1 A structured approach for building multi-community state-and-transition models

2 to support conservation planning

- 3 **Authors** (* joint first authors)
- 4 Megan K. Good*₁, Libby Rumpff*₁, Hannah Fraser*₁, Elliot Gould ₁, Christopher S. Jones₂, Suzanne M Prober₃, Mark
- 5 Bourne₄, Nathalie Butt₅, Margaret Byrne₆, David Duncan₇, Emma Gorrod₈, Carl R Gosper_{3,9}, Rebecca Jordan₃, Sue
- 6 McIntyre₁₀, Joslin L. Moore₂, Shana Nerenberg₁₀, Stephanie Pulsford₁₀, Anna Richards₃, Dan Rogers₁₁, Steve Sinclair₂,
- 7 Rachel J. Standish₁₂, Ayesha Tulloch₁₃, Samantha K. Travers_{15,16}, John Vranjic₁₇, Matthew White₄, Jenny Wilson₁₅, Jim
- 8 Begley₁₅, John Wright₁₆, Colin Yates₁₇, Peter Vesk₁.
- 9 tak

13

1718

21

22

23

24

28

29

- 10 1 School of Agriculture Food and Ecosystem Sciences, University of Melbourne, 2 Arthur Rylah Institute for
- 11 Environmental Research, Department of Energy, Environment and Climate Action, 3 CSIRO Environment, 4 Protected
- 12 Species and Ecological Communities Branch, Department of Climate Change, Energy, the Environment and Water, 5
 - School of the Environment, the University of Queensland, 6 Biodiversity and Conservation Science, Department of
- 14 Biodiversity, Conservation and Attractions, 7 Melbourne School of Population and Global Health, University of
- 15 Melbourne, 8 Economics and Insights Division, Department of Planning and Environment, 9 Biodiversity and
- 16 Conservation Science, Department of Biodiversity, Conservation and Attractions, 10 Fenner School of Environment
 - and Society, Australian National University, 11 Science and Information, Department for Environment and Water, 12
 - School of Environmental and Conservation Sciences, 13 School of Biology and Environmental Science, Queensland
- 19 University of Technology, 14 Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, ,
- 20 Energy, the Environment and Water, 15 Goulburn Broken Catchment Management Authority, 16 Parks Victoria, 17
 - Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions

Corresponding Authors

- Megan Good and Libby Rumpff
- 25 goodm@unimelb.edu.au; lrumpff@unimelb.edu.au
- School of Agriculture Food and Ecosystem Sciences, Biosciences 2, Building 122, University of Melbourne, Parkville,
- 27 VIC, 3050

A structured approach for building multi-community State and Transition Models to support conservation planning

Abstract

30

31

3233

34

35

36

37

38

39

40 41

42 43

44

45

46

47

48

49

50

51

52

53

5455

56

57

58 59

60

61

6263

64

65

66

67 68

69

70

71

The global decline in the extent and condition of ecological communities has resulted in an increasing demand for recovery and conservation plans. Conservation plans for ecological communities require a management framework with measurable, time-bound objectives, a targeted management strategy, and indicators that enable actions to be evaluated in relation to objectives. Methods that allow for the transfer of knowledge among similar systems and facilitate consistent and comparable plans are essential, especially when resources are constrained. We describe a process to streamline the development of conservation plans by combining functionally similar community sub-types into a multi-community State and Transition Model. We demonstrate this approach in a case study where we use the combined expertise of Australian ecologists to build a multi-community State and Transition Model for eucalypt woodlands of southern Australia – an ecosystem which occupies a vast geographical range across temperate Australia and includes many distinct vegetation communities, a growing number of which are endangered or threatened. We identify commonalities and differences among three broad woodland sub-types including a set of eight general condition states, a list of drivers of transitions among condition states, and the uncertainties and time-frames associated with each transition. Two key findings across all models are that management is state-dependent, and transition directly to the 'Exemplar' state from any other state is considered highly unlikely. Other examples of State and Transition Models in the literature are focused on single communities or a significantly smaller scale, and this is the first attempt to construct a nationally relevant multicommunity State and Transition Model via a structured and consultative process. Based on this case study, we propose a repeatable protocol for developing multi-community State and Transition Models. This process could improve and streamline the development of robust conservation plans for threatened ecological communities more broadly.

Introduction

Globally, ecosystems face increasing rates of degradation and collapse, due primarily to habitat destruction and climate change (Wilcove et al. 1998; Rouget et al. 2003; Powers & Jetz 2019; Mayfield et al. 2020; Bergstrom et al. 2021). International efforts to classify ecosystems according to their level of risk (i.e. IUCN Red List) can accompany or provide a means to justify national or state listing and legislative protection, triggering mechanisms for protection and recovery (Nicholson et al. 2009; Rodríguez et al. 2011; Keith et al. 2013; Keith et al. 2022). Among these mechanisms is the development of plans to support recovery (e.g. Australian Government Department of Agriculture, Water and the Environment 2007), which provide the information necessary to direct management and threat abatement and improve biodiversity outcomes (Schultz & Gerber 2002; Clark et al. 2002a). However, the complexity of developing recovery plans and the urgent need for better restoration outcomes for threatened communities have led to calls for improved processes to allow for swift and effective interventions (Scheele et al. 2018; Noss et al. 2021).

Best practice recovery planning includes clear goals to guide management efforts, a catalog of threats, the corresponding candidate actions for recovery, costings, measures that enable monitoring of progress toward goals, and the research necessary to resolve uncertainties impeding management decisions (Clark et al., 2002; Roberts & Hamann, 2016; Weiss et al., 2021). However, describing and planning the recovery of a threatened community is challenging (Rodríguez et al. 2011; Keith et al. 2013) and resource intensive (McDonald et al. 2015), and the backlog of threatened species and ecosystems requiring plans is ever-growing (Noss et al. 2021). As threatened species and communities are added to such lists, there is a growing need to make the development of conservation plans more efficient and consistent.

Ecosystems and communities within the same broad type likely share commonalities including their prevailing threats and drivers of change, which suggest there may be opportunities to generalize and transfer understanding from one system to another. Indeed, multi-species and ecosystem planning has been used in the United States since the 1990s, although with mixed results (Clark & Harvey 2002). Key issues with generalization include inadequate identification, review and monitoring of threats (Noss et al. 2021). However, a consistent framework gains time efficiencies, increases the number of threatened communities with relevant recovery plans, and ensures that plans address the stated objectives and that the success of management can be measured (Clark & Harvey 2002; Noss et al. 2021).

Conceptual models that systematically describe threats and drivers of change at higher levels of ecological classification are critical to risk assessments (Keith et al. 2013) and conservation planning more generally (Margoluis et al. 2009; Biggs et al. 2011). State and Transition Models are an intuitive modelling framework (Bestelmeyer et al. 2009) and a popular tool among land managers and government agencies (Knapp et al. 2011), as they define discrete alternative 'states' of vegetation condition based on measurable attributes (Westoby et al. 1989; Stringham et al. 2003; Briske et al. 2005), and describe key drivers of change between states and opportunities to mitigate threats (Yates & Hobbs 1997; Standish et al. 2008; Sinclair et al. 2019; Sato & Lindenmayer 2021). The delineation of 'states' in a management-focused State and Transition Model context, represents a conceptual partitioning between the most common or important expressions of a community or ecosystem that are stable over a management time-frame and can be easily identified at the site level. Transitions between states are generally driven by management activities in combination with abiotic and/or biotic processes. The State and Transition Model framework, therefore, offers a system to organize management actions and ecological knowledge across multiple similar communities where generalities in states and drivers of transitions are expected. However, whilst there may be growing interest in the development and use of State and Transition Models at various levels of government, there is a need to implement a more structured and standardized approach that improves transparency and allows for review and revision (Knapp et al. 2011).

In this study, we developed a method for creating and evaluating multi-community State and Transition Models, which could serve as a foundation for developing conservation plans for specific vegetation communities. As proof-ofconcept we develop a State and Transition Model for eucalypt woodlands in southern Australia. Eucalypt woodlands (species of the closely related genera Eucalyptus, Corymbia and Angophora) provide a useful case-study system, as they were once widespread across southern inland Australia (Yates & Hobbs 1997a), but have declined in proportional area more than any other biome (Mappin et al. 2022) due to extensive historical and ongoing modification by agricultural land uses, changes to climate, flood and fire regimes, as well as soil nutrification and exotic species invasions (ABARES, 2018). As a result, many woodland communities and woodland-dependent species are threatened (Richards et al. 2020), with 28 southern eucalypt woodland communities listed as threatened under Australian federal legislation as of December 2023 (of 106 threatened ecological communities in total). Commonalities in ecological processes, threats and management interventions between these threatened communities may make generalized models of ecological dynamics a useful foundation for management and restoration decisions (Keith et al .2022). Our method is a systematic approach to synthesize disparate data and knowledge from diverse experts into a consistent framework. The resultant model includes descriptions of different states of vegetation condition, the environmental drivers and management activities associated with transitions between states, and the likelihoods of transitions at different time-frames. Our aim was to provide a systematic process for collating knowledge about groups of similar vegetation communities to capture the key drivers (natural processes, threats and management activities) that are associated with transitions and estimate the likelihood of these transitions when these drivers are present. This approach could enable rapid, consistent and comprehensive development of conservation plans that can be later tailored to individual communities as required.

72 73

74

75

76

77

78

79 80

81

82

83

84

85 86

87

88

8990

91 92

93 94

95

96 97

98

99

100101

102

103

104

105

106

107

108

109

110

111

112

113

114115

116

We utilized expert knowledge to create a multi-community State and Transition Model for eucalypt woodlands in southern Australia. Here, we describe the process we used to create a State and Transition Model that captures the key drivers of change in condition across multiple eucalypt-dominated woodlands (Figure 1).

1. IDENTIFY COMMUNITIES AND SUB-GROUPS Group vegetation communities by shared features such as structural characteristics, biotic processes and disturbance dynamics. 4. BUILD CAUSAL CHAINS FOR TRANSITIONS Elicit 'causal chains' (sequences of all management actions, abiotic, biotic drivers Use national and/or international ecosystem typologies (to facilitate national or that may lead to a transition from one state to the other) for each possible transition global comparison) (identified in step 3). Think about causal chains that represent current management (I.e. status quo conditions), but also management strategies that are required to enable transitions. Identify a diverse range of at least 6-12 experts, including First Nations representation (irrespective of western science qualifications), to inform and For each causal chain, elicit a (qualitative or quantitative) likelihood that the develop the general community model. transition will occur, assuming all factors driving the transition are present and management is fully implemented. Selection of experts should reflect the variability of vegetation communities and Elicit measurable indicators for each transition, to help identify monitoring identified sub-type (i.e function and geographic range). attributes. **DEVELOP CONSISTENT TERMINOLOGY** Present and discuss results with all experts and refine causal chains if necessary. Utilise a common terminology for actions and drivers i. Indigenous management activities should be explicitly included in this step. 5. DEVELOP PRACTICAL CONSERVATION ADVICE Decide on the appropriate decision support tool required. 3. DEFINE STATES AND DETERMINE PLAUSIBLE TRANSITIONS Elicit suite of generalisable 'states' that are managed differently, and reflect Causal chains can be used to create classic box and arrow state-transition models distinctly different combinations of ecosystem structure, composition and function and can be general or specific to sub-types. that are observed (or could be observed) in the landscape Incorporating decision trees based on the elicited causal chains, allows for site-Include any states that only occur in specific sub-types. Descriptions and state scale management recommendations for each condition state which can serve as a names should not mention processes or management regimes, as these drivers more user-friendly communication tool than the traditional STM diagrams. may vary geographically, but instead focus on attributes that can be observed or measured (e.g. depauperate understory rather than overgrazed). Use the output to develop detailed management plans including management goals, threats, actions, risks and monitoring indicators. For each subtype, ask experts to decide which direct transitions between pairs of states are possible over the timeframe(s) of relevance (e.g. 20 years and 100 years).

Figure 1. Protocol for synthesizing a multi-community State and Transition Model. Blue text are suggested improvements and were not included in our case study but are explored further in the discussion of this paper.

Step 1: Define the scope of the model and delineate any relevant community sub-types

To clarify the scope of the model, we used the Australian Ecosystem Models Framework (Richards et al. 2020) as the basis for defining the overarching community sub-types. We chose three woodland sub-types as follows; 1) Grassy woodlands; 2) Shrubby and Obligate Seeder woodlands and; 3) Floodplain and Riparian woodlands (Good et al. 2017; Prober et al. 2017; Gosper et al. 2018). These differ from the final Australian Ecosystem Models Framework sub-types (Prober et al., 2023), as we broadened the definition for floodplain woodlands to include riparian woodlands and, after iteration in Step 3, we combined shrubby and obligate seeder woodlands because there was substantial overlap in the states and factors influencing transitions in these sub-types.

Step 2: Recruit experts

117118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

We recruited 43 woodland experts based on their knowledge of different eucalypt woodland communities across southern Australia, but not all experts participated in all steps of the process. Experts had varying levels of knowledge relating to specific woodland communities, but all had advanced knowledge of multiple communities allowing them to provide explicit and generalizable input for broader woodland sub-types. Experts participated in two workshops and two online surveys over a two-year period from 2016-2018.

Step 3: Identify and describe states and transitions (including iteration)

Common woodland states were developed and iterated across workshops. At the first workshop (with 17 expert participants, in 2016), we presented the woodland condition states described in Rumpff et al. (2011) as a template and experts refined these to broaden their applicability to eucalypt dominated woodlands across southern Australia. To ensure the right balance in model complexity, and to recognize that some states do not have clear ecological thresholds, we focused on eliciting and distinguishing states based solely on when management actions would differ, rather than describing all the possible variations. There were eight woodland condition states identified in this workshop.

We then circulated an online survey in 2018 that asked experts to i) identify which woodland sub-type(s) they were familiar with (Grassy, Shrubby and Obligate Seeder, and/or Floodplain and Riparian woodlands), and then for the familiar sub-types ii) specify which direct transitions were plausible for each condition state within 20- and 100-year time-frames. Direct transitions were defined as transitions that would plausibly occur over 20- or 100-year time-frames without passing through any of the other states, assuming that resources and effort were not limiting. For example, a direct transition between Exemplar to Transformed is plausible if an area was cleared, but transitioning back from Transformed to Exemplar would likely pass through multiple other states and therefore is not considered a plausible direct transition. We chose these time-frames to represent the scales relevant to management and monitoring, and those that should capture longer term processes (for example the regeneration and growth of woodland trees).

The survey results provided us with 6 responses from Floodplain and Riparian woodlands, 17 from Grassy woodlands, and 6 from Shrubby and Obligate Seeder woodlands. From these data, we built a series of Directed Acyclic Graphs (cause-and-effect diagram made up of nodes and links; DAG) where each state is represented as a node, and if experts stated that the transition from one state to another is plausible, the nodes are linked by an arrow. For each woodland sub-type they provided responses for, participants received one DAG that included just their own responses, and one that included all experts' responses, each participant also received one DAG that pooled responses across all experts and woodland sub-types. For the multi-expert DAGs, each arrow was annotated with the number of experts who had specified the transition to be plausible (see sample DAGs and reproducible code in Supplementary Material).

The survey responses were subsequently reviewed by the same experts in a face-to-face workshop. This involved dividing experts into groups, corresponding to the three woodland sub-types. We asked groups to review and compare their individual DAGs with the group's compiled DAG for the respective woodland sub-type, and with the DAG that pooled responses from all experts and woodland sub-types. We then asked them to revise which transitions they considered as plausible direct transitions over the two relevant time-frames, before sharing findings with the broader group. At this stage we did not ask experts to define the likelihood of transitions, simply which were plausible direct transitions. This review was undertaken to help clarify ambiguity in the initial task, and to help experts develop a shared understanding of plausibility of all transitions.

Step 4: Describe how transitions occur – specify causal chains

The next step involved asking experts to systematically describe all the factors that need to occur together or in sequence to drive each of the plausible direct transitions identified in step 3. These pathways (including all variables identified, attributes that might indicate the transition has occurred and their associated likelihoods) were given a unique identifier and are herein referred to as 'causal chains'. The same transition (from one state to another) could have multiple causal chains if it could occur under different combinations of factors (i.e. multiple pathways could be expressed for any one transition). This exercise was undertaken in groups, where experts were assigned to one of the three woodland sub-type groups based on their experience and knowledge.

The drivers within the causal chains were classified as: abiotic (e.g. drought), management activity (e.g. grazing), or biotic processes (e.g. nutrient cycling). Participants were asked to be specific regarding the nature and direction of the drivers to assist in classifying differences in models, with the aim of developing practical management advice. For each transition, participants suggested measurable attributes (e.g. mature tree density) that could be used to identify that

transition had occurred. Finally, for each causal chain, groups estimated the likelihood of this transition occurring for their woodland sub-type, using six ordinal qualitative categories (Almost no chance; Very unlikely; Unlikely; Neither likely nor unlikely; Likely; Very likely). We used qualitative categories to reduce the elicitation burden on experts (Jaspersen & Montibeller 2015), given the number of causal chains. However, there is no reason why quantitative estimates could not be integrated into this approach. Participants were directed to estimate this 'likelihood' assuming the set of management and environmental conditions listed in the causal chain are in place (i.e. if high rainfall is important for the transition, they assumed that high rainfall occurred and estimated the likelihood of the transition accordingly).

Raw causal chain data were processed and analyzed using reproducible code (Supplementary material). We developed a typology to group the raw drivers that were mentioned by experts and allow for comparisons among woodland sub-types. Each likelihood category was assigned a quantitative score between 0 and 1 for data processing, and we consulted with experts to assign numbers that best represent their understanding of the categories. Given there was an uneven number of categories, experts agreed that 'Almost no chance' should be close to zero and an order of magnitude less likely than the next category (Very unlikely), and 'Neither likely nor unlikely' should be represented by 0.5. Therefore, when the rest of the categories were evenly distributed around these points, they were assigned the following numbers: Almost no chance = 0.01; Very unlikely = 0.10; Unlikely = 0.30; Neither likely nor unlikely = 0.50; Likely = 0.70; Very likely = 0.90). There were some transitions where several different causal chains were described within a woodland sub-type and for these, we included the maximum likelihood that was assigned. Drivers associated with all possible transitions (including those where several causal chains were described for a single transition) were then merged into one general State and Transition Model, and any drivers that were specific to a given sub-type were denoted within the accompanying transitions table (Appendix I).

Step 5: Use causal chains to develop management recommendations

We developed a simplified guide (hereafter 'The Guide') consisting of relevant management and monitoring information derived from the State and Transition Model (Good et al. 2021). We condensed each element of our results – drivers, likelihoods and indicators of transitions extracted from the causal chains from step 5 – to develop fact sheets including decision trees guiding management for sites in each of the eight condition states, likely transitions and threats, and monitoring suggestions to track progress. Extracting this state-centric management information from the classic State and Transition Model framework is one option for translating a potentially complex model into explicit conservation planning advice without losing important information. We converted expert elicited causal chains into management-focused decision trees using the following steps.

- 1) Identify the management-relevant transitions. These are either 'favorable' transitions that require management, same-state 'transitions' where management is required to maintain the existing condition state, or 'unfavorable' transitions that might occur on their own without careful management. In this paper, we avoid categorizing transitions or drivers as 'favorable' or 'unfavorable' in the general model as the landscape context and habitat values for a particular woodland community will vary and should be considered when determining which transitions are desirable. However, due to the applied focus, the Guide explicitly identifies 'favorable' and 'unfavorable' transitions.
- 2) Look for similarities and differences between community sub-types. In our case study, there were instances where drivers were only relevant to one or two community sub-types. For example, an influx of propagules due to flooding is only relevant to Floodplain and Riparian woodlands. Where possible, we include differences between communities as the first element in the decision tree after starting state.
- 3) Look for commonalities between causal chains. In some cases, there is one clear pathway with a couple of variants. For example, an 'Overstorey thicket' site is expected to transition into a 'Highly modified woodland' state by thinning (either self-thinning or thinning intervention, depending on the circumstance) and, depending on the state of the understory might require understorey planting or not. In other cases the

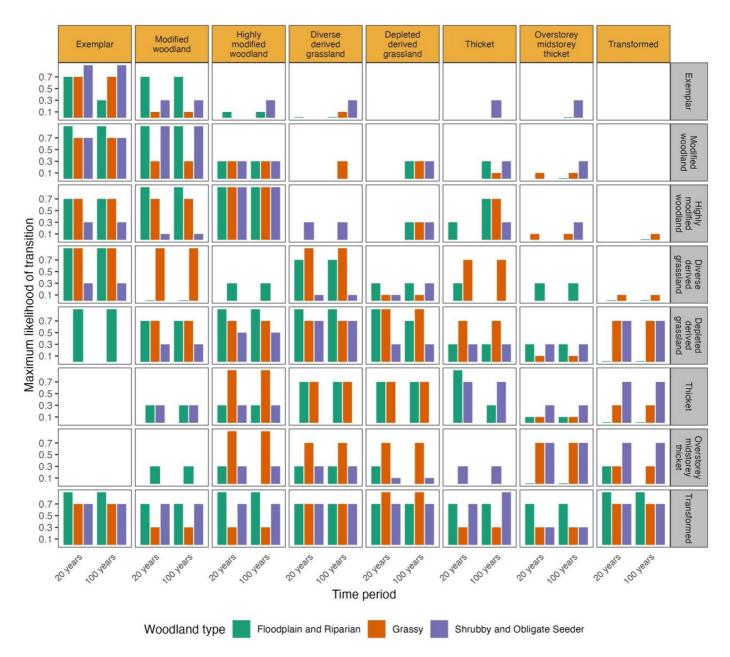
decision tree is more complex with multiple possible management pathways. For example, the transition between 'Modified woodland' and 'Exemplar' might involve reinstating a natural flood regime, herbivore control, burning, controlling feral predators and/or introducing mammals, depending on the exact circumstances. The latter will require a much more complicated branching of a decision tree.

4) Assemble the decision tree in a sensible order. Ordering the branches to reduce repetition requires some trial and error and may require some rearranging to find the simplest possible combination. In general, analysing the suite of causal chains to explore the order of specified management actions will help indicate the ordering of branches, and ensure all actions are accounted for. For example, removal of grazing is commonly mentioned prior to revegetation, but monitoring the effects of grazing by other herbivores (e.g. rabbits) might be required prior to implementing further herbivore management.

Results

Identified condition states

Overall, the states and descriptions arrived at through the expert elicitation process did not deviate much from the states described in Rumpff et al. (2011), although one state was added (Diverse derived grassland), and the names of the states were changed substantially to ensure generality amongst different woodland communities (Table 1). Experts felt it was important to remove reference to land-use (e.g. 'pasture') in the state names and descriptions, so that similarities in management requirements of states that were compositionally, structurally, and functionally similar could be explored, irrespective of history or location.


Table 1: Qualitative state descriptions for the woodland condition states, according to structural, compositional and functional vegetation attributes.

Name	Description
Exemplar**	All vegetation strata are intact; species richness is high in all strata and includes disturbance- sensitive species; low weed cover; soil is stable and has a natural nutrient balance
Modified woodland	Overstorey is mostly intact; mid/understorey is depleted in both richness and cover; understorey flora is primarily native; soil nutrient levels are natural, or close to natural
Highly modified woodland	Overstorey is mostly intact; mid/understorey is depleted in richness; midstorey can be elevated in cover; exotic annual herbs present and may be prevalent; altered soil processes
Diverse derived grassland	Overstorey mostly absent; midstorey depleted in richness and cover but understorey remains mostly intact
Depleted derived grassland	Overstorey is depleted or absent; midstorey is absent or depleted; understorey is depleted in native species richness and cover
Thicket	Overly dense overstorey; very low understorey species richness, low under/midstorey cover; understorey suppressed, but may be dominated by natives or exotics; soil stability may be compromised
Overstorey and Midstorey Thicket	Few to no mature trees; high density of shrubs and tree saplings; higher shrub and tree richness compared to Thicket; understorey suppressed but may be dominated by natives or exotics; low native understorey richness
Transformed	Very low to no native vegetation cover in the mid and understorey; overstorey absent sparse, dead or dying, no recruitment, soil is saline, acidic, or highly nutrified.

^{**} Note: the Exemplar state reflects what was considered the least modified of what is remaining in the landscape, not a reflection of pre-1788 (prior to European colonization) conditions. We recognize this does not necessarily align with the goals and aspirations of all stakeholders.

Likelihood of transitions between woodland condition states

The likelihood of transition over 20- year and 100-year time-frames were consistent among woodland sub-types for many of the transitions (Figure 2; for example the transition from Exemplar to Modified woodland in 20-years was considered likely across all sub-types), but some transitions were only considered likely in one or two of the woodland sub-types. For example, transitioning directly from a 'Diverse derived grassland' to a 'Highly modified woodland' was

Figure 1. Likelihoods of state transitions for each woodland sub-type for both 20-year and 100-year time-frames. The initial states are along the top (orange shaded), and the final states are along the right side (grey shaded). For transitions where more than one causal chain was described, we included the likelihood assigned to the most likely chain in this plot.

The most striking pattern is the consistent perception that it is highly unlikely to transition directly from other states to the 'Exemplar' state, and that transitions requiring restoration of the overstorey structure and condition (for example from the 'Derived grassland' states to the 'Woodland' states) are predicted to only occur over very long time-frames (Figure 2). These results highlight a general belief from woodland experts that successfully reversing the loss of woodland structure or understorey diversity is very unlikely, even within 100-year time-frames. Conversely, transitions from all other states to the 'Transformed' state were consistently perceived as very likely even within 20-years.

Drivers of transitions

Experts described the drivers associated with a total of 364 unique causal chains (151 Floodplain and Riparian chains; 113 Grassy chains and 100 Shrubby and Obligate Seeder chains). Within these causal chains there were 49 potential

drivers of transitions, and these were categorized as biotic processes, abiotic processes, and management activities (Figure 3b). The most common management activities were vegetation clearing (of the overstorey), management of grazing pressure and soil disturbance and degradation, noting that the latter was very frequently mentioned by Shrubby and Obligate Seeder woodland experts. In terms of abiotic processes, drought and adequate rainfall were mentioned frequently in transitions across woodland types. Floodplain and Riparian experts frequently mentioned flood regimes whereas management activities related to fire were not mentioned for Floodplain and Riparian woodlands.

Experts considered management to be state-dependent (Figure 3a). The drivers associated with transitions from mature woodland states to derived grassland states were related to the removal or death of mature trees and shrubs. Transitions from states with no soil nutrification or degradation to states with elevated nutrients or altered structure (for example T2, T7 and T12) generally mentioned 'soil degradation', 'weed recruitment' and 'inappropriate grazing pressure'. Transitions from other states towards 'Exemplar' or 'Modified woodland' states generally involved several active management interventions (revegetation of all vegetation layers, weed control, managing total grazing pressure) as well as reinstating appropriate disturbance regimes (flood or fire).

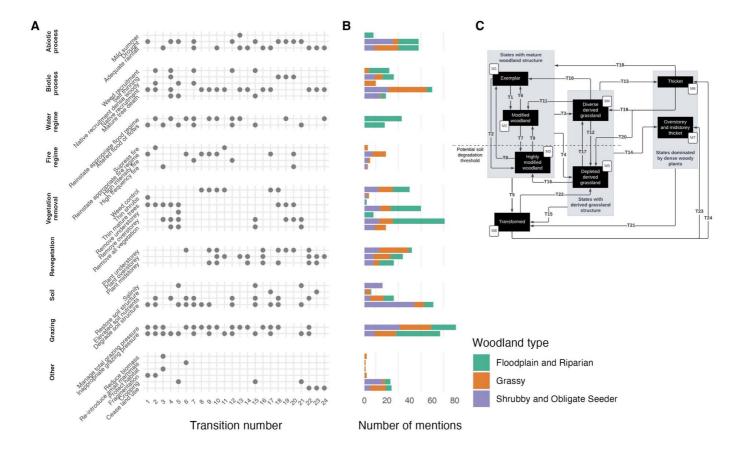


Figure 3. A) A matrix indicating which drivers were associated with each of the transitions in the box and arrow diagram and; B) the number of times each driver was mentioned by experts from the three woodland groups. More detail on differences in the drivers associated with the three woodland sub-types, along with attributes that would indicate the transition is taking place, can be found in Supplementary material 1. C) Box and arrow diagram showing states and plausible transitions across the three woodland sub-types. Arrows represent transitions (T1 – T24) from one state to another while numbered white boxes (M1 - M8) refer to the drivers associated with 'maintaining' the same state. All states, excluding 'Transformed' are clustered into three groups (grey shaded boxes); states with mature woodland structure, states with derived grassland structure and states dominated by dense woody plants. This broad grouping of states (according to structure) allowed for the grouping of transitions with the same drivers (for example transitions from states with mature woodland structure to Transformed (T5)).

279280281282283284

285

278

We used the management activities, abiotic and biotic processes elicited from experts as the basis for our management guide, which provides a framework to assist the building of recovery plans for woodlands. The Guide contains a series of interactive fact sheets that provide: i) the key threats, management interventions, and monitoring variables for each woodland condition state, and ii) decision trees for a subset of state transitions (those that represent an improvement in condition), to guide management decisions and/or the development of community specific recovery plans. Figure 4 includes two examples of fact sheets from the Guide (Simplified 2 = Highly modified woodland; Simplified 4 = Depleted derived grassland).

Simplified 2 woodlands

Description:

Overstore's is mostly intact; mid/understorey is depleted in richness; midstorey can be elevated in cover; exotic annual herbs present and may be prevalent; altered soil processes.

Occurrence:

Common (Grassy woodlands), neither common or uncommon (Shrubby woodlands), uncommor (Floodplain woodlands).

Land use: Road reserve

Threats:

Clearing

Variables to watch:

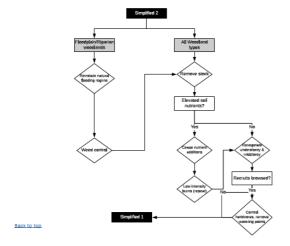
- Native understorey cover and diversity
- Exotic understorey cove
- Tree density/mortality

How to maintain

Likelihood: Very likely

How? The Simplified 2 state is likely to remain stable if there is no active management intervention, or if low intensity or rotational grazing is retained, and grazing by native or feral herbivores is moderate to low. If the site is stocked it may be important to reduce the number of stock or remove stock completely in drought conditions.

Target state: Simplified 1 (see figure below)


Likelihood: Very unlikely

How? Intensive intervention, including removal of stock, oestation of nutrient additions, ecological burning, and revegetation of the under- and midstorey. In Floodplain and Riparian woodlands reinstating a natural flood regime (or a single flood event) with follow up weed control can also encourage this transition.

Indicators: Increased native understorey cover and diversity, decreased exotic understorey cover and increased tree density.

Transitions to avoid:

Negative transitions are not common unless there are deliberate mass disturbance interventions such as clearing

Simplified 4 woodlands

Description:

Overstorey is depleted or absent; midstorey is absent or depleted; understorey is depleted in native species richness and cover.

Occurrence:

Common (grassy woodlands), uncommon (shrubby and floodplain woodlands)

Land use:

Native pasture, grazing land

Threats:

Drought and inappropriate grazing management

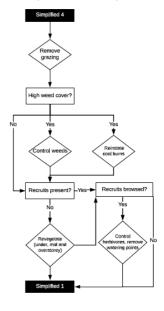
Variables to watch:

- Tree health
- Exotic species cove
- Soil health and stability

How to maintain

Likelihood: Very likely

How? Retain current land management and/or land use (retain current grazing pressure).


How to restore

Target state: Simplified 1 (see figure below)

Likelihood: Very unlikely

How? This transition could be achieved if grazing is removed, weed cover is managed via herbicide or cool burning (if relevant) and the vegetation is allowed to regenerate (if propagules are present) or replanted. If herbivores are acting to prevent understorey regeneration, grazing control (i..e culling, watering point removal) is required.

Indicators: Increased mature tree density, increased non-plant ground cover, increased diversity of native understorey, reduced exotic understorey cover.

Figure 4: Excerpt from The Guide to management (Good et al 2021) showing decision trees and management advice for Highly modified woodlands (Simplified 2), and Depleted derived grassland (Simplified 4).

Discussion

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

This paper describes a structured process for creating expert elicited multi-community State and Transition Models to streamline the development of more detailed conservation plans. To demonstrate this, we developed a State and Transition Model for eucalypt dominated temperate woodlands across southern Australia. Our findings suggest a generalized model to support conservation planning is possible; a set of eight agreed vegetation condition states exist across eucalypt woodlands of southern Australia, and there are substantial commonalities across woodland sub-types, including the various drivers that lead to transitions and likelihoods of transitions through time. We used the multi-community State and Transition Model to provide high level, site-scale management guidance of the kind that could be included in conservation plans for specific threatened communities within the broad woodland sub-types we describe. The resulting model synthesizes existing ecological knowledge and provides a framework that can be iteratively tested and improved through the use of adaptive management principles (Margoluis et al. 2009; Rumpff et al. 2011; Rice et al. 2020). Furthermore, this approach provides a generalized and reproducible method that can be applied to support the development of multi-community conservation plans in other systems, possibly using hierarchical ecosystem classifications such as the Global Ecosystem Typology as way to group communities (Keith et al. 2020, 2022). Further, a structured framework for building expert elicited State and Transition Models could be applied to the development of predictive spatial mapping which has been developed elsewhere (Daniel et al. 2016; Blankenship et al. 2021). Decision trees based on this general model are primarily useful for guiding consistent development of conservation plans that account for the complexity of ecological states and transitions. Applying these decision trees on the ground requires more nuanced consideration of the type or efficacy of management actions required to meet management goals. For example, it may be possible to transition from an 'Overstorey thicket' state to a 'Modified woodland' state through ecological thinning, but applying this recommendation is complex. Specifying 'ecological thinning' provides no

information about the target tree density, method of implementation (mechanical or chemical) or likely costs of the action. Therefore, further details and expertise are required to understand and prioritize what actions work best, and where, for the available resources, time-frame and agreed outcomes.

Although we have provided guidance for the implementation of this woodland State and Transition Model in real-world management scenarios, it is important to emphasize that any attempt at a multi-community State and Transition Model requires a trade-off between generality and a loss of specific details and nuance that will limit its 'off-the-shelf' application. Instead, multi-community State and Transition Models should be treated as high level guidance to be tempered with region and/or community-specific field data, local knowledge and with consideration of costs.

Any model based on expert knowledge will reflect the knowledge and experience of those experts included in the study (Burgman 2015), this may impact our model in the range of woodland condition states identified, the management required to achieve transitions, and the likelihood of those transitions occurring (Travers et al. 2023). The scale of our model (covering many different vegetation communities) required an approach that efficiently synthesized the expertise of woodland ecologists with a focus on transparency and updatability. The structured approach we developed encourages involvement from a diversity of experts that can provide information about states and transitions individually (via survey), before sharing and discussing their models with a broader group (via workshops; as outlined in (Hemming et al. 2018). We deliberately avoided asking experts to assign positive or negative values to the condition states, as this is likely to be biased by experts' personal values about what aspects of condition are valued. Values are likely to vary across stakeholders, especially in relation to the extent of each state in the landscape. Lastly, it is not suggested that the Exemplar state represents the ultimate goal state, nor that it represents values beyond vegetation condition, but serves as a signpost for what might be possible for a given community.

This case study allowed us to critically assess and refine our process to improve outcomes and efficiency for others developing multi-community State and Transition Models. First, we acknowledge that it is necessary to further refine these models by incorporating dispossession of First Nations peoples and, in some cases, the loss of Indigenous Biocultural Knowledge as the first transition that occurred to threaten ecological communities in Australia (Ens et al. 2015; Bridgewater & Rotherham 2019). First Nations involvement should occur from the time of inception of the project or earlier to ensure the approach is culturally appropriate and culturally relevant, which we failed to do in the case study. We instead expected First Nations peoples to participate in a process that has been designed in their absence. The recovery of the ecosystems addressed in the model is likely to be improved if the next iteration of the model can start by working respectfully with holders of Traditional Ecological Knowledge (Robinson et al. 2021).

The second refinement of our process is the development (in collaboration with participants) or use of an existing catalogue (for example the IUCN red list threat categories; Keith et al. 2022) of possible drivers that can be used to develop the causal chains describing the state transitions. Multiple threats, disturbances and system variables operate within ecological communities, and each threat may have multiple synonyms and complex interactions and drivers. A standardized typology would reduce the burden on experts to reclassify drivers according to their own knowledge (Salafsky et al. 2002; Lynch 2011) and ensure experts use consistent terminology and consider the same pool of possible drivers. This will increase our confidence that any divergence among sub-types is not the result of variable expert knowledge or experience.

A multi-community model of vegetation condition is plausible, useful and informative. Although individual communities are diverse in composition, we focused on the similarities in structure, function, threats and drivers that result in consistency in management approaches. This 'requisite simplicity' enables conceptual clarity and a solid foundation on which to base critical decisions for

regional conservation planning. Our framework for identifying and defining community or ecosystem condition states, estimating their prevalence in the landscape, and describing the type and nature (threats, drivers) of transitions between condition states (synthesized as decision trees), provides a framework for considering current and future states in a planning process, and identifying effective management actions through targeted interventions. As the number of threatened ecological communities increases, we advocate for the efficient use of existing knowledge via this multicommunity iterative and structured process to streamline the development and transparency of conservation plans. Hyperlink to preregistered project: https://osf.io/gm4nw/ Acknowledgements: We thank two additional experts, JW who contributed ideas in an early workshop and MA who participated in the survey and second workshop in the grassy woodland group. References Australian Government Department of Agriculture, Water and the Environment. 2007. Species Profile and Threats Database (SPRAT). Available from http://www.environment.gov.au/cgibin/sprat/public/sprat.pl (accessed September 23, 2021). Bergstrom DM et al. 2021. Combating ecosystem collapse from the tropics to the Antarctic. Global Change Biology **27**:1692–1703. Bestelmeyer BT, Tugel AJ, Peacock GL, Robinett DG, Shaver PL, Brown JR, Herrick JE, Sanchez H, Havstad KM. 2009. State-and-Transition Models for Heterogeneous Landscapes: A Strategy for Development and Application. Rangeland Ecology & Management 62:1–15. Biggs D, Abel N, Knight AT, Leitch A, Langston A, Ban NC. 2011. The implementation crisis in conservation planning: could "mental models" help?: Mental models in conservation planning. Conservation Letters 4:169–183. Blankenship K, Swaty R, Hall KR, Hagen S, Pohl K, Shlisky Hunt A, Patton J, Frid L, Smith J. 2021. Vegetation dynamics models: a comprehensive set for natural resource assessment and planning in the United States. Ecosphere **12**:e03484. Bridgewater P, Rotherham ID. 2019. A critical perspective on the concept of biocultural diversity and its emerging role in nature and heritage conservation. People and Nature 1:291–304. Briske DD, Fuhlendorf SD, Smeins FE. 2005. State-and-Transition Models, Thresholds, and Rangeland

Health: A Synthesis of Ecological Concepts and Perspectives. Rangeland Ecology &

361

362

363

364

365

366

367

368

369

370

371

372

373374

375

376

377

378

379

380

381

382

383

384

385

386

387 388

389

390

391

Management **58**:1–10.

392 393 394	Burgman MA. 2015. Trusting Judgements: How to Get the Best out of Experts, 1st edition. Cambridge University Press. Available from https://www.cambridge.org/core/product/identifier/9781316282472/type/book
395 396	Clark JA, Harvey E. 2002. Assessing multi-species recovery plans under the endangered species act. Ecological Applications 12 :655–662.
397 398 399	Clark JA, Hoekstra JM, Boersma PD, Kareiva P. 2002a. Improving U.S. Endangered Species Act Recovery Plans: Key Findings and Recommendations of the SCB Recovery Plan Project. Conservation Biology 16 :1510–1519.
400 401	Daniel CJ, Frid L, Sleeter BM, Fortin M. 2016. State-and-transition simulation models: a framework for forecasting landscape change. Methods in Ecology and Evolution 7 :1413–1423.
402 403	Ens EJ et al. 2015. Indigenous biocultural knowledge in ecosystem science and management: Review and insight from Australia. Biological Conservation 181 :133–149.
404 405	Environment Protection and Biodiversity Conservation Act. 1999. Available from https://www.legislation.gov.au/Details/C2021C00182 (accessed September 23, 2021).
406 407 408 409 410 411	Good M, Fraser H, Gould E, Vesk PA, Rumpff L. 2021. A practical guide for conservation planning using the General Ecosystem Model for Southern Australian Woodlands. NESP Threatened Species Recovery Hub Project 7.2, Brisbane. Available from https://www.nespthreatenedspecies.edu.au/media/yvlbs1tk/7-2-a-practical-guide-for-conservation-planning-using-the-general-ecosystem-model-for-southern-australian-woodlands_v3.pdf.
412 413 414	Good M, Smith R, Pettit N. 2017. Forests and woodlands of Australia's rivers and floodplains. Pages 516–543 in Keith DA, editor. Australian Vegetation, 3rd edition. Cambridge University Press, Cambridge.
415 416 417	Gosper CR, Yates CJ, Cook GD, Harvey JM, Liedloff AC, McCaw WL, Thiele KR, Prober SM. 2018. A conceptual model of vegetation dynamics for the unique obligate-seeder eucalypt woodlands of south-western Australia. Austral Ecology 43 :681–695.
418 419	Hemming V, Burgman MA, Hanea AM, McBride MF, Wintle BC. 2018. A practical guide to structured expert elicitation using the IDEA protocol. Methods in Ecology and Evolution 9 :169–180.
420 421	Jaspersen JG, Montibeller G. 2015. Probability Elicitation Under Severe Time Pressure: A Rank-Based Method. Risk Analysis 35 :1317–1335.
422	Keith DA et al. 2013. Scientific Foundations for an IUCN Red List of Ecosystems. PLoS ONE 8 :e62111.
423	Keith DA et al. 2022. A function-based typology for Earth's ecosystems. Nature 610 :513–518.
424 425 426 427	Keith DA, Ferrer-Paris JR, Nicholson E, Kingsford RT, editors. 2020. IUCN Global Ecosystem Typology 2.0: descriptive profiles for biomes and ecosystem functional groups. IUCN, International Union for Conservation of Nature. Available from https://portals.iucn.org/library/node/49250 (accessed August 7, 2023).
428 429 430	Knapp CN, Fernandez-Gimenez ME, Briske DD, Bestelmeyer BT, Wu XB. 2011. An Assessment of State- and-Transition Models: Perceptions Following Two Decades of Development and Implementation. Rangeland Ecology & Management 64 :598–606.
431	Lynch AJJ. 2011. The Usefulness of a Threat and Disturbance Categorization Developed for

434 Mappin B, Ward A, Hughes L, Watson JEM, Cosier P, Possingham HP. 2022. The costs and benefits of 435 restoring a continent's terrestrial ecosystems. Journal of Applied Ecology **59**:408–419.

Environmental Management **47**:40–55.

432 433 Queensland Wetlands to Environmental Management, Monitoring, and Evaluation.

- 436 Margoluis R, Stem C, Salafsky N, Brown M. 2009. Using conceptual models as a planning and 437 evaluation tool in conservation. Evaluation and Program Planning **32**:138–147.
- Mayfield HJ, Brazill-Boast J, Gorrod E, Evans MC, Auld T, Rhodes JR, Maron M. 2020. Estimating
 species response to management using an integrated process: A case study from New South
 Wales, Australia. Conservation Science and Practice 2. Available from
 https://onlinelibrary.wiley.com/doi/10.1111/csp2.269 (accessed November 3, 2022).
- McDonald JA, Carwardine J, Joseph LN, Klein CJ, Rout TM, Watson JEM, Garnett ST, McCarthy MA,
 Possingham HP. 2015. Improving policy efficiency and effectiveness to save more species: A
 case study of the megadiverse country Australia. Biological Conservation **182**:102–108.
- Nicholson E, Keith DA, Wilcove DS. 2009. Assessing the threat status of ecological communities.

 Conservation Biology **23**:259–274.
- Noss RF et al. 2021. Improving species status assessments under the U.S. Endangered Species Act and implications for multispecies conservation challenges worldwide. Conservation Biology **35**:1715–1724.
- 450 Powers RP, Jetz W. 2019. Global habitat loss and extinction risk of terrestrial vertebrates under future 451 land-use-change scenarios. Nature Climate Change **9**:323–329.
- 452 Prober S, Cook G, Gosper C, Hodgson J, Langridge J, Rumpff L, Williams R, Yates C, Richards A. 2023. 453 The Australian Ecosystem Models Framework: Eucalypt woodlands, volume 1.
- 454 Prober SM, Gosper CR, Gilfedder L, Hardwood TD, Thiele KR, Williams KJ, Yates CJ. 2017. Temperate
 455 eucalypt woodlands. Pages 410–437 in Keith DA, editor. Australian Vegetation, 3rd edition.
 456 Cambridge University Press.
- 457 Prober SM, Stol J, Piper M, Gupta VVSR, Cunningham SA. 2014. Towards climate-resilient restoration 458 in mesic eucalypt woodlands: characterizing topsoil biophysical condition in different 459 degradation states. Plant and Soil **383**:231–244.
- 460 Prober SM, Thiele KR. 2005. Restoring Australia's temperate grasslands and grassy woodlands:
 461 integrating function and diversity. Ecological Management and Restoration 6:16–27.
- Prober SM, Thiele KR, Lunt ID. 2002. Identifying ecological barriers to restoration in temperate grassy woodlands: soil changes associated with different degradation states. Australian Journal of Botany **50**:699.
- Rice WS, Sowman MR, Bavinck M. 2020. Using Theory of Change to improve post-2020 conservation:
 A proposed framework and recommendations for use. Conservation Science and Practice
 2:e301.
- 468 Richards A, Dickson F, Williams K, Cook G, Roxburgh S, Murphy H, Doherty M, Warnick A, Metcalfe D,
 469 Prober S. 2020. The Australian Ecosystem Models Framework project: A conceptual
 470 framework. CSIRO, Australia.
- Roberts J, Hamann M. 2016. Testing a recipe for effective recovery plan design: a marine turtle case study. Endangered Species Research **31**:147–161.
- Robinson JM, Gellie N, MacCarthy D, Mills JG, O'Donnell K, Redvers N. 2021. Traditional ecological knowledge in restoration ecology: a call to listen deeply, to engage with, and respect Indigenous voices. Restoration Ecology **29**:e13381.
- Rodríguez JP et al. 2011. Establishing IUCN Red List Criteria for Threatened Ecosystems: IUCN Red List Criteria for Ecosystems. Conservation Biology **25**:21–29.

- Rouget M, Richardson DM, Cowling RM, Lloyd JW, Lombard AT. 2003. Current patterns of habitat transformation and future threats to biodiversity in terrestrial ecosystems of the Cape Floristic Region, South Africa. Biological Conservation **112**:63–85.
- Rumpff L, Duncan DH, Vesk PA, Keith DA, Wintle BA. 2011. State-and-transition modelling for Adaptive Management of native woodlands. Biological Conservation **144**:1224–1236.
- Salafsky N, Margoluis R, Redford KH, Robinson JG. 2002. Improving the Practice of Conservation: a
 Conceptual Framework and Research Agenda for Conservation Science. Conservation Biology **16**:1469–1479.
- Sato CF, Lindenmayer DB. 2021. The use of state-and-transition models in assessing management success. Conservation Science and Practice **3**. Available from https://onlinelibrary.wiley.com/doi/10.1111/csp2.519 (accessed October 26, 2021).
- Scheele BC, Legge S, Armstrong DP, Copley P, Robinson N, Southwell D, Westgate MJ, Lindenmayer DB. 2018. How to improve threatened species management: An Australian perspective.

 Journal of Environmental Management **223**:668–675.
- Schultz CB, Gerber LR. 2002. Are recovery plans improving with practice? Ecological Applications **12**:641–647.
- Sinclair SJ, Zamin T, Gibson-Roy P, Dorrough J, Wong N, Craigie V, Garrard GE, Moore JL. 2019. A state-and-transition model to guide grassland management. Australian Journal of Botany **67**:437.
- Stringham TK, Krueger W C, Shaver, Patrick L. 2003. State and transition modeling: An ecological process approach. Journal of Range Management **56**:106–113.
- Travers SK, Dorrough J, Shannon I, Val J, Scott ML, Moutou CJ, Oliver I. 2023. The importance of expert selection when identifying threatened ecosystems. Conservation Biology:e14151.
- Weiss KCB, Iacona GD, Tuñas Corzón Á, Davis ON, Kemppinen K, Surrey KC, Gerber LR. 2021. Aligning actions with objectives in endangered species recovery plans. Conservation Science and Practice **3**:e473.
- Westoby M, Walker B, Noy-Meir I. 1989. Range management on the basis of a model which does not seek to establish equilibrium. Journal of Arid Environments **17**:235–239.
- Wilcove DS, Rothstein D, Dubow J, Phillips A, Losos E. 1998. Quantifying Threats to Imperiled Species in the United States. BioScience **48**:607–615.
- Yates CJ, Hobbs RJ. 1997a. Temperate Eucalypt Woodlands: a Review of Their Status, Processes
 Threatening Their Persistence and Techniques for Restoration. Australian Journal of Botany
 45:949.
- Yates CJ, Hobbs RJ. 1997b. Woodland Restoration in the Western Australian Wheatbelt: A Conceptual Framework Using a State and Transition Model. Restoration Ecology **5**:28–35.

Appendix I

Table AI: Details of the grouped transitions across woodland sub-types including all abiotic and biotic factors, interventions and indicators associated with transitions from the start and end states. Any drivers that were specific to a woodland sub-type are indicated in parentheses (Floodplain and Riparian = F, Grassy = G and Shrubby and obligate seeder = S).

Transition	Start and End states	Indicator of transition	Drivers and processes associated with transition			
Hansidon	Start and Lind States	maissaser of distribution	Abiotic	Interventions	Biotic processes	
M1	Exemplar to Exemplar	Minimal change in cover, richness and	Appropriate flood/flows (F)	Weed control/surveillance	Recruitment of native propagules	
		diversity of all vegetation layers	Average rainfall	Reduce fragmentation impacts (increase area,	sufficient to replace any mortality in all	
		habitat features and functional		reduce edge)	vegetation layers	
		processes remain unchanged.		Appropriate fire regime (G,S)		
				Appropriate grazing pressure		
				Soil disturbance by small native mammals		
T1	Exemplar to Modified woodland	Reduction in diversity and cover of	Altered flood/flows (F)	Fragmentation (L)	Mortality of trees	
		native understorey community	Below average rainfall	Inappropriate grazing pressure (native or	Insufficient recruitment of native species	
				introduced herbivores)		
				Thinning or removal of midstorey		
				Thinning of overstorey trees		
				Soil disturbance - degradation		
T2	Exemplar to Highly modified	Reduction in diversity and cover of	Altered flood/flows (F)	Fragmentation (L)	Mortality of trees and shrubs	
	woodland	native understorey community,	Drought	Fire suppression or inappropriate fire regime	Dense recruitment of shrubs	
		Increased exotic species cover,		(G,S)	Insufficient recruitment of native	
		Reduction in density and diversity of		Thinning or removal of midstorey	species,	
		mid-storey		Thinning of overstorey trees	Exotic species recruitment	
				Inappropriate grazing pressure (introduced	Altered soil processes	
				herbivores)		
				Soil disturbance – degradation (fertiliser		
				addition or altered nutrient status from stock)		

ransition	Start and End states	Indicator of transition	Drivers and processes associated with transition			
Tansition	Start and End States	indicator of transition	Abiotic	Interventions	Biotic processes	
.3	Exemplar to Diverse derived	Reduction in tree and shrub density	Average rainfall	Vegetation clearing - overstorey and midstorey	Recruitment of native propagules	
	grassland	Minimal change in diversity and cover		Appropriate grazing pressure, biomass	sufficient to maintain diversity of	
		of herbaceous ground layer		management	herbaceous species	
				Weed control/surveillance		
4	Exemplar to Depleted derived	Very low cover/density of native trees	Altered flood/flows (F)	Vegetation clearing - overstorey and midstorey	Exotic species recruitment and growth	
	grassland	or shrubs		Inappropriate grazing pressure (introduced	Altered soil processes	
		Moderate to high exotic groundcover		herbivores)		
				Soil disturbance - degradation		
				Soil nutrification		
5	Exemplar to Transformed	Reduction in cover/density of native	Drought	Vegetation clearing – all strata	Insufficient recruitment of native	
		trees, shrubs or groundcover		Cropping	species,	
		Dramatic increase in cover of exotic		Fertilisation	Exotic species recruitment and growth	
		species or bare soil		Inappropriate grazing pressure (introduced	Altered soil processes	
				herbivores)		
				Soil disturbance - degradation		
5	Modified woodland to Exemplar	Increased cover, richness and diversity	Appropriate flood/flow	Manage total grazing pressure	Recruitment of native propagules	
		of groundstorey	regime (F)	Weed control/surveillance	sufficient to replace any mortality in all	
				Reintroduce small mammals	vegetation layers	
				Appropriate fire regime (G,S)		
				Revegetate groundstorey		
2	Modified woodland to	Minimal change in cover, richness and	Average rainfall	Weed control/surveillance	Recruitment of native propagules	
	Modified woodland	diversity of all vegetation layers,		Appropriate fire regime (G,S)	sufficient to replace any mortality in all	
		habitat features and functional		Manage total grazing pressure	vegetation layers	
		processes				
7	Modified woodland to	Reduction in diversity and cover of	Altered flood/flows (F)	Fire suppression or inappropriate fire regime	Mortality of trees and shrubs or overly	
	Highly modified woodland	native understorey community,	Drought	Mature tree thinning	dense recruitment of shrubs	
		Increased exotic species cover,		Shrub thinning	Insufficient recruitment of native	
					species,	

Transition	Start and End states	Indicator of transition	Drivers and processes associated with transition			
11 al ISILIUII	Start and End States	indicator of transition	Abiotic	Interventions	Biotic processes	
		Reduction in density and diversity of		Inappropriate grazing pressure (introduced	Exotic species recruitment	
		mid-storey		herbivores)		
				Soil disturbance - degradation		
				Soil nutrification		
Г3	Modified woodland to			See above		
	Diverse derived grassland					
Γ4	Modified woodland to			See above		
	Depleted derived grassland					
T5	Modified woodland to			See above		
	Transformed					
M3	Highly modified woodland to	Minimal change in cover, richness and	Drought	Status quo	Insufficient recruitment of native species	
	Highly modified woodland	diversity of all vegetation layers		Inappropriate grazing pressure (introduced	Ongoing exotic species recruitment and	
				herbivores)	growth	
Т8	Highly modified woodland to	Increased cover, richness and diversity	Appropriate flood/flow	Manage total grazing pressure	Recruitment of native propagules	
	Exemplar	of groundstorey and midstorey	regime (F)	Weed control/surveillance	sufficient to replace any mortality in all	
				Reintroduce small mammals	vegetation layers	
				Appropriate fire regime (G,S)		
				Restore soil nutrient levels		
				Revegetate groundstorey and midstorey		
Г9	Highly modified woodland to	Increased cover, richness and diversity	Appropriate flood/flow	Manage total grazing pressure	Recruitment of native propagules	
	Modified woodland	of groundstorey and midstorey	regime (F)	Weed control/surveillance	sufficient to replace any mortality in all	
				Reintroduce small mammals	vegetation layers	
				Appropriate fire regime (G,S)		
				Restore soil nutrient levels		
				Revegetate groundstorey and midstorey		
Γ4	Highly modified woodland to			See above		
	Depleted derived grassland					
T5	Highly modified woodland to			See above	•	

ransition	Start and End states	Indicator of transition	Drivers and processes associated with transition		
iansidun	Start and Line States	indicator of transition	Abiotic	Interventions	Biotic processes
	Transformed				
10	Diverse derived grassland to	Increased density of mature trees,	Appropriate flood/flow	Revegetate overstorey and midstorey	Recruitment of native propagules
	Exemplar	Increased cover, richness and diversity	regime (F)	Manage total grazing pressure*	sufficient to replace any mortality in all
		of groundstorey and midstorey	Average or above-average	Weed surveillance	vegetation layers
			rainfall	Reintroduce small mammals	
				Appropriate fire regime (G,S)	
11	Diverse derived grassland to	Increased density of mature trees,	Appropriate flood/flow	Revegetate overstorey	Recruitment of native propagules
	Modified woodland	Increased cover, richness and diversity	regime (F)	Increased grazing pressure (native or introduced	sufficient to replace any mortality in
		of groundstorey and midstorey	Average or above-average	herbivores)	groundstorey and overstorey
			rainfall		
<i>1</i> 4	Diverse derived grassland to	Minimal change in cover, richness and	Average rainfall	Status quo	Recruitment of native propagules
	Diverse derived grassland	diversity of all vegetation layers (ie	Appropriate flood/flows (F)	Woody recruitment control/surveillance	sufficient to maintain native groundstorey
		maintain lack of woody vegetation)		Weed control/surveillance	species
				Manage biomass	
				Appropriate fire regime	
12	Diverse derived grassland to	Reduction in diversity and cover of	Drought	Fire – high intensity	Recruitment and growth of exotic species
	Depleted derived grassland	native understorey community,	Altered flood/flows (F)	Inappropriate grazing pressure (introduced	
		Increased exotic species cover		herbivores)	
				Soil disturbance - degradation	
				Soil nutrification	
13	Diverse derived grassland to	Increase in sapling density	Adequate summer rainfall	Revegetation overstorey species (high density)	Mass eucalypt recruitment event or
	Thicket		Mild summer		ongoing above-average eucalypt
			Flood/flow event (F)		recruitment
14	Diverse derived grassland to	Increase in sapling and shrub density	Adequate summer rainfall	Revegetation overstorey species (high density)	Dense tree and shrub recruitment
	Overstorey midstorey thicket		Mild summer	Revegetation midstorey species (high density)	
15	Diverse derived grassland to	Very low to no native groundcover	Drought	Vegetation clearing – groundstorey	Insufficient recruitment of native species,
	Transformed	High cover of exotic species or bare		Cropping	Exotic species recruitment and growth
		soil		Fertilisation	Altered soil processes

Transition	Start and End states	Indicator of transition	Drivers and processes associated with transition			
i i al i si i i Ul I	Start and Line states	maicator or transition	Abiotic	Interventions	Biotic processes	
				Inappropriate grazing pressure (introduced		
				herbivores)		
				Soil disturbance – degradation and nutrification		
T16	Depleted derived grassland to	Increase in density of mature trees	Adequate summer rainfall	Revegetate overstorey	Recruitment and growth of overstorey at	
	Highly modified woodland	Minimal change in cover, richness and	Mild summer	Status quo	low density	
		diversity of groundstorey and	Flood/flow event (F)	Inappropriate grazing pressure (introduced		
		midstorey		herbivores)		
T17	Depleted derived grassland to	Increased cover, richness and diversity	Appropriate flood/flow	Manage total grazing pressure	Increase in growth and recruitment of	
	Diverse derived grassland	of groundstorey	regime (F)	Weed control/surveillance	native groundstorey species	
				Appropriate fire regime (G,S)		
				Restore soil nutrient levels		
				Revegetate groundstorey		
M5	Depleted derived grassland to	Minimal change in cover, richness and	Average rainfall	Status quo	Insufficient recruitment of native species	
	Depleted derived grassland	diversity of all vegetation layers		Inappropriate grazing pressure (introduced	Ongoing exotic species recruitment and	
				herbivores)	growth	
T13	Depleted derived grassland to			See above		
	Thicket			See above		
T14	Depleted derived grassland to			See above		
	Overstorey midstorey thicket			see above		
T15	Depleted derived grassland to			Constant		
	Transformed			See above		
T18	Thicket to Modified woodland	Reduction in sapling density	Average rainfall	Thin saplings	Self thinning and growth of saplings	
		Increase in mature tree density	Appropriate flood/flows (F)	Revegetate groundstorey		
		Increase in groundstorey cover and		Manage total grazing pressure		
		diversity		(Restore soil if needed)		
T18	Thicket to Highly modified			C		
	woodland			See above		
T19	Thicket to Diverse derived grassland	Reduction in overstorey density	Drought	Clear saplings	Natural mass mortality of saplings	

Transition	Start and End states	Indicator of transition	Drivers and processes associated with transition			
Transition	Start and End States	indicator of transition	Abiotic	Interventions	Biotic processes	
		Increase in groundstorey cover	Or average rainfall	Minimal groundstorey disturbance	Recruitment and growth of native	
				Revegetation of groundstorey (if required)	groundstorey	
T20	Thicket to Depleted derived	Reduction in overstorey density	Drought	Clear saplings	Natural mass mortality of saplings	
	grassland	Increase in groundstorey cover	Or average rainfall	Status quo or increase grazing pressure	Recruitment and growth of native	
				(introduced herbivores)	groundstorey	
				Soil disturbance - degradation		
				Soil nutrification		
M6	Thicket to Thicket	Minimal change in sapling density	Average rainfall	Status quo	Minimal tree mortality	
T21	Thicket to Transformed	Reduction in cover/density of native	Drought	Vegetation clearing – all strata	Insufficient recruitment of native species,	
		saplings, shrubs and/or groundcover	Or average rainfall	Cropping	Exotic species recruitment and growth	
		Reduction in litter		Fertilisation	Altered soil processes	
		Increase in cover of exotic species or		Inappropriate grazing pressure (introduced		
		bare soil		herbivores)		
				Soil disturbance - degradation		
M7*	Overstorey midstorey thicket to	Minimal change in cover, richness and	Adequate rainfall	Status quo	*very unlikely unless shrubs and trees	
	Overstorey midstorey thicket	diversity of all vegetation layers			don't grow enough to result in changed	
					structure	
T21	Overstorey midstorey thicket to			See above		
	Transformed			see above		
T22	Transformed to Depleted derived	Reduction in bare soil	Adequate rainfall	Cease land use	Groundcover plant recruitment and	
	grassland			Manage total grazing pressure	growth	
				Revegetation of groundstorey (with exotic or		
				native plants depending on soil degradation, i.e.		
				salinity)		
T23	Transformed to Thicket	Increase in sapling density	Adequate summer rainfall	Revegetation overstorey species (high density)	Mass eucalypt recruitment event or	
			Mild summer		ongoing above-average eucalypt	
			Flood/flow event (F)		recruitment	

Transition	Start and End states	Indicator of transition	Drivers and processes associated with transition		
Transition			Abiotic	Interventions	Biotic processes
T24	Transformed to Overstorey	Increase in sapling and shrub density	Flood/flow event (F)	Revegetation overstorey species (high density)	Dense tree and shrub recruitment
	midstorey thicket		Adequate summer rainfall	Revegetation midstorey species (high density)	
			Mild summer		
M8	Transformed to Transformed	Minimal change in amount		Status quo	
		groundcover or bare soil			