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Abstract 

Among the most widely used information underpinning international conservation efforts is the 

IUCN Red List of endangered species. The Red List designates species extinction risk based on 

geographic range, population size, or declines in either. However, the Red-List has poor 



representation of invertebrates which comprise the majority of animal diversity, and it has 

frequently been questioned whether Red List criteria are appropriate for these organisms. Due to 

their small size, difficulty in identification, and general rarity, many invertebrates are hard to 

study, making Red List criteria difficult to apply. Here we discuss these criticisms in the context 

of empirical evidence from one of the largest terrestrial arthropod surveys to date, documenting 

the abundance and distribution of over 13,000 species in Sweden. Using simple empirical 

examples from these data, we argue that even the most ambitious monitoring efforts are unlikely 

to produce enough observations to reliably estimate population sizes and ranges for more than a 

fraction of species. Thus, there is likely to be substantial uncertainty in classifying most species 

according to current criteria. In response, we discuss the introduction of potential new IUCN 

criteria to more accurately capture the conservation needs of invertebrates, and to increase the 

representation of invertebrates on the IUCN Red List.  

 

 

 

 

 

 
 

Red-Listing and terrestrial arthropods. 

Rapid rates of environmental degradation threaten biodiversity worldwide (Garcia et al., 2014, 

and concerted conservation efforts are required to mitigate the impacts of human driven global 



change (Synes et al., 2020; Williams et al., 2021). The International Union for Conservation of 

Nature (IUCN) Red List underpins many international conservation policies that aim to preserve 

threatened species and ecosystems (Vie et al., 2009). Assessments provided by the Red List 

often influence the allocation of funding to large numbers of conservation projects and have 

demonstrable success in protecting threatened species (Rodrigues et al., 2006; Bland et al., 2019; 

Betts et al., 2020).   

The current Red-Listing process involves categorisation of species using a set of criteria 

developed over the course of several decades (Mace et al., 1992, Mace et al., 2008). These 

criteria build on ecological theory to use quantitative data to provide a framework to assess 

which species are at risk of extinction. Assessments categorise organisms based on criteria such 

as minimum viable population size (criteria C & D) geographic range (criterion B), analyses of 

extinction risk (criteria E), and those that examine risk based on trends in either range or 

population size (criteria A) (IUCN, 2022; Appendix A).   

The Red List faces several challenges (Rondinini et al., 2014; Bachman et al., 2019; Cazalis et 

al., 2022), but a major criticism is the overwhelming taxonomic bias of assessments, which are 

skewed towards large and (relatively) easy to observe vertebrates. Almost all mammals (91%), 

amphibians (88%), reptiles (87%) and fishes (69%), have received an assessment, and all 11,188 

bird species have each received multiple assessments (IUCN, 2021). However, the 

overwhelming majority of species on earth are invertebrates (Stork, 2018; Srivathsan et al., 

2022), yet of the one million described species of insects, only 1.2% (~12,000) have received an 

assessment (IUCN, 2021) (Figure 1A). Of assessed invertebrates a considerably higher 

proportion of species are listed as data deficient (Figure 1B), meaning the Red List has reduced 

capacity to inform conservation action. What’s more the invertebrates that do have 



representation on the Red List still display bias in the taxa assessed, with most entries composed 

of well-studied taxa. For example, within Hymenoptera, which is one of the best studied groups, 

the majority of assessments come from Apidae (5988 species, 186 assessments) and Formicidae 

(10,213 species, 149 assessments). On the other hand two of the most speciose groups across all 

insects, Ichneumonidae (23,765 species) and Braconidae (18,579 species), have only 2 and 6 

assessments respectively (Bánki et al., 2023).  

The poor representation of invertebrates on the Red List is alarming as recent research has 

demonstrated severe declines in global invertebrate populations (van Klink et al., 2020; Wagner 

et al., 2021), and high sensitivities to global change (Millard et al., 2021; Outhwaite, McCann 

and Newbold, 2022). It is therefore essential that we increase efforts to identify threatened 

organisms and provide risk assessments to guide international conservation efforts. Yet, despite 

the strong evidence to suggest that major components of global biodiversity are threatened by 

global change, the bias in Red-List assessments means our current perspective of which 

organisms are threatened relies substantially on selective information (Cardoso et al., 2011; 

Eisenhauer, Bonn and A. Guerra, 2019) from taxonomically and regionally restricted monitoring 

efforts.   

 

 

The rarity of invertebrates and applying red list criteria. 

 

The relatively poor representation of invertebrates on the Red List is likely symptomatic of 

several interacting issues. The hyper-diverse nature of invertebrate fauna mean that they contain 

vast numbers of species, however, the majority of these organisms rarely provide more than a 



handful of observations for analysis of population or range sizes. A seminal paper published in 

1943 (Fisher, Corbet & Williams) used data from a 5-year Lepidoptera survey in Rothamsted, to 

demonstrate that the majority of species were rare. In this study approximately 14% of species 

were observed only once (Figure 2A). After 80 years of empirical work the same pattern has 

remained, for terrestrial arthropods globally, most are only encountered in low numbers or at 

single sites (Morse, Stork and Lawton, 1988; Basset and Kitching, 1991; Novotný and Basset, 

2000; Coddington et al., 2009, Hudson et al., 2017, Dornelas et al,. 2018, Srivathsan et al. 

2022). In 2019 we conducted a comprehensive and systematic survey of all terrestrial arthropods 

in Sweden (Box 1), this survey represents one of the largest and most sophisticated arthropod 

surveys to date. In total we collected over 4700 samples of arthropod communities from 198 

sites, representing over a million hours of survey effort. Despite the enormous sampling effort, 

and molecular identification (Iwaszkiewicz-Eggebrecht et al., 2023) (Appendix Figure S1), most 

of the organisms we surveyed were still rarely observed with 13% of species found at only a 

single site (1% of total sites). Over 40% of organisms occupied five or fewer sites (2.5% of total 

sites), and less than 1% occupied more than half of the sites (Figure 2B). Our findings compound 

the evidence for a long-standing pattern in ecology - rarity is an inherent feature of invertebrate 

communities.  

Previous debates have focused on whether criteria (Table S1) are potentially inapplicable to 

many invertebrate taxa, since the standard thresholds might provide inappropriate measures of 

relative risk for small organisms with high reproductive rates (Tscharntke et al., 2007; Cardoso, 

Borges, et al., 2011; Collen and Böhm, 2012; Cardoso et al., 2012; Eisenhauer, Bonn and A. 

Guerra, 2019; Fox et al., 2019; Akçakaya et al., 2021). However, the rarity of invertebrate 

species means that even if appropriate, criteria (Table1) are difficult to apply using quantitative 



data.  

For example, the majority of invertebrates that have received Red List assessments are classified 

under criterion B. Yet, in our survey a high proportion of species contain too few observations to 

reliably estimate species distributions (van Proosdij et al., 2016; Jeliazkov et al., 2022; Yoccoz, 

2022; Erickson and Smith, 2023), and 24% of the species we detect produce fewer than three 

observations, preventing application of Criteria B1 (using extent of occurrence as the metric of 

range size). Similarly, estimating population sizes for insects is often extremely difficult, which 

is perhaps why only 0.0016% of total insect assessments are completed under Criteria C, and 

96% of D criteria assessments are completed under D2 (restricted range and limited number of 

locations). 

 

Without adequate quantitative evidence on abundance and distribution the process is dependent 

on the taxonomic expertise. However, the supply of such experts is limited (Hochkirch et al., 

2022) and for the majority of species (i.e. those that have yet to be described taxonomically and 

ecologically), this expertise has yet to be established. This leaves practitioners with a difficult 

decision during the assessment process for rarely observed organisms – classify species in the 

absence of adequate quantitative data and high uncertainty, relying on potentially subjective 

viewpoints from taxon experts. Or place organisms into either the “Data Deficient” or “Not 

Evaluated” categories and accept that limited conservation action can result from the IUCN 

assessment.  

 

An empirical example using trend-based criteria.  



Due to the inherent statistical relationship between sample size and uncertainty, low abundances 

or occurrences are intrinsically linked to low statistical power. Therefore, trends may be difficult 

to estimate without considerable degrees of uncertainty (Jeliazkov et al., 2022; Yoccoz, 2022; 

Erickson and Smith, 2023). To illustrate how classification using trend-based criteria may 

produce uncertain estimates and classification we use the empirical incidence and abundance 

distributions revealed by the data described in Box 1 to establish whether trends can actually be 

detected. We simulate the minimum trends based on observed occurrence and abundance 

frequencies for each “Threatened” Red List category from Criteria A (Box 2), and attempt to 

retrieve the true trend by fitting statistical models to these simulated data.  These simulations 

demonstrate high rates of misclassification in terms of trend-based IUCN categories. As most 

species produce very low numbers of observations, assigning Red List categories is associated 

with high levels of uncertainty and high risk of misclassification. (Figure 3).    

 

Estimated trends in occurrence and abundance for rare species were associated with a high 

percentage error (Figure 3), as deviations away from zero were larger for organisms with lower 

occurrence frequencies. This resulted in high levels of misclassification for both Vulnerable 

(Figure 3A & D), and Endangered (Figure 4B & E) organisms: 46% & 49% (for occurrence and 

abundance trends respectively) of Vulnerable organisms were misclassified as “Lower risk” (i.e., 

any category lower than Vulnerable) whilst 18% & 20% were misclassified as Endangered, and 

7% & 11% as Critically Endangered. Only 30% & 18% received the correct classification. Of 

Endangered organisms, 18% & 33% were misclassified as “Lower risk”, 25% & 18% as 

Vulnerable, and 12% & 15% as Endangered, whilst 45% & 33% were correctly classified. For 

both of these categories, the majority of organisms were misclassified into less severe Red List 



categories than the true category they belonged to. On the other hand, Critically Endangered 

organisms received mostly correct classifications, with 67% & 51% being placed within the 

correct category, but 33% & 49% still received incorrect classifications into lower risk 

categories, with 28% & 33% placed in Endangered, 2% & 4%% in Vulnerable and 3% & 12% in 

Lower risk.   

These simulations are a simple demonstration of how statistical uncertainty can impact category 

designation in the context of small sample sizes. Even with the best available data for terrestrial 

invertebrates, it becomes extremely difficult to quantify changes to most invertebrate populations 

reliably. For rare species, there is a high degree of uncertainty associated with applying Red List 

criteria, and estimates of trends in occurrence or population size and results in high degrees of 

misclassification. These misclassification rates are even worse for lower sampling intensities (50 

& 100 sampling sites - Figures S2 to S5) which are more reflective of long-term monitoring 

efforts (Hallmann et al., 2017; Crossley et al., 2020). Smaller changes in abundance are harder to 

estimate accurately, especially with low sample sizes. As rare species are particularly at risk of 

being threatened (Purvis et al., 2000a; Purvis et al., 2000b, Jetz & Freckleton 2015), high 

uncertainty in range or population size trends will constrain our decision making for those 

organisms most urgently needing an assessment. More severe trends are easier to detect, but the 

most severely declining species will also be the hardest to protect. The accurate designation of 

less severe categories is therefore critical to planning effective conservation action, as this is the 

stage when it may be easier and more cost-effective to reverse the changes. 

 

Avenues for increasing invertebrate representation on the Red List.  



By examining the data from a highly-resolved and national-scale survey of terrestrial 

invertebrates we can make several conclusions. First, despite high intensity sampling and modern 

molecular techniques, we show that most species are demonstrably hard to detect. This 

observation is in line with over 80 years of empirical work and collated data across local, 

regional and global scales (Morse, Stork and Lawton, 1988; Basset and Kitching, 1991; Novotný 

and Basset, 2000; Coddington et al., 2009, Hudson et al., 2017; Dornelas et al., 2018, 

Srivathsan, et al. 2022). Due to the fact that most invertebrate species have yet to be described 

(Stork 2018), it is highly likely that dominance of rare species will remain into the foreseeable 

future. To provide protection for the planets most diverse and potentially vulnerable organisms 

we must rapidly extend our assessment of nature from a taxonomically biased subset of species 

to a broader and more representative sample of biodiversity (Fraixedas et al., 2022). For 

invertebrates, we must move away from a reliance on information that is currently unobtainable 

even with the most advanced methods. We argue that applying the current Red-Listing 

guidelines (IUCN, 2022) to even the best possible data for invertebrate species will result in one 

of two outcomes: a) potentially inaccurate designation of Red List categories for many 

organisms, or b) listing a large portion of global biodiversity as data deficient (DD – IUCN Red 

List guidelines pg. 77). Whether rarity is a fundamental feature of invertebrate fauna or a 

function of imperfect sampling, there are consequences for conservation as many rare taxa will 

not benefit from the Red-Listing process.  

Importantly, the extensive data generated by our study (Box 1) are an exception, as most 

monitoring efforts contain fewer sites, and are generally restricted to protected areas (Forister et, 

al. 2023). Since overall data on arthropod abundances and distributions are scarce, the 

application of current criteria will call for a heavy reliance on expert opinion for most taxa. 



However, as neither ranges nor abundances can be reliably estimated using empirical data and 

statistical models, the process requires experts to make inferences about patterns without 

quantitative evidence. As a result, Red-Listing will be further influenced by limited observations 

of particular populations within the home range of the experts. That, we argue, renders the Red-

Listing process difficult to replicate, will limit the representation of invertebrates on the Red List, 

and potentially deflate the credibility of conservation science.  Clearly, any modification of the 

Red List criteria to facilitate the proper assessment of conservation priorities for the vast majority 

of the planet’s species will require broad community consensus. As a contribution to this 

process, we suggest three possible routes towards better Red-Listing practice for invertebrates.   

First, standardization of new methodology should be explored. Despite the lack of data for 

individual species, community-level datasets often contain large numbers of observations. There 

is ample opportunity for hierarchical models to be used to improve inference by harnessing the 

structure of community data. Inferring ecological similarities among species based on 

phylogeny, spatiotemporal distributions, or shared traits, could allow more robust estimates to be 

made for organisms with sparse records (Ovaskainen et al., 2017; Jeliazkov et al., 2022). Current 

Red List practice could be updated to include advice on how ranges and population trends can be 

estimated using hierarchical modelling, but any changes made to advice should attempt to retain 

the flexibility of the assessment process. Importantly, the distribution of observations across 

phylogenies or ecological niches will influence how much extra information we can glean from 

organisms with good occurrence records (Erickson and Smith, 2023), so as a key priority for 

advancing the state of conservation science, the practical implementation of our first 

recommendation should be investigated.  

 



Second, for those species with low occurrences or abundances, a shift away from the single-

species focus of current Red List criteria might be prudent until we can gather the data required 

for reliable species-level inference. This would complement the already established criteria that 

already work well for many taxonomic groups. One potential avenue would be to create Red List 

criteria that allow the identification of groups or guilds of invertebrates that are particularly 

threatened. These groups could constitute the entirety of higher taxonomic levels (e.g sub-

genus), groups of spatially aggregated species within a taxon, or organisms with shared traits 

(e.g, feeding guild). If there are too few observations for single species Red-Listing, then 

assessments containing groups of organisms could provide a suitable proxy. For example, using 

current criteria a group of organisms could be classified as threatened if members of a group are 

regionally restricted and exhibiting decreases in range size.  Identification of appropriate 

taxonomic levels at which to assess organisms will require taxon-specific knowledge of the size 

of the group, as well as the development of criteria to appropriately convey the risk of extinction 

of one or more species. However, a multi-taxon approach would increase the rate of assessments 

and representation of invertebrates on the Red List.  

 

Third, an alternative could be to identify spatially distinct communities, without pre-defined 

taxonomic relationships, that might be sensitive to environmental change. Conservation of 

habitats rather than species has almost always proven a cost-effective and implementable 

process for species conservation (Fahrig, 1997; Lawton, 1999; Mantyka-pringle, Martin and 

Rhodes, 2012; Segan, Murray and Watson, 2016). Identifying communities with a high number 

of endemic species with relatively small ranges, a high degree of fluctuation in community 

composition, or negative trends in an index of diversity, might identify communities containing 



at risk species.  The IUCN Red List of threatened ecosystems (Rodríguez et al., 2011; Bland et 

al., 2019) provides a useful framework to begin to develop a community-level Red List for 

invertebrates, and has success in channeling resources into habitat conservation. However, the 

major roadblock is deciding on sensible criteria to define what constitutes an at-risk community. 

Meta-community theory might provide useful metrics of what indicates a threatened community, 

based on temporal and spatial shifts in community composition, functional diversity, and local 

extinctions (Iknayan and Beissinger, 2018; Saravia and Momo, 2018; Roberts et al., 2019). 

However, the lack of taxonomically comprehensive long-term monitoring programs globally will 

make it difficult to distinguish dangerous declines from what might constitute the expected 

dynamics of highly diverse communities in fluctuating environments (Zheng et al., 2015; 

Blanchet et al., 2018).  

All of our suggestions, as well as continued effective use of current criteria, are contingent on the 

establishment of suitable monitoring programs. Urgent investment in comprehensive and well-

designed monitoring schemes is required if we wish to accurately detect the ranges, abundances 

and temporal and spatial trends in invertebrates as major components of global biodiversity.  We 

first need to identify groups and ecosystems that contain large numbers of endemic or threatened 

invertebrates, and then monitor these communities to assess the effectiveness conservation 

efforts. This, we feel, will lay the ground work for providing better protection of threatened 

organisms for which we struggle to obtain sufficient data.  

 

 

 

 



 

 

 

 



Table S1. Summary of IUCN Red-list. AOO – area of occupancy. EOO – extent of occurrence. More detailed explanations of the 

cases for criteria A can be found in table S1 of the supplementary information.  

Criteria Vulnerable Endangered Critically Endangered 

A. Declines in population size / geographic range 

 

A1 - Causes of the reduction are clearly reversible 

AND understood AND have ceased. 

A2 - Causes of reduction may not have ceased OR 

may not be understood OR may not be reversible. 

A3 - Population reduction projected, inferred or 

suspected to be met in the future (up to a maximum 

of 100 years)  

A4 - The time period must include both the past and 

the future (up to a max. of 100 years in future), and 

where the causes of reduction may not have ceased 

OR may not be understood OR may not be 

reversible.  

≥ 30% OR ≥ 50%  for case A1 

Based on: 

a) Direct observation 
b) An index of abundance 
c) Decline in range 
d) Levels of explotation 
e) Effects of introduced taxa 

 

 

50%  OR ≥ 70% for case A1 

Based on: 

a) Direct observation 
b) An index of abundance 
c) Decline in range 
d) Levels of exploitation 
e) Effects of introduced taxa 

 

80%  OR ≥ 90% for case A1 

Based on: 

a) Direct observation 
b) An index of abundance 
c) Decline in range 
d) Levels of explotation 
e) Effects of introduced taxa 

 

 

B . Geographic range B1 AOO < 2000 km2   OR 

B2 EOO < 20000 km2 

AND two of: 

a) No.  locations ≤ 10 

b) Continuing decline  

c) Extreme fluctuations 

B1 AOO < 500 km2   OR 

B2 EOO < 5000 km2 

AND two of: 

a) No.  locations ≤ 5 

b) Continuing decline  

c) Extreme fluctuations 

 

B1 AOO < 10 km2   OR  

B2 EOO < 100 km2 

AND two of: 

a) No.  locations = 1 

b) Continuing decline  

c) Extreme fluctuations 



 

 

C. Small population size AND decline No. of mature individuals < 10,000 

AND ONE OF: 

C1) decline of 10%  

C2) a) ≤ 1000 mature individuals 

       b) 100% of individuals are mature 

       c) Extreme fluctuations 

No. of mature individuals < 2500 

AND ONE OF: 

C1) decline of 20%  

C2) a) ≤ 250 mature individuals 

       b) 95-100% of individuals are mature 

       c) Extreme fluctuations 

  

No. of mature individuals < 250 

AND ONE OF: 

C1) decline of 25%  

C2) a) ≤ 50 mature individuals 

       b) 90-100% of individuals are mature 

       c) Extreme fluctuations 

D. Very small or restricted population  D1) No. of mature individuals < 1000 

OR  

D2)  AOO < 20 km2 or 

number of locations ≤ 5 

 

 

No. of mature individuals < 250 No. of mature individuals < 50 

E. Quantitative analysis of extinction risk.  ≥ 10% in 100 years  ≥ 20% in 20 years or 5 generations. ≥ 50% in 10 years or 3 generations.  
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Box 1. A spatially and taxonomically extensive national survey of Swedish arthropods. 

To pinpoint the challenges associated with the application of trend-based Red List criteria to 
invertebrates, we examined the data produced by a systematic effort to characterise the 
current distribution and diversity of the Swedish arthropod fauna. This survey consisted of 
198 malaise traps across Sweden, which were sampled weekly to produce 4748 community-
level samples, comprising 26 kg of invertebrate biomass and an estimated 3.3 million 
individuals. Using a high-throughput molecular pipeline (Iwaszkiewicz-Eggebrecht et al., 
2023) we matched over 13,000 with a species-level reference and identified over 30,000 
unique OTUs. This dataset (with details given in the supplementary material) is one of the 
most comprehensive systematic surveys of arthropod diversity, in terms of spatiotemporal 
scale and taxonomic coverage. These data produced represent the gold-standard in terms of 
national-scale arthropod biodiversity monitoring and are derived from one of the best known 
faunas in the world (Ronquist et al., 2020). 

 

 
 
Figure B1. (A) The spatial layout of trap locations within Sweden, with the map illustrating 
elevation and major bodies of water. Traps were emptied weekly between April and October, 
and monthly in the remainder of the year. (B) An illustration of the diversity of organisms 
detected in the survey. The survey detected over 13,144 species across 556 arthropod 
families. The tree is an arthropod taxonomy where the terminal nodes represent the 253 
families containing over 5 species-level operational taxonomic units (OTUs). Major 
arthropod clades are highlighted by the external bars and shaded regions across sections of 
the taxonomy. The outer ring of the heatmap illustrates the number of species level OTUs 
found in each family, and the inner ring illustrates the number of reads in each family.  
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Box 2. Simulating declines in abundance and occurrence of Swedish arthropods.  

To highlight the problems when classifying infrequently observed species based on trends in 
range or population size, we simulated the minimum trends from criteria A (Table 1). More 
specifically, we focus on criteria A2b and A2c, which refer to reductions in an index of 
population size, and trends in geographic range (IUCN, 2022). For these criteria, Vulnerable 
(VU), Endangered (EN), and Critically Endangered (CR) categories are defined by observing 
at least 30%, 50%, or 80% declines in abundance or geographic range over a 10-year period. 
We simulated the corresponding declines, estimated the trends from the simulated data, and 
calculated the error between simulated and estimated trends. In more detail, for each Red List 
category trend, we simulated the occurrences or abundances from either a generalised linear 
model, or a zero-inflated mixture model respectively. We then fitted the same model to the 
simulated data, retrieved the estimated parameters, and calculated the error in the simulated 
and estimated trend (Figure 3), and the rate of misclassification into IUCN categories. Details 
of the simulation exercises can be found in the appendix.  

 

 

 
Figure B2.  Illustration of calculating estimation error for simulated trends in occurrence 
probability (A), and read count (B). For each species detected in the survey we simulated 
IUCN specified trends (yellow lines) in occurrence probability (!) or read count as a proxy 
for relative abundance (#).  From these simulated trends we draw observations (light blue 
points) from a binomial distribution for occurrence and a zero-inflated Poisson distribution 
for abundance.  The changes at year 10, i.e. the simulated trends in occurrence or read count 
(ΔΨ!"#	, Δγ!"# respectively), are indicated by the points labelled 1. The appropriate model 
was then fitted and the trend estimated (blue line) from the sets of simulated data. The 
estimated trends at year 10 (ΔΨ$!%	, Δγ$!%) in each model are indicated by points labelled 2. 
The error (red dashed lines) is calculated by subtracting estimated trends from simulated 
trends. 
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Figure 1.  (A) Shows the number of described and assessed species in the groups with major 
representation (over 1000 assessments), on the IUCN red list. Red bars represent the total 
number of described species, and grey bars the number of species assessed by the IUCN. The 
numbers next to each bar represent the proportion of each group assessed. The proportion of 
assessments in each group that fall under the “Extinct” or “Extinct in the wild” category (“E” 
– dark red bars), “Critically Endangered” (“CE” – red bars) , “Endangered” (“EN” – orange 
bars), “Vulnerable” (“VU” – yellow bars) , and “Data deficient” (“DD” – grey bars). The 
remainder of assessments in each group consist of organisms classified as “Neat threatened”, 
“Lower risk”, or “Least concern”. The important feature of (B), is that invertebrate species 
have considerably larger numbers of Data Deficient species than other animal groups.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
  
 

 
 
 
 
Figure 2. Displaying the similarities in the incidence and abundance frequencies of species 
caught from a single location in rothamsted UK between 1933-36 (A) and from the single 
year 198 site sampling effort in Sweden (B).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



 

 

Figure 3.  The percentage error in occurrence (a:c) and abundance (d:f) trends. ψ* − 	ψ	 
represents the estimated occurrence – simulated occurrence and #, − 	# represents estimated 
abundance – simulated abundance. Occurrence trends are displayed versus the original 
occurrence frequency for organisms, and abundance trends versus original read count as a 
proxy for abundance. Each organism was simulated to experience the minimum trends 
classifying them as “Vulnerable (-30%)”  , “Endangered (-50%)”, or “Critically Endangered 
(-80%)”  according to IUCN red-list Criteria A. Each individual point represents the lower 
confidence interval around the point estimate of the error in the simulated and estimated trend 
for a single species detected in our data. The colour of each point highlights the category to 
which the species would be classified based on the estimated trend in population size and 
horizontal dashed lines border outcomes with a correct classification. Near Threatened (NT) 
and Least Concern (LC) categories have been merged to a single category (“Lower risk”). 
Both axes have been truncated to allow easier visualization of the distribution. Insets 
illustrate the proportion of all species that were classified as each of these categories.  

 

 
 



Methods:  
 

Arthropod surveys: 

Arthropod samples were collected using malaise trap sampling across Sweden over a 12-

month period in 2019. Traps collected arthropods directly into 0.5L bottles containing 

approximately 400ml of 95% ethanol. Samples were collected by a network of volunteers 

who also maintained traps throughout the year. Traps were emptied weekly between April to 

October, and monthly in the remainder of the year. Traps in northern latitudes were not 

sampled in the portion of the year in which there was too much snow to operate a malaise 

trap. The spatial layout of the traps was designed to sample arthropod communities present in 

all of  the major Swedish eco-regions and climates.In total we collected 4707 insect 

community samples. 

 
Molecular pipeline:  
After completing all steps of the DNA extraction and purification, we amplified 418 bp of the 

cytochrome b mitochondrial gene following the FAVIS protocol (add ref).   Samples were 

then sequenced  on an Illumina NovaSeq 6000 SPrime flow cell and sequencing data was 

processed bioinformatically following pipelines that can be accessed via the following 

links: https://github.com/biodiversitydata-se/amplicon-multi-cutadapt (read trimming and 

filtering); https://nf-co.re/ampliseq (ASV reconstruction and taxonomic annotation). In short, 

we use cutadapt v.3.2 (Martin, 2011) for primer trimming and R package DADA2 v.4.2.1 for 

denoising (Callahan et al., 2016). Then we use SINTAX (Edgar, 2016) in order to get the 

taxonomic assignment for all ASVs using a custom-made reference COI database 

(https://doi.org/10.17044/scilifelab.20514192.v4). Then we used a uchime algorithm 

implemented in vsearch (Rognes et al., 2016) to filter out chimeric sequences and perform 

clustering with SWARM (Mahé et al., 2014) with d=13. Additional cleaning up steps to filter 

out unassigned or ambiguous ASVs, remove ASVs present in more than 5% of negative 

controls and eliminate ASVs with a very small number of reads (<3 total reads) were done 

with a custom-made script (https://github.com/johnne/clean_asv_data). The bioinformatic 

processing and filtering resulted in 442,409 cleaned ASV sequences grouped into 33,888 

clusters. 
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Statistical analysis: 
Simulations: 

To demonstrate the effect of small sample sizes on classification into IUCN Red List 

categories, we simulated observations using models often used in ecology to estimate species 

occurrence probabilities and trends in population size. For each Red List category trend, we 

simulated the occurrences or abundances from either a generalised linear model, or a zero-

inflated mixture model respectively. We then fitted the same model to the simulated data, 

retrieved the estimated parameters, and calculated the error in the simulated and estimated 

trend (Figure 3), and the rate of misclassification into IUCN categories. Details of the 

simulation exercises can be found in the appendix. 

To establish the structure of species incidence across a hyper-diverse community, we use the 

occurrence data generated by the “Insect Biome Atlas” (IBA) project, one of the largest 

inventories of invertebrate biodiversity worldwide (Figure 1). This survey represents one of 

the largest design-based monitoring programs of terrestrial arthropod diversity. The project 

involved weekly sample collection from a network of 198 malaise traps in Sweden, 

consisting of a total of 4748 samples and 26 kg of invertebrates, collected over the course of a 

single year. Samples were collected between February and December 2018. Samples were 

processed and species were identified using a high throughput molecular pipeline (described 

in detail in Iwaszkiewicz-Eggrebrecht et al 2023b). From this pipeline, we used data for 

13144 arthropod OTUs that were assigned species-level taxonomies from a reference 

database. We used the average incidence frequency of each species (i.e. the average observed 

occurrence of a species across all sites in Sweden – Figure S1A) to represent occurrence 

probability as an indicator of range size. We used read counts as a proxy for within species 

abundance (Figure S1B). This is rapidly becoming a standard measure of approximate 

abundances in surveys of taxonomically challenging and/ or hyperdiverse taxa, including 

insects (Aizpurua et al., 2018; Bista et al., 2018; Deagle et al., 2019, Piper et al., 2019; Vasar 

et al., 2022). While relative (i.e. between species) abundances in environmental data may be 

affected by a number of biases (Iwaszkiewicz-Eggrebrecht 2023a), we use these to 

approximate the emergent distribution of species abundances in our data, noting that the same 

distributions are supported by independent, non-molecular data.   

 
 
 
 



Changes in range size: 

We used generalised linear models to simulate changes in range size as they are often used in 

ecology to estimate geographic ranges (Norberg et al., 2019). For range size simulations we 

used occurrence probability as an estimate of geographic extent and we simulated changes in 

range sizes using logistic regression:  

 

!"#$%('!"#) = *# 	+ 	-!"*$#			 

.!"#~0123"4!!$('!"#)	, 

 

*%# is the logit of the occurrence of species 6 calculated from the IBA incidence data (i.e. the 

number of sites that species occurred in/ the total number of sites), and *$# is the species-

specific slope coefficient that corresponds to the minimum trend in occurrence of a given Red 

List category (i.e. -30% , -50%,  -80%). '!"# is therefore the probability of occurrence of 

species 6 at time t at sampling site i. For each Red List category trend, we simulated the 

occurrence by drawing 200 observations from a bernoulli distribution 

.!"#~	0123"4!!$(9,'!"#). We then fitted the same model to the simulated data and calculated 

estimated change in occurrence probability (i.e. the trend) for each species at year 10, which 

was used to classify them into IUCN categories. 

 

Changes in an index of population size: 

Population dynamics of sparsely occurring organisms are often driven by two different 

ecological processes, one that dictates whether organisms occupy a site, and one that drives 

the local abundance at that site. For population size analysis we therefore used a zero inflated 

mixture model (Wenger and Freeman, 2008) to model the probability of occurrence, and 

changes in abundance at each individual site that a species occurs: 

  

!"#$%(Ψ#) = ;# 

!"#(<!"#) = β%# + -!"*$#			 



π!"#~0123"4!!$(Ψ!"#) 

.!"# = ?
	0																																							,			if	π!"#		 = 0	
	31#0$3"B(<!"#, θ)				,					$D	π!"#			 = 	1 

 

Here we assume that only the index of abundance (<!"#), is sensitive to change over time, and 

probability of occurrence ('#), remains constant. The parameter ;# is again the logit of the 

occurrence of species 6 calculated from the IBA incidence data. *%# is the initial log 

abundance of species s and *$# is the species-specific slope coefficient that corresponds to the 

trend in abundance of a given Red List category. x is the value of the covariate representing 

the year, taking the values 0-10. F is a Bernoulli distributed indicator of whether a site was 

occupied or not, and controls whether the abundance is a true 0 due to the site being 

unoccupied, or produced as a result of sampling stochasticity by drawing observations from a 

negative binomial distribution .!"# = 31#0$3"B(G!"#, H). The parameter H that controls 

overdispersion in the negative binomial distribution is set to the average value estimated 

across all species (H	 = 	0.23).  

 

For both models we simulated each IUCN trend over 10 years of data (i.e X = -$…	-$%	) and 

compared the simulated trends in occurrence probability (Δ	'#!') and our abundance proxy 

(Δ	<#!') to estimates produced by fitting the same models to the simulated observations. For 

each species we calculated the percentage error in the predicted and simulated occurrence 

probability (Δ	'(#" 	− 	Δ	'#!') and population trends (Δ	<(#" − Δ	<#!') at the end of the 10-

year time period. We compared the number which, according to the IUCN categories, were 

classified correctly, or were assigned a less severe or more severe Red List status. We 

classify any category lower than “Threatened” as “Lower risk” which encompasses the 

“Least Concern” (LC) and “Near Threatened” (NT), categories. All models were fitted using 

maximum likelihood estimation. Models were inspected for convergence errors and models 

that failed to converge were excluded from further analysis.  

 

All analyses were run in the R programming language version 4.2.2 (2022-10-31) (R Core 

Team 2022). We used the ‘pscl’ package to run our zero-inflated mixture models of 

abundance (Zeileis, Kleiber and Jackman, 2008), and the ‘glm’ function included with 



base R to run models of occurrence probability. For both models we take the lower end of 

the confidence interval around the point estimate according to IUCN red-listing guidelines. 

For zero-inflated models, these intervals were calculated using bootstrapping, implemented in 

the ‘boot’ package (Cantey & Ripley 2022). 

 

 

 

 

  



 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
 
 

 
 
 
 

 
 
 
 
 

 
 
 
 

 
 
 
 

 

Figure S1. An overview of the FAVIS protocol for DNA extraction, 

purification, library preparation, and sequencing (Top panel) and the 

bioinformatics pipeline used to prepare sequences for analysis.  



 
 

 
Figure S2. Data used in the simulation of abundance or occurrence trends. (A) The incidence 
(occurrence) frequencies for each operational taxonomic unit (OTU) assigned a species-level 
identification in the Swedish data, i.e. proportion of total sites occupied by each species. (B) 
The log of read counts for each OTU in the Swedish data, corresponding to a proxy of within-
species  abundance.  



 

Criteria Vulnerable Endangered Critically Endangered 

A. Declines in population size / geographic range  
≥ 30% OR ≥ 50%  for case A1 

Based on: 

a) Direct observation 
b) An index of abundance 
c) Decline in range 
d) Levels of explotation 
e) Effects of introduced taxa 

 

 

50%  OR ≥ 70% for case A1 

Based on: 

a) Direct observation 
b) An index of abundance 
c) Decline in range 
d) Levels of explotation 
e) Effects of introduced taxa 

 

80%  OR ≥ 90% for case A1 

Based on: 

a) Direct observation 
b) An index of abundance 
c) Decline in range 
d) Levels of explotation 
e) Effects of introduced taxa 

 

 

B . Geographic range B1 AOO < 2000 km2   OR 

B2 EOO < 20000 km2 

AND two of: 

a) No.  locations ≤ 10 

b) Continuing decline  

c) Extreme fluctuations 

B1 AOO < 500 km2   OR 

B2 EOO < 5000 km2 

AND two of: 

a) No.  locations ≤ 5 

b) Continuing decline  

c) Extreme fluctuations 

 

B1 AOO < 10 km2   OR  

B2 EOO < 100 km2 

AND two of: 

a) No.  locations = 1 

b) Continuing decline  

c) Extreme fluctuations 



 

Table 1. Summary of IUCN Red-list criteria not used in our analyses. AOO – area of occupancy. EOO – extent of occurrence. More detailed 

explanations of the cases for criteria A can be found in table S1 of the supplementary information.  

 
 
 

 
 

C. Small population size AND decline No. of mature individuals < 10,000 

AND ONE OF: 

C1) decline of 10%  

C2) a) ≤ 1000 mature individuals 

       b) 100% of individuals are mature 

       c) Extreme fluctuations 

No. of mature individuals < 2500 

AND ONE OF: 

C1) decline of 20%  

C2) a) ≤ 250 mature individuals 

       b) 95-100% of individuals are mature 

       c) Extreme fluctuations 

  

No. of mature individuals < 250 

AND ONE OF: 

C1) decline of 25%  

C2) a) ≤ 50 mature individuals 

       b) 90-100% of individuals are mature 

       c) Extreme fluctuations 

D. Very small or restricted population  No. of mature individuals < 1000 No. of mature individuals < 250 No. of mature individuals < 50 

E. Quantitative analysis of extinction risk.  ≥ 10% in 100 years  ≥ 20% in 20 years or 5 generations. ≥ 50% in 10 years or 3 generations.  



 
 
 

 
 
 
Results:  

 

  
Figure S3. The percentage error in occurrence trends (ψO − 	ψ ∶ estimated occurrence – 

simulated occurrence) versus original incidence frequency for organisms simulated to 

display trends classifying them as  “Vulnerable” (a) , “Endangered” (b), or “Critically 

Endangered” (c) according to IUCN red-list criteria. Each row represents these error 

distributions for different sample sizes. Each individual point represents the error in the 

simulated and estimated trend for a single species detected in the IBA data. The colour of 

each point highlights the category to which the species would be classified based on the 

estimated trend in population size and horizontal dashed lines border outcomes with a 

correct classification. Near Threatened (NT) and Least Concern (LC) categories have been 

merged to a single category (“Lower risk”). Both axes have been truncated to allow easier 

visualization of the distribution. Insets illustrate the proportion of all species that were 

classified as each of these categories.  



 

 

 

 

  

Figure S4. Confusion matrices showing the proportion of all species estimated to lie within 

each IUCN category against their simulated range size trend categories. The colour of each 

grid square indicates whether classifications were correct (green), or incorrect (blue). The 

transparency indicates the total proportion of species within each simulated & estimated 

category combination. Each panel illustrates the prediction errors for different sampling 

efforts (50,100,200 samples respectively).  

 
 



 

  

Figure S5.  The percentage error in abundance trends (<Q − 	<: estimated abundance – 

simulated abundance) versus original species abundance for organisms simulated to display 

trends classifying them as  “Vulnerable” (a) , “Endangered” (b), or “Critically Endangered” 

(c) according to IUCN red-list criteria. Each row represents these error distributions for 

different sample sizes.  Each individual point represents the error in the simulated and 

estimated trend for a single species detected in the IBA data. The colour of each point 

highlights the category to which the species would be classified based on the estimated 

trend in population size and horizontal dashed lines border outcomes with a correct 

classification. Near Threatened (NT) and Least Concern (LC) categories have been merged 

to a single category (“Lower risk”). Both axes have been truncated to allow easier 

visualization of the distribution. Insets illustrate the proportion of all species that were 

classified as each of these categories.  

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S6. Confusion matrices showing the proportion of all species estimated to lie within 

each IUCN category against their simulated abundance trend categories. The colour of each 

grid square indicates whether classifications were correct (green), or incorrect (blue). The 

transparency indicates the total proportion of species within each simulated & estimated 

category combination. Each panel illustrates the prediction errors for different sampling 

efforts (50,100,200 samples respectively).  
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