within functional trait space, and minimize the343

amount of filled functional space, [62] proposed an index representing the sum of all succes-344

sive convex hull areas touching all individuals within functional trait space, termed trait onion345

peeling (TOP) index. This index is more sensitive to disturbance agents or other environmental346

constraints (e.g. ecological filtering of individuals due to land use transformation) that impact347

the extreme trait values species than those species with common trait values, since the volume348

represented by the convex hull of the extreme trait values is larger [81]. By contrast, the TOP349

index detects changes that affect the center of the trait distribution better than other functional350

richness metrics [62, 81].351

Additionally, [62] proposed a functional regularity metric to measure how evenly distributed352

are individuals within the functional trait space, termed trait even distribution (TED) index.353

Based on n-dimensional sphere with evenly distributed points, a distance matrix is obtained354
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as a distribution reference and compared with the distance matrix of observed individuals as355

1 − log10(KL + 1), where KL is the Kullback-Leibler divergence between the two probability356

distributions of distances [62]. If the two distributions are equal, then KL = 0 and TED =357

1 (maximum regularity). Through simulations, [62] showed that TED outperformed classical358

metrics in detecting changes in functional regularity. For instance, [85] found that two bumblebee359

species showed higher TOP and lower TED indices in urban than in rural populations based on360

morphological traits, suggesting some degree of phenotypic and functional divergence.361

5.4 Trait probability density functions362

Along the same line of the trait overlap approach, an improvement in incorporating ITV into363

functional diversity was the integration of the probabilistic nature of trait distributions with364

the Hutchinsonian niche concept of a multidimensional n-hypervolume, termed trait probability365

density (TPD) approach [59, 84]. Again, the trait distribution of a species can be described by a366

trait probability density function TPDi, which is summed for a given assemblage and weighted367

by species abundances to give the trait probability density of the assemblage k, TPDk:368

TPDk =

N∑
i

piTPDi (16)

There are several alternatives to estimate TPDs. Kernel density estimators (KDE) are the369

most widely used and are suitable in most situations, having the advantage of not assuming an370

a priori shape of the trait distribution. Given a set of n observations of R traits measured on371

species i, the KDE of the species is:372

TPDi(x;H) =
1

n

n∑
l

KH(x−Xl) (17)

where x = (x1, x2, ..., xR)
t is an R-dimensional functional trait space,Xl = (Xl1, Xl2, ..., XlR)

t,373

K(x) is the kernel, and H is the bandwidth matrix.374
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The most important feature of this framework is that TPD functions can be aggregated to375

characterize any spatial scale or ecological unit, from individuals (if several measurements per376

individual are available) to the global scale [84, 2, 104], so that any other level of intraspecific377

trait variability beyond the individual can be accounted for (e.g., [91]). Because TPD functions378

are probability density functions, probabilistic overlap between TPD functions can be estimated379

in a similar way as explained above in the one-dimensional case. When applied at the species380

level this approach provides an estimation of species dissimilarity. In addition, TPD functions381

from different spatial scales can be compared to obtain an estimation of functional distinctive-382

ness at any scale [69]. Once TPD functions have been established for each species, functional383

richness, regularity and divergence can be computed as the amount of functional space occupied384

by the TPD function, the overlap between the TPD and a uniform trait distribution occupying385

the same part of the functional space, and the abundance-weighted distance to the center of386

gravity of the TPD, respectively [59, 84]. The most important caveat of this approach is that the387

sample size per species needed to characterize the underlying probability density function accu-388

rately increases exponentially with the numbers of dimensions considered (known as the ‘curse389

of dimensionality’). As a result, multiple traits may require a prohibitively large amount of trait390

data [77]. Alternatively, assumed probability density functions can be used if a low number of391

individuals are sampled or only means and variances are known (e.g., normal distribution). Be-392

cause of this, current software implementation may be unreliable if considering more than four393

traits, although dimension reduction techniques can be used to previously extract a lower set of394

dimensions as surrogates for functional traits [59, 104]. Finally, the use of probability functions395

with non-zero density everywhere and no defined thresholds to delimit their edges could lead to396

hypervolumes with infinite boundaries (which also applies to hypervolumes and trait overlap for397

a single dimension) [58].398

5.5 n-dimensional hypervolumes399

In the same vein of the TPD approach, [45] described the Hutchinsonian niche with an n-400

dimensional hypervolume by delineating a geometrical shape around a set of occurrences on401

environmental axes. The idea is constructing a hypervolume function based on species data402

located in environmental space. More recently, the hypervolume concept was extended to build403
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functional trait spaces [47, 90, 94, 97], in which a set of species are located on functional trait404

axes. Essentially, a n-dimensional hypervolume is delineated around species trait centroids, and405

its size is considered a measure of functional diversity. The general procedure to build an n-406

hypervolume consists of (1) generating random points around each species, (2) resampling down407

to uniform density, (3) computing a KDE at each random point, and (4) defining some threshold408

τ to retain points that will characterize the hypervolume (see Box 1 in [77]). The random points409

delineating the hypervolume can be generated using different algorithms (Gaussian KDE, box410

KDE, and support vector machines [76], yet the Gaussian KDE is often the recommended choice411

under most situations, as the other two methods assume a constant probability density across412

the distribution [77, 97]. A detailed mathematical description of these algorithms can be found413

in [45, 76], and we refer to [77] for technical description of hypervolumes, and to [97] for their414

extension to FD analyses.415

Although hypervolumes based on species data establish an analogy with the niche concept,416

functional trait spaces do not describe niches strictly speaking, because the niche is typically a417

property of a species and often estimated by environmental variables [28, 122]. However, if in-418

traspecific trait variability is accounted for to characterize the functional trait space, a straight-419

forward link between niche and the hypervolume can be made. For example, this idea has been420

applied to quantify and compare hypervolumes at the intraspecific level by using individuals by421

trait matrices of Darwin’s finches [94] and cave spiders from Europe ([97, 120]). In this case,422

random points are generated around each individual (instead of species) to build the hypervol-423

umes, and then multiple species-level hypervolumes can be combined to perform assemblage-level424

analyses (see specific function in [110]). By definition, the volumes of these shapes will always425

increase after accounting for ITV, so excluding ITV will underestimate functional richness. How-426

ever, since functional diversity analyses accounting for ITV using this approach has been little427

implemented, the degree of bias on functional richness, as well as the impact of ignoring ITV on428

other FD facets, remains to be tested.429

Similar to the TPD approach, major drawbacks of hypervolumes include the difficulty of430

handling categorical traits (although dimension reduction methods can be used) and highly431

correlated traits (which produce degenerate results), as well as the need for a high number of data432

to accurately represent KDEs [45]. In addition, input parameters (kernel bandwidth and threshold433
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τ) influence the results, with smaller bandwidths and/or a larger threshold producing smaller434

hypervolumes (because each observation is now more separated from each other) and vice versa.435

Moreover, KDE may under- or overestimate hypervolumes, depending on the dimensionality of436

the data (overestimation in lower than four dimensions, overestimation in larger than six) and the437

number of species considered [73]. It only recognizes clusters and holes when data are numerous438

(100 and 1000 respectively; [73]). This is problematic for community ecology, wherein most439

assemblages have less than 1,000 species, but this could be potentially overcome with the use of440

a large sample of individuals when accounting for ITV (e.g. for biogeographic studies examining441

the role played by ITV in shaping species distributions; see Point 2 in Box 1). More importantly,442

hypervolumes are built with nonparametric methods, so that the integration of empirical niches443

with niche theory is limited [105]. To address this caveat, [105] proposed a method to quantify444

and partition niche volume and dissimilarity based on the assumption of multivariate normal445

(MVN) distribution of traits, and termed this framework multivariate normal hypervolumes446

(MVNH). One major advantage of this method is that it provides parametric measures of the447

size (determinant of Σ of a MVN distribution) and dissimilarity (Bhattacharyya distance) of448

niche hypervolumes [105]. The determinant of the trait covariance matrix (hypervolume size)449

is a measure of functional richness [105]. Niche size can be further decomposed into univariate450

variances and a correlation component measuring hypervolume dimensionality, whereas niche451

dissimilarity can be decomposed into the Mahalanobis distance between hypervolumes and a452

size difference of niche volumes [105]. This approach had been already proposed to estimate453

the TPDs of species using the mean and variance (and eventually covariance) of traits when454

information on individuals is not available (function TPDsMean in the TPD package; [59]).455

Under the TPD framework, Bhattacharyya distance should give an estimation of dissimilarity456

similar to this approach (overlap between probabilistic distributions). Although this method is457

useful when individual trait data is not available (but there is information on trait means and458

variances), overcomes the limitations of nonparametric methods described above, and provides459

a partitioning framework for understanding different questions in ecology, it computes only one460

FD metric (functional richness, but see [59]) and has the strong assumption of a MVN trait461

distribution. In the case of functional diversity, there is no a priori reason to expect a MVN462

distribution of functional traits, which are indeed often quite irregular, due to the occurrence of463
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species with extreme trait values and areas of high and low species densities (e.g., [61, 91, 104]).464

However, when moving from species to individuals, normal trait distributions to describe species465

fundamental niches are more theoretically and empirically justified [101, 99]. To our knowledge,466

there have been no applications of this method to account for ITV in FD analyses, which however467

holds great potential.468

6 A simulated case study comparing different functional diversity469

metrics accounting for intraspecific trait variability470

To compare different methods accounting for intraspecific trait variability, we simulated assem-471

blages with varying levels of ITV, internal and external filtering (see below). Since we were472

interested in the effects of ITV on different FD metrics, the same parameters for a given assem-473

blage were used throughout (number of assemblages = 10, species richness per assemblage = 10,474

number of individuals per species = 10). For the sake of simplicity, we used only two continuous475

traits following normal distributions. For the first trait, the distribution of assemblage means476

was simulated with a sequence of equally distributed mean values (between 10 and 50) along the477

trait gradient. For the second trait, the distribution of assemblage means was simulated with478

normal distributions with µ = 50 and σ ranging from 5 to 20. This has the purpose of reducing479

the correlation between (and thus the redundancy of) both traits. For a given trait, the variance480

of each assemblage was simulated with a sequence of CV values (ranging between 0.3 and 0.6)481

representing the assemblage trait variance. The broader the range and the lower the assemblage482

variance, the higher the external filtering. In turn, for each assemblage, we created a sequence483

of CV values (ranging between 0.05 and 0.4) representing species trait variances (i.e. ITV). The484

lower the ITV, the higher the internal filtering. Therefore, every possible pair of combinations of485

overall trait range, assemblage variance and ITV resulted in a total of 1,000 simulation scenar-486

ios. With the resulting values, we fitted linear mixed effect models between each pair of metric487

including the number of simulations (which represents a set of 10 assemblages resulting from488

the same random process) set as a random effect to account for differences between simulated489

contexts. Metrics were standardized to mean 0 and variance 1 to allow model coefficient compar-490

ison. Given the large samples used, we use Cohen’s heuristics to interpret standardized partial491
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model coefficients: ±0.1 for a small effect size, ±0.3 for a moderate effect size, and ±0.5 for a492

large effect size [9].493

Table 2 summarizes the different methods presented to account for ITV in trait-based ecology494

and functional diversity calculations, along with their strengths and drawbacks, and type of495

ecological questions that can be addressed.496

Simulations on assemblages with varying degrees of between-assemblage, between-species497

and intraspecific trait variability showed that some intraspecific functional diversity metrics are498

strongly correlated. For instance, metrics describing the functional trait size (functional richness499

based on functional dendrograms, trait onion peeling, trait probability density functional rich-500

ness and hypervolume functional richness) were strongly, positively associated, with standardized501

model coefficients ranging between 0.50 and 1.14 (Fig. 2). By contrast, most metrics were weakly502

correlated or not correlated at all (Fig. 2), indicating the measurement of different FD facets or503

the inherent different nature of each method. Other less clear patterns emerge, including strong504

associations between hypervolume functional divergence and metrics describing the functional505

trait size, with standardized model coefficients ranging between 0.79 and 1.05, and a strong as-506

sociation between hypervolume functional regularity and functional richness based on functional507

dendrograms (standardized model coefficient = 0.79).508

7 Discussion509

Species are not homogeneous entities, but rather mosaics of individuals with traits values which510

can vary greatly [1]. This understanding, known as intraspecific trait variability (ITV), is having511

a significant impact on the field of functional ecology, which is moving forward along the path512

to incorporate ITV more routinely [33, 34, 108, 109]. However, the presence of many methods513

available to potentially account for ITV in FD analyses combined with the absence of a method-514

ological synthesis have prevented full application of these methods, much like has happened in515

‘classical’ diversity approaches [19, 83, 113]. Here, we performed a review of the methods available516

to account for ITV in ecological research and, more specifically, in functional diversity analyses,517

with the aim of aiding ecologists to select the most suitable approach based on the questions of518

interest and the context-dependency of each study.519
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7.1 When and why considering ITV is important?520

Although accounting for ITV has been a concerning issue in trait-based functional ecology, it521

is critical to decide when ITV should be considered [33]. It should be stressed that examining522

ITV is not always necessary nor desirable. For instance, if the aim is to assess changes in FD523

at a continental or the global scale (e.g. [2, 104], mean traits alone should be sufficient to cap-524

ture changes in functional traits or FD, and ITV would potentially represent random noise. For525

instance, using bird responses to urbanization across the continental United States, [116] found526

that interspecific variability was greater than intraspecific variability, and that using traits to527

predict urban tolerance did not change patterns using mean traits alone vs. mean traits account-528

ing for ITV. In other words, the spatial scale of analysis becomes highly relevant when deciding529

whether or not to incorporate ITV in any FD analysis (Box 1).530

The decision to include ITV should also be motivated by theoretical justifications or previous531

knowledge, ideally forming conceptual frameworks wherein specific hypotheses can be tested.532

If one’s objective is to quantify changes in FD along an environmental gradient, it is sensitive533

to account for ITV, because gradients usually reflect different local abiotic conditions in which534

pools of species or individuals exhibit different trait values matching these conditions [70, 112].535

For example, in woody plant species of mediterranean-type ecosystems, ITV and functional536

traits related to resource use and conservation in more water-limited conditions tended to be537

more constrained than those in more environmentally relaxed conditions [23, 82], aligning with538

predictions of the physiological tolerance hypothesis [50]. If one is unsure whether to include ITV539

in the analysis, we recommend testing its contribution to FD beforehand, whenever possible. One540

first, rapid step to achieve this is to collect 5–10 individuals per species of a given assemblage,541

measure some functional traits and assess the contribution of ITV to overall variation (e.g.542

through linear mixed models). Previous literature should be scrutinized when deciding whether543

including ITV is relevant. Some taxonomic groups, such as invertebrates, have shown low levels544

of ITV (1–6% of intraspecific trait variance; [63, 86], whereas others, such as fungi, have shown545

large ITV (more than twice as variable as interspecific variation; [96]). In turn, some traits can be546

highly variable within a given taxonomic group (e.g., body mass CV in birds = 593%; [51]), while547

others can be much less variable (tail length CV in birds = 71%; [115]. Therefore, researchers548
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should be careful when studying organisms known to be highly variable in functional traits, as549

well as when including traits that largely differ in their variance.550

7.2 How to integrate ITV into FD estimations?551

After deciding that ITV may be of interest or relevant to estimate FD, the next step is to consider552

how it will be obtained. Ecologists may be tempted to retrieve data from public databases (when553

available), yet one should be cautious about this practice, especially if species occurrence data554

are gathered at small spatial scales. This is because global or regional trait variation is unlikely555

to accurately reflect variation at small scales [42, 91]. Therefore, a more appropriate decision556

to quantify ITV is to take on-site measurements, or at least measure traits on natural history557

specimens from the same study area – although this assumes that ITV does not significantly558

change over time. In this sense, the use of standardized protocols to measure functional traits559

is strongly encouraged (e.g. [66, 72, 89]), ensuring that traits are measured in comparable ways560

across studies. This makes it possible to integrate data from different sources, taxa and regions,561

while minimizing measurement errors. In addition, standardized protocols often offer guidelines562

to obtain adequate sample sizes to properly estimate and report not only trait means but also563

variances [72]. If the number of species is extremely large (e.g. tropical regions or microbiomes),564

a lower number of species can be sampled, but the proportion of species that needs to be sampled565

ultimately should depend solely on interspecific trait variability; the larger the trait variability566

between species, the larger the fraction of species that should be sampled [24]. These consid-567

erations about individual sampling and ITV measurement should be kept in mind to properly568

obtain unbiased estimators of ITV [102].569

After quantifying ITV, proper identification of the FD metric to be used is crucial. Our570

review shows that this is not a straightforward task, because different frameworks aim to solve571

different questions (Table 2). For instance, if the main objective is to dissect ITV from other572

sources of variation at the assemblage level, then (G)LMMs, T-statistics and quadratic entropy573

partitioning constitute viable options. However, researchers should decide if their interest is in574

filtering processes (T-statistics), species turnover (quadratic entropy partitioning) or in specific575

ecological scales (LMMs). If the aim is to quantify the role of ITV on FD, then approaches such576

as individual-level FD, TPD functions or n-dimensional hypervolumes can be used. However,577
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this decision will depend on the main research interest; n-dimensional hypervolumes and TPD578

functions are suitable to gain insights into a geometrical representation of the functional niche579

space occupied by assemblages, whereas individual-level FD would serve well for a description580

of the functional dissimilarity between individuals. These choices also depend on whether all the581

individuals within an assemblage have been sampled (individual-level FD) or not (n-dimensional582

hypervolumes and TPD functions), which is usually constrained by the taxon under analysis583

(mobile vs sessile organisms). Further, one should also keep in mind that metrics differ in the584

number of species and traits that can be included. In an attempt to guide ecologists in selecting585

the most appropriate metric according to their needs, we summarized the methods described586

in our review in Table 2, emphasizing the key question each approach tries to answer, as well587

as the number of traits and species each method can handle. Our simulations are consistent588

with recommendations provided above related to the decision-making procedure of the most589

appropriate FD metrics to use. For example, whether one aims to assess how some predictors,590

such as biogeographic and environmental factors (e.g. latitude, elevation, aridity, disturbance591

regimes), influences the size of the functional trait space, any of the approaches described above592

(functional dendrograms, TPD, n-dimensional hypervolumes) can be applied as they capture the593

same dimension, namely functional richness. We also caution the reader that our simulations594

encompass a limited range of ecological scenarios and employ a reduced set of traits following595

specific distributions, so that it is essential to validate the observed correlations against real-world596

data. More importantly, as [113] have pointed out, researchers are advised to employ a single597

trait space representation for all estimations to ensure consistency in FD calculations across598

multiple dimensions. While the correlation between some metrics may tempt their application599

across different frameworks, it is crucial to recognize that these frameworks vary fundamentally600

in their conceptual underpinnings.601

7.3 Concluding remarks and future directions602

We emphasize the importance of properly reporting ITV results after quantification and publi-603

cation. In this sense, reporting all sources of variation, including between- and within-species vari-604

ability, along with their values and some metric of confidence (standard errors, confidence/credible605

intervals), is desirable and highly encouraged. Whenever possible, we encourage reporting and606
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depositing data and analytical codes in public repositories. This enhances transparency and re-607

producibility of trait-based studies [95, 113], and allows these sources of variability to be included608

into meta-analyses (e.g. meta-analysis of variation; [55, 100]).609

As there is growing recognition of the importance of ITV in functional ecology, we expect a610

bright future of ITV and FD. However, to further advance the study of ITV, we still need to611

address some gaps. First, we require more studies describing ITV across spatiotemporal scales612

and taxa. In particular, the temporal dimension of FD incorporating ITV is poorly understood.613

Therefore, we stress the importance of quantifying FD accounting for ITV and identifying the614

factors that drive changes in FD over time. Second, ITV should be included in global databases615

as a standard practice, since most taxonomic groups need this information. Finally, theoretical616

and modeling attempts so far cannot fully capture empirical patterns [123], revealing the need617

for more predictive theory.618

Overall, and despite the importance of ITV in ecology, we are far from a comprehensive and619

multifaceted understanding of the underlying mechanisms driving ITV in biological communi-620

ties. Empirical and theoretical models that describe biological trends across space and time can621

provide insights into how ecological traits change. There is still much that we have to learn about622

ITV; we envision this synthesis both as a trigger and a step forward towards developing a more623

accurate trait-based ecology, by assisting ecologists when working with ITV.624
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8 Box 1. Why only a fraction of functional diversity analyses accounts625

for intraspecific trait variability?626

It is now well-understood that ITV can largely influence or alter the detection of FD patterns.627

So why only a small portion of functional diversity analyses accounts for ITV (Fig. 1)? Some of628

the possible reasons and challenges are:629

1. Data limitation: ITV databases are costly and time-consuming to assemble. While high-630

resolution trait data are increasingly available for groups such as birds (e.g. AVONET) and631

plants (e.g. TRY, DiasMorph), these are still lacking for other groups, such as most invertebrates632

and fungi. Two additional issues complicate the use of databases. First, if most of the trait633

measurements for a species come from similar conditions, then the ITV estimate for that species634

will be biased towards those conditions. This is because ITV can vary largely depending on the635

environment, so an estimate based on a limited sample of observations may not be representative636

of the entire species. Second, it is possible to think that one has a good estimate of ITV for a637

species because there are measurements from different studies. However, these measurements are638

often the average of many individual measurements, which can lead to an underestimation of639

ITV. Hopefully, the increased availability of standardized protocols for collecting traits designed640

to consider ITV (e.g. [72]) constitutes a first, yet decisive step forward to overcome this hurdle641

and achieve this long-term goal.642

2. Nature of traits and data handling: Conceptually, ITV can be applied to any variable643

(i.e. trait) type. Working with continuous traits certainly represents the most straightforward644

way. However, most traits (especially for some taxonomic of the neglected groups above), are645

coded as categorical, ordinal, or binary variables, which may require some data handling (e.g.646

functional ordination) so as to make them suitable to integrate ITV in FD analyses. Importantly,647

categorical traits can sometimes accommodate ITV directly, such as in the case of the same648

species distinguished by individuals with different life histories (e.g. annual, biennial, perennial).649

3. Scale of the study: The influence of ITV on biodiversity patterns is assumed to decrease with650

increasing geographic scale (see Box 2 for more details). While for the majority of continental-651

to-global-scale analyzes the inclusion of ITV may be trivial and/or impractical, at these broad652

scales some key questions in ecology and biogeography can be tackled, such as testing for pair-653
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wise differences in FD accounting for ITV for a set of widespread vs. geographically restricted654

congeners, expecting higher FD for widespread species.655
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9 Box 2. Methodological aspects matter for quantifying the impact of656

intraspecific trait variability on functional diversity657

Although ITV represents an important aspect for the fields of ecology and evolution, different658

methodological choices may alter its estimation, resulting in mathematical artifacts that may659

bias their interpretation and conclusions. To showcase these possible issues (points 1–3 below),660

we consider three examples: 1) 216 individuals of 25 bird species of the genera Turdus (Turdidae)661

and Patagioenas (Columbidae) and nine morphological trait data (‘bird dataset 1’; see full details662

in [115]), 2) 3550 individuals of 30 random species of European diaspore traits (‘fruit dataset’;663

see full details in [117]), and 3) 5179 individuals of 29 bird species widely distributed (occurring664

in six or more countries) and beak length (‘bird dataset 2’; [115]).665

1. The number of traits: As the number of traits used to compute ITV increases, species will666

differentiate more. Consequently, the proportion of variation due to differences within species667

will decrease. Essentially, when many traits are considered simultaneously, the opportunities for668

species to differentiate will increase. For a given metric, dissimilarity may increase, decrease or669

remain unchanged with a larger number of traits, depending on their mathematical properties,670

as shown in the next point.671

2. The metric employed: When estimating dissimilarity between species accounting for ITV,672

different metrics may either increase or decrease species dissimilarity. For instance, Euclidean673

distance increased with the number of traits considered in both datasets, while Gower dissimi-674

larity remained relatively constant (Fig. 3). In the first case, adding traits increases the chance675

of finding subtle differences between species, until each species becomes unique. This is a long-676

held notion in mathematics termed the ‘curse of dimensionality’: each new dimension adds a677

non-negative term to the sum in the equation, so that the distance increases with the number678

of dimensions ([3]). Gower dissimilarity, in contrast, scales absolute distances to the overall trait679

range, so that species dissimilarities depend on trait variability. However, as this is computed680

as an arithmetic average, it is expected that this metric will eventually reach a plateau as more681

traits are added. When using trait overlap metrics to assess dissimilarity (e.g., hypervolumes,682

TPD functions), an increase in the number of traits is expected to reduce trait overlap, because683

the potential number of neighbors in niche space increases more or less geometrically as the684
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effective number of dimensions rises ([38]). In the bird dataset, niche overlap computed using685

kernel density functions ([36]) and dynamic range boxes ([64]) showed a negative trend between686

trait overlap and the number of traits. By contrast, niche overlap computed using kernel den-687

sity functions showed a positive relationship between overlap and the number of traits (Fig. 3),688

indicating that an increase in the number of traits does not always lead to lower trait overlap.689

3. The scale of analysis: The relative magnitudes of ITV relative to interspecific variation690

varies across species and is scale-dependent [33, 30, 44, 70]. Yet, predicting how spatiotemporal691

scaling structures trait variation (i.e. variance scaling) remains a challenging and unsolved ques-692

tion in ecology [53, 111]. As a general trend, the ‘spatial variance partitioning’ hypothesis states693

that the amount of intra- and interspecific variations are low at fine spatial scales and increase694

with scale [33]. At coarse scales, the entire species’ ranges are included, and ITV tends to reach695

an asymptote. At fine scales, however, this model cannot predict the relative magnitudes of ITV696

and interspecific trait variation, since it depends on species ranges, gene flow, environmental697

heterogeneity and the traits under analysis [33]. When comparing the coefficient of variation (as698

a metric of ITV) in beak length against the number of countries a species occurs in (as a measure699

of spatial extent), a similar pattern emerges across species. As the number of countries a species700

occurs in increases, the CV of beak length increases as well. This trend continues until the entire701

distribution is included, at which point the ITV reaches a plateau (Fig. 3). Only one species702

showed a clear negative trend between ITV and scale increase (Anthus similis), which could703

be the result of high variation within a large country (India) and among disjunct populations704

(Tanzania, Malawi, Yemen).705
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Fig. 1. Annual (1990–2023) number of published articles using the term ‘functional diversity’ (black line)
compared to ‘intraspecific trait variability’ (orange lines). For enhanced visualization, the inset zooms
in the curve of FD studies that includes ITV, which increased markedly in recent years, although still
constituting a small fraction of the entire scientific production focused on FD. Articles were retrieved
from Scopus on 14 November 2023, using the queries: ‘functional diversity’ and ‘functional diversity’
AND ‘intraspecific trait varia*’.
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Table 1. Table for notations

Symbol Description
i Species
j Trait
k Site or community
l Individual
N Number of species
R Number of traits
n Number of individuals
p Species relative abundance

s,m Ecological units
S Number of ecological units
C Community by species matrix
T Species by trait matrix
CV Coefficient of variation
CVB Bao’s coefficient of variation
KCV Kv̊alseth’s coefficient of variation
MCV Multivariate coefficient of variation
RDPI Relative distance plasticity index
PhD Phenotypic dissimilarity
X Trait mean
S2 Trait variance
µ Mean vector
Σ Variance-covariance matrix

γV N Voinov and Nikulin’s coefficient of variation
γ1 Sample sknewness
γ2 Sample kurtosis

CWM Community-weighted mean
CWV Community-weighted variance

CWITV Community-weighted intraspecific trait variance
TOP Trait onion peeling
TED Trait even distribution
KL Kullback-Leibler divergence
σ2
IC Community-level variance

σ2
IP Population-level variance

σ2
IR Region-level variance

TIP/IC
σ2
IC

σ2
IC

TIC/IR
σ2
IC

σ2
IR

TPC/PR
σ2
PC

σ2
PR

TPD Trait probability density function
KDE Kernel density estimator
K(x) Kernel density function
H Bandwidth matrix

MVNH Multivariate normal hypervolume
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Fig. 2. Relationships between functional diversity metrics accounting for intraspecific trait variabil-
ity. Results are based on simulating 1000 communities with varying degrees of between-assemblage,
between-species and intraspecific trait variability (see main text). Standardized model coefficients be-
tween a predictor (first column) and a response (first row) derived from linear mixed models are reported
(see main text). FD: functional diversity, FRich: functional richness, FReg; functional regularity, FDiv:
functional divergence, FTOP: trait onion peeling, TED: trait even distribution, MVNH: multivariate
normal hypervolume determinant, TPD: trait probability density, HV: hypervolume.
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Fig. 3. Influence of the number of traits on metrics accounting for intraspecific trait variability. Points
represent individuals (in the case of Euclidean and Gower distances) or trait overlap (in the case of dy-
namic range boxes and kernel density functions). Data retrieved from AVONET (a, c, e-f) and DiasMorph
(b, d, g-h). See Box 2 for details.
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Fig. 4. Effect of spatial scale on intraspecific trait variability. Points depict bird species widely dis-
tributed and lines are loess smoothers representing the relationship between the geographic extent and
the coefficient of variation (CV) in beak length.
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