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Abstract 

Global change threatens a vast number of species with severe population declines or even 

extinction. The threat status of an organism is often designated based on geographic range, 

population size, or declines in either. However, invertebrates, which comprise the bulk of 

animal diversity, are conspicuously absent from global frameworks that assess extinction 

risk. Many invertebrates are hard to study, and it has been questioned whether current risk 

assessments are appropriate for the majority of these organisms. As the majority of 

invertebrates are rare, we contend that the lack of data for these organisms makes current 

criteria hard to apply. Using empirical evidence from one of the largest terrestrial arthropod 

surveys to date, consisting of over 33,000 species collected from over a million hours of 

survey effort, we demonstrate that estimates of trends based on low sample sizes are 

associated with major uncertainty and a risk of misclassification under criteria defined by the 

IUCN. We argue that even the most ambitious monitoring efforts are unlikely to produce 

enough observations to reliably estimate population sizes and ranges for more than a fraction 

of species, and there is likely to be substantial uncertainty in assessing risk for the majority of 

global biodiversity using species-level trends. In response, we discuss the need to focus on 

metrics we can currently measure when conducting risk assessments for these organisms. We 

highlight modern statistical methods that allow quantification of metrics that could 

incorporate observations of rare invertebrates into global conservation frameworks, and 

suggest how current criteria might be adapted to meet the needs of the majority of global 

biodiversity. 

 

 

 

The underrepresentation of invertebrates. 



Rapid rates of environmental degradation threaten biodiversity worldwide (Garcia et al., 

2014) and concerted conservation efforts are required to mitigate the impacts of global 

change (Synes et al., 2020; Williams et al., 2021). Invertebrates are at the forefront of this 

crisis, comprising the majority of species, as well as some of the organisms most vulnerable 

to environmental pressure. Recent research has provided evidence for declines in global 

invertebrate populations (van Klink et al., 2020; Wagner et al., 2021) and high sensitivities to 

global change (Millard et al., 2021; Outhwaite, McCann and Newbold, 2022). However, 

representation of these organisms in monitoring programs and global conservation efforts is 

notoriously poor. 

A glaring example of the neglect of invertebrates in assessments of nature is their poor 

representation on the IUCN Red List, which is a central pillar of global biodiversity 

conservation. Assessments provided by the Red List often underpin the allocation of funding 

to large numbers of conservation projects and have demonstrable success in protecting 

threatened species (Rodrigues et al., 2006; Bland et al., 2019; Betts et al., 2020) (Rodrigues 

et al., 2006; Vie et al., 2009; Bland et al., 2019; Betts et al., 2020). Under this framework the 

majority of vertebrates have received an assessment, and notably all 11,188 bird species have 

received multiple assessments each (IUCN, 2021). Yet, of the one million described species 

of insects, only 1.2% (~12,000) have received an assessment (IUCN, 2021) (Figure 1A), and 

a considerably higher proportion of invertebrate (compared to vertebrate) species are listed as 

data deficient (Figure 1B). 

The current status quo is alarming. There is strong evidence to suggest that major 

components of global biodiversity are threatened by global change, whilst our current 

perspective of which organisms are threatened relies on selective information (Cardoso, 

Borges, et al., 2011; Cardoso et al., 2012; Eisenhauer, Bonn and A. Guerra, 2019), 

invertebrate populations are suffering widespread and rapid changes world-wide, and our 



monitoring efforts are often limited in their ability to detect the full scope of these changes 

(Forister et al., 2023). Meanwhile, our conservation frameworks and policy instruments fail 

to sufficiently represent the majority of global biodiversity and the risk that they face. 

 

Impediments to invertebrate monitoring and conservation.  

Invertebrates are notoriously difficult to identify and study, and these issues produce several 

fundamental impediments to invertebrate conservation (Cardoso et al 2011). These include 

their relative unpopularity with the public, policy makers, and scientists, their overwhelming 

under-description compared to their diversity, and dwindling taxonomic expertise (Hochkirch 

et al., 2022). It is generally accepted that these impediments not only limit our understanding 

of invertebrate communities, but also prevent the widespread assessment of invertebrate 

extinction risk under global conservation frameworks. Previous debates have also focused on 

whether risk assessment criteria themselves ( such as those used by the IUCN Red List - 

Table S1) are applicable to many invertebrate taxa, since data might be hard to acquire or the 

standard thresholds might provide inappropriate measures of relative risk for small organisms 

with high reproductive rates (Tscharntke et al., 2007; Cardoso, Erwin, et al., 2011; Cardoso 

et al., 2012; Collen and Böhm, 2012; Eisenhauer, Bonn and A. Guerra, 2019; Fox et al., 

2019; Akçakaya et al., 2021).  For example, estimating total population sizes for insects is 

often extremely difficult, which might explain why only 0.0016% of total insect assessments 

are completed under the IUCN criteria that designates risk due to absolute population size 

(Criteria C). The well-established impediments to invertebrate conservation, and the 

potentially poor fit of some assessment criteria for a hyper-diverse group of organisms, result 

in a reduced set of tools by which we can provide an assessment, and limit the rate of 

invertebrate threat assessments. 



 

The rarity of invertebrates  

Despite the applicability of some criteria being questioned, assessments based on abundance 

and range size trends are fundamentally useful measures of the threat faced by an organism, 

and the majority of invertebrate assessments are performed using these metrics. However, a 

consistent feature of invertebrate communities is that the majority of organisms are extremely 

rare. This pattern was documented in a seminal paper in 1943 (Figure 2 A), using data from a 

5-year Lepidoptera survey in Rothamsted UK. In this study approximately 14% of species 

were observed only once. After 80 years of empirical work, the same pattern remains. In 

studies of invertebrate fauna; most are only encountered in low numbers or at single sites 

(Morse, Stork and Lawton, 1988; Basset and Kitching, 1991; Novotný and Basset, 2000; 

Coddington et al., 2009; Hudson et al., 2017; Dornelas et al., 2018; Srivathsan et al., 2022). 

Figure 2C:D illustrates the persistence of this pattern - across high profile datasets and 

biodiversity data bases, invertebrate communities are still dominated by rare organisms. 

 

Modern sampling techniques, using high throughput DNA sequencing and molecular 

taxonomy provide a route to rapid identification of invertebrates, and a key tool in improving 

our understanding of their diversity and ecology. In 2019 we conducted an intensive and 

systematic molecular survey of terrestrial arthropods in Sweden (Box 1) (Miraldo et al., 

2024), this survey represents one of the largest and most sophisticated arthropod surveys to 

date. In total we collected over 4700 weekly samples of arthropod communities from 198 

sites, representing over 1.5 million hours of survey effort. Despite the enormous sampling 

effort, and state of the art molecular identification (Iwaszkiewicz-Eggebrecht et al., 2023) 

(Appendix Figure S1), most of the organisms we surveyed were still rarely observed, with 

13% of species found at only a single site (1% of total sites). Over 40% of organisms 



occupied five or fewer sites (2.5% of total sites), and less than 1% occupied more than half of 

the sites (Figure 2B). Our findings compound the evidence for a long-standing pattern in 

ecology – an abundance of rarity is an inherent feature of invertebrate communities.  

 

Assessing trends and distributions 

Unfortunately, the reality of this consistent pattern in invertebrate community data is that, for 

the majority of species, we are unable to reliably estimate the changes in their population 

sizes or ranges due to a lack of sufficient data.  Due to the inherent statistical relationship 

between sample size and uncertainty, low abundances or occurrences are intrinsically linked 

to low statistical power, and any estimands are therefore difficult to quantify without 

considerable degrees of uncertainty (van Proosdij et al., 2016; Jeliazkov et al., 2022; Yoccoz, 

2022; Erickson and Smith, 2023). To illustrate how classification using quantitative criteria 

may produce uncertain estimates we use the empirical incidence and abundance distributions 

revealed by the data described in Box 1 to demonstrate the uncertainty in classification of 

risks.  

We simulate decreases in occurrence and an index of population size (Box 2) using the 

empirically derived measures from our data (Box 1). We focus on trends, as being able to 

reliably detect changes in range or population size is a pre-requisite for evaluating whether 

species are in decline, but also whether any interventions are effective conservation measures. 

We use criteria defined by the IUCN Red List, as it is the most well-known conservation 

framework to assess extinction risk. Although we only directly apply the thresholds for 

Criteria A, it should be noted that reliable detection of trends are also requirements for 

Criteria C, and Criteria B. Estimated trends in occurrence and abundance for rare species is 

associated with a high percentage error (Figure 3), when applying IUCN thresholds to 



determine a Red List category this resulted in high levels of misclassification for both 

Vulnerable (Figure 3A & D), and Endangered (Figure 3B & 3E) organisms.  

In the light of the consistent pattern of rarity in invertebrates, it is extremely difficult to 

reliably quantify changes to most populations– even with the best available data. For rare 

species, there is a high degree of uncertainty when estimating trends in occurrence or 

abundance, and using established criteria to evaluate risks results in high degrees of 

misclassification. This uncertainty and the inherent dangers will be even worse for lower 

sampling intensities (Figures S2 to S5) which are more reflective of long-term monitoring 

efforts (Hallmann et al., 2017; Crossley et al., 2020). We show that smaller changes in 

abundance are harder to estimate accurately, especially with low sample sizes. Yet, as rare 

species are particularly at risk of being threatened (Purvis and Hector, 2000; Purvis et al., 

2000; Jetz and Freckleton, 2015), high uncertainty in range or population size trends will 

constrain our decision making for those organisms most urgently needing an assessment. 

Similarly, more severe trends are easier to detect, but the most severely declining species will 

also be the hardest to protect. The accurate designation of less severe risk categories is 

therefore critical to planning effective conservation action, as this is the stage when it may be 

easier and more cost-effective to reverse the changes. 

Since overall data on arthropod abundances and distributions are scarce, the application of 

current criteria will call for a heavy reliance on expert opinion for most taxa. In the absence 

of adequate data to estimate population and range size trends, the process is reliant on 

taxonomic expertise. However, the supply of such experts is limited (Hochkirch et al., 2022) 

and, critically, for the majority of species (i.e. those that have yet to be described 

taxonomically and ecologically), this expertise has yet to be established. This leaves 

practitioners with a difficult decision during the assessment process for rarely observed 

organisms – classify species in the absence of adequate quantitative data and high 



uncertainty, relying on potentially subjective viewpoints from taxon experts. Or, resign to the 

fact that an organism cannot be assessed and must be categorized as “Data deficient”. This, 

we argue, renders the process difficult to replicate, and will limit the representation of 

invertebrates in our global conservation efforts.  

 

Avenues for increasing invertebrate representation in conservation efforts  

Due to the fact that most invertebrate species have yet to be described (Stork, 2018), it is 

highly likely that dominance of rare species will remain into the foreseeable future. To 

provide protection for the planets most diverse organisms we must rapidly extend our 

assessment of nature from a taxonomically biased subset of species to a broader and more 

representative sample of biodiversity (Fraixedas et al., 2022). For invertebrates, we must 

move away from a reliance on information that is currently unobtainable even with the most 

advanced methods. We argue that using species-level trends under current frameworks 

(IUCN, 2022) in conjunction with the best possible data, will result in one of two outcomes: a 

failure to provide risk assessment for the majority of earths organisms, or potentially 

inaccurate classification of threat categories for many organisms.  

Importantly, the extensive data generated by our study (Box 1) are an exception, as most 

monitoring efforts contain fewer sites, and are often restricted to protected areas (Forister et 

al., 2023). For conservation efforts to succeed they must be based on quantitative evidence, 

as such we suggest three possible routes towards better risk assessment for invertebrates 

(Figure 4), all of which rely on information that is currently measurable from standard and 

molecular surveys. We highlight statistical approaches that can reliably quantify metrics of 

changes to invertebrate communities that incorporate information for rarely observed 



organisms. We also outline existing frameworks that can be used to guide the development of 

new criteria to classify risk to these organisms. 

 

 

A) Improving single species inference 

Although for many species data are limited, practitioners should initially try to understand 

risks to individual organisms, as a classification into a risk or Red List category is a useful 

tool for conservation, public engagement, and policy making (Rodrigues et al., 2006; Bennun 

et al., 2018; Bachman et al., 2019; Bland et al., 2019; Betts et al., 2020). The first approach 

is, therefore, to improve the species-level inference and assessment by employing statistical 

techniques that leverage the structure of community data (Figure 4A). There is a growing 

appreciation of the importance and dominance of rare species in the ecological monitoring 

literature (Jeliazkov et al., 2022; Yoccoz, 2022), and numerous techniques have been 

suggested to improve species-level inference for rare organisms. Despite the lack of data for 

individual organisms, community-level datasets often contain large numbers of observations 

across many thousands of species with shared evolutionary histories, spatiotemporal 

distributions, and ecological traits. This structure within community data can be used to allow 

data poor species to borrow strength from closely related or ecologically similar organisms. 

Inferring similarities among species based on these features is now common practice among 

quantitative ecologists, allowing more robust estimates to be made for organisms with sparse 

records (Ovaskainen et al., 2017; Norberg et al., 2019; Jeliazkov et al., 2022). As the 

appreciation for the importance and dominance of rare species has grown, more sophisticated 

methods have emerged. For example, Ovaskainen et al (2024) demonstrate a transfer learning 

approach to improve species level inference for hundreds of thousands of species, most of 



which only provide a handful of observations. The benefit of a combining the single-species 

approach with information obtainable from the community level is that it offers tangible 

assessments linked to individual species for practitioners, the public, and policymakers. 

These statistical techniques can be directly incorporated into current risk assessment practice, 

such as the IUCN Red Listing process, since they can be used to derive the single-species 

metrics on which current assessments are focused. A relatively simple improvement would be 

to update IUCN guidelines to include advice on how ranges and population trends can be 

estimated using hierarchical modelling. Collaboration with quantitative ecologists on the best 

practices when these techniques, and how to use them with current data will be necessary to 

help improve single species inference. However, it is important that any changes made to 

advice should attempt to retain the flexibility of the original assessment process.  

 

B) Improving group-level inference 

Despite growing appreciation of the issue of rare species and advances in statistical 

methodology, alternatives to the single-species focus of current frameworks might be prudent 

to allow including species with too few observations even for more sophisticated statistical 

techniques. A group-level approach could provide a tractable way of using currently available 

data to inform conservation decisions for multiple species simultaneously. As many rare 

organisms often come from similar taxonomic groups, share traits, or display similar 

ecological responses or distributions, the second option is to assess trends across groups of 

organisms. Similar to our first approach (Improving single species inference), integrated 

models can be used to improve inference for community level metrics using the structure 

within community data or integrating data from different sources (Miller et al., 2019; 

Simmonds et al., 2020; Zulian, Miller and Ferraz, 2021; Doser et al., 2022; Lauret et al., 

2023; Zipkin et al., 2023). This approach can then be used to quantify changes in community-



level diversity metrics that might indicate risks. Approaches that pool observations across 

taxonomic groups can also be used to improve species level inference, whilst simultaneously 

modelling group-level responses (Adjei et al., 2024). We envision a potential approach where 

data-poor species are pooled into higher taxonomic levels (e.g. a genus), and abundance or 

distributional trends evaluated as a part of this cluster. Many of the statistical techniques that 

can be used to improve single-species approaches may also guide group-level assessment of 

trends. Estimates are often derived hierarchically for both the group and its members (see 

Improving single species inference), and where estimates at the level of species prove too 

uncertain, estimates at the group level may provide a less specific, but useful measure of risk. 

For example, tropical endemic groups with limited distributions but too few observations for 

single species assessments would make good candidates for group level metric estimation. 

Another useful approach is to group species based on sensitivities to change, something that 

would naturally reflect a measure of extinction risk with regards to a changing environment. 

Species archetype models (Dunstan, Foster and Darnell, 2011; Hui et al., 2013; Rognstad et 

al., 2021; Yu et al., 2022) can achieve this by clustering organisms by their environmental 

responses and assigning an ‘archetype’ defining how different groups respond to different 

environmental variables. The distributions and trends of groups (as well as individual 

species) can then be estimated over time, and used to assess risks of co-localised groups of 

organisms. Estimating and clustering organisms based on their sensitivities to environmental 

change synergises well with the capacity of the current Red List criteria that allow for risk 

designation based on projected trends. For example, if group-level sensitivities to habitat 

cover covariates predict distributional or abundance declines, then current IUCN criteria can 

be adapted to classify these risks.  

 



Importantly, group-level metric estimation should only be considered for organisms for 

which individual assessments are unobtainable, and the conservation requirements of 

organisms should be considered before group-level assessment. An essential criterion for 

group-level assessment is spatial association - sensu sharing the same habitat and resource 

use, and showing largely overlapping distributions. Firstly, this acts as a safeguard against 

potentially inappropriate groupings, organisms with wildly different distributions (e.g. 

localised in completely different habitats or regions), should clearly not be included in a 

group trend estimate. Second, it allows targeted conservation efforts to particular regions, 

with the same goal, e.g. habitat preservation or restoration.  

A major benefit of these methods is that ecological recording schemes often already collect 

information at the group-level (e.g. O’Connor et al., 2019; Breeze et al., 2021), and these 

methods can take advantage of pre-existing data from standardised and citizen science 

recording programs. However, the metrics produced by these methods do not immediately 

complement existing risk assessment criteria, and new criteria must be developed to 

categorise threat levels from these metrics. Identification of appropriate taxonomic levels at 

which to assess organisms will require specific knowledge of the group or community of 

organisms, and the criteria must appropriately convey the threat posed to one or more species. 

However, a multi-taxon approach could increase the uptake of assessments and representation 

of invertebrates in global conservation assessments.  

 

C) Improving bio-regional inference 

An alternative approach is to incorporate observations of rare species into models that allow 

estimation of ecological or biological regions. Assessment would involve the monitoring of 

changes in the distribution and community composition of distinct ‘bio-regions’ quantified by 



a statistical model. Typically, statistical methods of this type define regions of geographical 

or environmental space that display similar community compositions (Figure 4C). Numerous 

quantitative methods have been developed to cluster regions in this manner (Hill et al., 2020; 

Woolley et al., 2020). Methods are generally divided up into those that cluster regions first 

then estimate distributions, and those that estimate species distributions first and cluster after. 

The most rigorous and robust however are those that conduct this analysis simultaneously 

(Foster et al., 2013, Vanhatalo, Foster and Hosack, 2021) and we therefore recommend these 

methods wherever possible. Some of the most well defined of these methods are those that 

designate ‘regions of common profile’ (RCP’s) (Foster et al., 2013). These approaches define 

regions via a community ‘profile’, i.e. a common occurrence pattern of organisms displayed 

across its extent, which is governed by environmental variables. Changes in ranges of RCP’s 

can then be quantified reliably with respect to changes in their community profiles, or due to 

changing environmental variables. A key strength of this approach is that statistical 

techniques to estimate bioregions are diverse and therefore flexible - methods are capable of 

using often a variety of input data, ranging from individual measures of occurrence to 

measures of community turnover (Leaper et al., 2011; Stephenson et al., 2018). 

Another major benefit of this approach is that from a management perspective, regional level 

management is much more tractable than managing thousands of species individually. If 

there is one truism in conservation it is that management of habitats rather than species has 

almost always proven a cost-effective and implementable process for species conservation 

(Fahrig, 1997; Lawton, 1999; Mantyka-pringle, Martin and Rhodes, 2012; Segan, Murray and 

Watson, 2016) (Fahrig, 1997; Lawton, 1999; Mantyka-pringle, Martin and Rhodes, 2012; 

Segan, Murray and Watson, 2016). Identifying communities with a high number of endemic 

species with relatively small ranges, or negative trends in the extent of the modelled bio-

region would provide quantifiable metrics on which to assess risk. Although no current 



frameworks exist specifically for bio-regional assessment, the IUCN Red List of threatened 

ecosystems (RLE) (Rodríguez et al., 2011; Bland et al., 2019) provides a useful framework to 

guide development of regional level risk assessment criteria. From a practical standpoint, the 

RLE has directly adopted many of the risk thresholds (e.g 30%, 50% and 80% range size 

decreases for RLE criteria A) from the Red-list of threatened species. Conceptually these 

same thresholds could then be applied to bioregional distribution changes, with the added 

benefit that species occurrences would be directly tied to the quantification of changes.  

 

A basis in adequate monitoring 

All of our suggestions, as well as continued effective use of current criteria, are contingent on 

the establishment of suitable monitoring programs. Urgent investment in comprehensive and 

well-designed monitoring schemes is required if we wish to accurately detect the ranges, 

abundances, and temporal and spatial trends of invertebrates as major components of global 

biodiversity (Jeliazkov et al., 2022). Fortunately, the techniques for doing so at scale are 

becoming more available, making this a more achievable goal in the near-term (Van Klink et 

al., 2024). Applying these methods to identify groups and ecosystems that contain large 

numbers of endemic or threatened invertebrates, and then monitor these communities is 

essential to assess the effectiveness of conservation efforts. This, we feel, will lay the 

groundwork for providing better protection of threatened organisms for which we struggle to 

obtain sufficient data.  

 

 

  



Table 1.   

Summary of Criteria A of the IUCN Red List for Vulnerable (VU), Endangered (EN) and 

Critically Endangered organisms (CR).   

Criteria 

 

Based on: VU EN CR 

A1  Causes are reversible 

AND have ceased 

a. Direct observation 

(except A3). 

  

b. An index of abundance. 

 

 

 

c. A decline in geographic 

range (Area of 

occupancy/ Extent of 

occurrence).  

 

 

 

d. Actual or potential levels 

of exploitation. 

≥ 

50% 

≥ 

70% 

≥ 

90% 

A2 Causes are irreversible 

OR have not ceased 

≥ 

30% 

≥ 

50% 

≥ 

80% 

A3 Reduction projected/ 

inferred/ suspected in 

the future (up to 100 

years) 

≥ 

30% 

≥ 

50% 

≥ 

80% 

A4 Reduction projected/ 

inferred/ suspected, 

causes have not ceased 

OR understood OR 

irreversible  

≥ 

30% 

≥ 

50% 

≥ 

80% 



 

 

 

e. Effects of introduced 

taxa, hybridization, 

pathogens, pollutants, 

competitors, or parasites. 
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Box 1. A spatially and taxonomically extensive national survey of Swedish arthropods. 

To pinpoint the challenges associated with the application of trend-based criteria to 
invertebrates, we examined the data produced by a systematic effort to characterise the 
current distribution and diversity of the Swedish arthropod fauna. This survey consisted of 
198 malaise traps across Sweden, which were sampled weekly to produce 4748 community-
level samples, comprising 26 kg of invertebrate biomass and an estimated 3.3 million 
individuals. Using a high-throughput molecular pipeline (Iwaszkiewicz-Eggebrecht et al., 
2023) we matched over 13,000 with a species-level reference and identified over 33,000 
unique OTUs. This dataset (with details given in the supplementary material) is one of the 
most comprehensive systematic surveys of arthropod diversity, in terms of spatiotemporal 
scale and taxonomic coverage. These data produced represent the gold-standard in terms of 
national-scale arthropod biodiversity monitoring and are derived from one of the best known 
faunas in the world (Ronquist et al., 2020). 

 

 
 
Figure B1. (A) The spatial layout of trap locations within Sweden, with the map illustrating 
elevation and major bodies of water. Traps were emptied weekly between April and October, 
and monthly in the remainder of the year. (B) An illustration of the diversity of organisms 
detected in the survey. The survey detected over 13,144 annotated species across 556 
arthropod families. The tree is an arthropod taxonomy where the terminal nodes represent the 
253 families containing over 5 species-level operational taxonomic units (OTUs). Major 



arthropod clades are highlighted by the external bars and shaded regions across sections of 
the taxonomy. The outer ring of the heatmap illustrates the number of species level OTUs 
found in each family, and the inner ring illustrates the number of reads in each family.  
  



Box 2. Simulating declines in abundance and occurrence of Swedish arthropods.  

To highlight the problems when classifying infrequently observed species based on trends in 
range or population size, we simulated the minimum trends from criteria A of the IUCN Red 
List  (Table 1). More specifically, we focus on criteria A2b and A2c, which refer to reductions 
in an index of population size, and trends in geographic range (IUCN, 2022). For these 
criteria, Vulnerable (VU), Endangered (EN), and Critically Endangered (CR) categories are 
defined by observing at least 30%, 50%, or 80% declines in abundance or geographic range 
over a 10-year period. We simulated the corresponding declines using observered incidences 
frequencies from the data in Box 1,  and then estimated the trends from the simulated data by 
fitting statistical models. We then calculated the error between simulated (i.e. real) and 
estimated trends to illustrate the issues in retrieving real trends from rarely occurring 
organisms. For each trend category, we simulated the occurrences or abundances from either 
a generalised linear model, or a zero-inflated mixture model respectively. We then fitted the 
same model to the simulated data, retrieved the estimated parameters, and calculated the error 
in the simulated and estimated trend (Figure 3), and the rate of misclassification into IUCN 
categories. Details of the simulation exercises can be found in the appendix.  

 

 

 
Figure B2. Illustration of calculating estimation error for simulated trends in occurrence 
probability (A), and read count (B). For each species detected in the survey we simulated 
IUCN specified trends (yellow lines) in occurrence probability (𝜓) or read count as a proxy 
for relative abundance (𝛾).  From these simulated trends we draw observations (light blue 
points) from a binomial distribution for occurrence and a zero-inflated Poisson distribution 
for abundance. The changes at year 10, i.e. the simulated trends in occurrence or read count 
(ΔΨ!"#	, Δγ!"# respectively), are indicated by the points labelled 1. The appropriate model 
was then fitted and the trend estimated (blue line) from the sets of simulated data. The 
estimated trends at year 10 (ΔΨ$!%	, Δγ$!%) in each model are indicated by points labelled 2. 
The error (red dashed lines) is calculated by subtracting estimated trends from simulated 
trends. 

 



  



 
Figure 1. Taxonomic bias in IUCN red list coverage. Panel (A) Shows the number of 
described and assessed species in the groups with major representation (over 1000 
assessments), on the IUCN red list. Red bars represent the total number of described species, 
and grey bars the number of species assessed by the IUCN. The numbers next to each bar 
represent the proportion of each group assessed. The proportion of assessments in each group 
that fall under the “Extinct” or “Extinct in the wild” category (“E” – dark red bars), 
“Critically Endangered” (“CE” – red bars) , “Endangered” (“EN” – orange bars), 
“Vulnerable” (“VU” – yellow bars) , and “Data deficient” (“DD” – grey bars). The remainder 
of assessments in each group consist of organisms classified as “Near threatened”, “Lower 
risk”, or “Least concern”. Panel (B) shows the imbalance in assessment categories, with 
invertebrate species having considerably larger numbers of Data Deficient species than other 
animal groups.  
  



 
 
Figure 2. Abundance / Incidence distributions illustrating the pervasiveness of rare 
invertebrates. Panel A displays abundance frequencies of species caught from a single 
location in Rothamsted (UK) between 1933-36 (from Fisher, Corbett & Williams, 1943), 
whereas panel B represents data from the high-intensity molecular survey effort in Sweden in 
2019 (Box 1). Panels C-D display the log10 abundance distributions from all organisms in 
three high profile data sets used in scientific research; C) Biotime (Dornelas et al 2018), D) 
GBIF (2000-2024; GBIF.org 2024), and E) the Predicts database (Hudson et al 2017).  
  



 

 

Figure 3. The percentage error in occurrence (a:c) and abundance (d:f) trends recovered by 
methods outlined in Box 2. ψ* − 	ψ	 represents the estimated occurrence – simulated 
occurrence, and 𝛾, − 	𝛾 represents estimated abundance – simulated abundance. Occurrence 
trends are displayed versus the original occurrence frequency for organisms, and abundance 
trends versus original read count as a proxy for abundance Each organism was simulated to 
experience the minimum trends classifying them as “Vulnerable (-30%)”  , “Endangered (-
50%)”, or “Critically Endangered (-80%)”  according to IUCN red-list Criteria A. Each 
individual point represents the difference between the simulated trend and the lower 
confidence interval around the point estimate of the trend for a single species detected in our 
data. The colour of each point highlights the category to which the species would be 
classified based on the estimated trend in population size and horizontal dashed lines border 
outcomes with a correct classification. Near Threatened (NT) and Least Concern (LC) 
categories have been merged to a single category (“Lower risk”). Both axes have been 
truncated to allow easier visualization of the distribution. Insets illustrate the proportion of all 
species that were classified as each of these categories.  

  



 
 
 
Figure 4. A conceptual overview of three proposed approaches to improved threat assessment 
for rare invertebrates, focusing on improved inference at the levels of A) single species; B) 
species groups and C) bio regions. For improved species level inference, we propose using 
hierarchical models (A1), which can improve the estimates of environmental responses (𝛽), 
through ‘borrowing of strength’ for data poor species through, for example phylogenetic 
relationships (V), with more common species. This can improve inference for species level 
distributions and trends (𝜓/𝜆) (A2) – which are directly compatible with the IUCN Red List 
of threatened species (A3). For improved group-level inference, we envisage the clustering of 
species by phylogeny, shared traits, or environmental responses (B1), which can then be used 
to quantify group and species level distributions and trends (B2). Quantification of these 
metrics are not directly compatible with any existing framework, but the Red List of 
threatened species may provide a useful guide to develop new group-level assessment criteria 
(B3). For improved inference at the level of bio-regions, we highlight statistical methods that 
quantify the occurrence probabilities of different communities across regions, to designate 
‘regions of common profile’ (RCP’s) or statistical bioregions (C1). Monitoring the 
distributions of bio-regions or RCP’s can then be used to assess the vulnerability of spatially 
associated species through assessing distributional extents or trends (C2). Bio-regional 
criteria do not complement any existing framework but the Red List of Threatened 
Ecosystems may guide development of new bio-regional criteria (C3). 
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Supplementary material 
 
Methods:  

 

Arthropod surveys: 

Arthropod samples were collected using malaise trap sampling across Sweden over a 12-

month period in 2019. Traps collected arthropods directly into 0.5L bottles containing 

approximately 400ml of 95% ethanol. Samples were collected by a network of volunteers 

who also maintained traps throughout the year. Traps were emptied weekly between April to 

October, and monthly in the remainder of the year. Traps in northern latitudes were not 

sampled in the portion of the year in which there was too much snow to operate a malaise 

trap. The spatial layout of the traps was designed to sample arthropod communities present in 

all of  the major Swedish eco-regions and climates.In total we collected 4707 insect 

community samples. 

 

Molecular pipeline:  

After completing all steps of the DNA extraction and purification, we amplified 418 bp of the 

cytochrome b mitochondrial gene following the FAVIS protocol (Iwaszkiewicz-Eggebrecht, 

et al 2023).   Samples were then sequenced  on an Illumina NovaSeq 6000 SPrime flow cell 

and sequencing data was processed bioinformatically following pipelines that can be 

accessed via the following links: https://github.com/biodiversitydata-se/amplicon-multi-

cutadapt (read trimming and filtering); https://nf-co.re/ampliseq (ASV reconstruction and 

taxonomic annotation). In short, we use cutadapt v.3.2 (Martin, 2011) for primer trimming 

and R package DADA2 v.4.2.1 for denoising (Callahan et al., 2016). Then we use SINTAX 

(Edgar, 2016) in order to get the taxonomic assignment for all ASVs using a custom-made 

reference COI database (https://doi.org/10.17044/scilifelab.20514192.v4). Then we used a 

uchime algorithm implemented in vsearch (Rognes et al., 2016) to filter out chimeric 

sequences and perform clustering with SWARM (Mahé et al., 2014) with d=13. Additional 

cleaning up steps to filter out unassigned or ambiguous ASVs, remove ASVs present in more 

than 5% of negative controls and eliminate ASVs with a very small number of reads (<3 total 

reads) were done with a custom-made script (https://github.com/johnne/clean_asv_data). The 

bioinformatic processing and filtering resulted in 442,409 cleaned ASV sequences grouped 

into 33,888 clusters. 

 

https://github.com/biodiversitydata-se/amplicon-multi-cutadapt
https://github.com/biodiversitydata-se/amplicon-multi-cutadapt
https://nf-co.re/ampliseq
https://doi.org/10.17044/scilifelab.20514192.v4
https://github.com/johnne/clean_asv_data


 

 

Statistical analysis: 

Simulations: 

To demonstrate the effect of small sample sizes on classification into IUCN Red List 

categories, we simulated observations using models often used in ecology to estimate species 

occurrence probabilities and trends in population size. For each Red List category trend, we 

simulated the occurrences or abundances from either a generalised linear model, or a zero-

inflated mixture model respectively. We then fitted the same model to the simulated data, 

retrieved the estimated parameters, and calculated the error in the simulated and estimated 

trend (Figure 3), and the rate of misclassification into IUCN categories. Details of the 

simulation exercises can be found in the appendix. 

To establish the structure of species incidence across a hyper-diverse community, we use the 

occurrence data generated by the “Insect Biome Atlas” (IBA) project, one of the largest 

inventories of invertebrate biodiversity worldwide (Figure 1). This survey represents one of 

the largest design-based monitoring programs of terrestrial arthropod diversity. The project 

involved weekly sample collection from a network of 198 malaise traps in Sweden, 

consisting of a total of 4748 samples and 26 kg of invertebrates, collected over the course of a 

single year. Samples were collected between February and December 2018. Samples were 

processed and species were identified using a high throughput molecular pipeline (described 

in detail in Iwaszkiewicz-Eggrebrecht et al 2023b). From this pipeline, we used data for 

13144 arthropod OTUs that were assigned species-level taxonomies from a reference 

database. We used the average incidence frequency of each species (i.e. the average observed 

occurrence of a species across all sites in Sweden – Figure S1A) to represent occurrence 

probability as an indicator of range size. We used read counts as a proxy for within species 

abundance (Figure S1B). This is rapidly becoming a standard measure of approximate 

abundances in surveys of taxonomically challenging and/ or hyperdiverse taxa, including 

insects (Aizpurua et al., 2018; Bista et al., 2018; Deagle et al., 2019, Piper et al., 2019; Vasar 

et al., 2022). While relative (i.e. between species) abundances in environmental data may be 

affected by a number of biases (Iwaszkiewicz-Eggrebrecht 2023a), we use these to 

approximate the emergent distribution of species abundances in our data, noting that the same 

distributions are supported by independent, non-molecular data.   

 



 
 
 

Changes in range size: 

We used generalised linear models to simulate changes in range size as they are often used in 

ecology to estimate geographic ranges (Norberg et al., 2019). For range size simulations we 

used occurrence probability as an estimate of geographic extent and we simulated changes in 

range sizes using logistic regression:  

 

𝑙𝑜𝑔𝑖𝑡(𝛹"%!) = 𝛽! 	+ 	𝑥"%𝛽&!			 

𝑌"%!~𝑏𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝛹"%!)	, 

 

𝛽'! is the logit of the occurrence of species 𝑠 calculated from the IBA incidence data (i.e. the 

number of sites that species occurred in/ the total number of sites), and 𝛽&! is the species-

specific slope coefficient that corresponds to the minimum trend in occurrence of a given Red 

List category (i.e. -30% , -50%,  -80%). 𝛹"%! is therefore the probability of occurrence of 

species 𝑠 at time t at sampling site i. For each Red List category trend, we simulated the 

occurrence by drawing 200 observations from a bernoulli distribution 

𝑌"%!~	𝑏𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑁,𝛹"%!). We then fitted the same model to the simulated data and calculated 

estimated change in occurrence probability (i.e. the trend) for each species at year 10, which 

was used to classify them into IUCN categories. 

 

Changes in an index of population size: 

Population dynamics of sparsely occurring organisms are often driven by two different 

ecological processes, one that dictates whether organisms occupy a site, and one that drives 

the local abundance at that site. For population size analysis we therefore used a zero inflated 

mixture model (Wenger and Freeman, 2008) to model the probability of occurrence, and 

changes in abundance at each individual site that a species occurs: 

  



𝑙𝑜𝑔𝑖𝑡(Ψ!) = 𝛼! 

𝑙𝑜𝑔(𝛾"%!) = β'! + 𝑥"%𝛽&!			 

π"%!~𝑏𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(Ψ"%!) 

𝑌"%! = H
	0																																							,			if	π"%!		 = 0	
	𝑛𝑒𝑔𝑏𝑖𝑛𝑜𝑚(𝛾"%!, θ)				,					𝑖𝑓	π"%!			 = 	1 

 

Here we assume that only the index of abundance (𝛾"%!), is sensitive to change over time, and 

probability of occurrence (𝛹!), remains constant. The parameter 𝛼! is again the logit of the 

occurrence of species 𝑠 calculated from the IBA incidence data. 𝛽'! is the initial log 

abundance of species s and 𝛽&! is the species-specific slope coefficient that corresponds to the 

trend in abundance of a given Red List category. x is the value of the covariate representing 

the year, taking the values 0-10. 𝜋 is a Bernoulli distributed indicator of whether a site was 

occupied or not, and controls whether the abundance is a true 0 due to the site being 

unoccupied, or produced as a result of sampling stochasticity by drawing observations from a 

negative binomial distribution 𝑌"%! = 𝑛𝑒𝑔𝑏𝑖𝑛𝑜𝑚(𝜆"%!, 𝜃). The parameter 𝜃 that controls 

overdispersion in the negative binomial distribution is set to the average value estimated 

across all species (𝜃	 = 	0.23).  

 

For both models we simulated each IUCN trend over 10 years of data (i.e X = 𝑥&…	𝑥&'	) and 

compared the simulated trends in occurrence probability (Δ	𝛹!"#) and our abundance proxy 

(Δ	𝛾!"#) to estimates produced by fitting the same models to the simulated observations. For 

each species we calculated the percentage error in the predicted and simulated occurrence 

probability (Δ	𝛹$!% 	− 	Δ	𝛹!"#) and population trends (Δ	𝛾$!% − Δ	𝛾!"#) at the end of the 10-

year time period. We compared the number which, according to the IUCN categories, were 

classified correctly, or were assigned a less severe or more severe Red List status. We classify 

any category lower than “Threatened” as “Lower risk” which encompasses the “Least 

Concern” (LC) and “Near Threatened” (NT), categories. All models were fitted using 

maximum likelihood estimation. Models were inspected for convergence errors and models 

that failed to converge were excluded from further analysis.  

 

All analyses were run in the R programming language version 4.2.2 (2022-10-31) (R Core 



Team 2022). We used the ‘pscl’ package to run our zero-inflated mixture models of 

abundance (Zeileis, Kleiber and Jackman, 2008), and the ‘glm’ function included with 

base R to run models of occurrence probability. For both models we take the lower end of 

the confidence interval around the point estimate according to IUCN red-listing guidelines. 

For zero-inflated models, these intervals were calculated using bootstrapping, implemented in 

the ‘boot’ package (Cantey & Ripley 2022). 

 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1. An overview of the FAVIS protocol for DNA extraction, 

purification, library preparation, and sequencing (Top panel) and the 

bioinformatics pipeline used to prepare sequences for analysis.  



 

 

 
Figure S2. Data used in the simulation of abundance or occurrence trends. (A) The incidence 
(occurrence) frequencies for each operational taxonomic unit (OTU) assigned a species-level 
identification in the Swedish data, i.e. proportion of total sites occupied by each species. (B) 
The log of read counts for each OTU in the Swedish data, corresponding to a proxy of within-
species  abundance.  



 

Criteria Vulnerable Endangered Critically Endangered 

A. Declines in population size / geographic range  
≥ 30% OR ≥ 50%  for case A1 

Based on: 

a) Direct observation 
b) An index of abundance 
c) Decline in range 
d) Levels of explotation 
e) Effects of introduced taxa 

 

 

50%  OR ≥ 70% for case A1 

Based on: 

a) Direct observation 
b) An index of abundance 
c) Decline in range 
d) Levels of explotation 
e) Effects of introduced taxa 

 

80%  OR ≥ 90% for case A1 

Based on: 

a) Direct observation 
b) An index of abundance 
c) Decline in range 
d) Levels of explotation 
e) Effects of introduced taxa 

 

 

B . Geographic range B1 AOO < 2000 km2   OR 

B2 EOO < 20000 km2 

AND two of: 

a) No.  locations ≤ 10 

b) Continuing decline  

c) Extreme fluctuations 

B1 AOO < 500 km2   OR 

B2 EOO < 5000 km2 

AND two of: 

a) No.  locations ≤ 5 

b) Continuing decline  

c) Extreme fluctuations 

 

B1 AOO < 10 km2   OR  

B2 EOO < 100 km2 

AND two of: 

a) No.  locations = 1 

b) Continuing decline  

c) Extreme fluctuations 



 

Table 1. Summary of IUCN Red-list criteria not used in our analyses. AOO – area of occupancy. EOO – extent of occurrence. More detailed 

explanations of the cases for criteria A can be found in table S1 of the supplementary information.  

 
 

 

 

 

C. Small population size AND decline No. of mature individuals < 10,000 

AND ONE OF: 

C1) decline of 10%  

C2) a) ≤ 1000 mature individuals 

       b) 100% of individuals are mature 

       c) Extreme fluctuations 

No. of mature individuals < 2500 

AND ONE OF: 

C1) decline of 20%  

C2) a) ≤ 250 mature individuals 

       b) 95-100% of individuals are mature 

       c) Extreme fluctuations 

  

No. of mature individuals < 250 

AND ONE OF: 

C1) decline of 25%  

C2) a) ≤ 50 mature individuals 

       b) 90-100% of individuals are mature 

       c) Extreme fluctuations 

D. Very small or restricted population  No. of mature individuals < 1000 No. of mature individuals < 250 No. of mature individuals < 50 

E. Quantitative analysis of extinction risk.  ≥ 10% in 100 years  ≥ 20% in 20 years or 5 generations. ≥ 50% in 10 years or 3 generations.  



 

 

 

 

 

 

Results:  

 

  
Figure S3. The percentage error in occurrence trends (ψ* − 	ψ ∶ estimated occurrence – 

simulated occurrence) versus original incidence frequency for organisms simulated to 

display trends classifying them as  “Vulnerable” (a) , “Endangered” (b), or “Critically 

Endangered” (c) according to IUCN red-list criteria. Each row represents these error 

distributions for different sample sizes. Each individual point represents the error in the 

simulated and estimated trend for a single species detected in the IBA data. The colour of 

each point highlights the category to which the species would be classified based on the 

estimated trend in population size and horizontal dashed lines border outcomes with a 

correct classification. Near Threatened (NT) and Least Concern (LC) categories have been 

merged to a single category (“Lower risk”). Both axes have been truncated to allow easier 

visualization of the distribution. Insets illustrate the proportion of all species that were 

classified as each of these categories.  



 

 

 

 

  

Figure S4. Confusion matrices showing the proportion of all species estimated to lie within 

each IUCN category against their simulated range size trend categories. The colour of each 

grid square indicates whether classifications were correct (green), or incorrect (blue). The 

transparency indicates the total proportion of species within each simulated & estimated 

category combination. Each panel illustrates the prediction errors for different sampling 

efforts (50,100,200 samples respectively).  

 
 



 

  

Figure S5.  The percentage error in abundance trends (𝛾, − 	𝛾: estimated abundance – 

simulated abundance) versus original species abundance for organisms simulated to display 

trends classifying them as  “Vulnerable” (a) , “Endangered” (b), or “Critically Endangered” 

(c) according to IUCN red-list criteria. Each row represents these error distributions for 

different sample sizes.  Each individual point represents the error in the simulated and 

estimated trend for a single species detected in the IBA data. The colour of each point 

highlights the category to which the species would be classified based on the estimated 

trend in population size and horizontal dashed lines border outcomes with a correct 

classification. Near Threatened (NT) and Least Concern (LC) categories have been merged 

to a single category (“Lower risk”). Both axes have been truncated to allow easier 

visualization of the distribution. Insets illustrate the proportion of all species that were 

classified as each of these categories.  

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S6. Confusion matrices showing the proportion of all species estimated to lie within 

each IUCN category against their simulated abundance trend categories. The colour of each 

grid square indicates whether classifications were correct (green), or incorrect (blue). The 

transparency indicates the total proportion of species within each simulated & estimated 

category combination. Each panel illustrates the prediction errors for different sampling 

efforts (50,100,200 samples respectively).  
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