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Abstract 15 

Sociality is fundamental for many species, linked to an individual’s survival and reproductive 16 

success. The evolution of social behaviours has been studied, especially in complex social 17 

animals such as birds. However, discerning the genetic basis of these behaviours has been 18 

difficult due to the lack of ecological validity and life-history in controlled environments. In 19 

wild populations, however, there are the challenges of getting accurate pedigree and 20 

behavioural data. This paper used data from a long-term wild sparrow population in which 21 

we tracked the social behaviour and genetic pedigree, to assemble social networks. Here, 22 

we estimated the genetic architecture of three social network metrics—degree, strength, and 23 

betweenness—as a method of characterising social behaviour. The results show a clear 24 

genetic component, with heritability values of 8%, 6%, and 1.7% for strength, degree, and 25 

betweenness respectively. This study expands our understanding of how sociality is 26 

inherited from controlled settings to wild populations, showing a link between genetics and 27 
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social behaviour. The finding of a negative genetic correlation between strength and degree 28 

indicates a more complex genetic relationship underlying these social traits, calling for more 29 

research to understand the ecological and evolutionary impacts of these findings. Our results 30 

clearly show a genetic basis for social interactions in sparrows, inviting more research into 31 

sociality in other bird and non-bird species. 32 

 33 

 34 

Introduction 35 

The largely unexplored relationship between fitness, genetics, and social behaviour has 36 

garnered significant interest within the field of evolutionary biology (Bleakley et al., 2010, 37 

Lehmann & Rousset, 2014). Fitness, in evolutionary terms, refers to an individual's ability to 38 

survive and reproduce within a given environment (Orr, 2009). An individual’s genetic 39 

makeup can influence trait variations that may be beneficial or detrimental to fitness in 40 

particular environments (Dunning et al., 2023). The transmission of these traits from one 41 

generation to the next is central to the conception of evolution and the basis of the study of 42 

genetics (Ellegren & Sheldon 2008).  43 

Social behaviour, generally defined as interactions among individuals of the same species, 44 

significantly affects an individual's fitness, impacting their ability to find food, mates, and 45 

avoid predators (Riehl & Strong, 2018, Dunning et al., 2023). For instance, cooperative 46 

behaviours can enhance survival rates by aiding in predator avoidance or resource 47 

acquisition (Cornwallis et al., 2017). On the other hand, aggressive or competitive 48 

behaviours might hinder an individual's fitness if they lead to injury or social isolation 49 

(Arseneau-Robar et al., 2016, Szipl et al., 2019). This implies that social behaviour offer 50 

evolutionary advantages and thus should have gone through selection. There is evidence of 51 

intraspecific variation in social behaviour across many species, with consistent behavioural 52 

differences among individuals (Bell et al., 2009, Aplin et al., 2015, Plaza et l., 2019). 53 
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If there is selection for these behaviours, then, if they are also heritable they can evolve. 54 

Determining the genetic basis of social behaviour is pivotal, because it contributes to our 55 

understanding of the evolution of sociality, and it can elucidate how social behaviours 56 

contribute to an individual's fitness and, by extension, the evolutionary trajectory of species 57 

(Wice & Saltz, 2021, Hardie & Cooney, 2022). Moreover, knowing the genetic architecture of 58 

behaviour traits has practical applications for breeding and conservation efforts (Blumstein, 59 

2010).  60 

While some studies have explored the genetic basis of social behaviour in mice and 61 

invertebrates, these investigations have largely been conducted in controlled laboratory 62 

environments (Hammock & Young, 2005, Wice & Saltz, 2021). It is inherently difficult and 63 

expensive to obtain complete and accurate pedigree data of freely roaming, and potentially 64 

intermingling populations.. While laboratory experiments have their merits, they however 65 

cannot replicate real-world situations and often do not represent the genetic diversity of wild 66 

populations (Calisi & Bentley, 2009). Furthermore, laboratory studies cannot incorporate 67 

population processes and life-history data (Pemberton, 2008). As a result, we lack data on 68 

the genetic architecture of sociality from wild populations. 69 

To address this knowledge gap, this paper investigates the heritability of sociality in wild 70 

House sparrows (Passer domesticus) living on an isolated island off the coast of the 71 

UK.Here, migration to and from the island is minimal, allowing for following all individuals 72 

throughout their lifes (Schroeder et al., 2011). The project's uniqueness lies in its opportunity 73 

to study the heritability of social behaviour in a wild population, which is only possible due to 74 

the availability of near-complete census and long-term nature of the study (Schroeder et al., 75 

2011). 76 

In this study, we use social network analysis (farine whitehead), to study and quantify 77 

sociality . Metrics calculated using social network analysis have been evidenced as a good 78 

proxy for personality traits in House sparrows, specifically in the population on Lundy Island 79 
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(Plaza et al., 2019, Farine & Whitehead, 2015). This paper hypothesises that these traits are 80 

heritable in House sparrows. 81 

 82 

Methods  83 

Data collection 84 

The data for the study was obtained from a long-term investigation conducted on Lundy 85 

Island (51°10′N, 4°40′W), located in the Bristol Channel. The study species was the House 86 

sparrow, a commonly used model organism known for its extensively studied biology and life 87 

history (Hansen et al., 2020). House sparrows are known to form social flocks during non-88 

breeding periods and gather around food sources, making them an ideal species for 89 

studying social behaviour (Tuliozi et al., 2018). 90 

Being located 19km off the North Devon coast limits migration, together with a near-91 

complete, annual census and breeding monitoring, enabled us to build a comprehensive 92 

database of life-history traits  of every individual in the population (Schroeder et al., 2011, 93 

Schroeder et al., 2015). DNA samples were collected from the sparrows after capturing birds 94 

in their natal nest box, or through mist netting.These DNA samples, along with regular nest 95 

monitoring, are used to build the genetic pedigree, which was constructed using <22 96 

microsatellite markers (for details see Ockendon et al., 2009, Schroeder et al., 2012 and 97 

Dunning et al., 2023). At the time of writing, the pedigree spans 20 years, from 2000-2019. 98 

 99 

Each sparrow is equipped with a distinctive combination of coloured rings and a Passive-100 

Integrated Transponder (PIT tag, TROVANID100,for details see Schroeder et al., 2011).  101 

A Radio Frequency Identification (RFID) antenna measuring 19.8 x 19.8cm (DorsetID) was 102 

affixed to a seed reservoir positioned that is regularly visted by the sparrows. The antenna 103 

recorded instances of a tagged sparrow entering the feeder, as described in Dunning et al. 104 
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(2023). The reservoir design enables multiple birds to feed simultaneously, and PIT tags are 105 

recorded every ¼ of a second. . 106 

 107 

Social network analysis 108 

Social network analysis is a process that quantifies the connections and interactions 109 

between individuals within a social group, represented as nodes (individuals) and edges 110 

(connections/relationships) in a network graph (Otte & Rousseau, 2002). We created social 111 

networks using presence data obtained from RFID readings during the winter non-breeding 112 

(NB) period of the specific year. We chose this approach to account for seasonal variations 113 

in social behaviour, as sparrows exhibit territorial behaviour during breeding seasons (Tuliozi 114 

et al., 2018). Data during the NB period was collected for 2013, 2015-16, 2016-17, and 115 

2020, resulting in a total of 37 weeks of data in the final dataset.  116 

We used the arrival time method to define non-random associations between individuals, 117 

where an overlap in arrival time at the bird feeder (Δt) is defined as an association (Dunning 118 

et al., 2023). This method is ideal for House sparrows, as other common methods tend to 119 

overestimate associations for gregarious species that aggregate around resources (Dunning 120 

et al., 2023, Ferreira et al., 2020). This method was also developed specifically on the Lundy 121 

Island sparrow population and their behaviour at feeders (Dunning et al., 2023). The arrival 122 

time method assumes that individuals who arrive at the feeder together are socially 123 

associated and were likely together before arriving (Dunning et al., 2023b).  124 

We conducted the computation of social networks using the arrival method in R and RStudio 125 

(R Core Team, 2023, RStudio team, 2020) with a custom function, openly available in the 126 

Zenodo repository (Chan and Dunning, 2023). The function incorporates two parameters: Δt, 127 

representing a predefined time interval that starts when an individual's arrival at the feeder, 128 

and Δi, the time after which the individual is considered to have left the feeder. By assigning 129 

Δt to each arrival, the method considers only birds arriving within one another's Δt as 130 

associated, regardless of their duration at the feeder (Dunning et al., 2023). Individuals could 131 

only be recorded again after the Δi period. Δt and Δi were assigned fixed values of 150s and 132 
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300s, respectively, as these intervals are most effective at capturing non-random 133 

associations of individuals who arrive in a group (Dunning et al., 2023). 134 

We processed the data using the arrival time functions to construct weighted, non-directional 135 

social networks using the R package igraph (Csardi & Nepusz, 2006). To incorporate a 136 

greater amount of data into the wild animal model, we built a social network for each week. 137 

We used three node-based metrics (hereafter centrality measures), degree, strength and 138 

betweenness as measurements of sociality. Degree quantifies the number of associations 139 

an individual has with others and could be interpreted as how many friends an individual 140 

has. Strength further considers the intensity or frequency of those relationships, or how close 141 

an individual is to their friends. Betweenness is the number of shortest paths between other 142 

individuals in the group that pass through the focal individual, quantifying how central an 143 

individual is to the group (Sosa et al., 2020).  144 

We computed degree, strength, betweenness and density with the igraph package (Csardi & 145 

Nepusz, 2006). Density, a global network metric referring to the ratio of associations an 146 

individual has over the number of potential associations it could have, was also calculated, 147 

as its use during modelling enables better comparison between different social networks 148 

(Hart, 2023).  149 

 150 

Animal model  151 

We utilized an animal model to quantify quantitative genetic parameters. Specifically, a 152 

generalised linear model using Markov Chain Monte Carlo (MCMC) approximation methods 153 

was used, with the MCMCglmm package in R (Hadfield et al., 2010).  154 

Animal models are a form of mixed-effect linear regression model, leveraging genetic 155 

information to estimate genetic correlations between traits as additive genetic variance 156 

(Wilson et al., 2010). Additive genetic variation is the measurable variance in a trait due to 157 

the combined effect of shared, multiple alleles (Kruuk et al., 2014). In the animal model, the 158 

additive genetic effect is treated as a random effect by incorporating the inverse relatedness 159 

matrix of the pedigree into the regression. This matrix mathematically portrays the extent of 160 
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genetic relatedness between individuals in a population, quantifying genetic relationships 161 

based on the pedigree.  162 

The additive genetic effect is assumed to have a variance of VA (Kruuk et al., 2014). Any 163 

residual variance in phenotype is labelled as VR, culminating in a total phenotypic variance of 164 

VA + VR (Eq. 1, Dingemanse & Dochtermann, 2014), with VP being the total phenotypic 165 

variance. 166 

 167 

Eq 1.   𝑉𝑃 = 𝑉𝐴 + 𝑉𝑅 168 

 169 

The pedigree data obtained from the Lundy sparrow research team was processed to 170 

include only the columns of offspring, dam, and sire. A proportion of dams and sires were 171 

not present as offspring; these were added as offspring with parents labelled as NA. 10 172 

individuals in the social data were not present in the pedigree, and excluded from the 173 

dataset, resulting in a total of 544 informative individuals and 816 observations.  174 

A tri-variate MCMCglmm was used as the animal model. Degree, strength and betweenness 175 

were collectively modelled as the response variable. The inverse relatedness matrix of the 176 

pedigree, denoted as “animal” in MCMCglmm, was modelled as a random effect. Bird ID 177 

was also included as a random effect to account for permanent environment effects 178 

(differences between individuals not driven by additive genetic effects). Additionally, the 179 

network metric density was introduced as a fixed effect to improve model fit. Degree and 180 

betweenness were z-transformed to standardise the model output and improve model 181 

convergence. Strength was not scaled since it has a range of 0-1. All three centrality 182 

measures were modelled under a gaussian distribution. The modelling approach for 183 

pedigree and residuals was unrestricted to capture any potential covariance between traits 184 

arising from relatedness and to explore potential interactions among these traits within 185 

individuals. Priors were set as a matrix, with ones in the diagonal and zeroes elsewhere and 186 

given a minimal effect on posterior probability (nu = 0.002). 1,000,000 iterations, a burn-in of 187 

300,000, and a thinning interval of ten were used as the parameters for the tri-variate model.  188 
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 189 

Analysis 190 

For each random effect outcome within the animal model, a variance-covariance (VCV) 191 

matrix was generated. The total phenotypic variance VP was calculated as the sum of these 192 

VCV matrices (Eq. 2, Wilson et al., 2010). The VCV matrix for permanent environment 193 

effects (VPE) was represented as variance among individuals (modelled as random effect 194 

bird ID, a unique identifier of the birds). 195 

 196 

Eq. 2   𝑉𝑃  =  𝑉𝐴  +  𝑉𝑃𝐸  + 𝑉𝑅 197 

 198 

- VPE = Permanent environment effects 199 

 200 

These VCV matrices were used to calculate the narrow sense heritability (h2) and 201 

repeatability of each network trait. h² quantifies the proportion of the variation in a trait within 202 

a population that is influenced by additive genetic factors (Wilson et al., 2010). h2 is 203 

calculated as the fraction of phenotypic variance attributable to additive genetic variance, 204 

which can be represented as a percentage (Eq. 3).  205 

 206 

Eq. 3   ℎ2 =
VA

VP
 207 

 208 

Repeatability refers to the fraction of phenotypic variance that remains consistent across 209 

multiple observations in an individual and indicates the stability of a trait (Wilson et al., 210 

2010). It is often regarded as the upper limit of h2, as it represents the total phenotypic 211 

variance observed among individuals, which includes additive genetic variance. 212 

Repeatability is calculated as the sum of overall individual variance Vind over total phenotypic 213 

variance of a trait (Eq. 4, Dingemanse & Dochtermann, 2014). 214 

 215 
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Eq. 4 𝑅𝑒𝑝𝑒𝑎𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑉𝑖𝑛𝑑

𝑉𝑃
=  

𝑉𝐴+𝑉𝑃𝐸

𝑉𝑃
   216 

 217 

 218 

Moreover, to assess potential trait covariation, the phenotypic covariance between centrality 219 

measures resulting from additive genetic effects (COVA) was used to compute genetic 220 

covariance (Wilson et al., 2010). We then computed the genetic correlation from the genetic 221 

covariance, denoted as rA (Eq. 5, Åkesson et al., 2008), where COVA(x,y) is the additive 222 

genetic covariance between trait x and y. 223 

 224 

Eq. 5  𝑟𝐴 =  
𝐶𝑂𝑉𝐴(𝑥,𝑦)

√𝑉𝐴(𝑥)   √𝑉𝐴(𝑦)
 225 

  226 

 227 

Results 228 

Significant additive genetic variance was observed for all three centrality traits (Table 1). The 229 

covariance between traits due to pedigree was statistically significant for strength and 230 

degree (-0.0077, 95% confidence interval = -0.0149 – -0.0003).  231 

Variance due to permanent environment was also statistically significant for all three traits 232 

(Table 1). Additionally, the residual variance and the covariance between traits was 233 

significant for all three traits. The MCMCglmm model and its variables met all assumptions, 234 

and diagnostic plots indicated convergence and independent sampling. The deviance 235 

information criterion was estimated to be 3,621. MCMC model outputs are given in Appendix 236 

1. 237 

 238 

Table 1. Variance-covariances matrices of the animal model. 95% confidence intervals are 239 

indicated within the brackets. Genetic and phenotypic covariances are given above the 240 

diagonal, while correlations are provided below. The diagonal displays additive genetic 241 

variance first, followed by percentage variance. 242 
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Additive genetic variance 

 

 Degree Strength Betweenness 

Degree 0.0628 (0.0054 - 

0.1226), 

2.42% (0.21% - 4.72%) 

-0.0077 (-0.0149 - -

0.0003) 

 

0 

 

Strength -0.0254 (-0.0492 – -

0.0009) 

 

0.0028 (0.0007 – 

0.0051),  

0.11% (0.03% - 0.20%) 

0 

 

Betweenness 0 

 

0 

 

0.0174 (0.0017 – 

0.0399), 

0.67% (0.06 – 1.53) 

Permanent environment effects 

Degree 0.0194 (0.0002 – 

0.0691), 

0.75% (0.01% - 2.66%) 

NA 

 

NA 

 

Strength NA 

 

0.0021 (0.0003 – 

0.0042), 

0.08% (0.01% - 0.16%) 

NA 

 

Betweenness NA 

 

NA 

 

0.0067 (0.0002 – 

0.2043), 

0.26% (0.01% - 

0.79%) 

Residual variance 

Degree 0.9621 (0.8597 – 

1.0663), 

37.05% (33.11% - 

41.06%) 

0.1145 (0.0964 – 

0.1326) 

 

0.3265 (0.2543 – 

0.4025 
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Strength 0.0992 (0.0835 – 

0.1149) 

 

0.0301 (0.0263 – 

0.0337), 

1.15% (1.01% - 1.31%) 

0.0507 (0.0375 – 

0.0636) 

 

Betweenness 0.1644 (0.1281 – 

0.2027) 

 

0.043 (0.0319 – 

0.0540) 

 

1.0097 (0.9120 – 

1.1120), 

38.88% (35.12% - 

42.82%) 

 243 

 244 

Heritability of degree, strength, and betweenness were determined to be 6.01%, 7.97% and 245 

1.68% respectively (Table 2). Genetic correlation between degree and strength was -0.8169 246 

(Table 2). As the covariance between degree and betweenness and betweenness and 247 

degree were not significant they were assumed to be 0.  248 

 249 

Table 2. Heritability, Repeatability and Total Phenotypic Variance (Total) Values, along with 250 

Genetic Correlation between Centrality Measures. 251 

 Heritability Repeatability Total 

Degree 0.0601 0.0795 1.0442 

Strength 0.0797 0.0818 0.0349 

Betweenness 0.0168 0.0235 1.0338 

Genetic correlation 

Degree – Strength -0.8169 

Degree - Betweenness 0 

Strength - Betweenness 0 

 252 

 253 

Discussion 254 
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The results of this study provide compelling evidence for a genetic basis underlying social 255 

centrality traits in sparrows, as all three centrality measures showed significant variance 256 

attributed to pedigree, showing that more closely related individuals had more similar trait 257 

measurements. This finding supports the idea that social behaviour in sparrows is heritable, 258 

since social centrality measures are reliable proxies for social behaviour (Plaza et al., 2019). 259 

The repeatability estimates provide strong support for the existence of consistent individual 260 

differences in social behaviour over time, as evidenced by significant and robust variation 261 

between birds. 262 

Strength appeared to be the most significantly influenced by pedigree, with a heritability 263 

estimate of 8% (Table 2). On the other hand, betweenness was least affected by pedigree, 264 

with a heritability estimate of 1.7%. These findings could suggest that the quality and 265 

quantity of social interactions has a stronger genetic basis than the centrality of an individual 266 

in its population. Furthermore, heritability made up a significant proportion of repeatability. 267 

The heritability of betweenness made up 70.83% of the repeatability of betweenness, whilst 268 

heritability of strength was 97.56% of the repeatability. This suggests that most of the 269 

variability in social network traits could be attributed to relatedness. Further research and 270 

exploration of the underlying genetic mechanisms could reveal the intriguing interplay 271 

between genetics and social behaviour. 272 

 273 

An intriguing observation was the strong negative genetic correlation (-0.8169) between 274 

strength and degree (Table 2). This indicates that degree and strength co-vary in sparrow 275 

populations, and that individuals with more, but weaker connections, tend to be related to 276 

sparrows with fewer, but stronger associations. This might also suggest the presence of 277 

pleiotropy, where a single genetic locus influences both strength and degree, or a potential 278 

genetic linkage between the underlying genes for these two traits. This discovery merits 279 

further investigation to explore the underlying mechanisms and potential ecological and 280 

evolutionary implications. 281 
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While the variance attributed to pedigree was found to be statistically significant, the effect 282 

sizes for degree and betweenness were relatively small, measuring only 0.0628 and 0.0174 283 

standard deviations from the mean, respectively (Table 1). The genetic variance for strength 284 

was also small (0.0028). The relatively wide confidence intervals, ranging from 285 

approximately 0.0017 to 0.1226 for all variance estimates, further underscore the modest 286 

effect sizes observed. Although the genetic influence on social centrality traits is significant, 287 

caution should be exercised in interpretations, and further validation is warranted. Moreover, 288 

the residuals exhibited large variances, surpassing the variation attributed to pedigree and 289 

individual differences. These significant residuals, which additionally had tighter confidence 290 

intervals, suggest the existence of additional unexplored factors that significantly influence 291 

centrality measures beyond those considered in the current model.  292 

To address this, alternative models with different variables could be used to find other 293 

factors that influence social centrality measures, which could reduce residual variance and 294 

improve model fit. For example, including week as a random effect. When collecting a new 295 

dataset for social research, the age and sex of birds should be recorded and used since 296 

individuals of different ages and gender may interact differently. Additionally, social networks 297 

could be constructed on different time intervals, for example per month, or with intervals of a 298 

constant sample size, to determine if these factors change the findings found in this study. 299 

 300 

Given more time, a null model employing randomized data sets could be run to validate the 301 

observed results (Farine, 2017). As the confidence intervals are relatively wide, assessing 302 

whether null results yield different confidence intervals would add further robustness to the 303 

significant findings.  304 

Another aspect to consider is whether the variation in social traits we've observed is due to 305 

genetic factors or simply a result of closely related individuals sharing similar environments. 306 

This question requires more exploration, which could involve methods like cross-fostering or 307 

using data that contains extra-pair offspring. Furthermore, conducting models using data 308 
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collected during breeding seasons could offer valuable insights into the significance of social 309 

behaviour in different contexts. 310 

In conclusion, despite the small impact and relatively large confidence intervals, there is 311 

compelling evidence that sociality is heritable in-house sparrows, adding valuable insights 312 

into the genetic basis of social behaviour. This finding warrants further investigation to 313 

understand the underlying mechanisms driving social behaviour.  314 
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 489 

Appendix 1. Summary statistics of each random effect. Covariances of interactions are 490 

displayed as trait x – trait y. The values in the table are scaled by a factor of 100 to 491 

accommodate the small effect sizes of the output. Significant values are denoted by *.  492 

Summary Statistics 

Pedigree  

 Mean variance 95% confidence interval Effective sample size 

Degree 6.28* 0.54 – 12.26 243.40 

Strength 0.28* 0.07 – 0.51 338.20 

Betweenness 1.74* 0.17 – 3.99 180.00 

Degree - Betweenness -2.26 -4.89 – 0.10 295.70 

Degree - Strength -0.77* -1.49 – -0.03 433.80 
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Strength - Betweenness 0.46 -0.17 – 3.99 180.00 

Bird ID  

 Mean variance 95% confidence interval Effective sample size 

Degree 1.94* 0.02 – 6.91 1,030.00 

Strength 0.21* 0.03 – 0.42 1,112.00 

Betweenness 0.67* 0.02 – 2.04 3,225.00 

Residuals  

 Mean variance 95% confidence interval Effective sample size 

Degree 96.21* 85.97 – 106.63 14,649.00 

Strength 3.00* 2.63 – 3.37 45,346.00 

Betweenness 1.74* 0.17 – 3.99 62,995.00 

Degree - Betweenness 32.65* 25.44 – 40.25 64,012.00 

Degree - Strength 11.45* 9.64 – 13.26 49,850.00 

Strength - Betweenness 5.07* 3.75 – 6.36 52,913.00 

 493 


