
Inferring the seasonal dynamics and abundance
of an invasive species using a spatio-temporal

stacked machine learning model
Daniele  Da  Re1,2,  Giovanni  Marini2,3,  Carmelo  Bonannella4,5,  Fabrizio  Laurini6,  Mattia
Manica3,7, Nikoleta Anicic8, Alessandro Albieri9, Paola Angelini10, Daniele Arnoldi2, Federica
Bertola11,  Beniamino Caputo12,  Claudio  De Liberato13,  Alessandra della  Torre12,  Eleonora
Flacio8,  Alessandra  Franceschini14,  Francesco  Gradoni15,  Përparim  Kadriaj16,  Valeria
Lencioni14,  Irene  Del  Lesto13,  Francesco  La  Russa17,  Riccardo  Paolo  Lia18,  Fabrizio
Montarsi15,  Domenico  Otranto18,  Gregory  L’Ambert19,  Annapaola  Rizzoli2,3,  Pasquale
Rombolà13, Federico Romiti13, Gionata Stancher11, Alessandra Torina17,   Enkelejda Velo16,
Chiara Virgillito12, Fabiana Zandonai11, Roberto Rosà1,2

1Center Agriculture Food Environment, University of Trento, San Michele all’Adige, Italy 
2Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
3Epilab-JRU, FEM-FBK Joint Research Unit, Province of Trento, Italy 
4OpenGeoHub Foundation,  Wageningen, The Netherlands
5Laboratory of  Geo-Information Science  and Remote Sensing,  Wageningen  University  &
Research, Wageningen, The Netherlands
6University of Parma, Parma, Italy
7Bruno Kessler Foundation, Trento, Italy
8Institute of Microbiology, University of Applied Sciences and Arts of Southern Switzerland
(SUPSI), Mendrisio, Switzerland
9Centro Agricoltura Ambiente "G.Nicoli", Crevalcore, Italy
10Emilia Romagna region, Bologna, Italy
11Fondazione Museo Civico di Rovereto, Rovereto, Italy
12La Sapienza University, Rome, Italy
13Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Italy
14MUSE - Museo delle Scienze, Trento, Italy
15Istituto Zooprofilattico Sperimentale delle Venezie, Padua, Italy
16Institute of  Public Health, Tirana, Albania
17Istituto Zooprofilattico Sicily, Palermo, Italy
18University of Bari, Bari, Italy
19EID Mediterranée, Montpellier, France

Corresponding author: Daniele Da Re, daniele.dare@unitn.it

1

2

3

4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

1



Abstract

Various modelling techniques are available to understand the temporal and spatial variations
of the phenology of species. Scientists often rely on correlative models, which establish a
statistical  relationship  between  a  response  variable  (such  as  species  abundance  or
presence-absence) and a set of predominantly abiotic covariates. The modelling approach
choice, i.e. the algorithm, is a crucial factor for addressing the multiple sources of variability
that can lead to disparate outcomes when different models are applied to the same dataset.
This inter-model variability has led to the adoption of ensemble modelling techniques, among
which  stacked  generalisation,  which  has  recently  demonstrated  its  capacity  to  produce
robust  results.  Stacked  ensemble  modelling  incorporates  predictions  from multiple  base
learners or models as inputs for a meta-learner. The meta-learner, in turn, assimilates these
predictions and generates a final prediction by combining the information from all the base
learners. In our study, we utilized a recently published dataset documenting egg abundance
observations  of  Aedes  albopictus collected  using  ovitraps.  This  dataset  spans  various
locations  in  southern  Europe,  covering  four  countries  -  Albania,  France,  Italy,  and
Switzerland - and encompasses multiple seasons from 2010 to 2022. Utilising these ovitrap
observations  and  a  set  of  environmental  predictors,  we  employed  a  stacked  machine
learning model to forecast the weekly average number of mosquito eggs. This approach
enabled us to i) unearth the seasonal dynamics of Ae. albopictus for 12 years; ii) generate
spatio-temporal  explicit  forecasts of  mosquito egg abundance in  regions not  covered by
conventional  monitoring  initiatives.   Beyond  its  immediate  application  for  public  health
management,  our  work  presents  a  versatile  modelling  framework  adaptable  to  infer  the
spatio-temporal abundance of various species, extending its relevance beyond the specific
case of Ae. albopictus.

Keywords
Arthropod, Aedes albopictus, forecast, invasive species, population dynamics, time-series.

1

2

37

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

61
62
63

3



Author Contributions
Daniele Da Re, Beniamino Caputo, Alessandra della Torre and Roberto Rosà conceived the
study;  Daniele  Da  Re  and  Roberto  Rosà  designed  the  methodology,  with  relevant
contributions from Carmelo Bonannella, Giovanni Marini, Fabrizio Laurini and Mattia Manica;
Nikoleta  Anicic,  Alessandro  Albieri,  Paola  Angelini,  Daniele  Arnoldi,  Federica  Bertola,
Beniamino  Caputo,  Claudio  De  Liberato,  Enkelejda  Velo,  Eleonora  Flacio,  Alessandra
Franceschini,  Perparim Kadriaj,   Valeria  Lencioni,  Irene Del Lesto, Francesco La Russa,
Riccardo  Paolo  Lia,  Fabrizio  Montarsi,  Francesco  Gradoni,  Gregory  L’Ambert,  Federico
Romiti,  Gionata Stancher, Fabiana Zandonai collected the data; Daniele Da Re, Carmelo
Bonannella, Giovanni Marini, Fabrizio Laurini, Mattia Manica and Roberto Rosà analysed the
data; Daniele Da Re led the writing of the manuscript. All authors contributed critically to the
drafts and gave final approval for publication.

Acknowledgements
The  study  was  supported  by  the  Italian  Ministry  of  University  and  Research  (MUR)
PRIN2020 "Tackling mosquitoes in Italy: from citizen to bench and back" (N. 2020XYBN88).
This study was partially funded by EU grant 874850 MOOD and is catalogued as MOOD
098. This  study was partially  supported by EU funding within the MUR PNRR Extended
Partnership initiative on Emerging Infectious Diseases (Project no. PE00000007, INF-ACT).
The  contents  of  this  publication  are  the  sole  responsibility  of  the  authors  and  don't
necessarily reflect the views of the European Commission. Gionata Stancher and Federica
Bertola thank the municipalities belonging to Comunità della Vallagarina and Comunità Alto
Garda e Ledro. Monitoring activities in Trento were financed by the Trento Municipality.

2

4

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

5



1. Introduction
Understanding the phenology of species, the study of periodic events in biological life

cycles influenced by seasonal and annual climate fluctuations, is of paramount importance
across various domains such as agriculture  (e.g., for crop yield forecasts; Fand et al., 2014),
nature  conservation  (e.g.,  for  assessing  species  responses  to  global  changes;  Ettinger,
Chamberlain,  and  Wolkovich,  2022),  and  addressing  public  health  concerns  related  to
allergens and emerging infectious diseases carried by arthropod vectors (Burkett-Cadena et
al., 2011).  Ecologists have therefore developed and tested several modelling approaches,
i.e. the mechanistic and correlative approaches, to infer the phenology of species and how it
varies  over  space  and  time.  The  mechanistic  approach  employs  laboratory  or  field
observations about the influence of biotic or abiotic factors on the targeted life history traits
(e.g.  the  effect  of  temperature  on  a  juvenile  form  development  rate)  to  parametrise
mathematical models inferring the life cycle of the species of interest (e.g. Tran et al., 2013;
Marini  et  al.,  2019;  Pfab et  al.,  2018;  Da Re et  al.,  2022).  Although generally  accurate,
mechanistic  models  often  require  estimating  multiple  parameters,  constrained  by  the
availability of ecological observations in the scientific literature (Tjaden et al., 2013; Da Re et
al., 2022). As an alternative, ecologists frequently turn to correlative models, which establish
statistical relationships between a response variable (e.g., species abundance or presence-
absence) and a set of mostly abiotic covariates (Guisan et al., 2017; Edwards and Crone,
2021). 

Despite the utility of correlative models, their outputs are subject to various sources
of variability, such as sampling location bias and model tuning  (Hortal et al., 2008; Fourcade
2021; Bazzichetto et al., 2023; Da Re et al., 2023a). The choice of modelling method, in
particular, has proven influential, as different models applied to the same dataset can yield
distinct results (Araújo & New, 2007; Pearson et al., 2006, Marmion et al., 2009). This inter-
model  variability  has  prompted  the  use  of  ensemble  modelling  techniques,  also  called
consensus modelling,  which involves fitting multiple independent  algorithms on the same
input data and then aggregating the individual models' outputs to produce a final prediction,
reducing the risk of overfitting and extrapolation issues (Marmion et al., 2009). While simple
aggregation methods like averages and weighted averages have been traditionally  used
(Marmion et al.,  2009; Hao et al.,  2019), more advanced ensemble techniques, such as
stacking or  stacked generalisation  (Wolpert,  1992),  have recently  demonstrated superior
performance (Bonannella et al., 2022; 2023). In stacked ensemble modelling, multiple base
models' predictions serve as inputs for a meta-learner, which learns from these predictions
and generates the ultimate prediction by combining information from all the base models.

Motivated by these considerations, our study introduces a spatio-temporal stacked
model to infer the abundance of Aedes albopictus’ eggs in Southern Europe from 2010 to
2022. The "Asian tiger mosquito" (Aedes (Stegomyia) albopictus (Skuse, 1895))  serves as a
compelling case study because it is an invasive alien species with a rapidly expanding range
(Roche et  al.,  2015;  Ibáñez-Justicia,  2020) and it  has medical  interest  due to its role of
vector  in  several  outbreaks of  vector-borne diseases  occurred in  Mediterranean  Europe
during the last two decades (Rezza et al.,  2007; Venturi et al., 2017; Brady et al.,  2019;
Barzon et al., 2021). 

Local  public  health  authorities  have  established  surveillance  and  monitoring
initiatives to gain deeper insights into the distribution,  abundance and seasonality of this
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vector, facilitating the development of proactive strategies for population and disease control.
Consequently, the collection of these monitoring data is necessary for the implementation of
passive surveillance systems, as outlined by Caputo and Manica (2020). These systems
encompass modelling techniques that can reliably calculate and predict vector abundance
and seasonal patterns, offering invaluable assistance to local public health agencies. While
correlative  models  have  been  widely  used  to  infer  the  geographic  distribution  of  Ae.
albopictus in support of surveillance and monitoring activities (Lippi et al., 2023), to the best
of  our knowledge this  is the first  application  of  a stacked spatio-temporal  model  on this
species. This study not only contributes to the first application of a stacked spatio-temporal
model to Ae. albopictus but also offers specific results to support public health authorities in
planning  vector  control  activities  and  assessing  disease  risk.  The  model  enables  the
inference of seasonal abundance even in areas lacking active surveillance, providing crucial
support for resource allocation in monitoring and surveillance efforts. Beyond its immediate
application, our work presents a versatile modelling framework adaptable to infer the spatio-
temporal abundance of various species, extending its relevance beyond the specific case of
Ae. albopictus.

2. Methods
2.1 Biological observations and area of interest

We used  Ae. albopictus'  egg counts obtained from monitoring activities conducted
with  ovitraps  as  the  response  variable  in  our  models.  Ovitraps  are  cheap  and  efficient
monitoring  tools  consisting  of  a  dark  container  filled  with  water  and  a  substrate  where
container-breeding mosquitoes can lay their  eggs.  The stick is collected on a weekly  or
biweekly  basis,  depending  on  the  local  protocol  adopted  by  the  stakeholders,  and  the
number of eggs laid on the stick counted. 

We collected ovitraps observations from four European countries (Albania, France,
Italy,  and  Switzerland)  that  had  active  monitoring  and  surveillance  programs  of  Ae.
albopictus utilising ovitraps between 2010 and 2022 (see Da Re et al. 2023b for a detailed
description of the sampling protocols and the observations pre-processing).  We chose the
week as the fundamental  temporal  unit  of  our  study;  therefore,  if  the  monitoring  period
extended beyond one week, the observed egg counts were distributed randomly over the
period  of  trap  activity  using  a  binomial  draw  with  a  probability  equal  to  1/n  weeks  of
activation. This means that if  a trap was active for 2 weeks and collected 500 eggs, the
observed 500 eggs would be randomly assigned to each week with a probability p=1/2,
resulting  in,  e.g.  256  eggs  collected  during  the  1st  week  and  244  collected  during  the
second. In addition, we aggregated the ovitraps by the median using a grid of 9x9 km spatial
resolution  (i.e.,  the  native  spatial  resolution  of  the  ERA5Land climatic  datasets;  Muñoz-
Sabater et al., 2021) to reduce the inherent variability related to the microclimatic conditions
to  whom  the  single  ovitraps  are  exposed,  and  mild  the  artefacts  produced  by  different
sampling strategies and size of the ovitraps. 

The collected ovitraps observations are located in a geographical extent spanning
from 6° to 21° E and from 36° to 47° N (Fig. 1). According to Cervellini et al. (2020), this area
is  characterised by three main biogeographical  regions,  namely Alpine,  Continental,  and
Mediterranean  (Fig.  1).  Since  the  location  of  the  ovitraps  well  represents  these  three
biogeographical regions, we decided to limit the geographical area of extrapolation of the
model to the abovementioned geographical extent and these biogeographical regions only.
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Fig.  1  Biogeographical  regions  of  Europe  according  to  Cervellini  et  al.,  (2020)  and the
location (green dots) of the aggregated egg observations at 9x9 km spatial resolution. The
black lines represent the borders of the administrative areas of the countries of interest at
the NUTS2 level.

2.2 Modelling
Stacked  generalisation  is  a  technique  that  combines  predictions  from  multiple

individual  models,  known  as  base  learners  or  base  models,  to  make  a  final  prediction
(  Wolpert,  1992;  Boehmke  and  Greenwell,  2019;  Bonannella  et  al.,  2022).  In  stacked
generalisation,  the outputs of individual  base learners serve as inputs to a meta-learner,
which is another model that learns from the predictions of the individual models. The meta-
learner then generates the final prediction by combining and synthesising the information
from the individual models (Fig. 2a). Stacking has the potential to improve the accuracy and
robustness  of  ecological  models  by  leveraging  the  strengths  of  different  models  and
effectively capturing complex relationships in the data (Bonannella et al., 2022). However, it
is  important  to  remark  that  while  stacking  can  reduce  model  variance  and  improve
predictions,  it  comes  with  trade-offs  as  it  increases  model  complexity,  reduces
interpretability, and augments the computational time compared to individual models (Zhou,
2012). 
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Fig  2.  a)  a  conceptual  representation  of  the  stacking  approach;  b)  framework  of  the
modelling approach presented in the study.

2.2.1 Model formulation
As with all correlative models, stacked models require providing each base learner

with a  response variable  and a set  of  covariates.  We used as a response variable  the
spatially  aggregated  weekly  median  egg  observations  described  in  section  2.1.  As
covariates,  we  selected  three  main  environmental  drivers  that  significantly  influence  the
behaviour and development of mosquitoes, namely temperature, photoperiod (i.e., duration
of daylight in 24 hours) and precipitation (Toma et al., 2003; Becker et al., 2010; Roiz et al.,
2010, 2011; Marini et al. 2020; Romiti et al., 2021; Carrieri et al., 2023; see SM1.1 for a
detailed  description  of  the  covariates  used,  their  ecological  significance,  and  the
preprocessing operations).  For  each of  these three covariates,  we considered  also  their
lagged values, since the mosquito life cycle can take several days or weeks to complete
(Becker et al.,  2010; Roiz et al.,  2010). The lagged temperatures and photoperiod were
calculated as the median value between the observations recorded in the current week (i),
the previous week (i-1), and the week before that (i-2), whilst the lagged precipitation was
computed as the cumulative weekly value between the precipitation recorded in the current
week (i), the previous week (i-1), and the week before that (i-2).
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In addition to the environmental covariates, which we include as distributed lags, we
considered seasonal and cyclical components. Specifically, we used the Fourier series, with
sine  and  cosine  harmonic  waves,  to  accommodate  the  yearly  pattern  and  shorter-term
seasonality.  For  these  calendar  effects  the  Fourier  terms  offer  a  more  parsimonious
representation than dummy variables, in particular when the frequency of the data is large
(see  Hyndman  and  Athanasopoulos  2021,  Ch.  7  Sect.  4).  We  selected  four  relevant
harmonic: one pair of harmonics is used for describing the yearly evolution, whereas another
pair  of  harmonics  is  needed  to capture some seasonal  patterns.  The four  trigonometric
waves  were  added  to  the  other  environmental  predictors  and  provided  a  significant
contribution to describing the cyclic patterns and fluctuations in the median weekly number
of eggs.

Based on the results of the explorative modelling (SM1.2), we designed two different
but complementary models. The regression model infers the number of eggs as a function of
temperature, photoperiod, and precipitation,  all  lagged by -2 and -3 weeks, and the four
Fourier’s harmonics (Eq. 1). 

(Eq.  1) Regression  model: Egg  count  ~  Temperature.lag2  +  Temperature.lag3  +
Photoperiod.lag2  +  Photoperiod.lag3  +  CumulativePrec.lag2  +  CumulativePrec.lag3  +
SineYear + CosineYear + SineSeasonal + CosineSeasonal

The autoregressive model adds to the predictors considered in the Regression model (Eq. 1)
an autoregressive component based on the number of  eggs observed at  week t-1 (Egg
count.lag1).

(Eq.  2)  Autoregressive  model: Egg  count  ~  Egg  count.lag1  +  Temperature.lag2  +
Temperature.lag3  +  Photoperiod.lag2  +  Photoperiod.lag3  +  CumulativePrec.lag2  +
CumulativePrec.lag3 + SineYear + CosineYear + SineSeasonal + CosineSeasonal

2.2.2 Stacked model
Each  model  formulation  was  applied  to  four  individual  base  algorithms,  namely

extreme gradient boosting (xgBoost), boosted regression trees (BRT), random forest (RF)
and cubist (Fig. 2b).

Extreme gradient boosting (xgBoost) is a powerful gradient boosting algorithm based
on the concept of boosting, where weak models (typically decision trees) are sequentially
trained  to  correct  the  mistakes  made  by  the  previous  models  (Friedman,  2001).  The
algorithm optimises  an  objective  function  by  iteratively  adding  models  to  the  ensemble,
minimising  the  loss.  xgBoost  employs  a  gradient-based  approach  to  improve  the
performance of the weak models and handle complex interactions among variables. Boosted
regression trees (BRT) is a boosting algorithm that combines multiple decision trees to form
an ensemble model (Elith et al., 2008). Similar to xgBoost, BRT sequentially trains decision
trees, with each subsequent tree focusing on correcting the errors made by the previous
trees. The algorithm optimises an objective function by iteratively adding trees, and the final
prediction is a weighted sum of the predictions from all  the trees.  Random Forest is an
ensemble learning method that constructs a collection of decision trees and combines their
predictions to make accurate predictions (Breiman, 2001). Each tree in the RF is built on a
randomly sampled subset  of  the data and a randomly selected subset  of  features.  This
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randomness helps to reduce overfitting and increase the diversity among the trees, and the
final prediction is determined by averaging or voting the predictions from all the trees in the
forest.   Finally,  cubist  is a rule-based algorithm that  combines decision trees with linear
models. It creates a set of rules by recursively partitioning the data based on the predictor
variables (Quinlan, 1992). Each rule corresponds to a specific region of the feature space
and predicts the response variable using a linear model. The algorithm iteratively builds a
series of decision trees and linear models, optimising an objective function that balances
accuracy and complexity. 

We tuned the hyperparameters of each of the four machine-learning algorithms for
both model formulations (Eq. 1-2; SM2.1). Then, for each model formulation separately, we
combined the predictions of each tuned algorithm into the meta-learner, defined as a linear
regression  of  the  egg  count  (response  variable)  and  the  four  algorithms’  predictions
(covariates). Both meta-learners were used to predict the abundance of Ae. albopictus eggs
over the period 2010-2022 on the training and validation datasets. The meta-learner trained
with the four algorithms having as model formulation Eq. 1, i.e. the regression model, was
also used to predict, and thus extrapolate, over the whole area of interest for the period
2010-2022.

All the analyses were performed in R 4.3 (R Core Team 2023). All the R scripts used
for the analysis are available at the GitHub repository https://github.com/danddr/stackedML.
The R scripts are shared with detailed comments to foster the methodology reproducibility
and its application to case studies and species different to invasive mosquitoes.

2.3 Model validation
The aggregated egg observations were partitioned into one training and two testing

datasets (Fig. 2b). To conduct external validation, we employed a random selection process,
choosing two aggregated ovitraps within each distinct NUTS2 level for every biogeographical
region. This selection was limited to aggregated ovitraps with a minimum of three years'
worth of  observations,  guaranteeing the presence of  a  robust  time series  for  validation.
These  observations  were  excluded  from the training  dataset  allowing  for  an  exhaustive
coverage of the longitudinal and latitudinal gradient  of the area of interest.  We excluded
Sicily from the external validation dataset because it hosts only one aggregated ovitrap and
represents  the  southernmost  observation  in  the  area  of  interest  (see  Fig.  S3.1  for  the
locations of the ovitraps used for the external validation). After excluding these stations, we
defined the training dataset as all  the observations spanning from 2010 to 2021 and the
testing dataset as all the observations gathered in 2022. As an additional validation, we also
performed a 10-fold cross-validation on the training dataset by retaining, for each fold, 70%
of the observations to train the model.  The class of models used is either regression or
autoregression, so the standard k-fold cross-validation can be implemented, as suggested
by Hyndman and Athanasopoulos (2021, Ch 5. Sect. 10). To estimate the model’s predictive
error we estimated, for each station and validation dataset,  the root mean squared error
(RMSE) and the mean absolute error (MAE).
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2.4  Deriving  pseudo-phenological  indexes:  introducing  the
period-over-threshold

In addition to utilising the stacked model for predicting the average number of eggs
for  each week within  a given year  across the area of  interest,  we also aimed to derive
estimates about the predicted seasonality of Ae. albopictus. Different approaches have been
proposed  to  compute  seasonal  indexes  of  mosquitoes  like  onset  (i.e.  beginning  of  the
season), peak, and offset (i.e., end of the season; Rosà et al., 2014, Romiti et al., 2022).
However,  these  approaches  assume  a  repeated  and  even  sampling  of  the  species  of
interest, which, unfortunately, is not the case across the sampling locations of our dataset.
Therefore, here we propose and define a pseudo-seasonal index that we call the period-
over-threshold (POT). 

The POT represents the period in which the variable of interest,  i.e.  the average
number of eggs, is above a certain threshold. The POT might be of interest not only for
spatial  epidemiological  applications  but  also  for  alien  species  monitoring  or  biological
conservation, i.e. by identifying the areas and the period in which a given population is below
or above a certain threshold and therefore requires local interventions. Here, we define the
POT as the number of weeks in which the weekly average number of eggs is equal to or
higher than 55 eggs, the spatially and weekly aggregated average median number of eggs
(excluding zeros) observed over the whole area of interest during the period 2010-2022. We
acknowledge  that  the  POT,  as  defined  here,  is  a  heuristic  approach,  and therefore  we
performed a sensitivity analysis varying the threshold to 20 and 125, defined by the average
interquartile range (IQR) of the observed distribution. 

Finally, we investigated if the observed and predicted POT have varied in time and
space among the different biogeographical regions over the 2010-2022 period. We tested
whether the length of the observed and estimated POT is affected by the year (quantitative)
and  the  biogeographical  regions  (qualitative:  Alpine/Continental/Mediterranean)  and  their
interaction, using Generalised Linear Mixed Models (GLMMs) with Poisson error distribution
and log link function, considering the ID of the aggregated ovitraps as a random factor. 
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3. Results

3.1 Ovitraps dataset descriptive statistics
We collected observations from 2620 ovitraps in four European countries (Albania, France,
Italy and Switzerland), resulting in 149 aggregated ovitraps stations after the aggregation at
9x9  km  spatial  resolution.  Overall,  30  aggregated  ovitraps  were  located  in  the  Alpine
biogeographical region, while 48 and 71 were located in the Continental and Mediterranean
biogeographical  regions,  respectively.  Most of the ovitraps were active during the period
2020-2022, with only a few stations that were monitored for more than three seasons (Da Re
et al. 2023b). 120 aggregate ovitraps were used to train the models, whilst 19 were retained
for the external validation.

3.2 Model outputs
The random forest algorithm showed the highest  regression coefficient  in the regression
stacked model and so resulted as the most important algorithm (Tab. S2.2), while the most
important environmental predictors were the 3-week-lagged temperature and photoperiod
(Fig. S2.3A). On the other hand, cubist was the most important algorithm for the stacked
autoregressive  model,  with  the  1-week-lagged  value  of  observed  eggs  being  the  most
important predictor (Fig. S.2.3B).

Both stacked models were able to capture the seasonal and interannual variability of
the ovitraps time series in  the training dataset  and both validation datasets (Fig.  3,  Fig.
S3.2). A detailed representation of the external validations for both models, broken down at
the location level, is available in SM3 in Fig. S3.3-S3.4 for the regression and autoregressive
models  respectively.  The  predicted  values  for  both  the  internal  and  external  validation
matched  the  observation  patterns  in  the  three  biogeographical  regions,  with  the
autoregressive model showing, in general, a closer association with the observations. The
autoregressive model showed overall a higher R2 and lower RMSE and MAE compared to
the regression model in the training and both validation datasets (Tab. 1; Fig. S3.5).

Tab. 1 Stacked model validation metrics from the 10-fold cross-validation made on the 
training dataset.

Model R2 Residual standard
error

10-fold CV RMSE 10-fold CV MAE

Regression 0.63  55.55 50.37 24.44
Autoregressive 0.85 35.38 34.39 12.66
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Fig.  3 Median and interquartile  range of  the number  of  eggs observed (grey lines)  and
predicted by  the regression model  in  both the internal  and external  validation.  Both the
observed and predicted values were aggregated over the three biogeographical regions to
allow an easier representation.
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Fig. 4.  Median number of eggs predicted weekly by the regression model in the area of
interest for the year 2022.  The black lines represent the borders of the administrative areas
of  the countries of  interest  at  the NUTS2 level.  The grey areas are outside the area of
interest. 

3.3 Spatial predictions
The spatio-temporal predictions of the stacked regression model for the year 2022

show seasonal and latitudinal variation in the area of interest (Fig. 4). Generally, we observe
an average number of eggs higher than 50 in the entire study area from week 20 (mid-May)
onwards. The peak of the season is estimated on week 30 (end of July), especially in the Po
and Rhone valleys, as well as in the coastal areas of the Adriatic, Ionian and Tyrrhenian
seas. The predicted average number of eggs decreases after week 35 (end of August). Still,
it  follows  a  latitudinal  and  geographical  shift,  with  the  Southernmost  and  coastal  areas
showing predicted values of eggs higher than 100 still in week 40 (beginning of October),
decreasing below fifty only after week 45 (November) onwards.

3.4 Period-over-threshold
On  average,  the  observed  POT  spans  7  (6-9  IQR)  weeks  for  the  Alpine

biogeographical region, 20 (19-22 IQR) and 15 (14-16 IQR) weeks for the Continental and
Mediterranean biogeographical regions, respectively. The predicted POT shows generally a
shorter length, with 4 (3-5 IQR) weeks for the Alpine biogeographical region, and 17 (16-18
IQR)  and  11  (9-12  IQR)  weeks  for  the  Continental  and  Mediterranean  biogeographical
regions respectively. The spatial representation of the POT for the year 2022 (Fig. 5) shows
a longer length of the POT in the Po Valley and coastal zones of the area of interest (POT >
20 weeks). Mountainous and foothills areas show, on average, short (POT <= 5 ) or absent
POT.

The Poisson GLMMs investigating the effect of the interaction between the year and
the biogeographical  regions  on  the  POT show significant  effects  for  all  the  explanatory
variables and their interactions, except for the Alpine biogeographical region in the Observed
(Tab. S3.7). The predicted values of the models trained on the observed and estimated POT
showed a positive increase, independent from the reference year, for all the biogeographical
regions but the Alpine in the observed dataset over the period 2010-2022 (Fig. 6).
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Fig. 5. Spatial representation of the critical period-over-threshold (POT) for the year 2022 in
the area of interest. White pixels are characterised by an average median weekly number of
eggs always lower than 55.  The pink lines represent the borders of the administrative areas
of the countries of interest at the NUTS2 level.

Fig.  6.  Modelled  relationships  between  the  Period-over-threshold  and  the  interaction
between the year and biogeographical regions using a Poisson GLMM.
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4. Discussion
Ensemble modelling is a popular technique to mitigate the artefacts or errors that

may arise from individual algorithm predictions. Among the different ensemble techniques
available, stacking has recently risen as one of the approaches leading to a more robust and
accurate  final  prediction  (Bonannella  et  al.,  2022;  2023).  In  this  study,  we  proposed  a
reproducible application  of  a stacked model to infer  the spatio-temporal  abundance of  a
species of interest, the Tiger mosquito Ae. albopictus. We stress that our approach can be
replicated and applied to different species, not only those of medical interest if longitudinal
observations on their abundance and phenology are available. The application of a stacked
model  on  both  regression  and  autoregressive  model  formulations  resulted  in  reliable
estimates of mosquito egg abundance. Such results can contribute to supporting local public
health authorities'  efforts  in  mosquito  management  and control:  the  regression model  in
particular  allowed us to rapidly infer the weekly egg abundance in areas not covered by
monitoring activities. This is extremely important to support local public health authorities to
better allocate monitoring and surveillance resources and to simulate scenarios for the next
mosquito season under different climatic conditions.

4.1 Predictive accuracy of the models
The performance metrics of the regression and autoregressive models indicated a

consistently strong predictive accuracy throughout the entire time series. Furthermore, the
values of RMSE and MAE displayed similarities between the internal and external validation
datasets. The autoregressive model showed generally higher predictive performance than
the regression model, having the lagged number of eggs observed as the most important
predictive variable. This was not unexpected, since the preliminary exploratory analysis (SM
1.2), made with genuine regression models, displayed strong empirical autocorrelation, of
order one,  in the residuals.  However,  the high predictive accuracy of  the autoregressive
model has the drawback of not being able to spatially extrapolate its predictions outside the
training dataset. Whilst this can be seen as a limitation, it offers the opportunity of having
accurate estimates and forecasts in specific locations, allowing the model to be informed
with  local  and  high-quality  environmental  information,  using  e.g.  weather  station
observations. On the contrary, the regression model allowed us to spatially extrapolate the
predictions in areas that were not previously sampled. The median number of eggs predicted
over  the  study  area  for  the  year  2022  matches  the  expected  seasonal  dynamic  of  the
species. Though egg-laying activity might occur in March and April, it increases around week
20  (mid-May)  and  ends  in  early  October  following  elevational  and  latitudinal  gradients
(Romiti  et  al.,  2022;  Carrieri  et  al.,  2023; Lencioni  et al.,  2023). In the alpine areas, our
spatial estimates resembled those obtained using different modelling techniques and training
datasets  (e.g.  Ravasi  et  al.,  2022).  Previous  dynamical  distribution  modelling  approach
forecasting Ae. albopictus eggs abundance at high spatial (0.01 latitudinal and longitudinal
degrees) and temporal (weekly) resolution over ten Balkan countries projected annual peaks
in egg abundance between the summer months of August and September i.e. approximately
from weeks 32 to 38 (Tisseuil et al., 2018). The field investigation in Albania in 2023 has
shown the peak of the season in July (weeks 28-29-30) and another peak at the end of
August and beginning of September (weeks 35-36; personal communication of E. Velo). For
the  coastal  areas  of  the  Tyrrhenian  Sea,  the  spatio-temporal  prediction  of  the  stacked
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regression model confirms the results of previous studies carried out in central Italy, where
the  peak  of  activity  and  the  end  of  the  season  is  expected  at  the  end  of  August  and
November,  respectively  (Fig.  4;  Romiti  et  al.,  2021;  2022).  Interestingly,  these estimates
based on ovitrap data (i.e.  collection of eggs) comply with independent estimates obtained
from  data  acquired  collecting  a  different  life  stage  of  the  mosquito  (i.e., host-seeking
females) at the two opposite ends of Italy (Trentino and Sicily) that identified the beginning of
the season in mid-June and mid-March and the peak of the season in early August and
August-September, respectively (Guzzetta et al., 2016; Torina et al., 2023).

4.2 Period-over-threshold
The pseudo-phenological index POT computed for  Ae. albopictus during the year

2022 also showed latitudinal and elevational gradients, with the Po Valley and coastal areas
having generally longer POT than mountainous areas. In the coastal areas of the Tyrrhenian
Sea, the estimated POT is between 15 and 20, decreasing to 5 weeks in low mountain areas
and to  zero  in  high mountain  peaks,  similar  to  what  was described  in  previous  studies
(Romiti  et  al.,  2021;  2022).  The  spatial  pattern  depicted  in  Fig.  5  resembles  those
representing the estimates Ae. albopictus seasonal length presented by Petric et al. (2021).
However, the estimates of Petric et al. (2021), based on multiple conditional statements of
temperature  and  photoperiod,  show a  generally  longer  period  of  activity  of  the  species
compared to  the estimated  POT.  This  is  not  unexpected,  because  the two outputs  are
intrinsically  different:  the  POT  measures  the  length  of  the  period  over  a  user-defined
threshold, whilst Petric et al. (2021) have estimated the length of the period of activity of the
mosquito  considering  the  environmental  conditions  triggering  eggs  hatching,  which  in
Mediterranean areas can begin in early March though at low density (Petric et al., 2021).

In both the Continental and Mediterranean biogeographical regions, both observed
and estimated POT durations have been increasing by approximately one week every year.
This trend suggests a potential direct impact of global warming on the abundance of this
species, as discussed in previous studies (Kramer et al.,  2021; Oliveira et al.,  2021; Del
Lesto et al., 2022; Romiti et al., 2022; Lührsen et al., 2023). However, it is also essential to
consider that the prolonged POT duration might be influenced by other factors, such as the
increased  monitoring  efforts  and  the  expanding  range  of  the  insect,  leading  to  higher
observed counts and longer POT periods.

Other threshold-based indexes have been proposed specifically for  Ae. albopictus,
but those are mostly epidemiological indexes (e.g. Carrieri et al., 2012; Aryaprema et al.,
2023). We believe that the strength of the POT method lies in its broad interpretability and
applicability. This approach can be employed not only in spatial epidemiology applications,
as  demonstrated  in  our  case  study  but  also  in  monitoring  alien  species  or  supporting
biological conservation efforts. It enables the identification of locations and periods when a
particular population falls below or surpasses a defined threshold, signalling the need for
targeted local interventions.

4.3 Limitations and future perspectives
As for most ecological models, one of the main limitations of these results relies on

the  quantity  and  quality  of  the  training  dataset  (Cayuela  et  al.,  2009).  First  of  all,  egg
observations  were  pooled  from  ovitraps  having  different  volumes,  shapes,  oviposition
substrates, liquid solutions, revisit times, etc. (Da Re et al., 2023b). This, unfortunately, is a
limitation related to the different sampling and monitoring schemes employed by the different
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institutions (Da Re et al., 2023b). Despite the preprocessing operation on the observations
collected by the ovitraps,  some of  these sources of  variability  have likely  influenced our
results and therefore should be taken into account while interpreting the results. Therefore,
we want to highlight the importance of carrying out reproducible and comparable sampling
schemes following the most updated standards for ovitraps monitoring, as those presented
as the outcome of the AIM-COST cost action by Miranda et al. (2022).

Our dataset is also spatially biased because most of the observations are spatially
clustered in north-central Italy, especially in the Emilia-Romagna region, where one of the
most consistent and long-lasting surveillance programs has been carried out since 2010.
The  observations  coming  from  this  region  had  likely  the  highest  quality,  having  been
sampled continuously every two weeks from 2010 onwards. Spatial clustering is known to
bias the models’ estimates and predictions (Sillero and Barbosa, 2020) and therefore has
likely  produced sub-optimal  predictions  in  the southern part  of  the area of  interest.  This
detrimental aspect of our outputs can only be resolved by increasing the sampling effort in
the southern part of the study area.

Another potential source of variability in the training dataset is the effect of vector
control practices affecting the abundance of collected eggs. Pest control agencies act to limit
the  abundance  of  the  species  and  reduce  the  nuisance  the  bites  are  causing  to  the
population (Ravasi et al., 2021). Unfortunately, this is an effect that we cannot control, as we
do not have access to the location and period of each pest containment treatment carried
out in the area and period of interest.

Despite these limitations, the proposed framework seems feasible to be implemented
to  produce  both  local  and  continental  scale  predictions  and  forecasts,  contributing  to
supporting  the  stakeholders  in  their  effort  against  Ae.  albopictus.  Using  e.g.  regional
circulation models and/or weather generators, the methodology presented here can be used
to produce estimates for the next seasons under different climatic scenarios. Interestingly,
the  presented  methodology  can  be  implemented  and  corrected  during  the  season  by
including the results of the monitoring activities in the training dataset.  The estimates of
these models can also be compared to estimates produced by other correlative models (e.g.
Georgiades et al 2023), or mechanistic models such as albopictus (Erguler et al., 2016),
and  dynamAedes (Da  Re  et  al.,  2022),  producing  a  plethora  of  models’  estimates
accounting for different aspects of the biological system studied.

By employing the results of our modelling approach,  public health authorities can
make informed decisions regarding the implementation of control measures, allocation of
resources, and targeted interventions to mitigate the risks posed by invasive mosquitoes and
safeguard human and animal health. The latter aspect has gained particular interest during
the past two decades when the impact of invasive species on public health has become
more evident  (e.g., Zink et al., 2012; Schaffner et al., 2020). Apart from the public health
aspect, we believe our work has a broader scope, providing a tool that can be adapted to
infer the spatio-temporal abundance and seasonality of different species of interest. 
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Supplementary materials 1
1.1. Environmental Covariates

We selected three main environmental  drivers  that  can significantly  influence the
behaviour  and  development  of  mosquitoes,  namely  temperature,  photoperiod  and
precipitation (Toma et al., 2003; Becker et al., 2010; Roiz et al., 2010, 2011; Romiti et al.,
2021; Carrieri et al., 2023). 

As  ectothermic  organisms,  warmer  temperatures  generally  promote  faster
development and increase the overall metabolic rate of mosquitoes, leading to shorter life
cycles  and  higher  population  growth  rates  (Delatte  et  al.,  2009;  Pumpuni  et  al.,  1992;
Waldock et al., 2013; Marini et al., 2020). We downloaded the ERA5Land (Muñoz-Sabater et
al.,  2021)  dataset  representing  the  hourly  gridded  estimate  of  mean  temperature  over
Europe for the period 2010-2022 and computed the weekly median temperature for each
grid cell  using the R function  terra::app()(Hijmans 2023). By aggregating weekly, we
observed that the aggregated values tended to be relatively high during the European colder
months (November-February). To better capture the seasonality of mosquito phenology and
avoid predicting oviposition during the winter season, a threshold-like variable was created
by  setting  all  temperature  values  below  15  °C  to  zero.  By  applying  this  modification,
temperatures below 15 °C were essentially associated with zero or low egg abundance. This
manipulation  helps  ensure  that  the  model  focuses  on  the  temperature  conditions  more
relevant to mosquito activity and development, which are typically associated with warmer
periods.  Applying this modification to temperature might  appear as a strong assumption,
given that  Ae. albopictus is capable of completing its life cycle and surviving within a wide
temperature  range  (Reinhold,  Lazzari  and  Lahondère,  2018).  However,  several  studies
suggest that the optimal temperature range to complete the life cycle lies between 15 °C and
35 °C, even though the lower developmental zero temperature for this species is reported to
be around 10.4 °C (Reinhold, Lazzari and Lahondère, 2018 and reference therein; Marini et
al.,  2020; Petrić et al.,  2021 and reference therein). Considering this biological evidence,
setting a temperature threshold of 15 °C in the analysis aligns with the findings that  Ae.
albopictus optimal  development  and activity  are more favourable within  this  temperature
range (Marini et al., 2020). 

Photoperiod refers to the duration of daylight in 24 hours. It plays a crucial role in
regulating mosquito behaviour,  particularly  concerning their  activity,  feeding patterns,  the
timing of mating and egg-laying behaviours (Pumpuni et al., 1992). In fact, in the temperate
strain of Ae. albopictus, changes in the photoperiod length trigger the laying of cold-resistant
eggs commonly referred to as “diapausing eggs” (Thomas et al., 2012; Urbanski et al., 2012;
Lacour et al., 2015; Diniz et al., 2017). Diapause refers to an insect species' evolutionary
adaptation to overcome poor environmental conditions by passing through an alternate and
inactive  physiological  stage.  In  the  case  of Ae.  albopictus,  the  maternal  photoperiod
experienced  at  pupal  and  adult  stage  is  the  environmental  stimulus  implied  to  induce
oviposition of “diapausing eggs” (Lacour et al., 2015). To account for the yearly variation in
the weekly photoperiod length, we computed the daily photoperiod for each 9 x 9 km grid cell
between  2010  and  2022  using  the  R  function  geosphere::photoperiod()(Hijmans
2021) and then computed the weekly median. 

Precipitation is another environmental factor that can influence mosquito populations
and their behaviour, as mosquitoes require standing water for their larvae to develop (Becker
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et al., 2010; Roiz et al., 2010). Precipitation events can create or replenish breeding sites for
mosquitoes, while heavy rain or storms can flush out eggs and larvae from the breeding
sites  or  temporarily  disrupt  mosquito  flying  activity  due  to  the  impact  of  raindrops  and
unfavourable flight conditions (Koenraadt and Harrington, 2008; Caldwell et al., 2021). We
downloaded the ERA5Land (Muñoz-Sabater et al.,  2021) dataset representing the hourly
gridded estimate of precipitation over Europe for the period 2010-2022 and computed the
weekly  cumulative  sum for  each grid  cell  using  the R function  terra::app()(Hijmans
2023).

For each of these three variables, we considered lagged values of these factors as
well, since the mosquito life cycle can take several days or weeks to complete (Becker et al.,
2010; Roiz et al., 2010). The lagged temperatures and photoperiod were calculated as the
median value between the temperatures recorded in the current week (i), the previous week
(i-1), and the week before that (i-2), whilst  the lagged precipitation was computed as the
cumulative value between the precipitation recorded in the current week (i),  the previous
week (i-1), and the week before that (i-2).

1.2 Explorative analysis and model building
We carried out an explorative analysis on a subset of the aggregated ovitraps to

understand which are the main predictors to include in the stacked model. The subset of the
aggregated ovitraps (n = 20) was randomly selected but with the constraint of having at least
three years of observations. 
The graphical inspection of the aggregated observations showed a regular pattern repeating
approximately  every  year.  Additionally,  within  any  year,  there  are  two  sub-periods,
disentangling  the cold  period  (where no eggs  are  generally  reported),  from the warmer
period, spanning from spring to fall, where the number of recorded eggs has a magnitude
that  seems  affected  by  other  factors  than  the  seasonality.  Therefore,  we  tested  for
environmental drivers associated with the species’ biology (temperature, photoperiod, and
precipitation), that influenced the time evolution of the observed eggs.

We included the seasonal and environmental variables in a regression model with
autoregressive errors of order one, i.e. for the fitting we use the ordinary least squares (OLS)
with AR(1) errors. We have attempted to capture the seasonality by employing Fourier’s
harmonics sine and cosine waves, with four waves in total.  One pair of sine and cosine
waves is  responsible  for  capturing  the annual  pattern,  while  the other  pair  is  utilized to
account for the seasonality within a given year. Concerning the environmental predictors, we
tested the inclusion of both weekly and weekly-lagged values (e.g. the median temperature
recorded two and three weeks ago). 
The model’s structure with different predictors and lags was fitted on different
aggregated ovitraps,  and the best model formulation, i.e.  that one displaying
overall goodness of fit (in sample) R2adjusted ∼0.75 and equally good forecast
performance (out of sample), was selected as that one inferring the number of eggs as a
function of temperature, photoperiod, and precipitation, all lagged by -2 and -3 weeks, the
four Fourier’s harmonics, and an autoregressive component based on the number of eggs
observed at week t-1. The residuals from model fitting were approximately Gaussian in all
cases.
The benefit  of  selecting  the error  term as AR(1)  was two-fold:  the residuals  are  mostly
uncorrelated and with such parameterization, it is possible to rewrite the model as a genuine
regression  model,  so  the  cross-validation  requires  minimum  adjustments,  and  stacking
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computing routines  are readily  available.  Further  generalisation  to  more involved  ARMA
errors seemed to provide no extra benefit in terms of goodness of fit, and do not share the
same representation as the OLS-AR(1),  making the cross-validation harder to implement
and trust.
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Supplementary materials 2

2.1 Hyperparameters tuning
In machine learning, hyperparameters tuning is the process of selecting the optimal

settings for configuration parameters that are not learned from the data. It is a crucial task
because it  improves model  performance,  avoids overfitting or  underfitting,  adaptability  to
different datasets, and generalisation to new data. For each algorithm, a hyperparameter
space was defined and the tuning was conducted using a random search strategy with a 10-
fold  cross-validation.  Due  to  computational  constraints,  we  chose  only  specific
hyperparameters to conduct the tuning, while for the remaining ones, the values are set to
default. The hyperparameter space by algorithms is shown in  Tab. S2.1. 

Table S2.1: Hyperparameter space for the analysed algorithms

Algorithm Hyperparameter Type Lower Upper

Boosted Regression Trees
(BRT)

n.trees integer 200 10000

interaction depth integer 1 5

cv folds integer 5 15

Cubist

committees integer 1 10

Extreme Gradient Boosting 
(XGBoost)

nrounds integer 10 30

max depth integer 4 10

eta numeric 0.2 0.4

subsample numeric 0.9 1

min child weight integer 1 4

colsample by tree numeric 0.5 0.6

Random Forest (RF)

n.trees integer 200 500

mtry integer 4 7
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min node size integer 5 10

2.2 Stacked models parameters and summary results

Tab. S2.2 Parameters of the ensemble models

Regression model Autoregressive model

Estimate (SE) P-value Estimate (SE) P-value

Intercept 0.854 (0.401) p < 0.05 1.14 (0.239) p < 0.05

xgBoost -0.002 (0.014) p = 0.874 -0.055 (0.014) p < 0.05

RF 0.722 (0.016) p < 0.05 0.056 (0.017) p < 0.05

GBM -0.068 (0.011) p < 0.05 0.226 (0.009) p < 0.05

Cubist 0.371 (0.017) p < 0.05 0.782 (0.015) p < 0.05

Fig. S2.3 Variable importance of the random forest base learner for the two model 
formulations:  A) regression model and B) autoregressive model.
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Supplementary materials 3

Internal and external validations

Fig. S3.1 Location of the aggregated ovitraps employed for the external validation.
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Fig. S3.2. The median and interquartile range of the number of eggs observed (grey lines),
and predicted by the autoregressive model in both the internal and external validation. Both
the observed and predicted values were aggregated over the three biogeographical regions
to allow an easier representation.

Fig. S3.3 The median and interquartile range of the number of eggs observed (grey lines)
and  predicted  by  the  regression  model  in  external  validation.  Both  the  observed  and
predicted values were aggregated over the NUTS2 levels to allow an easier representation.
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Fig. S3.4 The median and interquartile range of the number of eggs observed (grey lines)
and predicted by the autoregressive model in external validation. Both the observed and
predicted values were aggregated over the NUTS2 levels to allow an easier representation.

Fig.  S3.5 Root  mean squared error  (RMSE) and mean absolute error  (MAE) for  the A)
regression model (Eq. 1) and B) autoregressive model formulation (Eq. 2).
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Fig. S3.6. Spatial representation of the  interquartile range of  period-over-threshold (POT)
length for the year 2022 over the area of interest.

Tab. S3.7 Estimates coefficients and statistics of the period-over-threshold model (GLM with
Poisson error). 

Observed Predicted

Estimate (SE) P-value Estimate (SE) P-value

Intercept 47.943 (27.718) (p = 0.084) -361.983 (1.018) (p < 0.05)

year -0.023 (0.014) (p = 0.097) 0.18 (0.001) (p < 0.05)

bgrContinental -98.28 (29.559) (p < 0.05) 318.68 (1.268) (p < 0.05)

bgrMediterranean -81.904 (36.298) (p < 0.05) 263.636 (1.2) (p < 0.05)

year:bgrContinental 0.049 (0.015) (p < 0.05) -0.157 (0.001) (p < 0.05)

year:bgrMediterranean 0.041 (0.018) (p < 0.05) -0.13 (0.001) (p < 0.05)
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